tunnels: Don't apply GRO to multiple layers of encapsulation.
[linux/fpc-iii.git] / net / core / dev.c
blob0f9289ff0f2a2aba085867b5e1c4ba26cbdcaf6f
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
186 static seqcount_t devnet_rename_seq;
188 static inline void dev_base_seq_inc(struct net *net)
190 while (++net->dev_base_seq == 0);
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 static inline void rps_lock(struct softnet_data *sd)
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
212 static inline void rps_unlock(struct softnet_data *sd)
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
222 struct net *net = dev_net(dev);
224 ASSERT_RTNL();
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
233 dev_base_seq_inc(net);
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
239 static void unlist_netdevice(struct net_device *dev)
241 ASSERT_RTNL();
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
250 dev_base_seq_inc(dev_net(dev));
254 * Our notifier list
257 static RAW_NOTIFIER_HEAD(netdev_chain);
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 #ifdef CONFIG_LOCKDEP
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 int i;
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
323 int i;
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 int i;
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 #endif
349 /*******************************************************************************
351 Protocol management and registration routines
353 *******************************************************************************/
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 else
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
393 void dev_add_pack(struct packet_type *pt)
395 struct list_head *head = ptype_head(pt);
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
401 EXPORT_SYMBOL(dev_add_pack);
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
410 * returns.
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
416 void __dev_remove_pack(struct packet_type *pt)
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
421 spin_lock(&ptype_lock);
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
430 pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 spin_unlock(&ptype_lock);
434 EXPORT_SYMBOL(__dev_remove_pack);
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
448 void dev_remove_pack(struct packet_type *pt)
450 __dev_remove_pack(pt);
452 synchronize_net();
454 EXPORT_SYMBOL(dev_remove_pack);
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
469 void dev_add_offload(struct packet_offload *po)
471 struct list_head *head = &offload_base;
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
477 EXPORT_SYMBOL(dev_add_offload);
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
492 static void __dev_remove_offload(struct packet_offload *po)
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
497 spin_lock(&offload_lock);
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
506 pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 spin_unlock(&offload_lock);
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
523 void dev_remove_offload(struct packet_offload *po)
525 __dev_remove_offload(po);
527 synchronize_net();
529 EXPORT_SYMBOL(dev_remove_offload);
531 /******************************************************************************
533 Device Boot-time Settings Routines
535 *******************************************************************************/
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
551 struct netdev_boot_setup *s;
552 int i;
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
576 int netdev_boot_setup_check(struct net_device *dev)
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
591 return 0;
593 EXPORT_SYMBOL(netdev_boot_setup_check);
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
606 unsigned long netdev_boot_base(const char *prefix, int unit)
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
612 sprintf(name, "%s%d", prefix, unit);
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
618 if (__dev_get_by_name(&init_net, name))
619 return 1;
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
628 * Saves at boot time configured settings for any netdevice.
630 int __init netdev_boot_setup(char *str)
632 int ints[5];
633 struct ifmap map;
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
654 __setup("netdev=", netdev_boot_setup);
656 /*******************************************************************************
658 Device Interface Subroutines
660 *******************************************************************************/
663 * dev_get_iflink - get 'iflink' value of a interface
664 * @dev: targeted interface
666 * Indicates the ifindex the interface is linked to.
667 * Physical interfaces have the same 'ifindex' and 'iflink' values.
670 int dev_get_iflink(const struct net_device *dev)
672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 return dev->netdev_ops->ndo_get_iflink(dev);
675 return dev->ifindex;
677 EXPORT_SYMBOL(dev_get_iflink);
680 * __dev_get_by_name - find a device by its name
681 * @net: the applicable net namespace
682 * @name: name to find
684 * Find an interface by name. Must be called under RTNL semaphore
685 * or @dev_base_lock. If the name is found a pointer to the device
686 * is returned. If the name is not found then %NULL is returned. The
687 * reference counters are not incremented so the caller must be
688 * careful with locks.
691 struct net_device *__dev_get_by_name(struct net *net, const char *name)
693 struct net_device *dev;
694 struct hlist_head *head = dev_name_hash(net, name);
696 hlist_for_each_entry(dev, head, name_hlist)
697 if (!strncmp(dev->name, name, IFNAMSIZ))
698 return dev;
700 return NULL;
702 EXPORT_SYMBOL(__dev_get_by_name);
705 * dev_get_by_name_rcu - find a device by its name
706 * @net: the applicable net namespace
707 * @name: name to find
709 * Find an interface by name.
710 * If the name is found a pointer to the device is returned.
711 * If the name is not found then %NULL is returned.
712 * The reference counters are not incremented so the caller must be
713 * careful with locks. The caller must hold RCU lock.
716 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
718 struct net_device *dev;
719 struct hlist_head *head = dev_name_hash(net, name);
721 hlist_for_each_entry_rcu(dev, head, name_hlist)
722 if (!strncmp(dev->name, name, IFNAMSIZ))
723 return dev;
725 return NULL;
727 EXPORT_SYMBOL(dev_get_by_name_rcu);
730 * dev_get_by_name - find a device by its name
731 * @net: the applicable net namespace
732 * @name: name to find
734 * Find an interface by name. This can be called from any
735 * context and does its own locking. The returned handle has
736 * the usage count incremented and the caller must use dev_put() to
737 * release it when it is no longer needed. %NULL is returned if no
738 * matching device is found.
741 struct net_device *dev_get_by_name(struct net *net, const char *name)
743 struct net_device *dev;
745 rcu_read_lock();
746 dev = dev_get_by_name_rcu(net, name);
747 if (dev)
748 dev_hold(dev);
749 rcu_read_unlock();
750 return dev;
752 EXPORT_SYMBOL(dev_get_by_name);
755 * __dev_get_by_index - find a device by its ifindex
756 * @net: the applicable net namespace
757 * @ifindex: index of device
759 * Search for an interface by index. Returns %NULL if the device
760 * is not found or a pointer to the device. The device has not
761 * had its reference counter increased so the caller must be careful
762 * about locking. The caller must hold either the RTNL semaphore
763 * or @dev_base_lock.
766 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
771 hlist_for_each_entry(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
775 return NULL;
777 EXPORT_SYMBOL(__dev_get_by_index);
780 * dev_get_by_index_rcu - find a device by its ifindex
781 * @net: the applicable net namespace
782 * @ifindex: index of device
784 * Search for an interface by index. Returns %NULL if the device
785 * is not found or a pointer to the device. The device has not
786 * had its reference counter increased so the caller must be careful
787 * about locking. The caller must hold RCU lock.
790 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
792 struct net_device *dev;
793 struct hlist_head *head = dev_index_hash(net, ifindex);
795 hlist_for_each_entry_rcu(dev, head, index_hlist)
796 if (dev->ifindex == ifindex)
797 return dev;
799 return NULL;
801 EXPORT_SYMBOL(dev_get_by_index_rcu);
805 * dev_get_by_index - find a device by its ifindex
806 * @net: the applicable net namespace
807 * @ifindex: index of device
809 * Search for an interface by index. Returns NULL if the device
810 * is not found or a pointer to the device. The device returned has
811 * had a reference added and the pointer is safe until the user calls
812 * dev_put to indicate they have finished with it.
815 struct net_device *dev_get_by_index(struct net *net, int ifindex)
817 struct net_device *dev;
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (dev)
822 dev_hold(dev);
823 rcu_read_unlock();
824 return dev;
826 EXPORT_SYMBOL(dev_get_by_index);
829 * netdev_get_name - get a netdevice name, knowing its ifindex.
830 * @net: network namespace
831 * @name: a pointer to the buffer where the name will be stored.
832 * @ifindex: the ifindex of the interface to get the name from.
834 * The use of raw_seqcount_begin() and cond_resched() before
835 * retrying is required as we want to give the writers a chance
836 * to complete when CONFIG_PREEMPT is not set.
838 int netdev_get_name(struct net *net, char *name, int ifindex)
840 struct net_device *dev;
841 unsigned int seq;
843 retry:
844 seq = raw_seqcount_begin(&devnet_rename_seq);
845 rcu_read_lock();
846 dev = dev_get_by_index_rcu(net, ifindex);
847 if (!dev) {
848 rcu_read_unlock();
849 return -ENODEV;
852 strcpy(name, dev->name);
853 rcu_read_unlock();
854 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
855 cond_resched();
856 goto retry;
859 return 0;
863 * dev_getbyhwaddr_rcu - find a device by its hardware address
864 * @net: the applicable net namespace
865 * @type: media type of device
866 * @ha: hardware address
868 * Search for an interface by MAC address. Returns NULL if the device
869 * is not found or a pointer to the device.
870 * The caller must hold RCU or RTNL.
871 * The returned device has not had its ref count increased
872 * and the caller must therefore be careful about locking
876 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
877 const char *ha)
879 struct net_device *dev;
881 for_each_netdev_rcu(net, dev)
882 if (dev->type == type &&
883 !memcmp(dev->dev_addr, ha, dev->addr_len))
884 return dev;
886 return NULL;
888 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
890 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
892 struct net_device *dev;
894 ASSERT_RTNL();
895 for_each_netdev(net, dev)
896 if (dev->type == type)
897 return dev;
899 return NULL;
901 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
903 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
905 struct net_device *dev, *ret = NULL;
907 rcu_read_lock();
908 for_each_netdev_rcu(net, dev)
909 if (dev->type == type) {
910 dev_hold(dev);
911 ret = dev;
912 break;
914 rcu_read_unlock();
915 return ret;
917 EXPORT_SYMBOL(dev_getfirstbyhwtype);
920 * __dev_get_by_flags - find any device with given flags
921 * @net: the applicable net namespace
922 * @if_flags: IFF_* values
923 * @mask: bitmask of bits in if_flags to check
925 * Search for any interface with the given flags. Returns NULL if a device
926 * is not found or a pointer to the device. Must be called inside
927 * rtnl_lock(), and result refcount is unchanged.
930 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
931 unsigned short mask)
933 struct net_device *dev, *ret;
935 ASSERT_RTNL();
937 ret = NULL;
938 for_each_netdev(net, dev) {
939 if (((dev->flags ^ if_flags) & mask) == 0) {
940 ret = dev;
941 break;
944 return ret;
946 EXPORT_SYMBOL(__dev_get_by_flags);
949 * dev_valid_name - check if name is okay for network device
950 * @name: name string
952 * Network device names need to be valid file names to
953 * to allow sysfs to work. We also disallow any kind of
954 * whitespace.
956 bool dev_valid_name(const char *name)
958 if (*name == '\0')
959 return false;
960 if (strlen(name) >= IFNAMSIZ)
961 return false;
962 if (!strcmp(name, ".") || !strcmp(name, ".."))
963 return false;
965 while (*name) {
966 if (*name == '/' || *name == ':' || isspace(*name))
967 return false;
968 name++;
970 return true;
972 EXPORT_SYMBOL(dev_valid_name);
975 * __dev_alloc_name - allocate a name for a device
976 * @net: network namespace to allocate the device name in
977 * @name: name format string
978 * @buf: scratch buffer and result name string
980 * Passed a format string - eg "lt%d" it will try and find a suitable
981 * id. It scans list of devices to build up a free map, then chooses
982 * the first empty slot. The caller must hold the dev_base or rtnl lock
983 * while allocating the name and adding the device in order to avoid
984 * duplicates.
985 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
986 * Returns the number of the unit assigned or a negative errno code.
989 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
991 int i = 0;
992 const char *p;
993 const int max_netdevices = 8*PAGE_SIZE;
994 unsigned long *inuse;
995 struct net_device *d;
997 p = strnchr(name, IFNAMSIZ-1, '%');
998 if (p) {
1000 * Verify the string as this thing may have come from
1001 * the user. There must be either one "%d" and no other "%"
1002 * characters.
1004 if (p[1] != 'd' || strchr(p + 2, '%'))
1005 return -EINVAL;
1007 /* Use one page as a bit array of possible slots */
1008 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1009 if (!inuse)
1010 return -ENOMEM;
1012 for_each_netdev(net, d) {
1013 if (!sscanf(d->name, name, &i))
1014 continue;
1015 if (i < 0 || i >= max_netdevices)
1016 continue;
1018 /* avoid cases where sscanf is not exact inverse of printf */
1019 snprintf(buf, IFNAMSIZ, name, i);
1020 if (!strncmp(buf, d->name, IFNAMSIZ))
1021 set_bit(i, inuse);
1024 i = find_first_zero_bit(inuse, max_netdevices);
1025 free_page((unsigned long) inuse);
1028 if (buf != name)
1029 snprintf(buf, IFNAMSIZ, name, i);
1030 if (!__dev_get_by_name(net, buf))
1031 return i;
1033 /* It is possible to run out of possible slots
1034 * when the name is long and there isn't enough space left
1035 * for the digits, or if all bits are used.
1037 return -ENFILE;
1041 * dev_alloc_name - allocate a name for a device
1042 * @dev: device
1043 * @name: name format string
1045 * Passed a format string - eg "lt%d" it will try and find a suitable
1046 * id. It scans list of devices to build up a free map, then chooses
1047 * the first empty slot. The caller must hold the dev_base or rtnl lock
1048 * while allocating the name and adding the device in order to avoid
1049 * duplicates.
1050 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051 * Returns the number of the unit assigned or a negative errno code.
1054 int dev_alloc_name(struct net_device *dev, const char *name)
1056 char buf[IFNAMSIZ];
1057 struct net *net;
1058 int ret;
1060 BUG_ON(!dev_net(dev));
1061 net = dev_net(dev);
1062 ret = __dev_alloc_name(net, name, buf);
1063 if (ret >= 0)
1064 strlcpy(dev->name, buf, IFNAMSIZ);
1065 return ret;
1067 EXPORT_SYMBOL(dev_alloc_name);
1069 static int dev_alloc_name_ns(struct net *net,
1070 struct net_device *dev,
1071 const char *name)
1073 char buf[IFNAMSIZ];
1074 int ret;
1076 ret = __dev_alloc_name(net, name, buf);
1077 if (ret >= 0)
1078 strlcpy(dev->name, buf, IFNAMSIZ);
1079 return ret;
1082 static int dev_get_valid_name(struct net *net,
1083 struct net_device *dev,
1084 const char *name)
1086 BUG_ON(!net);
1088 if (!dev_valid_name(name))
1089 return -EINVAL;
1091 if (strchr(name, '%'))
1092 return dev_alloc_name_ns(net, dev, name);
1093 else if (__dev_get_by_name(net, name))
1094 return -EEXIST;
1095 else if (dev->name != name)
1096 strlcpy(dev->name, name, IFNAMSIZ);
1098 return 0;
1102 * dev_change_name - change name of a device
1103 * @dev: device
1104 * @newname: name (or format string) must be at least IFNAMSIZ
1106 * Change name of a device, can pass format strings "eth%d".
1107 * for wildcarding.
1109 int dev_change_name(struct net_device *dev, const char *newname)
1111 unsigned char old_assign_type;
1112 char oldname[IFNAMSIZ];
1113 int err = 0;
1114 int ret;
1115 struct net *net;
1117 ASSERT_RTNL();
1118 BUG_ON(!dev_net(dev));
1120 net = dev_net(dev);
1121 if (dev->flags & IFF_UP)
1122 return -EBUSY;
1124 write_seqcount_begin(&devnet_rename_seq);
1126 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1127 write_seqcount_end(&devnet_rename_seq);
1128 return 0;
1131 memcpy(oldname, dev->name, IFNAMSIZ);
1133 err = dev_get_valid_name(net, dev, newname);
1134 if (err < 0) {
1135 write_seqcount_end(&devnet_rename_seq);
1136 return err;
1139 if (oldname[0] && !strchr(oldname, '%'))
1140 netdev_info(dev, "renamed from %s\n", oldname);
1142 old_assign_type = dev->name_assign_type;
1143 dev->name_assign_type = NET_NAME_RENAMED;
1145 rollback:
1146 ret = device_rename(&dev->dev, dev->name);
1147 if (ret) {
1148 memcpy(dev->name, oldname, IFNAMSIZ);
1149 dev->name_assign_type = old_assign_type;
1150 write_seqcount_end(&devnet_rename_seq);
1151 return ret;
1154 write_seqcount_end(&devnet_rename_seq);
1156 netdev_adjacent_rename_links(dev, oldname);
1158 write_lock_bh(&dev_base_lock);
1159 hlist_del_rcu(&dev->name_hlist);
1160 write_unlock_bh(&dev_base_lock);
1162 synchronize_rcu();
1164 write_lock_bh(&dev_base_lock);
1165 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1166 write_unlock_bh(&dev_base_lock);
1168 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1169 ret = notifier_to_errno(ret);
1171 if (ret) {
1172 /* err >= 0 after dev_alloc_name() or stores the first errno */
1173 if (err >= 0) {
1174 err = ret;
1175 write_seqcount_begin(&devnet_rename_seq);
1176 memcpy(dev->name, oldname, IFNAMSIZ);
1177 memcpy(oldname, newname, IFNAMSIZ);
1178 dev->name_assign_type = old_assign_type;
1179 old_assign_type = NET_NAME_RENAMED;
1180 goto rollback;
1181 } else {
1182 pr_err("%s: name change rollback failed: %d\n",
1183 dev->name, ret);
1187 return err;
1191 * dev_set_alias - change ifalias of a device
1192 * @dev: device
1193 * @alias: name up to IFALIASZ
1194 * @len: limit of bytes to copy from info
1196 * Set ifalias for a device,
1198 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1200 char *new_ifalias;
1202 ASSERT_RTNL();
1204 if (len >= IFALIASZ)
1205 return -EINVAL;
1207 if (!len) {
1208 kfree(dev->ifalias);
1209 dev->ifalias = NULL;
1210 return 0;
1213 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1214 if (!new_ifalias)
1215 return -ENOMEM;
1216 dev->ifalias = new_ifalias;
1218 strlcpy(dev->ifalias, alias, len+1);
1219 return len;
1224 * netdev_features_change - device changes features
1225 * @dev: device to cause notification
1227 * Called to indicate a device has changed features.
1229 void netdev_features_change(struct net_device *dev)
1231 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1233 EXPORT_SYMBOL(netdev_features_change);
1236 * netdev_state_change - device changes state
1237 * @dev: device to cause notification
1239 * Called to indicate a device has changed state. This function calls
1240 * the notifier chains for netdev_chain and sends a NEWLINK message
1241 * to the routing socket.
1243 void netdev_state_change(struct net_device *dev)
1245 if (dev->flags & IFF_UP) {
1246 struct netdev_notifier_change_info change_info;
1248 change_info.flags_changed = 0;
1249 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1250 &change_info.info);
1251 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1254 EXPORT_SYMBOL(netdev_state_change);
1257 * netdev_notify_peers - notify network peers about existence of @dev
1258 * @dev: network device
1260 * Generate traffic such that interested network peers are aware of
1261 * @dev, such as by generating a gratuitous ARP. This may be used when
1262 * a device wants to inform the rest of the network about some sort of
1263 * reconfiguration such as a failover event or virtual machine
1264 * migration.
1266 void netdev_notify_peers(struct net_device *dev)
1268 rtnl_lock();
1269 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1270 rtnl_unlock();
1272 EXPORT_SYMBOL(netdev_notify_peers);
1274 static int __dev_open(struct net_device *dev)
1276 const struct net_device_ops *ops = dev->netdev_ops;
1277 int ret;
1279 ASSERT_RTNL();
1281 if (!netif_device_present(dev))
1282 return -ENODEV;
1284 /* Block netpoll from trying to do any rx path servicing.
1285 * If we don't do this there is a chance ndo_poll_controller
1286 * or ndo_poll may be running while we open the device
1288 netpoll_poll_disable(dev);
1290 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1291 ret = notifier_to_errno(ret);
1292 if (ret)
1293 return ret;
1295 set_bit(__LINK_STATE_START, &dev->state);
1297 if (ops->ndo_validate_addr)
1298 ret = ops->ndo_validate_addr(dev);
1300 if (!ret && ops->ndo_open)
1301 ret = ops->ndo_open(dev);
1303 netpoll_poll_enable(dev);
1305 if (ret)
1306 clear_bit(__LINK_STATE_START, &dev->state);
1307 else {
1308 dev->flags |= IFF_UP;
1309 dev_set_rx_mode(dev);
1310 dev_activate(dev);
1311 add_device_randomness(dev->dev_addr, dev->addr_len);
1314 return ret;
1318 * dev_open - prepare an interface for use.
1319 * @dev: device to open
1321 * Takes a device from down to up state. The device's private open
1322 * function is invoked and then the multicast lists are loaded. Finally
1323 * the device is moved into the up state and a %NETDEV_UP message is
1324 * sent to the netdev notifier chain.
1326 * Calling this function on an active interface is a nop. On a failure
1327 * a negative errno code is returned.
1329 int dev_open(struct net_device *dev)
1331 int ret;
1333 if (dev->flags & IFF_UP)
1334 return 0;
1336 ret = __dev_open(dev);
1337 if (ret < 0)
1338 return ret;
1340 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1341 call_netdevice_notifiers(NETDEV_UP, dev);
1343 return ret;
1345 EXPORT_SYMBOL(dev_open);
1347 static int __dev_close_many(struct list_head *head)
1349 struct net_device *dev;
1351 ASSERT_RTNL();
1352 might_sleep();
1354 list_for_each_entry(dev, head, close_list) {
1355 /* Temporarily disable netpoll until the interface is down */
1356 netpoll_poll_disable(dev);
1358 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1360 clear_bit(__LINK_STATE_START, &dev->state);
1362 /* Synchronize to scheduled poll. We cannot touch poll list, it
1363 * can be even on different cpu. So just clear netif_running().
1365 * dev->stop() will invoke napi_disable() on all of it's
1366 * napi_struct instances on this device.
1368 smp_mb__after_atomic(); /* Commit netif_running(). */
1371 dev_deactivate_many(head);
1373 list_for_each_entry(dev, head, close_list) {
1374 const struct net_device_ops *ops = dev->netdev_ops;
1377 * Call the device specific close. This cannot fail.
1378 * Only if device is UP
1380 * We allow it to be called even after a DETACH hot-plug
1381 * event.
1383 if (ops->ndo_stop)
1384 ops->ndo_stop(dev);
1386 dev->flags &= ~IFF_UP;
1387 netpoll_poll_enable(dev);
1390 return 0;
1393 static int __dev_close(struct net_device *dev)
1395 int retval;
1396 LIST_HEAD(single);
1398 list_add(&dev->close_list, &single);
1399 retval = __dev_close_many(&single);
1400 list_del(&single);
1402 return retval;
1405 int dev_close_many(struct list_head *head, bool unlink)
1407 struct net_device *dev, *tmp;
1409 /* Remove the devices that don't need to be closed */
1410 list_for_each_entry_safe(dev, tmp, head, close_list)
1411 if (!(dev->flags & IFF_UP))
1412 list_del_init(&dev->close_list);
1414 __dev_close_many(head);
1416 list_for_each_entry_safe(dev, tmp, head, close_list) {
1417 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1418 call_netdevice_notifiers(NETDEV_DOWN, dev);
1419 if (unlink)
1420 list_del_init(&dev->close_list);
1423 return 0;
1425 EXPORT_SYMBOL(dev_close_many);
1428 * dev_close - shutdown an interface.
1429 * @dev: device to shutdown
1431 * This function moves an active device into down state. A
1432 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1433 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1434 * chain.
1436 int dev_close(struct net_device *dev)
1438 if (dev->flags & IFF_UP) {
1439 LIST_HEAD(single);
1441 list_add(&dev->close_list, &single);
1442 dev_close_many(&single, true);
1443 list_del(&single);
1445 return 0;
1447 EXPORT_SYMBOL(dev_close);
1451 * dev_disable_lro - disable Large Receive Offload on a device
1452 * @dev: device
1454 * Disable Large Receive Offload (LRO) on a net device. Must be
1455 * called under RTNL. This is needed if received packets may be
1456 * forwarded to another interface.
1458 void dev_disable_lro(struct net_device *dev)
1460 struct net_device *lower_dev;
1461 struct list_head *iter;
1463 dev->wanted_features &= ~NETIF_F_LRO;
1464 netdev_update_features(dev);
1466 if (unlikely(dev->features & NETIF_F_LRO))
1467 netdev_WARN(dev, "failed to disable LRO!\n");
1469 netdev_for_each_lower_dev(dev, lower_dev, iter)
1470 dev_disable_lro(lower_dev);
1472 EXPORT_SYMBOL(dev_disable_lro);
1474 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1475 struct net_device *dev)
1477 struct netdev_notifier_info info;
1479 netdev_notifier_info_init(&info, dev);
1480 return nb->notifier_call(nb, val, &info);
1483 static int dev_boot_phase = 1;
1486 * register_netdevice_notifier - register a network notifier block
1487 * @nb: notifier
1489 * Register a notifier to be called when network device events occur.
1490 * The notifier passed is linked into the kernel structures and must
1491 * not be reused until it has been unregistered. A negative errno code
1492 * is returned on a failure.
1494 * When registered all registration and up events are replayed
1495 * to the new notifier to allow device to have a race free
1496 * view of the network device list.
1499 int register_netdevice_notifier(struct notifier_block *nb)
1501 struct net_device *dev;
1502 struct net_device *last;
1503 struct net *net;
1504 int err;
1506 rtnl_lock();
1507 err = raw_notifier_chain_register(&netdev_chain, nb);
1508 if (err)
1509 goto unlock;
1510 if (dev_boot_phase)
1511 goto unlock;
1512 for_each_net(net) {
1513 for_each_netdev(net, dev) {
1514 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1515 err = notifier_to_errno(err);
1516 if (err)
1517 goto rollback;
1519 if (!(dev->flags & IFF_UP))
1520 continue;
1522 call_netdevice_notifier(nb, NETDEV_UP, dev);
1526 unlock:
1527 rtnl_unlock();
1528 return err;
1530 rollback:
1531 last = dev;
1532 for_each_net(net) {
1533 for_each_netdev(net, dev) {
1534 if (dev == last)
1535 goto outroll;
1537 if (dev->flags & IFF_UP) {
1538 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1539 dev);
1540 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1542 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1546 outroll:
1547 raw_notifier_chain_unregister(&netdev_chain, nb);
1548 goto unlock;
1550 EXPORT_SYMBOL(register_netdevice_notifier);
1553 * unregister_netdevice_notifier - unregister a network notifier block
1554 * @nb: notifier
1556 * Unregister a notifier previously registered by
1557 * register_netdevice_notifier(). The notifier is unlinked into the
1558 * kernel structures and may then be reused. A negative errno code
1559 * is returned on a failure.
1561 * After unregistering unregister and down device events are synthesized
1562 * for all devices on the device list to the removed notifier to remove
1563 * the need for special case cleanup code.
1566 int unregister_netdevice_notifier(struct notifier_block *nb)
1568 struct net_device *dev;
1569 struct net *net;
1570 int err;
1572 rtnl_lock();
1573 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1574 if (err)
1575 goto unlock;
1577 for_each_net(net) {
1578 for_each_netdev(net, dev) {
1579 if (dev->flags & IFF_UP) {
1580 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1581 dev);
1582 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1584 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1587 unlock:
1588 rtnl_unlock();
1589 return err;
1591 EXPORT_SYMBOL(unregister_netdevice_notifier);
1594 * call_netdevice_notifiers_info - call all network notifier blocks
1595 * @val: value passed unmodified to notifier function
1596 * @dev: net_device pointer passed unmodified to notifier function
1597 * @info: notifier information data
1599 * Call all network notifier blocks. Parameters and return value
1600 * are as for raw_notifier_call_chain().
1603 static int call_netdevice_notifiers_info(unsigned long val,
1604 struct net_device *dev,
1605 struct netdev_notifier_info *info)
1607 ASSERT_RTNL();
1608 netdev_notifier_info_init(info, dev);
1609 return raw_notifier_call_chain(&netdev_chain, val, info);
1613 * call_netdevice_notifiers - call all network notifier blocks
1614 * @val: value passed unmodified to notifier function
1615 * @dev: net_device pointer passed unmodified to notifier function
1617 * Call all network notifier blocks. Parameters and return value
1618 * are as for raw_notifier_call_chain().
1621 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1623 struct netdev_notifier_info info;
1625 return call_netdevice_notifiers_info(val, dev, &info);
1627 EXPORT_SYMBOL(call_netdevice_notifiers);
1629 #ifdef CONFIG_NET_CLS_ACT
1630 static struct static_key ingress_needed __read_mostly;
1632 void net_inc_ingress_queue(void)
1634 static_key_slow_inc(&ingress_needed);
1636 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1638 void net_dec_ingress_queue(void)
1640 static_key_slow_dec(&ingress_needed);
1642 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1643 #endif
1645 static struct static_key netstamp_needed __read_mostly;
1646 #ifdef HAVE_JUMP_LABEL
1647 /* We are not allowed to call static_key_slow_dec() from irq context
1648 * If net_disable_timestamp() is called from irq context, defer the
1649 * static_key_slow_dec() calls.
1651 static atomic_t netstamp_needed_deferred;
1652 #endif
1654 void net_enable_timestamp(void)
1656 #ifdef HAVE_JUMP_LABEL
1657 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1659 if (deferred) {
1660 while (--deferred)
1661 static_key_slow_dec(&netstamp_needed);
1662 return;
1664 #endif
1665 static_key_slow_inc(&netstamp_needed);
1667 EXPORT_SYMBOL(net_enable_timestamp);
1669 void net_disable_timestamp(void)
1671 #ifdef HAVE_JUMP_LABEL
1672 if (in_interrupt()) {
1673 atomic_inc(&netstamp_needed_deferred);
1674 return;
1676 #endif
1677 static_key_slow_dec(&netstamp_needed);
1679 EXPORT_SYMBOL(net_disable_timestamp);
1681 static inline void net_timestamp_set(struct sk_buff *skb)
1683 skb->tstamp.tv64 = 0;
1684 if (static_key_false(&netstamp_needed))
1685 __net_timestamp(skb);
1688 #define net_timestamp_check(COND, SKB) \
1689 if (static_key_false(&netstamp_needed)) { \
1690 if ((COND) && !(SKB)->tstamp.tv64) \
1691 __net_timestamp(SKB); \
1694 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1696 unsigned int len;
1698 if (!(dev->flags & IFF_UP))
1699 return false;
1701 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1702 if (skb->len <= len)
1703 return true;
1705 /* if TSO is enabled, we don't care about the length as the packet
1706 * could be forwarded without being segmented before
1708 if (skb_is_gso(skb))
1709 return true;
1711 return false;
1713 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1715 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1717 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1718 unlikely(!is_skb_forwardable(dev, skb))) {
1719 atomic_long_inc(&dev->rx_dropped);
1720 kfree_skb(skb);
1721 return NET_RX_DROP;
1724 skb_scrub_packet(skb, true);
1725 skb->priority = 0;
1726 skb->protocol = eth_type_trans(skb, dev);
1727 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1729 return 0;
1731 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1734 * dev_forward_skb - loopback an skb to another netif
1736 * @dev: destination network device
1737 * @skb: buffer to forward
1739 * return values:
1740 * NET_RX_SUCCESS (no congestion)
1741 * NET_RX_DROP (packet was dropped, but freed)
1743 * dev_forward_skb can be used for injecting an skb from the
1744 * start_xmit function of one device into the receive queue
1745 * of another device.
1747 * The receiving device may be in another namespace, so
1748 * we have to clear all information in the skb that could
1749 * impact namespace isolation.
1751 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1753 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1755 EXPORT_SYMBOL_GPL(dev_forward_skb);
1757 static inline int deliver_skb(struct sk_buff *skb,
1758 struct packet_type *pt_prev,
1759 struct net_device *orig_dev)
1761 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1762 return -ENOMEM;
1763 atomic_inc(&skb->users);
1764 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1767 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1768 struct packet_type **pt,
1769 struct net_device *orig_dev,
1770 __be16 type,
1771 struct list_head *ptype_list)
1773 struct packet_type *ptype, *pt_prev = *pt;
1775 list_for_each_entry_rcu(ptype, ptype_list, list) {
1776 if (ptype->type != type)
1777 continue;
1778 if (pt_prev)
1779 deliver_skb(skb, pt_prev, orig_dev);
1780 pt_prev = ptype;
1782 *pt = pt_prev;
1785 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1787 if (!ptype->af_packet_priv || !skb->sk)
1788 return false;
1790 if (ptype->id_match)
1791 return ptype->id_match(ptype, skb->sk);
1792 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1793 return true;
1795 return false;
1799 * Support routine. Sends outgoing frames to any network
1800 * taps currently in use.
1803 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1805 struct packet_type *ptype;
1806 struct sk_buff *skb2 = NULL;
1807 struct packet_type *pt_prev = NULL;
1808 struct list_head *ptype_list = &ptype_all;
1810 rcu_read_lock();
1811 again:
1812 list_for_each_entry_rcu(ptype, ptype_list, list) {
1813 /* Never send packets back to the socket
1814 * they originated from - MvS (miquels@drinkel.ow.org)
1816 if (skb_loop_sk(ptype, skb))
1817 continue;
1819 if (pt_prev) {
1820 deliver_skb(skb2, pt_prev, skb->dev);
1821 pt_prev = ptype;
1822 continue;
1825 /* need to clone skb, done only once */
1826 skb2 = skb_clone(skb, GFP_ATOMIC);
1827 if (!skb2)
1828 goto out_unlock;
1830 net_timestamp_set(skb2);
1832 /* skb->nh should be correctly
1833 * set by sender, so that the second statement is
1834 * just protection against buggy protocols.
1836 skb_reset_mac_header(skb2);
1838 if (skb_network_header(skb2) < skb2->data ||
1839 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1840 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1841 ntohs(skb2->protocol),
1842 dev->name);
1843 skb_reset_network_header(skb2);
1846 skb2->transport_header = skb2->network_header;
1847 skb2->pkt_type = PACKET_OUTGOING;
1848 pt_prev = ptype;
1851 if (ptype_list == &ptype_all) {
1852 ptype_list = &dev->ptype_all;
1853 goto again;
1855 out_unlock:
1856 if (pt_prev)
1857 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1858 rcu_read_unlock();
1862 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1863 * @dev: Network device
1864 * @txq: number of queues available
1866 * If real_num_tx_queues is changed the tc mappings may no longer be
1867 * valid. To resolve this verify the tc mapping remains valid and if
1868 * not NULL the mapping. With no priorities mapping to this
1869 * offset/count pair it will no longer be used. In the worst case TC0
1870 * is invalid nothing can be done so disable priority mappings. If is
1871 * expected that drivers will fix this mapping if they can before
1872 * calling netif_set_real_num_tx_queues.
1874 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1876 int i;
1877 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1879 /* If TC0 is invalidated disable TC mapping */
1880 if (tc->offset + tc->count > txq) {
1881 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1882 dev->num_tc = 0;
1883 return;
1886 /* Invalidated prio to tc mappings set to TC0 */
1887 for (i = 1; i < TC_BITMASK + 1; i++) {
1888 int q = netdev_get_prio_tc_map(dev, i);
1890 tc = &dev->tc_to_txq[q];
1891 if (tc->offset + tc->count > txq) {
1892 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1893 i, q);
1894 netdev_set_prio_tc_map(dev, i, 0);
1899 #ifdef CONFIG_XPS
1900 static DEFINE_MUTEX(xps_map_mutex);
1901 #define xmap_dereference(P) \
1902 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1904 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1905 int cpu, u16 index)
1907 struct xps_map *map = NULL;
1908 int pos;
1910 if (dev_maps)
1911 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1913 for (pos = 0; map && pos < map->len; pos++) {
1914 if (map->queues[pos] == index) {
1915 if (map->len > 1) {
1916 map->queues[pos] = map->queues[--map->len];
1917 } else {
1918 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1919 kfree_rcu(map, rcu);
1920 map = NULL;
1922 break;
1926 return map;
1929 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1931 struct xps_dev_maps *dev_maps;
1932 int cpu, i;
1933 bool active = false;
1935 mutex_lock(&xps_map_mutex);
1936 dev_maps = xmap_dereference(dev->xps_maps);
1938 if (!dev_maps)
1939 goto out_no_maps;
1941 for_each_possible_cpu(cpu) {
1942 for (i = index; i < dev->num_tx_queues; i++) {
1943 if (!remove_xps_queue(dev_maps, cpu, i))
1944 break;
1946 if (i == dev->num_tx_queues)
1947 active = true;
1950 if (!active) {
1951 RCU_INIT_POINTER(dev->xps_maps, NULL);
1952 kfree_rcu(dev_maps, rcu);
1955 for (i = index; i < dev->num_tx_queues; i++)
1956 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1957 NUMA_NO_NODE);
1959 out_no_maps:
1960 mutex_unlock(&xps_map_mutex);
1963 static struct xps_map *expand_xps_map(struct xps_map *map,
1964 int cpu, u16 index)
1966 struct xps_map *new_map;
1967 int alloc_len = XPS_MIN_MAP_ALLOC;
1968 int i, pos;
1970 for (pos = 0; map && pos < map->len; pos++) {
1971 if (map->queues[pos] != index)
1972 continue;
1973 return map;
1976 /* Need to add queue to this CPU's existing map */
1977 if (map) {
1978 if (pos < map->alloc_len)
1979 return map;
1981 alloc_len = map->alloc_len * 2;
1984 /* Need to allocate new map to store queue on this CPU's map */
1985 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1986 cpu_to_node(cpu));
1987 if (!new_map)
1988 return NULL;
1990 for (i = 0; i < pos; i++)
1991 new_map->queues[i] = map->queues[i];
1992 new_map->alloc_len = alloc_len;
1993 new_map->len = pos;
1995 return new_map;
1998 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1999 u16 index)
2001 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2002 struct xps_map *map, *new_map;
2003 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2004 int cpu, numa_node_id = -2;
2005 bool active = false;
2007 mutex_lock(&xps_map_mutex);
2009 dev_maps = xmap_dereference(dev->xps_maps);
2011 /* allocate memory for queue storage */
2012 for_each_online_cpu(cpu) {
2013 if (!cpumask_test_cpu(cpu, mask))
2014 continue;
2016 if (!new_dev_maps)
2017 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2018 if (!new_dev_maps) {
2019 mutex_unlock(&xps_map_mutex);
2020 return -ENOMEM;
2023 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2024 NULL;
2026 map = expand_xps_map(map, cpu, index);
2027 if (!map)
2028 goto error;
2030 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2033 if (!new_dev_maps)
2034 goto out_no_new_maps;
2036 for_each_possible_cpu(cpu) {
2037 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2038 /* add queue to CPU maps */
2039 int pos = 0;
2041 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2042 while ((pos < map->len) && (map->queues[pos] != index))
2043 pos++;
2045 if (pos == map->len)
2046 map->queues[map->len++] = index;
2047 #ifdef CONFIG_NUMA
2048 if (numa_node_id == -2)
2049 numa_node_id = cpu_to_node(cpu);
2050 else if (numa_node_id != cpu_to_node(cpu))
2051 numa_node_id = -1;
2052 #endif
2053 } else if (dev_maps) {
2054 /* fill in the new device map from the old device map */
2055 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2056 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2061 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2063 /* Cleanup old maps */
2064 if (dev_maps) {
2065 for_each_possible_cpu(cpu) {
2066 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2067 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2068 if (map && map != new_map)
2069 kfree_rcu(map, rcu);
2072 kfree_rcu(dev_maps, rcu);
2075 dev_maps = new_dev_maps;
2076 active = true;
2078 out_no_new_maps:
2079 /* update Tx queue numa node */
2080 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2081 (numa_node_id >= 0) ? numa_node_id :
2082 NUMA_NO_NODE);
2084 if (!dev_maps)
2085 goto out_no_maps;
2087 /* removes queue from unused CPUs */
2088 for_each_possible_cpu(cpu) {
2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2090 continue;
2092 if (remove_xps_queue(dev_maps, cpu, index))
2093 active = true;
2096 /* free map if not active */
2097 if (!active) {
2098 RCU_INIT_POINTER(dev->xps_maps, NULL);
2099 kfree_rcu(dev_maps, rcu);
2102 out_no_maps:
2103 mutex_unlock(&xps_map_mutex);
2105 return 0;
2106 error:
2107 /* remove any maps that we added */
2108 for_each_possible_cpu(cpu) {
2109 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2110 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2111 NULL;
2112 if (new_map && new_map != map)
2113 kfree(new_map);
2116 mutex_unlock(&xps_map_mutex);
2118 kfree(new_dev_maps);
2119 return -ENOMEM;
2121 EXPORT_SYMBOL(netif_set_xps_queue);
2123 #endif
2125 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2126 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2128 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2130 int rc;
2132 if (txq < 1 || txq > dev->num_tx_queues)
2133 return -EINVAL;
2135 if (dev->reg_state == NETREG_REGISTERED ||
2136 dev->reg_state == NETREG_UNREGISTERING) {
2137 ASSERT_RTNL();
2139 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2140 txq);
2141 if (rc)
2142 return rc;
2144 if (dev->num_tc)
2145 netif_setup_tc(dev, txq);
2147 if (txq < dev->real_num_tx_queues) {
2148 qdisc_reset_all_tx_gt(dev, txq);
2149 #ifdef CONFIG_XPS
2150 netif_reset_xps_queues_gt(dev, txq);
2151 #endif
2155 dev->real_num_tx_queues = txq;
2156 return 0;
2158 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2160 #ifdef CONFIG_SYSFS
2162 * netif_set_real_num_rx_queues - set actual number of RX queues used
2163 * @dev: Network device
2164 * @rxq: Actual number of RX queues
2166 * This must be called either with the rtnl_lock held or before
2167 * registration of the net device. Returns 0 on success, or a
2168 * negative error code. If called before registration, it always
2169 * succeeds.
2171 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2173 int rc;
2175 if (rxq < 1 || rxq > dev->num_rx_queues)
2176 return -EINVAL;
2178 if (dev->reg_state == NETREG_REGISTERED) {
2179 ASSERT_RTNL();
2181 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2182 rxq);
2183 if (rc)
2184 return rc;
2187 dev->real_num_rx_queues = rxq;
2188 return 0;
2190 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2191 #endif
2194 * netif_get_num_default_rss_queues - default number of RSS queues
2196 * This routine should set an upper limit on the number of RSS queues
2197 * used by default by multiqueue devices.
2199 int netif_get_num_default_rss_queues(void)
2201 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2203 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2205 static inline void __netif_reschedule(struct Qdisc *q)
2207 struct softnet_data *sd;
2208 unsigned long flags;
2210 local_irq_save(flags);
2211 sd = this_cpu_ptr(&softnet_data);
2212 q->next_sched = NULL;
2213 *sd->output_queue_tailp = q;
2214 sd->output_queue_tailp = &q->next_sched;
2215 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2216 local_irq_restore(flags);
2219 void __netif_schedule(struct Qdisc *q)
2221 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2222 __netif_reschedule(q);
2224 EXPORT_SYMBOL(__netif_schedule);
2226 struct dev_kfree_skb_cb {
2227 enum skb_free_reason reason;
2230 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2232 return (struct dev_kfree_skb_cb *)skb->cb;
2235 void netif_schedule_queue(struct netdev_queue *txq)
2237 rcu_read_lock();
2238 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2239 struct Qdisc *q = rcu_dereference(txq->qdisc);
2241 __netif_schedule(q);
2243 rcu_read_unlock();
2245 EXPORT_SYMBOL(netif_schedule_queue);
2248 * netif_wake_subqueue - allow sending packets on subqueue
2249 * @dev: network device
2250 * @queue_index: sub queue index
2252 * Resume individual transmit queue of a device with multiple transmit queues.
2254 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2256 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2258 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2259 struct Qdisc *q;
2261 rcu_read_lock();
2262 q = rcu_dereference(txq->qdisc);
2263 __netif_schedule(q);
2264 rcu_read_unlock();
2267 EXPORT_SYMBOL(netif_wake_subqueue);
2269 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2271 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2272 struct Qdisc *q;
2274 rcu_read_lock();
2275 q = rcu_dereference(dev_queue->qdisc);
2276 __netif_schedule(q);
2277 rcu_read_unlock();
2280 EXPORT_SYMBOL(netif_tx_wake_queue);
2282 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2284 unsigned long flags;
2286 if (likely(atomic_read(&skb->users) == 1)) {
2287 smp_rmb();
2288 atomic_set(&skb->users, 0);
2289 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2290 return;
2292 get_kfree_skb_cb(skb)->reason = reason;
2293 local_irq_save(flags);
2294 skb->next = __this_cpu_read(softnet_data.completion_queue);
2295 __this_cpu_write(softnet_data.completion_queue, skb);
2296 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2297 local_irq_restore(flags);
2299 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2301 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2303 if (in_irq() || irqs_disabled())
2304 __dev_kfree_skb_irq(skb, reason);
2305 else
2306 dev_kfree_skb(skb);
2308 EXPORT_SYMBOL(__dev_kfree_skb_any);
2312 * netif_device_detach - mark device as removed
2313 * @dev: network device
2315 * Mark device as removed from system and therefore no longer available.
2317 void netif_device_detach(struct net_device *dev)
2319 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2320 netif_running(dev)) {
2321 netif_tx_stop_all_queues(dev);
2324 EXPORT_SYMBOL(netif_device_detach);
2327 * netif_device_attach - mark device as attached
2328 * @dev: network device
2330 * Mark device as attached from system and restart if needed.
2332 void netif_device_attach(struct net_device *dev)
2334 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2335 netif_running(dev)) {
2336 netif_tx_wake_all_queues(dev);
2337 __netdev_watchdog_up(dev);
2340 EXPORT_SYMBOL(netif_device_attach);
2342 static void skb_warn_bad_offload(const struct sk_buff *skb)
2344 static const netdev_features_t null_features = 0;
2345 struct net_device *dev = skb->dev;
2346 const char *driver = "";
2348 if (!net_ratelimit())
2349 return;
2351 if (dev && dev->dev.parent)
2352 driver = dev_driver_string(dev->dev.parent);
2354 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2355 "gso_type=%d ip_summed=%d\n",
2356 driver, dev ? &dev->features : &null_features,
2357 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2358 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2359 skb_shinfo(skb)->gso_type, skb->ip_summed);
2363 * Invalidate hardware checksum when packet is to be mangled, and
2364 * complete checksum manually on outgoing path.
2366 int skb_checksum_help(struct sk_buff *skb)
2368 __wsum csum;
2369 int ret = 0, offset;
2371 if (skb->ip_summed == CHECKSUM_COMPLETE)
2372 goto out_set_summed;
2374 if (unlikely(skb_shinfo(skb)->gso_size)) {
2375 skb_warn_bad_offload(skb);
2376 return -EINVAL;
2379 /* Before computing a checksum, we should make sure no frag could
2380 * be modified by an external entity : checksum could be wrong.
2382 if (skb_has_shared_frag(skb)) {
2383 ret = __skb_linearize(skb);
2384 if (ret)
2385 goto out;
2388 offset = skb_checksum_start_offset(skb);
2389 BUG_ON(offset >= skb_headlen(skb));
2390 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2392 offset += skb->csum_offset;
2393 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2395 if (skb_cloned(skb) &&
2396 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2397 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2398 if (ret)
2399 goto out;
2402 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2403 out_set_summed:
2404 skb->ip_summed = CHECKSUM_NONE;
2405 out:
2406 return ret;
2408 EXPORT_SYMBOL(skb_checksum_help);
2410 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2412 __be16 type = skb->protocol;
2414 /* Tunnel gso handlers can set protocol to ethernet. */
2415 if (type == htons(ETH_P_TEB)) {
2416 struct ethhdr *eth;
2418 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2419 return 0;
2421 eth = (struct ethhdr *)skb_mac_header(skb);
2422 type = eth->h_proto;
2425 return __vlan_get_protocol(skb, type, depth);
2429 * skb_mac_gso_segment - mac layer segmentation handler.
2430 * @skb: buffer to segment
2431 * @features: features for the output path (see dev->features)
2433 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2434 netdev_features_t features)
2436 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2437 struct packet_offload *ptype;
2438 int vlan_depth = skb->mac_len;
2439 __be16 type = skb_network_protocol(skb, &vlan_depth);
2441 if (unlikely(!type))
2442 return ERR_PTR(-EINVAL);
2444 __skb_pull(skb, vlan_depth);
2446 rcu_read_lock();
2447 list_for_each_entry_rcu(ptype, &offload_base, list) {
2448 if (ptype->type == type && ptype->callbacks.gso_segment) {
2449 segs = ptype->callbacks.gso_segment(skb, features);
2450 break;
2453 rcu_read_unlock();
2455 __skb_push(skb, skb->data - skb_mac_header(skb));
2457 return segs;
2459 EXPORT_SYMBOL(skb_mac_gso_segment);
2462 /* openvswitch calls this on rx path, so we need a different check.
2464 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2466 if (tx_path)
2467 return skb->ip_summed != CHECKSUM_PARTIAL;
2468 else
2469 return skb->ip_summed == CHECKSUM_NONE;
2473 * __skb_gso_segment - Perform segmentation on skb.
2474 * @skb: buffer to segment
2475 * @features: features for the output path (see dev->features)
2476 * @tx_path: whether it is called in TX path
2478 * This function segments the given skb and returns a list of segments.
2480 * It may return NULL if the skb requires no segmentation. This is
2481 * only possible when GSO is used for verifying header integrity.
2483 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2485 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2486 netdev_features_t features, bool tx_path)
2488 if (unlikely(skb_needs_check(skb, tx_path))) {
2489 int err;
2491 skb_warn_bad_offload(skb);
2493 err = skb_cow_head(skb, 0);
2494 if (err < 0)
2495 return ERR_PTR(err);
2498 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2499 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2501 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2502 SKB_GSO_CB(skb)->encap_level = 0;
2504 skb_reset_mac_header(skb);
2505 skb_reset_mac_len(skb);
2507 return skb_mac_gso_segment(skb, features);
2509 EXPORT_SYMBOL(__skb_gso_segment);
2511 /* Take action when hardware reception checksum errors are detected. */
2512 #ifdef CONFIG_BUG
2513 void netdev_rx_csum_fault(struct net_device *dev)
2515 if (net_ratelimit()) {
2516 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2517 dump_stack();
2520 EXPORT_SYMBOL(netdev_rx_csum_fault);
2521 #endif
2523 /* Actually, we should eliminate this check as soon as we know, that:
2524 * 1. IOMMU is present and allows to map all the memory.
2525 * 2. No high memory really exists on this machine.
2528 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2530 #ifdef CONFIG_HIGHMEM
2531 int i;
2532 if (!(dev->features & NETIF_F_HIGHDMA)) {
2533 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2534 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2535 if (PageHighMem(skb_frag_page(frag)))
2536 return 1;
2540 if (PCI_DMA_BUS_IS_PHYS) {
2541 struct device *pdev = dev->dev.parent;
2543 if (!pdev)
2544 return 0;
2545 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2546 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2547 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2548 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2549 return 1;
2552 #endif
2553 return 0;
2556 /* If MPLS offload request, verify we are testing hardware MPLS features
2557 * instead of standard features for the netdev.
2559 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2560 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2561 netdev_features_t features,
2562 __be16 type)
2564 if (eth_p_mpls(type))
2565 features &= skb->dev->mpls_features;
2567 return features;
2569 #else
2570 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2571 netdev_features_t features,
2572 __be16 type)
2574 return features;
2576 #endif
2578 static netdev_features_t harmonize_features(struct sk_buff *skb,
2579 netdev_features_t features)
2581 int tmp;
2582 __be16 type;
2584 type = skb_network_protocol(skb, &tmp);
2585 features = net_mpls_features(skb, features, type);
2587 if (skb->ip_summed != CHECKSUM_NONE &&
2588 !can_checksum_protocol(features, type)) {
2589 features &= ~NETIF_F_ALL_CSUM;
2590 } else if (illegal_highdma(skb->dev, skb)) {
2591 features &= ~NETIF_F_SG;
2594 return features;
2597 netdev_features_t passthru_features_check(struct sk_buff *skb,
2598 struct net_device *dev,
2599 netdev_features_t features)
2601 return features;
2603 EXPORT_SYMBOL(passthru_features_check);
2605 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2606 struct net_device *dev,
2607 netdev_features_t features)
2609 return vlan_features_check(skb, features);
2612 netdev_features_t netif_skb_features(struct sk_buff *skb)
2614 struct net_device *dev = skb->dev;
2615 netdev_features_t features = dev->features;
2616 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2618 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2619 features &= ~NETIF_F_GSO_MASK;
2621 /* If encapsulation offload request, verify we are testing
2622 * hardware encapsulation features instead of standard
2623 * features for the netdev
2625 if (skb->encapsulation)
2626 features &= dev->hw_enc_features;
2628 if (skb_vlan_tagged(skb))
2629 features = netdev_intersect_features(features,
2630 dev->vlan_features |
2631 NETIF_F_HW_VLAN_CTAG_TX |
2632 NETIF_F_HW_VLAN_STAG_TX);
2634 if (dev->netdev_ops->ndo_features_check)
2635 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2636 features);
2637 else
2638 features &= dflt_features_check(skb, dev, features);
2640 return harmonize_features(skb, features);
2642 EXPORT_SYMBOL(netif_skb_features);
2644 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2645 struct netdev_queue *txq, bool more)
2647 unsigned int len;
2648 int rc;
2650 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2651 dev_queue_xmit_nit(skb, dev);
2653 len = skb->len;
2654 trace_net_dev_start_xmit(skb, dev);
2655 rc = netdev_start_xmit(skb, dev, txq, more);
2656 trace_net_dev_xmit(skb, rc, dev, len);
2658 return rc;
2661 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2662 struct netdev_queue *txq, int *ret)
2664 struct sk_buff *skb = first;
2665 int rc = NETDEV_TX_OK;
2667 while (skb) {
2668 struct sk_buff *next = skb->next;
2670 skb->next = NULL;
2671 rc = xmit_one(skb, dev, txq, next != NULL);
2672 if (unlikely(!dev_xmit_complete(rc))) {
2673 skb->next = next;
2674 goto out;
2677 skb = next;
2678 if (netif_xmit_stopped(txq) && skb) {
2679 rc = NETDEV_TX_BUSY;
2680 break;
2684 out:
2685 *ret = rc;
2686 return skb;
2689 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2690 netdev_features_t features)
2692 if (skb_vlan_tag_present(skb) &&
2693 !vlan_hw_offload_capable(features, skb->vlan_proto))
2694 skb = __vlan_hwaccel_push_inside(skb);
2695 return skb;
2698 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2700 netdev_features_t features;
2702 if (skb->next)
2703 return skb;
2705 features = netif_skb_features(skb);
2706 skb = validate_xmit_vlan(skb, features);
2707 if (unlikely(!skb))
2708 goto out_null;
2710 if (netif_needs_gso(skb, features)) {
2711 struct sk_buff *segs;
2713 segs = skb_gso_segment(skb, features);
2714 if (IS_ERR(segs)) {
2715 goto out_kfree_skb;
2716 } else if (segs) {
2717 consume_skb(skb);
2718 skb = segs;
2720 } else {
2721 if (skb_needs_linearize(skb, features) &&
2722 __skb_linearize(skb))
2723 goto out_kfree_skb;
2725 /* If packet is not checksummed and device does not
2726 * support checksumming for this protocol, complete
2727 * checksumming here.
2729 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2730 if (skb->encapsulation)
2731 skb_set_inner_transport_header(skb,
2732 skb_checksum_start_offset(skb));
2733 else
2734 skb_set_transport_header(skb,
2735 skb_checksum_start_offset(skb));
2736 if (!(features & NETIF_F_ALL_CSUM) &&
2737 skb_checksum_help(skb))
2738 goto out_kfree_skb;
2742 return skb;
2744 out_kfree_skb:
2745 kfree_skb(skb);
2746 out_null:
2747 return NULL;
2750 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2752 struct sk_buff *next, *head = NULL, *tail;
2754 for (; skb != NULL; skb = next) {
2755 next = skb->next;
2756 skb->next = NULL;
2758 /* in case skb wont be segmented, point to itself */
2759 skb->prev = skb;
2761 skb = validate_xmit_skb(skb, dev);
2762 if (!skb)
2763 continue;
2765 if (!head)
2766 head = skb;
2767 else
2768 tail->next = skb;
2769 /* If skb was segmented, skb->prev points to
2770 * the last segment. If not, it still contains skb.
2772 tail = skb->prev;
2774 return head;
2777 static void qdisc_pkt_len_init(struct sk_buff *skb)
2779 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2781 qdisc_skb_cb(skb)->pkt_len = skb->len;
2783 /* To get more precise estimation of bytes sent on wire,
2784 * we add to pkt_len the headers size of all segments
2786 if (shinfo->gso_size) {
2787 unsigned int hdr_len;
2788 u16 gso_segs = shinfo->gso_segs;
2790 /* mac layer + network layer */
2791 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2793 /* + transport layer */
2794 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2795 hdr_len += tcp_hdrlen(skb);
2796 else
2797 hdr_len += sizeof(struct udphdr);
2799 if (shinfo->gso_type & SKB_GSO_DODGY)
2800 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2801 shinfo->gso_size);
2803 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2807 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2808 struct net_device *dev,
2809 struct netdev_queue *txq)
2811 spinlock_t *root_lock = qdisc_lock(q);
2812 bool contended;
2813 int rc;
2815 qdisc_pkt_len_init(skb);
2816 qdisc_calculate_pkt_len(skb, q);
2818 * Heuristic to force contended enqueues to serialize on a
2819 * separate lock before trying to get qdisc main lock.
2820 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2821 * often and dequeue packets faster.
2823 contended = qdisc_is_running(q);
2824 if (unlikely(contended))
2825 spin_lock(&q->busylock);
2827 spin_lock(root_lock);
2828 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2829 kfree_skb(skb);
2830 rc = NET_XMIT_DROP;
2831 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2832 qdisc_run_begin(q)) {
2834 * This is a work-conserving queue; there are no old skbs
2835 * waiting to be sent out; and the qdisc is not running -
2836 * xmit the skb directly.
2839 qdisc_bstats_update(q, skb);
2841 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2842 if (unlikely(contended)) {
2843 spin_unlock(&q->busylock);
2844 contended = false;
2846 __qdisc_run(q);
2847 } else
2848 qdisc_run_end(q);
2850 rc = NET_XMIT_SUCCESS;
2851 } else {
2852 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2853 if (qdisc_run_begin(q)) {
2854 if (unlikely(contended)) {
2855 spin_unlock(&q->busylock);
2856 contended = false;
2858 __qdisc_run(q);
2861 spin_unlock(root_lock);
2862 if (unlikely(contended))
2863 spin_unlock(&q->busylock);
2864 return rc;
2867 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2868 static void skb_update_prio(struct sk_buff *skb)
2870 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2872 if (!skb->priority && skb->sk && map) {
2873 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2875 if (prioidx < map->priomap_len)
2876 skb->priority = map->priomap[prioidx];
2879 #else
2880 #define skb_update_prio(skb)
2881 #endif
2883 DEFINE_PER_CPU(int, xmit_recursion);
2884 EXPORT_SYMBOL(xmit_recursion);
2886 #define RECURSION_LIMIT 10
2889 * dev_loopback_xmit - loop back @skb
2890 * @skb: buffer to transmit
2892 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2894 skb_reset_mac_header(skb);
2895 __skb_pull(skb, skb_network_offset(skb));
2896 skb->pkt_type = PACKET_LOOPBACK;
2897 skb->ip_summed = CHECKSUM_UNNECESSARY;
2898 WARN_ON(!skb_dst(skb));
2899 skb_dst_force(skb);
2900 netif_rx_ni(skb);
2901 return 0;
2903 EXPORT_SYMBOL(dev_loopback_xmit);
2906 * __dev_queue_xmit - transmit a buffer
2907 * @skb: buffer to transmit
2908 * @accel_priv: private data used for L2 forwarding offload
2910 * Queue a buffer for transmission to a network device. The caller must
2911 * have set the device and priority and built the buffer before calling
2912 * this function. The function can be called from an interrupt.
2914 * A negative errno code is returned on a failure. A success does not
2915 * guarantee the frame will be transmitted as it may be dropped due
2916 * to congestion or traffic shaping.
2918 * -----------------------------------------------------------------------------------
2919 * I notice this method can also return errors from the queue disciplines,
2920 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2921 * be positive.
2923 * Regardless of the return value, the skb is consumed, so it is currently
2924 * difficult to retry a send to this method. (You can bump the ref count
2925 * before sending to hold a reference for retry if you are careful.)
2927 * When calling this method, interrupts MUST be enabled. This is because
2928 * the BH enable code must have IRQs enabled so that it will not deadlock.
2929 * --BLG
2931 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2933 struct net_device *dev = skb->dev;
2934 struct netdev_queue *txq;
2935 struct Qdisc *q;
2936 int rc = -ENOMEM;
2938 skb_reset_mac_header(skb);
2940 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2941 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2943 /* Disable soft irqs for various locks below. Also
2944 * stops preemption for RCU.
2946 rcu_read_lock_bh();
2948 skb_update_prio(skb);
2950 /* If device/qdisc don't need skb->dst, release it right now while
2951 * its hot in this cpu cache.
2953 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2954 skb_dst_drop(skb);
2955 else
2956 skb_dst_force(skb);
2958 txq = netdev_pick_tx(dev, skb, accel_priv);
2959 q = rcu_dereference_bh(txq->qdisc);
2961 #ifdef CONFIG_NET_CLS_ACT
2962 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2963 #endif
2964 trace_net_dev_queue(skb);
2965 if (q->enqueue) {
2966 rc = __dev_xmit_skb(skb, q, dev, txq);
2967 goto out;
2970 /* The device has no queue. Common case for software devices:
2971 loopback, all the sorts of tunnels...
2973 Really, it is unlikely that netif_tx_lock protection is necessary
2974 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2975 counters.)
2976 However, it is possible, that they rely on protection
2977 made by us here.
2979 Check this and shot the lock. It is not prone from deadlocks.
2980 Either shot noqueue qdisc, it is even simpler 8)
2982 if (dev->flags & IFF_UP) {
2983 int cpu = smp_processor_id(); /* ok because BHs are off */
2985 if (txq->xmit_lock_owner != cpu) {
2987 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2988 goto recursion_alert;
2990 skb = validate_xmit_skb(skb, dev);
2991 if (!skb)
2992 goto drop;
2994 HARD_TX_LOCK(dev, txq, cpu);
2996 if (!netif_xmit_stopped(txq)) {
2997 __this_cpu_inc(xmit_recursion);
2998 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2999 __this_cpu_dec(xmit_recursion);
3000 if (dev_xmit_complete(rc)) {
3001 HARD_TX_UNLOCK(dev, txq);
3002 goto out;
3005 HARD_TX_UNLOCK(dev, txq);
3006 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3007 dev->name);
3008 } else {
3009 /* Recursion is detected! It is possible,
3010 * unfortunately
3012 recursion_alert:
3013 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3014 dev->name);
3018 rc = -ENETDOWN;
3019 drop:
3020 rcu_read_unlock_bh();
3022 atomic_long_inc(&dev->tx_dropped);
3023 kfree_skb_list(skb);
3024 return rc;
3025 out:
3026 rcu_read_unlock_bh();
3027 return rc;
3030 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3032 return __dev_queue_xmit(skb, NULL);
3034 EXPORT_SYMBOL(dev_queue_xmit_sk);
3036 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3038 return __dev_queue_xmit(skb, accel_priv);
3040 EXPORT_SYMBOL(dev_queue_xmit_accel);
3043 /*=======================================================================
3044 Receiver routines
3045 =======================================================================*/
3047 int netdev_max_backlog __read_mostly = 1000;
3048 EXPORT_SYMBOL(netdev_max_backlog);
3050 int netdev_tstamp_prequeue __read_mostly = 1;
3051 int netdev_budget __read_mostly = 300;
3052 int weight_p __read_mostly = 64; /* old backlog weight */
3054 /* Called with irq disabled */
3055 static inline void ____napi_schedule(struct softnet_data *sd,
3056 struct napi_struct *napi)
3058 list_add_tail(&napi->poll_list, &sd->poll_list);
3059 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3062 #ifdef CONFIG_RPS
3064 /* One global table that all flow-based protocols share. */
3065 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3066 EXPORT_SYMBOL(rps_sock_flow_table);
3067 u32 rps_cpu_mask __read_mostly;
3068 EXPORT_SYMBOL(rps_cpu_mask);
3070 struct static_key rps_needed __read_mostly;
3072 static struct rps_dev_flow *
3073 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3074 struct rps_dev_flow *rflow, u16 next_cpu)
3076 if (next_cpu < nr_cpu_ids) {
3077 #ifdef CONFIG_RFS_ACCEL
3078 struct netdev_rx_queue *rxqueue;
3079 struct rps_dev_flow_table *flow_table;
3080 struct rps_dev_flow *old_rflow;
3081 u32 flow_id;
3082 u16 rxq_index;
3083 int rc;
3085 /* Should we steer this flow to a different hardware queue? */
3086 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3087 !(dev->features & NETIF_F_NTUPLE))
3088 goto out;
3089 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3090 if (rxq_index == skb_get_rx_queue(skb))
3091 goto out;
3093 rxqueue = dev->_rx + rxq_index;
3094 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3095 if (!flow_table)
3096 goto out;
3097 flow_id = skb_get_hash(skb) & flow_table->mask;
3098 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3099 rxq_index, flow_id);
3100 if (rc < 0)
3101 goto out;
3102 old_rflow = rflow;
3103 rflow = &flow_table->flows[flow_id];
3104 rflow->filter = rc;
3105 if (old_rflow->filter == rflow->filter)
3106 old_rflow->filter = RPS_NO_FILTER;
3107 out:
3108 #endif
3109 rflow->last_qtail =
3110 per_cpu(softnet_data, next_cpu).input_queue_head;
3113 rflow->cpu = next_cpu;
3114 return rflow;
3118 * get_rps_cpu is called from netif_receive_skb and returns the target
3119 * CPU from the RPS map of the receiving queue for a given skb.
3120 * rcu_read_lock must be held on entry.
3122 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3123 struct rps_dev_flow **rflowp)
3125 const struct rps_sock_flow_table *sock_flow_table;
3126 struct netdev_rx_queue *rxqueue = dev->_rx;
3127 struct rps_dev_flow_table *flow_table;
3128 struct rps_map *map;
3129 int cpu = -1;
3130 u32 tcpu;
3131 u32 hash;
3133 if (skb_rx_queue_recorded(skb)) {
3134 u16 index = skb_get_rx_queue(skb);
3136 if (unlikely(index >= dev->real_num_rx_queues)) {
3137 WARN_ONCE(dev->real_num_rx_queues > 1,
3138 "%s received packet on queue %u, but number "
3139 "of RX queues is %u\n",
3140 dev->name, index, dev->real_num_rx_queues);
3141 goto done;
3143 rxqueue += index;
3146 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3148 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3149 map = rcu_dereference(rxqueue->rps_map);
3150 if (!flow_table && !map)
3151 goto done;
3153 skb_reset_network_header(skb);
3154 hash = skb_get_hash(skb);
3155 if (!hash)
3156 goto done;
3158 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3159 if (flow_table && sock_flow_table) {
3160 struct rps_dev_flow *rflow;
3161 u32 next_cpu;
3162 u32 ident;
3164 /* First check into global flow table if there is a match */
3165 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3166 if ((ident ^ hash) & ~rps_cpu_mask)
3167 goto try_rps;
3169 next_cpu = ident & rps_cpu_mask;
3171 /* OK, now we know there is a match,
3172 * we can look at the local (per receive queue) flow table
3174 rflow = &flow_table->flows[hash & flow_table->mask];
3175 tcpu = rflow->cpu;
3178 * If the desired CPU (where last recvmsg was done) is
3179 * different from current CPU (one in the rx-queue flow
3180 * table entry), switch if one of the following holds:
3181 * - Current CPU is unset (>= nr_cpu_ids).
3182 * - Current CPU is offline.
3183 * - The current CPU's queue tail has advanced beyond the
3184 * last packet that was enqueued using this table entry.
3185 * This guarantees that all previous packets for the flow
3186 * have been dequeued, thus preserving in order delivery.
3188 if (unlikely(tcpu != next_cpu) &&
3189 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3190 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3191 rflow->last_qtail)) >= 0)) {
3192 tcpu = next_cpu;
3193 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3196 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3197 *rflowp = rflow;
3198 cpu = tcpu;
3199 goto done;
3203 try_rps:
3205 if (map) {
3206 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3207 if (cpu_online(tcpu)) {
3208 cpu = tcpu;
3209 goto done;
3213 done:
3214 return cpu;
3217 #ifdef CONFIG_RFS_ACCEL
3220 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3221 * @dev: Device on which the filter was set
3222 * @rxq_index: RX queue index
3223 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3224 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3226 * Drivers that implement ndo_rx_flow_steer() should periodically call
3227 * this function for each installed filter and remove the filters for
3228 * which it returns %true.
3230 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3231 u32 flow_id, u16 filter_id)
3233 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3234 struct rps_dev_flow_table *flow_table;
3235 struct rps_dev_flow *rflow;
3236 bool expire = true;
3237 unsigned int cpu;
3239 rcu_read_lock();
3240 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3241 if (flow_table && flow_id <= flow_table->mask) {
3242 rflow = &flow_table->flows[flow_id];
3243 cpu = ACCESS_ONCE(rflow->cpu);
3244 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3245 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3246 rflow->last_qtail) <
3247 (int)(10 * flow_table->mask)))
3248 expire = false;
3250 rcu_read_unlock();
3251 return expire;
3253 EXPORT_SYMBOL(rps_may_expire_flow);
3255 #endif /* CONFIG_RFS_ACCEL */
3257 /* Called from hardirq (IPI) context */
3258 static void rps_trigger_softirq(void *data)
3260 struct softnet_data *sd = data;
3262 ____napi_schedule(sd, &sd->backlog);
3263 sd->received_rps++;
3266 #endif /* CONFIG_RPS */
3269 * Check if this softnet_data structure is another cpu one
3270 * If yes, queue it to our IPI list and return 1
3271 * If no, return 0
3273 static int rps_ipi_queued(struct softnet_data *sd)
3275 #ifdef CONFIG_RPS
3276 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3278 if (sd != mysd) {
3279 sd->rps_ipi_next = mysd->rps_ipi_list;
3280 mysd->rps_ipi_list = sd;
3282 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3283 return 1;
3285 #endif /* CONFIG_RPS */
3286 return 0;
3289 #ifdef CONFIG_NET_FLOW_LIMIT
3290 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3291 #endif
3293 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3295 #ifdef CONFIG_NET_FLOW_LIMIT
3296 struct sd_flow_limit *fl;
3297 struct softnet_data *sd;
3298 unsigned int old_flow, new_flow;
3300 if (qlen < (netdev_max_backlog >> 1))
3301 return false;
3303 sd = this_cpu_ptr(&softnet_data);
3305 rcu_read_lock();
3306 fl = rcu_dereference(sd->flow_limit);
3307 if (fl) {
3308 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3309 old_flow = fl->history[fl->history_head];
3310 fl->history[fl->history_head] = new_flow;
3312 fl->history_head++;
3313 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3315 if (likely(fl->buckets[old_flow]))
3316 fl->buckets[old_flow]--;
3318 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3319 fl->count++;
3320 rcu_read_unlock();
3321 return true;
3324 rcu_read_unlock();
3325 #endif
3326 return false;
3330 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3331 * queue (may be a remote CPU queue).
3333 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3334 unsigned int *qtail)
3336 struct softnet_data *sd;
3337 unsigned long flags;
3338 unsigned int qlen;
3340 sd = &per_cpu(softnet_data, cpu);
3342 local_irq_save(flags);
3344 rps_lock(sd);
3345 if (!netif_running(skb->dev))
3346 goto drop;
3347 qlen = skb_queue_len(&sd->input_pkt_queue);
3348 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3349 if (qlen) {
3350 enqueue:
3351 __skb_queue_tail(&sd->input_pkt_queue, skb);
3352 input_queue_tail_incr_save(sd, qtail);
3353 rps_unlock(sd);
3354 local_irq_restore(flags);
3355 return NET_RX_SUCCESS;
3358 /* Schedule NAPI for backlog device
3359 * We can use non atomic operation since we own the queue lock
3361 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3362 if (!rps_ipi_queued(sd))
3363 ____napi_schedule(sd, &sd->backlog);
3365 goto enqueue;
3368 drop:
3369 sd->dropped++;
3370 rps_unlock(sd);
3372 local_irq_restore(flags);
3374 atomic_long_inc(&skb->dev->rx_dropped);
3375 kfree_skb(skb);
3376 return NET_RX_DROP;
3379 static int netif_rx_internal(struct sk_buff *skb)
3381 int ret;
3383 net_timestamp_check(netdev_tstamp_prequeue, skb);
3385 trace_netif_rx(skb);
3386 #ifdef CONFIG_RPS
3387 if (static_key_false(&rps_needed)) {
3388 struct rps_dev_flow voidflow, *rflow = &voidflow;
3389 int cpu;
3391 preempt_disable();
3392 rcu_read_lock();
3394 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3395 if (cpu < 0)
3396 cpu = smp_processor_id();
3398 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3400 rcu_read_unlock();
3401 preempt_enable();
3402 } else
3403 #endif
3405 unsigned int qtail;
3406 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3407 put_cpu();
3409 return ret;
3413 * netif_rx - post buffer to the network code
3414 * @skb: buffer to post
3416 * This function receives a packet from a device driver and queues it for
3417 * the upper (protocol) levels to process. It always succeeds. The buffer
3418 * may be dropped during processing for congestion control or by the
3419 * protocol layers.
3421 * return values:
3422 * NET_RX_SUCCESS (no congestion)
3423 * NET_RX_DROP (packet was dropped)
3427 int netif_rx(struct sk_buff *skb)
3429 trace_netif_rx_entry(skb);
3431 return netif_rx_internal(skb);
3433 EXPORT_SYMBOL(netif_rx);
3435 int netif_rx_ni(struct sk_buff *skb)
3437 int err;
3439 trace_netif_rx_ni_entry(skb);
3441 preempt_disable();
3442 err = netif_rx_internal(skb);
3443 if (local_softirq_pending())
3444 do_softirq();
3445 preempt_enable();
3447 return err;
3449 EXPORT_SYMBOL(netif_rx_ni);
3451 static void net_tx_action(struct softirq_action *h)
3453 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3455 if (sd->completion_queue) {
3456 struct sk_buff *clist;
3458 local_irq_disable();
3459 clist = sd->completion_queue;
3460 sd->completion_queue = NULL;
3461 local_irq_enable();
3463 while (clist) {
3464 struct sk_buff *skb = clist;
3465 clist = clist->next;
3467 WARN_ON(atomic_read(&skb->users));
3468 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3469 trace_consume_skb(skb);
3470 else
3471 trace_kfree_skb(skb, net_tx_action);
3472 __kfree_skb(skb);
3476 if (sd->output_queue) {
3477 struct Qdisc *head;
3479 local_irq_disable();
3480 head = sd->output_queue;
3481 sd->output_queue = NULL;
3482 sd->output_queue_tailp = &sd->output_queue;
3483 local_irq_enable();
3485 while (head) {
3486 struct Qdisc *q = head;
3487 spinlock_t *root_lock;
3489 head = head->next_sched;
3491 root_lock = qdisc_lock(q);
3492 if (spin_trylock(root_lock)) {
3493 smp_mb__before_atomic();
3494 clear_bit(__QDISC_STATE_SCHED,
3495 &q->state);
3496 qdisc_run(q);
3497 spin_unlock(root_lock);
3498 } else {
3499 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3500 &q->state)) {
3501 __netif_reschedule(q);
3502 } else {
3503 smp_mb__before_atomic();
3504 clear_bit(__QDISC_STATE_SCHED,
3505 &q->state);
3512 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3513 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3514 /* This hook is defined here for ATM LANE */
3515 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3516 unsigned char *addr) __read_mostly;
3517 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3518 #endif
3520 #ifdef CONFIG_NET_CLS_ACT
3521 /* TODO: Maybe we should just force sch_ingress to be compiled in
3522 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3523 * a compare and 2 stores extra right now if we dont have it on
3524 * but have CONFIG_NET_CLS_ACT
3525 * NOTE: This doesn't stop any functionality; if you dont have
3526 * the ingress scheduler, you just can't add policies on ingress.
3529 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3531 struct net_device *dev = skb->dev;
3532 u32 ttl = G_TC_RTTL(skb->tc_verd);
3533 int result = TC_ACT_OK;
3534 struct Qdisc *q;
3536 if (unlikely(MAX_RED_LOOP < ttl++)) {
3537 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3538 skb->skb_iif, dev->ifindex);
3539 return TC_ACT_SHOT;
3542 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3543 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3545 q = rcu_dereference(rxq->qdisc);
3546 if (q != &noop_qdisc) {
3547 spin_lock(qdisc_lock(q));
3548 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3549 result = qdisc_enqueue_root(skb, q);
3550 spin_unlock(qdisc_lock(q));
3553 return result;
3556 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3557 struct packet_type **pt_prev,
3558 int *ret, struct net_device *orig_dev)
3560 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3562 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3563 return skb;
3565 if (*pt_prev) {
3566 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3567 *pt_prev = NULL;
3570 switch (ing_filter(skb, rxq)) {
3571 case TC_ACT_SHOT:
3572 case TC_ACT_STOLEN:
3573 kfree_skb(skb);
3574 return NULL;
3577 return skb;
3579 #endif
3582 * netdev_rx_handler_register - register receive handler
3583 * @dev: device to register a handler for
3584 * @rx_handler: receive handler to register
3585 * @rx_handler_data: data pointer that is used by rx handler
3587 * Register a receive handler for a device. This handler will then be
3588 * called from __netif_receive_skb. A negative errno code is returned
3589 * on a failure.
3591 * The caller must hold the rtnl_mutex.
3593 * For a general description of rx_handler, see enum rx_handler_result.
3595 int netdev_rx_handler_register(struct net_device *dev,
3596 rx_handler_func_t *rx_handler,
3597 void *rx_handler_data)
3599 ASSERT_RTNL();
3601 if (dev->rx_handler)
3602 return -EBUSY;
3604 /* Note: rx_handler_data must be set before rx_handler */
3605 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3606 rcu_assign_pointer(dev->rx_handler, rx_handler);
3608 return 0;
3610 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3613 * netdev_rx_handler_unregister - unregister receive handler
3614 * @dev: device to unregister a handler from
3616 * Unregister a receive handler from a device.
3618 * The caller must hold the rtnl_mutex.
3620 void netdev_rx_handler_unregister(struct net_device *dev)
3623 ASSERT_RTNL();
3624 RCU_INIT_POINTER(dev->rx_handler, NULL);
3625 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3626 * section has a guarantee to see a non NULL rx_handler_data
3627 * as well.
3629 synchronize_net();
3630 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3632 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3635 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3636 * the special handling of PFMEMALLOC skbs.
3638 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3640 switch (skb->protocol) {
3641 case htons(ETH_P_ARP):
3642 case htons(ETH_P_IP):
3643 case htons(ETH_P_IPV6):
3644 case htons(ETH_P_8021Q):
3645 case htons(ETH_P_8021AD):
3646 return true;
3647 default:
3648 return false;
3652 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3654 struct packet_type *ptype, *pt_prev;
3655 rx_handler_func_t *rx_handler;
3656 struct net_device *orig_dev;
3657 bool deliver_exact = false;
3658 int ret = NET_RX_DROP;
3659 __be16 type;
3661 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3663 trace_netif_receive_skb(skb);
3665 orig_dev = skb->dev;
3667 skb_reset_network_header(skb);
3668 if (!skb_transport_header_was_set(skb))
3669 skb_reset_transport_header(skb);
3670 skb_reset_mac_len(skb);
3672 pt_prev = NULL;
3674 another_round:
3675 skb->skb_iif = skb->dev->ifindex;
3677 __this_cpu_inc(softnet_data.processed);
3679 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3680 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3681 skb = skb_vlan_untag(skb);
3682 if (unlikely(!skb))
3683 goto out;
3686 #ifdef CONFIG_NET_CLS_ACT
3687 if (skb->tc_verd & TC_NCLS) {
3688 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3689 goto ncls;
3691 #endif
3693 if (pfmemalloc)
3694 goto skip_taps;
3696 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3697 if (pt_prev)
3698 ret = deliver_skb(skb, pt_prev, orig_dev);
3699 pt_prev = ptype;
3702 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3703 if (pt_prev)
3704 ret = deliver_skb(skb, pt_prev, orig_dev);
3705 pt_prev = ptype;
3708 skip_taps:
3709 #ifdef CONFIG_NET_CLS_ACT
3710 if (static_key_false(&ingress_needed)) {
3711 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3712 if (!skb)
3713 goto out;
3716 skb->tc_verd = 0;
3717 ncls:
3718 #endif
3719 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3720 goto drop;
3722 if (skb_vlan_tag_present(skb)) {
3723 if (pt_prev) {
3724 ret = deliver_skb(skb, pt_prev, orig_dev);
3725 pt_prev = NULL;
3727 if (vlan_do_receive(&skb))
3728 goto another_round;
3729 else if (unlikely(!skb))
3730 goto out;
3733 rx_handler = rcu_dereference(skb->dev->rx_handler);
3734 if (rx_handler) {
3735 if (pt_prev) {
3736 ret = deliver_skb(skb, pt_prev, orig_dev);
3737 pt_prev = NULL;
3739 switch (rx_handler(&skb)) {
3740 case RX_HANDLER_CONSUMED:
3741 ret = NET_RX_SUCCESS;
3742 goto out;
3743 case RX_HANDLER_ANOTHER:
3744 goto another_round;
3745 case RX_HANDLER_EXACT:
3746 deliver_exact = true;
3747 case RX_HANDLER_PASS:
3748 break;
3749 default:
3750 BUG();
3754 if (unlikely(skb_vlan_tag_present(skb))) {
3755 if (skb_vlan_tag_get_id(skb))
3756 skb->pkt_type = PACKET_OTHERHOST;
3757 /* Note: we might in the future use prio bits
3758 * and set skb->priority like in vlan_do_receive()
3759 * For the time being, just ignore Priority Code Point
3761 skb->vlan_tci = 0;
3764 type = skb->protocol;
3766 /* deliver only exact match when indicated */
3767 if (likely(!deliver_exact)) {
3768 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3769 &ptype_base[ntohs(type) &
3770 PTYPE_HASH_MASK]);
3773 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3774 &orig_dev->ptype_specific);
3776 if (unlikely(skb->dev != orig_dev)) {
3777 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3778 &skb->dev->ptype_specific);
3781 if (pt_prev) {
3782 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3783 goto drop;
3784 else
3785 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3786 } else {
3787 drop:
3788 atomic_long_inc(&skb->dev->rx_dropped);
3789 kfree_skb(skb);
3790 /* Jamal, now you will not able to escape explaining
3791 * me how you were going to use this. :-)
3793 ret = NET_RX_DROP;
3796 out:
3797 return ret;
3800 static int __netif_receive_skb(struct sk_buff *skb)
3802 int ret;
3804 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3805 unsigned long pflags = current->flags;
3808 * PFMEMALLOC skbs are special, they should
3809 * - be delivered to SOCK_MEMALLOC sockets only
3810 * - stay away from userspace
3811 * - have bounded memory usage
3813 * Use PF_MEMALLOC as this saves us from propagating the allocation
3814 * context down to all allocation sites.
3816 current->flags |= PF_MEMALLOC;
3817 ret = __netif_receive_skb_core(skb, true);
3818 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3819 } else
3820 ret = __netif_receive_skb_core(skb, false);
3822 return ret;
3825 static int netif_receive_skb_internal(struct sk_buff *skb)
3827 int ret;
3829 net_timestamp_check(netdev_tstamp_prequeue, skb);
3831 if (skb_defer_rx_timestamp(skb))
3832 return NET_RX_SUCCESS;
3834 rcu_read_lock();
3836 #ifdef CONFIG_RPS
3837 if (static_key_false(&rps_needed)) {
3838 struct rps_dev_flow voidflow, *rflow = &voidflow;
3839 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3841 if (cpu >= 0) {
3842 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3843 rcu_read_unlock();
3844 return ret;
3847 #endif
3848 ret = __netif_receive_skb(skb);
3849 rcu_read_unlock();
3850 return ret;
3854 * netif_receive_skb - process receive buffer from network
3855 * @skb: buffer to process
3857 * netif_receive_skb() is the main receive data processing function.
3858 * It always succeeds. The buffer may be dropped during processing
3859 * for congestion control or by the protocol layers.
3861 * This function may only be called from softirq context and interrupts
3862 * should be enabled.
3864 * Return values (usually ignored):
3865 * NET_RX_SUCCESS: no congestion
3866 * NET_RX_DROP: packet was dropped
3868 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3870 trace_netif_receive_skb_entry(skb);
3872 return netif_receive_skb_internal(skb);
3874 EXPORT_SYMBOL(netif_receive_skb_sk);
3876 /* Network device is going away, flush any packets still pending
3877 * Called with irqs disabled.
3879 static void flush_backlog(void *arg)
3881 struct net_device *dev = arg;
3882 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3883 struct sk_buff *skb, *tmp;
3885 rps_lock(sd);
3886 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3887 if (skb->dev == dev) {
3888 __skb_unlink(skb, &sd->input_pkt_queue);
3889 kfree_skb(skb);
3890 input_queue_head_incr(sd);
3893 rps_unlock(sd);
3895 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3896 if (skb->dev == dev) {
3897 __skb_unlink(skb, &sd->process_queue);
3898 kfree_skb(skb);
3899 input_queue_head_incr(sd);
3904 static int napi_gro_complete(struct sk_buff *skb)
3906 struct packet_offload *ptype;
3907 __be16 type = skb->protocol;
3908 struct list_head *head = &offload_base;
3909 int err = -ENOENT;
3911 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3913 if (NAPI_GRO_CB(skb)->count == 1) {
3914 skb_shinfo(skb)->gso_size = 0;
3915 goto out;
3918 rcu_read_lock();
3919 list_for_each_entry_rcu(ptype, head, list) {
3920 if (ptype->type != type || !ptype->callbacks.gro_complete)
3921 continue;
3923 err = ptype->callbacks.gro_complete(skb, 0);
3924 break;
3926 rcu_read_unlock();
3928 if (err) {
3929 WARN_ON(&ptype->list == head);
3930 kfree_skb(skb);
3931 return NET_RX_SUCCESS;
3934 out:
3935 return netif_receive_skb_internal(skb);
3938 /* napi->gro_list contains packets ordered by age.
3939 * youngest packets at the head of it.
3940 * Complete skbs in reverse order to reduce latencies.
3942 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3944 struct sk_buff *skb, *prev = NULL;
3946 /* scan list and build reverse chain */
3947 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3948 skb->prev = prev;
3949 prev = skb;
3952 for (skb = prev; skb; skb = prev) {
3953 skb->next = NULL;
3955 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3956 return;
3958 prev = skb->prev;
3959 napi_gro_complete(skb);
3960 napi->gro_count--;
3963 napi->gro_list = NULL;
3965 EXPORT_SYMBOL(napi_gro_flush);
3967 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3969 struct sk_buff *p;
3970 unsigned int maclen = skb->dev->hard_header_len;
3971 u32 hash = skb_get_hash_raw(skb);
3973 for (p = napi->gro_list; p; p = p->next) {
3974 unsigned long diffs;
3976 NAPI_GRO_CB(p)->flush = 0;
3978 if (hash != skb_get_hash_raw(p)) {
3979 NAPI_GRO_CB(p)->same_flow = 0;
3980 continue;
3983 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3984 diffs |= p->vlan_tci ^ skb->vlan_tci;
3985 if (maclen == ETH_HLEN)
3986 diffs |= compare_ether_header(skb_mac_header(p),
3987 skb_mac_header(skb));
3988 else if (!diffs)
3989 diffs = memcmp(skb_mac_header(p),
3990 skb_mac_header(skb),
3991 maclen);
3992 NAPI_GRO_CB(p)->same_flow = !diffs;
3996 static void skb_gro_reset_offset(struct sk_buff *skb)
3998 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3999 const skb_frag_t *frag0 = &pinfo->frags[0];
4001 NAPI_GRO_CB(skb)->data_offset = 0;
4002 NAPI_GRO_CB(skb)->frag0 = NULL;
4003 NAPI_GRO_CB(skb)->frag0_len = 0;
4005 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4006 pinfo->nr_frags &&
4007 !PageHighMem(skb_frag_page(frag0))) {
4008 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4009 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4013 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4015 struct skb_shared_info *pinfo = skb_shinfo(skb);
4017 BUG_ON(skb->end - skb->tail < grow);
4019 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4021 skb->data_len -= grow;
4022 skb->tail += grow;
4024 pinfo->frags[0].page_offset += grow;
4025 skb_frag_size_sub(&pinfo->frags[0], grow);
4027 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4028 skb_frag_unref(skb, 0);
4029 memmove(pinfo->frags, pinfo->frags + 1,
4030 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4034 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4036 struct sk_buff **pp = NULL;
4037 struct packet_offload *ptype;
4038 __be16 type = skb->protocol;
4039 struct list_head *head = &offload_base;
4040 int same_flow;
4041 enum gro_result ret;
4042 int grow;
4044 if (!(skb->dev->features & NETIF_F_GRO))
4045 goto normal;
4047 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4048 goto normal;
4050 gro_list_prepare(napi, skb);
4052 rcu_read_lock();
4053 list_for_each_entry_rcu(ptype, head, list) {
4054 if (ptype->type != type || !ptype->callbacks.gro_receive)
4055 continue;
4057 skb_set_network_header(skb, skb_gro_offset(skb));
4058 skb_reset_mac_len(skb);
4059 NAPI_GRO_CB(skb)->same_flow = 0;
4060 NAPI_GRO_CB(skb)->flush = 0;
4061 NAPI_GRO_CB(skb)->free = 0;
4062 NAPI_GRO_CB(skb)->recursion_counter = 0;
4063 NAPI_GRO_CB(skb)->encap_mark = 0;
4064 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4066 /* Setup for GRO checksum validation */
4067 switch (skb->ip_summed) {
4068 case CHECKSUM_COMPLETE:
4069 NAPI_GRO_CB(skb)->csum = skb->csum;
4070 NAPI_GRO_CB(skb)->csum_valid = 1;
4071 NAPI_GRO_CB(skb)->csum_cnt = 0;
4072 break;
4073 case CHECKSUM_UNNECESSARY:
4074 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4075 NAPI_GRO_CB(skb)->csum_valid = 0;
4076 break;
4077 default:
4078 NAPI_GRO_CB(skb)->csum_cnt = 0;
4079 NAPI_GRO_CB(skb)->csum_valid = 0;
4082 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4083 break;
4085 rcu_read_unlock();
4087 if (&ptype->list == head)
4088 goto normal;
4090 same_flow = NAPI_GRO_CB(skb)->same_flow;
4091 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4093 if (pp) {
4094 struct sk_buff *nskb = *pp;
4096 *pp = nskb->next;
4097 nskb->next = NULL;
4098 napi_gro_complete(nskb);
4099 napi->gro_count--;
4102 if (same_flow)
4103 goto ok;
4105 if (NAPI_GRO_CB(skb)->flush)
4106 goto normal;
4108 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4109 struct sk_buff *nskb = napi->gro_list;
4111 /* locate the end of the list to select the 'oldest' flow */
4112 while (nskb->next) {
4113 pp = &nskb->next;
4114 nskb = *pp;
4116 *pp = NULL;
4117 nskb->next = NULL;
4118 napi_gro_complete(nskb);
4119 } else {
4120 napi->gro_count++;
4122 NAPI_GRO_CB(skb)->count = 1;
4123 NAPI_GRO_CB(skb)->age = jiffies;
4124 NAPI_GRO_CB(skb)->last = skb;
4125 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4126 skb->next = napi->gro_list;
4127 napi->gro_list = skb;
4128 ret = GRO_HELD;
4130 pull:
4131 grow = skb_gro_offset(skb) - skb_headlen(skb);
4132 if (grow > 0)
4133 gro_pull_from_frag0(skb, grow);
4135 return ret;
4137 normal:
4138 ret = GRO_NORMAL;
4139 goto pull;
4142 struct packet_offload *gro_find_receive_by_type(__be16 type)
4144 struct list_head *offload_head = &offload_base;
4145 struct packet_offload *ptype;
4147 list_for_each_entry_rcu(ptype, offload_head, list) {
4148 if (ptype->type != type || !ptype->callbacks.gro_receive)
4149 continue;
4150 return ptype;
4152 return NULL;
4154 EXPORT_SYMBOL(gro_find_receive_by_type);
4156 struct packet_offload *gro_find_complete_by_type(__be16 type)
4158 struct list_head *offload_head = &offload_base;
4159 struct packet_offload *ptype;
4161 list_for_each_entry_rcu(ptype, offload_head, list) {
4162 if (ptype->type != type || !ptype->callbacks.gro_complete)
4163 continue;
4164 return ptype;
4166 return NULL;
4168 EXPORT_SYMBOL(gro_find_complete_by_type);
4170 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4172 switch (ret) {
4173 case GRO_NORMAL:
4174 if (netif_receive_skb_internal(skb))
4175 ret = GRO_DROP;
4176 break;
4178 case GRO_DROP:
4179 kfree_skb(skb);
4180 break;
4182 case GRO_MERGED_FREE:
4183 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4184 kmem_cache_free(skbuff_head_cache, skb);
4185 else
4186 __kfree_skb(skb);
4187 break;
4189 case GRO_HELD:
4190 case GRO_MERGED:
4191 break;
4194 return ret;
4197 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4199 trace_napi_gro_receive_entry(skb);
4201 skb_gro_reset_offset(skb);
4203 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4205 EXPORT_SYMBOL(napi_gro_receive);
4207 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4209 if (unlikely(skb->pfmemalloc)) {
4210 consume_skb(skb);
4211 return;
4213 __skb_pull(skb, skb_headlen(skb));
4214 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4215 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4216 skb->vlan_tci = 0;
4217 skb->dev = napi->dev;
4218 skb->skb_iif = 0;
4219 skb->encapsulation = 0;
4220 skb_shinfo(skb)->gso_type = 0;
4221 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4223 napi->skb = skb;
4226 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4228 struct sk_buff *skb = napi->skb;
4230 if (!skb) {
4231 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4232 napi->skb = skb;
4234 return skb;
4236 EXPORT_SYMBOL(napi_get_frags);
4238 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4239 struct sk_buff *skb,
4240 gro_result_t ret)
4242 switch (ret) {
4243 case GRO_NORMAL:
4244 case GRO_HELD:
4245 __skb_push(skb, ETH_HLEN);
4246 skb->protocol = eth_type_trans(skb, skb->dev);
4247 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4248 ret = GRO_DROP;
4249 break;
4251 case GRO_DROP:
4252 case GRO_MERGED_FREE:
4253 napi_reuse_skb(napi, skb);
4254 break;
4256 case GRO_MERGED:
4257 break;
4260 return ret;
4263 /* Upper GRO stack assumes network header starts at gro_offset=0
4264 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4265 * We copy ethernet header into skb->data to have a common layout.
4267 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4269 struct sk_buff *skb = napi->skb;
4270 const struct ethhdr *eth;
4271 unsigned int hlen = sizeof(*eth);
4273 napi->skb = NULL;
4275 skb_reset_mac_header(skb);
4276 skb_gro_reset_offset(skb);
4278 eth = skb_gro_header_fast(skb, 0);
4279 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4280 eth = skb_gro_header_slow(skb, hlen, 0);
4281 if (unlikely(!eth)) {
4282 napi_reuse_skb(napi, skb);
4283 return NULL;
4285 } else {
4286 gro_pull_from_frag0(skb, hlen);
4287 NAPI_GRO_CB(skb)->frag0 += hlen;
4288 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4290 __skb_pull(skb, hlen);
4293 * This works because the only protocols we care about don't require
4294 * special handling.
4295 * We'll fix it up properly in napi_frags_finish()
4297 skb->protocol = eth->h_proto;
4299 return skb;
4302 gro_result_t napi_gro_frags(struct napi_struct *napi)
4304 struct sk_buff *skb = napi_frags_skb(napi);
4306 if (!skb)
4307 return GRO_DROP;
4309 trace_napi_gro_frags_entry(skb);
4311 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4313 EXPORT_SYMBOL(napi_gro_frags);
4315 /* Compute the checksum from gro_offset and return the folded value
4316 * after adding in any pseudo checksum.
4318 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4320 __wsum wsum;
4321 __sum16 sum;
4323 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4325 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4326 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4327 if (likely(!sum)) {
4328 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4329 !skb->csum_complete_sw)
4330 netdev_rx_csum_fault(skb->dev);
4333 NAPI_GRO_CB(skb)->csum = wsum;
4334 NAPI_GRO_CB(skb)->csum_valid = 1;
4336 return sum;
4338 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4341 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4342 * Note: called with local irq disabled, but exits with local irq enabled.
4344 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4346 #ifdef CONFIG_RPS
4347 struct softnet_data *remsd = sd->rps_ipi_list;
4349 if (remsd) {
4350 sd->rps_ipi_list = NULL;
4352 local_irq_enable();
4354 /* Send pending IPI's to kick RPS processing on remote cpus. */
4355 while (remsd) {
4356 struct softnet_data *next = remsd->rps_ipi_next;
4358 if (cpu_online(remsd->cpu))
4359 smp_call_function_single_async(remsd->cpu,
4360 &remsd->csd);
4361 remsd = next;
4363 } else
4364 #endif
4365 local_irq_enable();
4368 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4370 #ifdef CONFIG_RPS
4371 return sd->rps_ipi_list != NULL;
4372 #else
4373 return false;
4374 #endif
4377 static int process_backlog(struct napi_struct *napi, int quota)
4379 int work = 0;
4380 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4382 /* Check if we have pending ipi, its better to send them now,
4383 * not waiting net_rx_action() end.
4385 if (sd_has_rps_ipi_waiting(sd)) {
4386 local_irq_disable();
4387 net_rps_action_and_irq_enable(sd);
4390 napi->weight = weight_p;
4391 local_irq_disable();
4392 while (1) {
4393 struct sk_buff *skb;
4395 while ((skb = __skb_dequeue(&sd->process_queue))) {
4396 rcu_read_lock();
4397 local_irq_enable();
4398 __netif_receive_skb(skb);
4399 rcu_read_unlock();
4400 local_irq_disable();
4401 input_queue_head_incr(sd);
4402 if (++work >= quota) {
4403 local_irq_enable();
4404 return work;
4408 rps_lock(sd);
4409 if (skb_queue_empty(&sd->input_pkt_queue)) {
4411 * Inline a custom version of __napi_complete().
4412 * only current cpu owns and manipulates this napi,
4413 * and NAPI_STATE_SCHED is the only possible flag set
4414 * on backlog.
4415 * We can use a plain write instead of clear_bit(),
4416 * and we dont need an smp_mb() memory barrier.
4418 napi->state = 0;
4419 rps_unlock(sd);
4421 break;
4424 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4425 &sd->process_queue);
4426 rps_unlock(sd);
4428 local_irq_enable();
4430 return work;
4434 * __napi_schedule - schedule for receive
4435 * @n: entry to schedule
4437 * The entry's receive function will be scheduled to run.
4438 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4440 void __napi_schedule(struct napi_struct *n)
4442 unsigned long flags;
4444 local_irq_save(flags);
4445 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4446 local_irq_restore(flags);
4448 EXPORT_SYMBOL(__napi_schedule);
4451 * __napi_schedule_irqoff - schedule for receive
4452 * @n: entry to schedule
4454 * Variant of __napi_schedule() assuming hard irqs are masked
4456 void __napi_schedule_irqoff(struct napi_struct *n)
4458 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4460 EXPORT_SYMBOL(__napi_schedule_irqoff);
4462 void __napi_complete(struct napi_struct *n)
4464 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4466 list_del_init(&n->poll_list);
4467 smp_mb__before_atomic();
4468 clear_bit(NAPI_STATE_SCHED, &n->state);
4470 EXPORT_SYMBOL(__napi_complete);
4472 void napi_complete_done(struct napi_struct *n, int work_done)
4474 unsigned long flags;
4477 * don't let napi dequeue from the cpu poll list
4478 * just in case its running on a different cpu
4480 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4481 return;
4483 if (n->gro_list) {
4484 unsigned long timeout = 0;
4486 if (work_done)
4487 timeout = n->dev->gro_flush_timeout;
4489 if (timeout)
4490 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4491 HRTIMER_MODE_REL_PINNED);
4492 else
4493 napi_gro_flush(n, false);
4495 if (likely(list_empty(&n->poll_list))) {
4496 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4497 } else {
4498 /* If n->poll_list is not empty, we need to mask irqs */
4499 local_irq_save(flags);
4500 __napi_complete(n);
4501 local_irq_restore(flags);
4504 EXPORT_SYMBOL(napi_complete_done);
4506 /* must be called under rcu_read_lock(), as we dont take a reference */
4507 struct napi_struct *napi_by_id(unsigned int napi_id)
4509 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4510 struct napi_struct *napi;
4512 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4513 if (napi->napi_id == napi_id)
4514 return napi;
4516 return NULL;
4518 EXPORT_SYMBOL_GPL(napi_by_id);
4520 void napi_hash_add(struct napi_struct *napi)
4522 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4524 spin_lock(&napi_hash_lock);
4526 /* 0 is not a valid id, we also skip an id that is taken
4527 * we expect both events to be extremely rare
4529 napi->napi_id = 0;
4530 while (!napi->napi_id) {
4531 napi->napi_id = ++napi_gen_id;
4532 if (napi_by_id(napi->napi_id))
4533 napi->napi_id = 0;
4536 hlist_add_head_rcu(&napi->napi_hash_node,
4537 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4539 spin_unlock(&napi_hash_lock);
4542 EXPORT_SYMBOL_GPL(napi_hash_add);
4544 /* Warning : caller is responsible to make sure rcu grace period
4545 * is respected before freeing memory containing @napi
4547 void napi_hash_del(struct napi_struct *napi)
4549 spin_lock(&napi_hash_lock);
4551 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4552 hlist_del_rcu(&napi->napi_hash_node);
4554 spin_unlock(&napi_hash_lock);
4556 EXPORT_SYMBOL_GPL(napi_hash_del);
4558 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4560 struct napi_struct *napi;
4562 napi = container_of(timer, struct napi_struct, timer);
4563 if (napi->gro_list)
4564 napi_schedule(napi);
4566 return HRTIMER_NORESTART;
4569 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4570 int (*poll)(struct napi_struct *, int), int weight)
4572 INIT_LIST_HEAD(&napi->poll_list);
4573 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4574 napi->timer.function = napi_watchdog;
4575 napi->gro_count = 0;
4576 napi->gro_list = NULL;
4577 napi->skb = NULL;
4578 napi->poll = poll;
4579 if (weight > NAPI_POLL_WEIGHT)
4580 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4581 weight, dev->name);
4582 napi->weight = weight;
4583 list_add(&napi->dev_list, &dev->napi_list);
4584 napi->dev = dev;
4585 #ifdef CONFIG_NETPOLL
4586 spin_lock_init(&napi->poll_lock);
4587 napi->poll_owner = -1;
4588 #endif
4589 set_bit(NAPI_STATE_SCHED, &napi->state);
4591 EXPORT_SYMBOL(netif_napi_add);
4593 void napi_disable(struct napi_struct *n)
4595 might_sleep();
4596 set_bit(NAPI_STATE_DISABLE, &n->state);
4598 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4599 msleep(1);
4601 hrtimer_cancel(&n->timer);
4603 clear_bit(NAPI_STATE_DISABLE, &n->state);
4605 EXPORT_SYMBOL(napi_disable);
4607 void netif_napi_del(struct napi_struct *napi)
4609 list_del_init(&napi->dev_list);
4610 napi_free_frags(napi);
4612 kfree_skb_list(napi->gro_list);
4613 napi->gro_list = NULL;
4614 napi->gro_count = 0;
4616 EXPORT_SYMBOL(netif_napi_del);
4618 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4620 void *have;
4621 int work, weight;
4623 list_del_init(&n->poll_list);
4625 have = netpoll_poll_lock(n);
4627 weight = n->weight;
4629 /* This NAPI_STATE_SCHED test is for avoiding a race
4630 * with netpoll's poll_napi(). Only the entity which
4631 * obtains the lock and sees NAPI_STATE_SCHED set will
4632 * actually make the ->poll() call. Therefore we avoid
4633 * accidentally calling ->poll() when NAPI is not scheduled.
4635 work = 0;
4636 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4637 work = n->poll(n, weight);
4638 trace_napi_poll(n);
4641 WARN_ON_ONCE(work > weight);
4643 if (likely(work < weight))
4644 goto out_unlock;
4646 /* Drivers must not modify the NAPI state if they
4647 * consume the entire weight. In such cases this code
4648 * still "owns" the NAPI instance and therefore can
4649 * move the instance around on the list at-will.
4651 if (unlikely(napi_disable_pending(n))) {
4652 napi_complete(n);
4653 goto out_unlock;
4656 if (n->gro_list) {
4657 /* flush too old packets
4658 * If HZ < 1000, flush all packets.
4660 napi_gro_flush(n, HZ >= 1000);
4663 /* Some drivers may have called napi_schedule
4664 * prior to exhausting their budget.
4666 if (unlikely(!list_empty(&n->poll_list))) {
4667 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4668 n->dev ? n->dev->name : "backlog");
4669 goto out_unlock;
4672 list_add_tail(&n->poll_list, repoll);
4674 out_unlock:
4675 netpoll_poll_unlock(have);
4677 return work;
4680 static void net_rx_action(struct softirq_action *h)
4682 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4683 unsigned long time_limit = jiffies + 2;
4684 int budget = netdev_budget;
4685 LIST_HEAD(list);
4686 LIST_HEAD(repoll);
4688 local_irq_disable();
4689 list_splice_init(&sd->poll_list, &list);
4690 local_irq_enable();
4692 for (;;) {
4693 struct napi_struct *n;
4695 if (list_empty(&list)) {
4696 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4697 return;
4698 break;
4701 n = list_first_entry(&list, struct napi_struct, poll_list);
4702 budget -= napi_poll(n, &repoll);
4704 /* If softirq window is exhausted then punt.
4705 * Allow this to run for 2 jiffies since which will allow
4706 * an average latency of 1.5/HZ.
4708 if (unlikely(budget <= 0 ||
4709 time_after_eq(jiffies, time_limit))) {
4710 sd->time_squeeze++;
4711 break;
4715 local_irq_disable();
4717 list_splice_tail_init(&sd->poll_list, &list);
4718 list_splice_tail(&repoll, &list);
4719 list_splice(&list, &sd->poll_list);
4720 if (!list_empty(&sd->poll_list))
4721 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4723 net_rps_action_and_irq_enable(sd);
4726 struct netdev_adjacent {
4727 struct net_device *dev;
4729 /* upper master flag, there can only be one master device per list */
4730 bool master;
4732 /* counter for the number of times this device was added to us */
4733 u16 ref_nr;
4735 /* private field for the users */
4736 void *private;
4738 struct list_head list;
4739 struct rcu_head rcu;
4742 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4743 struct net_device *adj_dev,
4744 struct list_head *adj_list)
4746 struct netdev_adjacent *adj;
4748 list_for_each_entry(adj, adj_list, list) {
4749 if (adj->dev == adj_dev)
4750 return adj;
4752 return NULL;
4756 * netdev_has_upper_dev - Check if device is linked to an upper device
4757 * @dev: device
4758 * @upper_dev: upper device to check
4760 * Find out if a device is linked to specified upper device and return true
4761 * in case it is. Note that this checks only immediate upper device,
4762 * not through a complete stack of devices. The caller must hold the RTNL lock.
4764 bool netdev_has_upper_dev(struct net_device *dev,
4765 struct net_device *upper_dev)
4767 ASSERT_RTNL();
4769 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4771 EXPORT_SYMBOL(netdev_has_upper_dev);
4774 * netdev_has_any_upper_dev - Check if device is linked to some device
4775 * @dev: device
4777 * Find out if a device is linked to an upper device and return true in case
4778 * it is. The caller must hold the RTNL lock.
4780 static bool netdev_has_any_upper_dev(struct net_device *dev)
4782 ASSERT_RTNL();
4784 return !list_empty(&dev->all_adj_list.upper);
4788 * netdev_master_upper_dev_get - Get master upper device
4789 * @dev: device
4791 * Find a master upper device and return pointer to it or NULL in case
4792 * it's not there. The caller must hold the RTNL lock.
4794 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4796 struct netdev_adjacent *upper;
4798 ASSERT_RTNL();
4800 if (list_empty(&dev->adj_list.upper))
4801 return NULL;
4803 upper = list_first_entry(&dev->adj_list.upper,
4804 struct netdev_adjacent, list);
4805 if (likely(upper->master))
4806 return upper->dev;
4807 return NULL;
4809 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4811 void *netdev_adjacent_get_private(struct list_head *adj_list)
4813 struct netdev_adjacent *adj;
4815 adj = list_entry(adj_list, struct netdev_adjacent, list);
4817 return adj->private;
4819 EXPORT_SYMBOL(netdev_adjacent_get_private);
4822 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4823 * @dev: device
4824 * @iter: list_head ** of the current position
4826 * Gets the next device from the dev's upper list, starting from iter
4827 * position. The caller must hold RCU read lock.
4829 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4830 struct list_head **iter)
4832 struct netdev_adjacent *upper;
4834 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4836 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4838 if (&upper->list == &dev->adj_list.upper)
4839 return NULL;
4841 *iter = &upper->list;
4843 return upper->dev;
4845 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4848 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4849 * @dev: device
4850 * @iter: list_head ** of the current position
4852 * Gets the next device from the dev's upper list, starting from iter
4853 * position. The caller must hold RCU read lock.
4855 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4856 struct list_head **iter)
4858 struct netdev_adjacent *upper;
4860 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4862 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4864 if (&upper->list == &dev->all_adj_list.upper)
4865 return NULL;
4867 *iter = &upper->list;
4869 return upper->dev;
4871 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4874 * netdev_lower_get_next_private - Get the next ->private from the
4875 * lower neighbour list
4876 * @dev: device
4877 * @iter: list_head ** of the current position
4879 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4880 * list, starting from iter position. The caller must hold either hold the
4881 * RTNL lock or its own locking that guarantees that the neighbour lower
4882 * list will remain unchainged.
4884 void *netdev_lower_get_next_private(struct net_device *dev,
4885 struct list_head **iter)
4887 struct netdev_adjacent *lower;
4889 lower = list_entry(*iter, struct netdev_adjacent, list);
4891 if (&lower->list == &dev->adj_list.lower)
4892 return NULL;
4894 *iter = lower->list.next;
4896 return lower->private;
4898 EXPORT_SYMBOL(netdev_lower_get_next_private);
4901 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4902 * lower neighbour list, RCU
4903 * variant
4904 * @dev: device
4905 * @iter: list_head ** of the current position
4907 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4908 * list, starting from iter position. The caller must hold RCU read lock.
4910 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4911 struct list_head **iter)
4913 struct netdev_adjacent *lower;
4915 WARN_ON_ONCE(!rcu_read_lock_held());
4917 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4919 if (&lower->list == &dev->adj_list.lower)
4920 return NULL;
4922 *iter = &lower->list;
4924 return lower->private;
4926 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4929 * netdev_lower_get_next - Get the next device from the lower neighbour
4930 * list
4931 * @dev: device
4932 * @iter: list_head ** of the current position
4934 * Gets the next netdev_adjacent from the dev's lower neighbour
4935 * list, starting from iter position. The caller must hold RTNL lock or
4936 * its own locking that guarantees that the neighbour lower
4937 * list will remain unchainged.
4939 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4941 struct netdev_adjacent *lower;
4943 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4945 if (&lower->list == &dev->adj_list.lower)
4946 return NULL;
4948 *iter = &lower->list;
4950 return lower->dev;
4952 EXPORT_SYMBOL(netdev_lower_get_next);
4955 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4956 * lower neighbour list, RCU
4957 * variant
4958 * @dev: device
4960 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4961 * list. The caller must hold RCU read lock.
4963 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4965 struct netdev_adjacent *lower;
4967 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4968 struct netdev_adjacent, list);
4969 if (lower)
4970 return lower->private;
4971 return NULL;
4973 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4976 * netdev_master_upper_dev_get_rcu - Get master upper device
4977 * @dev: device
4979 * Find a master upper device and return pointer to it or NULL in case
4980 * it's not there. The caller must hold the RCU read lock.
4982 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4984 struct netdev_adjacent *upper;
4986 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4987 struct netdev_adjacent, list);
4988 if (upper && likely(upper->master))
4989 return upper->dev;
4990 return NULL;
4992 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4994 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4995 struct net_device *adj_dev,
4996 struct list_head *dev_list)
4998 char linkname[IFNAMSIZ+7];
4999 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5000 "upper_%s" : "lower_%s", adj_dev->name);
5001 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5002 linkname);
5004 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5005 char *name,
5006 struct list_head *dev_list)
5008 char linkname[IFNAMSIZ+7];
5009 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5010 "upper_%s" : "lower_%s", name);
5011 sysfs_remove_link(&(dev->dev.kobj), linkname);
5014 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5015 struct net_device *adj_dev,
5016 struct list_head *dev_list)
5018 return (dev_list == &dev->adj_list.upper ||
5019 dev_list == &dev->adj_list.lower) &&
5020 net_eq(dev_net(dev), dev_net(adj_dev));
5023 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5024 struct net_device *adj_dev,
5025 struct list_head *dev_list,
5026 void *private, bool master)
5028 struct netdev_adjacent *adj;
5029 int ret;
5031 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5033 if (adj) {
5034 adj->ref_nr++;
5035 return 0;
5038 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5039 if (!adj)
5040 return -ENOMEM;
5042 adj->dev = adj_dev;
5043 adj->master = master;
5044 adj->ref_nr = 1;
5045 adj->private = private;
5046 dev_hold(adj_dev);
5048 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5049 adj_dev->name, dev->name, adj_dev->name);
5051 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5052 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5053 if (ret)
5054 goto free_adj;
5057 /* Ensure that master link is always the first item in list. */
5058 if (master) {
5059 ret = sysfs_create_link(&(dev->dev.kobj),
5060 &(adj_dev->dev.kobj), "master");
5061 if (ret)
5062 goto remove_symlinks;
5064 list_add_rcu(&adj->list, dev_list);
5065 } else {
5066 list_add_tail_rcu(&adj->list, dev_list);
5069 return 0;
5071 remove_symlinks:
5072 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5073 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5074 free_adj:
5075 kfree(adj);
5076 dev_put(adj_dev);
5078 return ret;
5081 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5082 struct net_device *adj_dev,
5083 struct list_head *dev_list)
5085 struct netdev_adjacent *adj;
5087 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5089 if (!adj) {
5090 pr_err("tried to remove device %s from %s\n",
5091 dev->name, adj_dev->name);
5092 BUG();
5095 if (adj->ref_nr > 1) {
5096 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5097 adj->ref_nr-1);
5098 adj->ref_nr--;
5099 return;
5102 if (adj->master)
5103 sysfs_remove_link(&(dev->dev.kobj), "master");
5105 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5106 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5108 list_del_rcu(&adj->list);
5109 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5110 adj_dev->name, dev->name, adj_dev->name);
5111 dev_put(adj_dev);
5112 kfree_rcu(adj, rcu);
5115 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5116 struct net_device *upper_dev,
5117 struct list_head *up_list,
5118 struct list_head *down_list,
5119 void *private, bool master)
5121 int ret;
5123 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5124 master);
5125 if (ret)
5126 return ret;
5128 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5129 false);
5130 if (ret) {
5131 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5132 return ret;
5135 return 0;
5138 static int __netdev_adjacent_dev_link(struct net_device *dev,
5139 struct net_device *upper_dev)
5141 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5142 &dev->all_adj_list.upper,
5143 &upper_dev->all_adj_list.lower,
5144 NULL, false);
5147 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5148 struct net_device *upper_dev,
5149 struct list_head *up_list,
5150 struct list_head *down_list)
5152 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5153 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5156 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5157 struct net_device *upper_dev)
5159 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5160 &dev->all_adj_list.upper,
5161 &upper_dev->all_adj_list.lower);
5164 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5165 struct net_device *upper_dev,
5166 void *private, bool master)
5168 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5170 if (ret)
5171 return ret;
5173 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5174 &dev->adj_list.upper,
5175 &upper_dev->adj_list.lower,
5176 private, master);
5177 if (ret) {
5178 __netdev_adjacent_dev_unlink(dev, upper_dev);
5179 return ret;
5182 return 0;
5185 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5186 struct net_device *upper_dev)
5188 __netdev_adjacent_dev_unlink(dev, upper_dev);
5189 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5190 &dev->adj_list.upper,
5191 &upper_dev->adj_list.lower);
5194 static int __netdev_upper_dev_link(struct net_device *dev,
5195 struct net_device *upper_dev, bool master,
5196 void *private)
5198 struct netdev_adjacent *i, *j, *to_i, *to_j;
5199 int ret = 0;
5201 ASSERT_RTNL();
5203 if (dev == upper_dev)
5204 return -EBUSY;
5206 /* To prevent loops, check if dev is not upper device to upper_dev. */
5207 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5208 return -EBUSY;
5210 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5211 return -EEXIST;
5213 if (master && netdev_master_upper_dev_get(dev))
5214 return -EBUSY;
5216 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5217 master);
5218 if (ret)
5219 return ret;
5221 /* Now that we linked these devs, make all the upper_dev's
5222 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5223 * versa, and don't forget the devices itself. All of these
5224 * links are non-neighbours.
5226 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5227 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5228 pr_debug("Interlinking %s with %s, non-neighbour\n",
5229 i->dev->name, j->dev->name);
5230 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5231 if (ret)
5232 goto rollback_mesh;
5236 /* add dev to every upper_dev's upper device */
5237 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5238 pr_debug("linking %s's upper device %s with %s\n",
5239 upper_dev->name, i->dev->name, dev->name);
5240 ret = __netdev_adjacent_dev_link(dev, i->dev);
5241 if (ret)
5242 goto rollback_upper_mesh;
5245 /* add upper_dev to every dev's lower device */
5246 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5247 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5248 i->dev->name, upper_dev->name);
5249 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5250 if (ret)
5251 goto rollback_lower_mesh;
5254 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5255 return 0;
5257 rollback_lower_mesh:
5258 to_i = i;
5259 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5260 if (i == to_i)
5261 break;
5262 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5265 i = NULL;
5267 rollback_upper_mesh:
5268 to_i = i;
5269 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5270 if (i == to_i)
5271 break;
5272 __netdev_adjacent_dev_unlink(dev, i->dev);
5275 i = j = NULL;
5277 rollback_mesh:
5278 to_i = i;
5279 to_j = j;
5280 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5281 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5282 if (i == to_i && j == to_j)
5283 break;
5284 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5286 if (i == to_i)
5287 break;
5290 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5292 return ret;
5296 * netdev_upper_dev_link - Add a link to the upper device
5297 * @dev: device
5298 * @upper_dev: new upper device
5300 * Adds a link to device which is upper to this one. The caller must hold
5301 * the RTNL lock. On a failure a negative errno code is returned.
5302 * On success the reference counts are adjusted and the function
5303 * returns zero.
5305 int netdev_upper_dev_link(struct net_device *dev,
5306 struct net_device *upper_dev)
5308 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5310 EXPORT_SYMBOL(netdev_upper_dev_link);
5313 * netdev_master_upper_dev_link - Add a master link to the upper device
5314 * @dev: device
5315 * @upper_dev: new upper device
5317 * Adds a link to device which is upper to this one. In this case, only
5318 * one master upper device can be linked, although other non-master devices
5319 * might be linked as well. The caller must hold the RTNL lock.
5320 * On a failure a negative errno code is returned. On success the reference
5321 * counts are adjusted and the function returns zero.
5323 int netdev_master_upper_dev_link(struct net_device *dev,
5324 struct net_device *upper_dev)
5326 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5328 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5330 int netdev_master_upper_dev_link_private(struct net_device *dev,
5331 struct net_device *upper_dev,
5332 void *private)
5334 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5336 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5339 * netdev_upper_dev_unlink - Removes a link to upper device
5340 * @dev: device
5341 * @upper_dev: new upper device
5343 * Removes a link to device which is upper to this one. The caller must hold
5344 * the RTNL lock.
5346 void netdev_upper_dev_unlink(struct net_device *dev,
5347 struct net_device *upper_dev)
5349 struct netdev_adjacent *i, *j;
5350 ASSERT_RTNL();
5352 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5354 /* Here is the tricky part. We must remove all dev's lower
5355 * devices from all upper_dev's upper devices and vice
5356 * versa, to maintain the graph relationship.
5358 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5359 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5360 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5362 /* remove also the devices itself from lower/upper device
5363 * list
5365 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5366 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5368 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5369 __netdev_adjacent_dev_unlink(dev, i->dev);
5371 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5373 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5376 * netdev_bonding_info_change - Dispatch event about slave change
5377 * @dev: device
5378 * @bonding_info: info to dispatch
5380 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5381 * The caller must hold the RTNL lock.
5383 void netdev_bonding_info_change(struct net_device *dev,
5384 struct netdev_bonding_info *bonding_info)
5386 struct netdev_notifier_bonding_info info;
5388 memcpy(&info.bonding_info, bonding_info,
5389 sizeof(struct netdev_bonding_info));
5390 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5391 &info.info);
5393 EXPORT_SYMBOL(netdev_bonding_info_change);
5395 static void netdev_adjacent_add_links(struct net_device *dev)
5397 struct netdev_adjacent *iter;
5399 struct net *net = dev_net(dev);
5401 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5402 if (!net_eq(net,dev_net(iter->dev)))
5403 continue;
5404 netdev_adjacent_sysfs_add(iter->dev, dev,
5405 &iter->dev->adj_list.lower);
5406 netdev_adjacent_sysfs_add(dev, iter->dev,
5407 &dev->adj_list.upper);
5410 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5411 if (!net_eq(net,dev_net(iter->dev)))
5412 continue;
5413 netdev_adjacent_sysfs_add(iter->dev, dev,
5414 &iter->dev->adj_list.upper);
5415 netdev_adjacent_sysfs_add(dev, iter->dev,
5416 &dev->adj_list.lower);
5420 static void netdev_adjacent_del_links(struct net_device *dev)
5422 struct netdev_adjacent *iter;
5424 struct net *net = dev_net(dev);
5426 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5427 if (!net_eq(net,dev_net(iter->dev)))
5428 continue;
5429 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5430 &iter->dev->adj_list.lower);
5431 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5432 &dev->adj_list.upper);
5435 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5436 if (!net_eq(net,dev_net(iter->dev)))
5437 continue;
5438 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5439 &iter->dev->adj_list.upper);
5440 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5441 &dev->adj_list.lower);
5445 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5447 struct netdev_adjacent *iter;
5449 struct net *net = dev_net(dev);
5451 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5452 if (!net_eq(net,dev_net(iter->dev)))
5453 continue;
5454 netdev_adjacent_sysfs_del(iter->dev, oldname,
5455 &iter->dev->adj_list.lower);
5456 netdev_adjacent_sysfs_add(iter->dev, dev,
5457 &iter->dev->adj_list.lower);
5460 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5461 if (!net_eq(net,dev_net(iter->dev)))
5462 continue;
5463 netdev_adjacent_sysfs_del(iter->dev, oldname,
5464 &iter->dev->adj_list.upper);
5465 netdev_adjacent_sysfs_add(iter->dev, dev,
5466 &iter->dev->adj_list.upper);
5470 void *netdev_lower_dev_get_private(struct net_device *dev,
5471 struct net_device *lower_dev)
5473 struct netdev_adjacent *lower;
5475 if (!lower_dev)
5476 return NULL;
5477 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5478 if (!lower)
5479 return NULL;
5481 return lower->private;
5483 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5486 int dev_get_nest_level(struct net_device *dev,
5487 bool (*type_check)(struct net_device *dev))
5489 struct net_device *lower = NULL;
5490 struct list_head *iter;
5491 int max_nest = -1;
5492 int nest;
5494 ASSERT_RTNL();
5496 netdev_for_each_lower_dev(dev, lower, iter) {
5497 nest = dev_get_nest_level(lower, type_check);
5498 if (max_nest < nest)
5499 max_nest = nest;
5502 if (type_check(dev))
5503 max_nest++;
5505 return max_nest;
5507 EXPORT_SYMBOL(dev_get_nest_level);
5509 static void dev_change_rx_flags(struct net_device *dev, int flags)
5511 const struct net_device_ops *ops = dev->netdev_ops;
5513 if (ops->ndo_change_rx_flags)
5514 ops->ndo_change_rx_flags(dev, flags);
5517 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5519 unsigned int old_flags = dev->flags;
5520 kuid_t uid;
5521 kgid_t gid;
5523 ASSERT_RTNL();
5525 dev->flags |= IFF_PROMISC;
5526 dev->promiscuity += inc;
5527 if (dev->promiscuity == 0) {
5529 * Avoid overflow.
5530 * If inc causes overflow, untouch promisc and return error.
5532 if (inc < 0)
5533 dev->flags &= ~IFF_PROMISC;
5534 else {
5535 dev->promiscuity -= inc;
5536 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5537 dev->name);
5538 return -EOVERFLOW;
5541 if (dev->flags != old_flags) {
5542 pr_info("device %s %s promiscuous mode\n",
5543 dev->name,
5544 dev->flags & IFF_PROMISC ? "entered" : "left");
5545 if (audit_enabled) {
5546 current_uid_gid(&uid, &gid);
5547 audit_log(current->audit_context, GFP_ATOMIC,
5548 AUDIT_ANOM_PROMISCUOUS,
5549 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5550 dev->name, (dev->flags & IFF_PROMISC),
5551 (old_flags & IFF_PROMISC),
5552 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5553 from_kuid(&init_user_ns, uid),
5554 from_kgid(&init_user_ns, gid),
5555 audit_get_sessionid(current));
5558 dev_change_rx_flags(dev, IFF_PROMISC);
5560 if (notify)
5561 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5562 return 0;
5566 * dev_set_promiscuity - update promiscuity count on a device
5567 * @dev: device
5568 * @inc: modifier
5570 * Add or remove promiscuity from a device. While the count in the device
5571 * remains above zero the interface remains promiscuous. Once it hits zero
5572 * the device reverts back to normal filtering operation. A negative inc
5573 * value is used to drop promiscuity on the device.
5574 * Return 0 if successful or a negative errno code on error.
5576 int dev_set_promiscuity(struct net_device *dev, int inc)
5578 unsigned int old_flags = dev->flags;
5579 int err;
5581 err = __dev_set_promiscuity(dev, inc, true);
5582 if (err < 0)
5583 return err;
5584 if (dev->flags != old_flags)
5585 dev_set_rx_mode(dev);
5586 return err;
5588 EXPORT_SYMBOL(dev_set_promiscuity);
5590 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5592 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5594 ASSERT_RTNL();
5596 dev->flags |= IFF_ALLMULTI;
5597 dev->allmulti += inc;
5598 if (dev->allmulti == 0) {
5600 * Avoid overflow.
5601 * If inc causes overflow, untouch allmulti and return error.
5603 if (inc < 0)
5604 dev->flags &= ~IFF_ALLMULTI;
5605 else {
5606 dev->allmulti -= inc;
5607 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5608 dev->name);
5609 return -EOVERFLOW;
5612 if (dev->flags ^ old_flags) {
5613 dev_change_rx_flags(dev, IFF_ALLMULTI);
5614 dev_set_rx_mode(dev);
5615 if (notify)
5616 __dev_notify_flags(dev, old_flags,
5617 dev->gflags ^ old_gflags);
5619 return 0;
5623 * dev_set_allmulti - update allmulti count on a device
5624 * @dev: device
5625 * @inc: modifier
5627 * Add or remove reception of all multicast frames to a device. While the
5628 * count in the device remains above zero the interface remains listening
5629 * to all interfaces. Once it hits zero the device reverts back to normal
5630 * filtering operation. A negative @inc value is used to drop the counter
5631 * when releasing a resource needing all multicasts.
5632 * Return 0 if successful or a negative errno code on error.
5635 int dev_set_allmulti(struct net_device *dev, int inc)
5637 return __dev_set_allmulti(dev, inc, true);
5639 EXPORT_SYMBOL(dev_set_allmulti);
5642 * Upload unicast and multicast address lists to device and
5643 * configure RX filtering. When the device doesn't support unicast
5644 * filtering it is put in promiscuous mode while unicast addresses
5645 * are present.
5647 void __dev_set_rx_mode(struct net_device *dev)
5649 const struct net_device_ops *ops = dev->netdev_ops;
5651 /* dev_open will call this function so the list will stay sane. */
5652 if (!(dev->flags&IFF_UP))
5653 return;
5655 if (!netif_device_present(dev))
5656 return;
5658 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5659 /* Unicast addresses changes may only happen under the rtnl,
5660 * therefore calling __dev_set_promiscuity here is safe.
5662 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5663 __dev_set_promiscuity(dev, 1, false);
5664 dev->uc_promisc = true;
5665 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5666 __dev_set_promiscuity(dev, -1, false);
5667 dev->uc_promisc = false;
5671 if (ops->ndo_set_rx_mode)
5672 ops->ndo_set_rx_mode(dev);
5675 void dev_set_rx_mode(struct net_device *dev)
5677 netif_addr_lock_bh(dev);
5678 __dev_set_rx_mode(dev);
5679 netif_addr_unlock_bh(dev);
5683 * dev_get_flags - get flags reported to userspace
5684 * @dev: device
5686 * Get the combination of flag bits exported through APIs to userspace.
5688 unsigned int dev_get_flags(const struct net_device *dev)
5690 unsigned int flags;
5692 flags = (dev->flags & ~(IFF_PROMISC |
5693 IFF_ALLMULTI |
5694 IFF_RUNNING |
5695 IFF_LOWER_UP |
5696 IFF_DORMANT)) |
5697 (dev->gflags & (IFF_PROMISC |
5698 IFF_ALLMULTI));
5700 if (netif_running(dev)) {
5701 if (netif_oper_up(dev))
5702 flags |= IFF_RUNNING;
5703 if (netif_carrier_ok(dev))
5704 flags |= IFF_LOWER_UP;
5705 if (netif_dormant(dev))
5706 flags |= IFF_DORMANT;
5709 return flags;
5711 EXPORT_SYMBOL(dev_get_flags);
5713 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5715 unsigned int old_flags = dev->flags;
5716 int ret;
5718 ASSERT_RTNL();
5721 * Set the flags on our device.
5724 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5725 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5726 IFF_AUTOMEDIA)) |
5727 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5728 IFF_ALLMULTI));
5731 * Load in the correct multicast list now the flags have changed.
5734 if ((old_flags ^ flags) & IFF_MULTICAST)
5735 dev_change_rx_flags(dev, IFF_MULTICAST);
5737 dev_set_rx_mode(dev);
5740 * Have we downed the interface. We handle IFF_UP ourselves
5741 * according to user attempts to set it, rather than blindly
5742 * setting it.
5745 ret = 0;
5746 if ((old_flags ^ flags) & IFF_UP)
5747 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5749 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5750 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5751 unsigned int old_flags = dev->flags;
5753 dev->gflags ^= IFF_PROMISC;
5755 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5756 if (dev->flags != old_flags)
5757 dev_set_rx_mode(dev);
5760 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5761 is important. Some (broken) drivers set IFF_PROMISC, when
5762 IFF_ALLMULTI is requested not asking us and not reporting.
5764 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5765 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5767 dev->gflags ^= IFF_ALLMULTI;
5768 __dev_set_allmulti(dev, inc, false);
5771 return ret;
5774 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5775 unsigned int gchanges)
5777 unsigned int changes = dev->flags ^ old_flags;
5779 if (gchanges)
5780 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5782 if (changes & IFF_UP) {
5783 if (dev->flags & IFF_UP)
5784 call_netdevice_notifiers(NETDEV_UP, dev);
5785 else
5786 call_netdevice_notifiers(NETDEV_DOWN, dev);
5789 if (dev->flags & IFF_UP &&
5790 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5791 struct netdev_notifier_change_info change_info;
5793 change_info.flags_changed = changes;
5794 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5795 &change_info.info);
5800 * dev_change_flags - change device settings
5801 * @dev: device
5802 * @flags: device state flags
5804 * Change settings on device based state flags. The flags are
5805 * in the userspace exported format.
5807 int dev_change_flags(struct net_device *dev, unsigned int flags)
5809 int ret;
5810 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5812 ret = __dev_change_flags(dev, flags);
5813 if (ret < 0)
5814 return ret;
5816 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5817 __dev_notify_flags(dev, old_flags, changes);
5818 return ret;
5820 EXPORT_SYMBOL(dev_change_flags);
5822 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5824 const struct net_device_ops *ops = dev->netdev_ops;
5826 if (ops->ndo_change_mtu)
5827 return ops->ndo_change_mtu(dev, new_mtu);
5829 dev->mtu = new_mtu;
5830 return 0;
5834 * dev_set_mtu - Change maximum transfer unit
5835 * @dev: device
5836 * @new_mtu: new transfer unit
5838 * Change the maximum transfer size of the network device.
5840 int dev_set_mtu(struct net_device *dev, int new_mtu)
5842 int err, orig_mtu;
5844 if (new_mtu == dev->mtu)
5845 return 0;
5847 /* MTU must be positive. */
5848 if (new_mtu < 0)
5849 return -EINVAL;
5851 if (!netif_device_present(dev))
5852 return -ENODEV;
5854 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5855 err = notifier_to_errno(err);
5856 if (err)
5857 return err;
5859 orig_mtu = dev->mtu;
5860 err = __dev_set_mtu(dev, new_mtu);
5862 if (!err) {
5863 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5864 err = notifier_to_errno(err);
5865 if (err) {
5866 /* setting mtu back and notifying everyone again,
5867 * so that they have a chance to revert changes.
5869 __dev_set_mtu(dev, orig_mtu);
5870 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5873 return err;
5875 EXPORT_SYMBOL(dev_set_mtu);
5878 * dev_set_group - Change group this device belongs to
5879 * @dev: device
5880 * @new_group: group this device should belong to
5882 void dev_set_group(struct net_device *dev, int new_group)
5884 dev->group = new_group;
5886 EXPORT_SYMBOL(dev_set_group);
5889 * dev_set_mac_address - Change Media Access Control Address
5890 * @dev: device
5891 * @sa: new address
5893 * Change the hardware (MAC) address of the device
5895 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5897 const struct net_device_ops *ops = dev->netdev_ops;
5898 int err;
5900 if (!ops->ndo_set_mac_address)
5901 return -EOPNOTSUPP;
5902 if (sa->sa_family != dev->type)
5903 return -EINVAL;
5904 if (!netif_device_present(dev))
5905 return -ENODEV;
5906 err = ops->ndo_set_mac_address(dev, sa);
5907 if (err)
5908 return err;
5909 dev->addr_assign_type = NET_ADDR_SET;
5910 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5911 add_device_randomness(dev->dev_addr, dev->addr_len);
5912 return 0;
5914 EXPORT_SYMBOL(dev_set_mac_address);
5917 * dev_change_carrier - Change device carrier
5918 * @dev: device
5919 * @new_carrier: new value
5921 * Change device carrier
5923 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5925 const struct net_device_ops *ops = dev->netdev_ops;
5927 if (!ops->ndo_change_carrier)
5928 return -EOPNOTSUPP;
5929 if (!netif_device_present(dev))
5930 return -ENODEV;
5931 return ops->ndo_change_carrier(dev, new_carrier);
5933 EXPORT_SYMBOL(dev_change_carrier);
5936 * dev_get_phys_port_id - Get device physical port ID
5937 * @dev: device
5938 * @ppid: port ID
5940 * Get device physical port ID
5942 int dev_get_phys_port_id(struct net_device *dev,
5943 struct netdev_phys_item_id *ppid)
5945 const struct net_device_ops *ops = dev->netdev_ops;
5947 if (!ops->ndo_get_phys_port_id)
5948 return -EOPNOTSUPP;
5949 return ops->ndo_get_phys_port_id(dev, ppid);
5951 EXPORT_SYMBOL(dev_get_phys_port_id);
5954 * dev_get_phys_port_name - Get device physical port name
5955 * @dev: device
5956 * @name: port name
5958 * Get device physical port name
5960 int dev_get_phys_port_name(struct net_device *dev,
5961 char *name, size_t len)
5963 const struct net_device_ops *ops = dev->netdev_ops;
5965 if (!ops->ndo_get_phys_port_name)
5966 return -EOPNOTSUPP;
5967 return ops->ndo_get_phys_port_name(dev, name, len);
5969 EXPORT_SYMBOL(dev_get_phys_port_name);
5972 * dev_new_index - allocate an ifindex
5973 * @net: the applicable net namespace
5975 * Returns a suitable unique value for a new device interface
5976 * number. The caller must hold the rtnl semaphore or the
5977 * dev_base_lock to be sure it remains unique.
5979 static int dev_new_index(struct net *net)
5981 int ifindex = net->ifindex;
5982 for (;;) {
5983 if (++ifindex <= 0)
5984 ifindex = 1;
5985 if (!__dev_get_by_index(net, ifindex))
5986 return net->ifindex = ifindex;
5990 /* Delayed registration/unregisteration */
5991 static LIST_HEAD(net_todo_list);
5992 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5994 static void net_set_todo(struct net_device *dev)
5996 list_add_tail(&dev->todo_list, &net_todo_list);
5997 dev_net(dev)->dev_unreg_count++;
6000 static void rollback_registered_many(struct list_head *head)
6002 struct net_device *dev, *tmp;
6003 LIST_HEAD(close_head);
6005 BUG_ON(dev_boot_phase);
6006 ASSERT_RTNL();
6008 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6009 /* Some devices call without registering
6010 * for initialization unwind. Remove those
6011 * devices and proceed with the remaining.
6013 if (dev->reg_state == NETREG_UNINITIALIZED) {
6014 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6015 dev->name, dev);
6017 WARN_ON(1);
6018 list_del(&dev->unreg_list);
6019 continue;
6021 dev->dismantle = true;
6022 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6025 /* If device is running, close it first. */
6026 list_for_each_entry(dev, head, unreg_list)
6027 list_add_tail(&dev->close_list, &close_head);
6028 dev_close_many(&close_head, true);
6030 list_for_each_entry(dev, head, unreg_list) {
6031 /* And unlink it from device chain. */
6032 unlist_netdevice(dev);
6034 dev->reg_state = NETREG_UNREGISTERING;
6035 on_each_cpu(flush_backlog, dev, 1);
6038 synchronize_net();
6040 list_for_each_entry(dev, head, unreg_list) {
6041 struct sk_buff *skb = NULL;
6043 /* Shutdown queueing discipline. */
6044 dev_shutdown(dev);
6047 /* Notify protocols, that we are about to destroy
6048 this device. They should clean all the things.
6050 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6052 if (!dev->rtnl_link_ops ||
6053 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6054 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6055 GFP_KERNEL);
6058 * Flush the unicast and multicast chains
6060 dev_uc_flush(dev);
6061 dev_mc_flush(dev);
6063 if (dev->netdev_ops->ndo_uninit)
6064 dev->netdev_ops->ndo_uninit(dev);
6066 if (skb)
6067 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6069 /* Notifier chain MUST detach us all upper devices. */
6070 WARN_ON(netdev_has_any_upper_dev(dev));
6072 /* Remove entries from kobject tree */
6073 netdev_unregister_kobject(dev);
6074 #ifdef CONFIG_XPS
6075 /* Remove XPS queueing entries */
6076 netif_reset_xps_queues_gt(dev, 0);
6077 #endif
6080 synchronize_net();
6082 list_for_each_entry(dev, head, unreg_list)
6083 dev_put(dev);
6086 static void rollback_registered(struct net_device *dev)
6088 LIST_HEAD(single);
6090 list_add(&dev->unreg_list, &single);
6091 rollback_registered_many(&single);
6092 list_del(&single);
6095 static netdev_features_t netdev_fix_features(struct net_device *dev,
6096 netdev_features_t features)
6098 /* Fix illegal checksum combinations */
6099 if ((features & NETIF_F_HW_CSUM) &&
6100 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6101 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6102 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6105 /* TSO requires that SG is present as well. */
6106 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6107 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6108 features &= ~NETIF_F_ALL_TSO;
6111 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6112 !(features & NETIF_F_IP_CSUM)) {
6113 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6114 features &= ~NETIF_F_TSO;
6115 features &= ~NETIF_F_TSO_ECN;
6118 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6119 !(features & NETIF_F_IPV6_CSUM)) {
6120 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6121 features &= ~NETIF_F_TSO6;
6124 /* TSO ECN requires that TSO is present as well. */
6125 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6126 features &= ~NETIF_F_TSO_ECN;
6128 /* Software GSO depends on SG. */
6129 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6130 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6131 features &= ~NETIF_F_GSO;
6134 /* UFO needs SG and checksumming */
6135 if (features & NETIF_F_UFO) {
6136 /* maybe split UFO into V4 and V6? */
6137 if (!((features & NETIF_F_GEN_CSUM) ||
6138 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6139 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6140 netdev_dbg(dev,
6141 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6142 features &= ~NETIF_F_UFO;
6145 if (!(features & NETIF_F_SG)) {
6146 netdev_dbg(dev,
6147 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6148 features &= ~NETIF_F_UFO;
6152 #ifdef CONFIG_NET_RX_BUSY_POLL
6153 if (dev->netdev_ops->ndo_busy_poll)
6154 features |= NETIF_F_BUSY_POLL;
6155 else
6156 #endif
6157 features &= ~NETIF_F_BUSY_POLL;
6159 return features;
6162 int __netdev_update_features(struct net_device *dev)
6164 netdev_features_t features;
6165 int err = 0;
6167 ASSERT_RTNL();
6169 features = netdev_get_wanted_features(dev);
6171 if (dev->netdev_ops->ndo_fix_features)
6172 features = dev->netdev_ops->ndo_fix_features(dev, features);
6174 /* driver might be less strict about feature dependencies */
6175 features = netdev_fix_features(dev, features);
6177 if (dev->features == features)
6178 return 0;
6180 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6181 &dev->features, &features);
6183 if (dev->netdev_ops->ndo_set_features)
6184 err = dev->netdev_ops->ndo_set_features(dev, features);
6186 if (unlikely(err < 0)) {
6187 netdev_err(dev,
6188 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6189 err, &features, &dev->features);
6190 return -1;
6193 if (!err)
6194 dev->features = features;
6196 return 1;
6200 * netdev_update_features - recalculate device features
6201 * @dev: the device to check
6203 * Recalculate dev->features set and send notifications if it
6204 * has changed. Should be called after driver or hardware dependent
6205 * conditions might have changed that influence the features.
6207 void netdev_update_features(struct net_device *dev)
6209 if (__netdev_update_features(dev))
6210 netdev_features_change(dev);
6212 EXPORT_SYMBOL(netdev_update_features);
6215 * netdev_change_features - recalculate device features
6216 * @dev: the device to check
6218 * Recalculate dev->features set and send notifications even
6219 * if they have not changed. Should be called instead of
6220 * netdev_update_features() if also dev->vlan_features might
6221 * have changed to allow the changes to be propagated to stacked
6222 * VLAN devices.
6224 void netdev_change_features(struct net_device *dev)
6226 __netdev_update_features(dev);
6227 netdev_features_change(dev);
6229 EXPORT_SYMBOL(netdev_change_features);
6232 * netif_stacked_transfer_operstate - transfer operstate
6233 * @rootdev: the root or lower level device to transfer state from
6234 * @dev: the device to transfer operstate to
6236 * Transfer operational state from root to device. This is normally
6237 * called when a stacking relationship exists between the root
6238 * device and the device(a leaf device).
6240 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6241 struct net_device *dev)
6243 if (rootdev->operstate == IF_OPER_DORMANT)
6244 netif_dormant_on(dev);
6245 else
6246 netif_dormant_off(dev);
6248 if (netif_carrier_ok(rootdev)) {
6249 if (!netif_carrier_ok(dev))
6250 netif_carrier_on(dev);
6251 } else {
6252 if (netif_carrier_ok(dev))
6253 netif_carrier_off(dev);
6256 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6258 #ifdef CONFIG_SYSFS
6259 static int netif_alloc_rx_queues(struct net_device *dev)
6261 unsigned int i, count = dev->num_rx_queues;
6262 struct netdev_rx_queue *rx;
6263 size_t sz = count * sizeof(*rx);
6265 BUG_ON(count < 1);
6267 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6268 if (!rx) {
6269 rx = vzalloc(sz);
6270 if (!rx)
6271 return -ENOMEM;
6273 dev->_rx = rx;
6275 for (i = 0; i < count; i++)
6276 rx[i].dev = dev;
6277 return 0;
6279 #endif
6281 static void netdev_init_one_queue(struct net_device *dev,
6282 struct netdev_queue *queue, void *_unused)
6284 /* Initialize queue lock */
6285 spin_lock_init(&queue->_xmit_lock);
6286 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6287 queue->xmit_lock_owner = -1;
6288 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6289 queue->dev = dev;
6290 #ifdef CONFIG_BQL
6291 dql_init(&queue->dql, HZ);
6292 #endif
6295 static void netif_free_tx_queues(struct net_device *dev)
6297 kvfree(dev->_tx);
6300 static int netif_alloc_netdev_queues(struct net_device *dev)
6302 unsigned int count = dev->num_tx_queues;
6303 struct netdev_queue *tx;
6304 size_t sz = count * sizeof(*tx);
6306 if (count < 1 || count > 0xffff)
6307 return -EINVAL;
6309 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6310 if (!tx) {
6311 tx = vzalloc(sz);
6312 if (!tx)
6313 return -ENOMEM;
6315 dev->_tx = tx;
6317 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6318 spin_lock_init(&dev->tx_global_lock);
6320 return 0;
6324 * register_netdevice - register a network device
6325 * @dev: device to register
6327 * Take a completed network device structure and add it to the kernel
6328 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6329 * chain. 0 is returned on success. A negative errno code is returned
6330 * on a failure to set up the device, or if the name is a duplicate.
6332 * Callers must hold the rtnl semaphore. You may want
6333 * register_netdev() instead of this.
6335 * BUGS:
6336 * The locking appears insufficient to guarantee two parallel registers
6337 * will not get the same name.
6340 int register_netdevice(struct net_device *dev)
6342 int ret;
6343 struct net *net = dev_net(dev);
6345 BUG_ON(dev_boot_phase);
6346 ASSERT_RTNL();
6348 might_sleep();
6350 /* When net_device's are persistent, this will be fatal. */
6351 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6352 BUG_ON(!net);
6354 spin_lock_init(&dev->addr_list_lock);
6355 netdev_set_addr_lockdep_class(dev);
6357 ret = dev_get_valid_name(net, dev, dev->name);
6358 if (ret < 0)
6359 goto out;
6361 /* Init, if this function is available */
6362 if (dev->netdev_ops->ndo_init) {
6363 ret = dev->netdev_ops->ndo_init(dev);
6364 if (ret) {
6365 if (ret > 0)
6366 ret = -EIO;
6367 goto out;
6371 if (((dev->hw_features | dev->features) &
6372 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6373 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6374 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6375 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6376 ret = -EINVAL;
6377 goto err_uninit;
6380 ret = -EBUSY;
6381 if (!dev->ifindex)
6382 dev->ifindex = dev_new_index(net);
6383 else if (__dev_get_by_index(net, dev->ifindex))
6384 goto err_uninit;
6386 /* Transfer changeable features to wanted_features and enable
6387 * software offloads (GSO and GRO).
6389 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6390 dev->features |= NETIF_F_SOFT_FEATURES;
6391 dev->wanted_features = dev->features & dev->hw_features;
6393 if (!(dev->flags & IFF_LOOPBACK)) {
6394 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6397 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6399 dev->vlan_features |= NETIF_F_HIGHDMA;
6401 /* Make NETIF_F_SG inheritable to tunnel devices.
6403 dev->hw_enc_features |= NETIF_F_SG;
6405 /* Make NETIF_F_SG inheritable to MPLS.
6407 dev->mpls_features |= NETIF_F_SG;
6409 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6410 ret = notifier_to_errno(ret);
6411 if (ret)
6412 goto err_uninit;
6414 ret = netdev_register_kobject(dev);
6415 if (ret)
6416 goto err_uninit;
6417 dev->reg_state = NETREG_REGISTERED;
6419 __netdev_update_features(dev);
6422 * Default initial state at registry is that the
6423 * device is present.
6426 set_bit(__LINK_STATE_PRESENT, &dev->state);
6428 linkwatch_init_dev(dev);
6430 dev_init_scheduler(dev);
6431 dev_hold(dev);
6432 list_netdevice(dev);
6433 add_device_randomness(dev->dev_addr, dev->addr_len);
6435 /* If the device has permanent device address, driver should
6436 * set dev_addr and also addr_assign_type should be set to
6437 * NET_ADDR_PERM (default value).
6439 if (dev->addr_assign_type == NET_ADDR_PERM)
6440 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6442 /* Notify protocols, that a new device appeared. */
6443 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6444 ret = notifier_to_errno(ret);
6445 if (ret) {
6446 rollback_registered(dev);
6447 dev->reg_state = NETREG_UNREGISTERED;
6450 * Prevent userspace races by waiting until the network
6451 * device is fully setup before sending notifications.
6453 if (!dev->rtnl_link_ops ||
6454 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6455 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6457 out:
6458 return ret;
6460 err_uninit:
6461 if (dev->netdev_ops->ndo_uninit)
6462 dev->netdev_ops->ndo_uninit(dev);
6463 goto out;
6465 EXPORT_SYMBOL(register_netdevice);
6468 * init_dummy_netdev - init a dummy network device for NAPI
6469 * @dev: device to init
6471 * This takes a network device structure and initialize the minimum
6472 * amount of fields so it can be used to schedule NAPI polls without
6473 * registering a full blown interface. This is to be used by drivers
6474 * that need to tie several hardware interfaces to a single NAPI
6475 * poll scheduler due to HW limitations.
6477 int init_dummy_netdev(struct net_device *dev)
6479 /* Clear everything. Note we don't initialize spinlocks
6480 * are they aren't supposed to be taken by any of the
6481 * NAPI code and this dummy netdev is supposed to be
6482 * only ever used for NAPI polls
6484 memset(dev, 0, sizeof(struct net_device));
6486 /* make sure we BUG if trying to hit standard
6487 * register/unregister code path
6489 dev->reg_state = NETREG_DUMMY;
6491 /* NAPI wants this */
6492 INIT_LIST_HEAD(&dev->napi_list);
6494 /* a dummy interface is started by default */
6495 set_bit(__LINK_STATE_PRESENT, &dev->state);
6496 set_bit(__LINK_STATE_START, &dev->state);
6498 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6499 * because users of this 'device' dont need to change
6500 * its refcount.
6503 return 0;
6505 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6509 * register_netdev - register a network device
6510 * @dev: device to register
6512 * Take a completed network device structure and add it to the kernel
6513 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6514 * chain. 0 is returned on success. A negative errno code is returned
6515 * on a failure to set up the device, or if the name is a duplicate.
6517 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6518 * and expands the device name if you passed a format string to
6519 * alloc_netdev.
6521 int register_netdev(struct net_device *dev)
6523 int err;
6525 rtnl_lock();
6526 err = register_netdevice(dev);
6527 rtnl_unlock();
6528 return err;
6530 EXPORT_SYMBOL(register_netdev);
6532 int netdev_refcnt_read(const struct net_device *dev)
6534 int i, refcnt = 0;
6536 for_each_possible_cpu(i)
6537 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6538 return refcnt;
6540 EXPORT_SYMBOL(netdev_refcnt_read);
6543 * netdev_wait_allrefs - wait until all references are gone.
6544 * @dev: target net_device
6546 * This is called when unregistering network devices.
6548 * Any protocol or device that holds a reference should register
6549 * for netdevice notification, and cleanup and put back the
6550 * reference if they receive an UNREGISTER event.
6551 * We can get stuck here if buggy protocols don't correctly
6552 * call dev_put.
6554 static void netdev_wait_allrefs(struct net_device *dev)
6556 unsigned long rebroadcast_time, warning_time;
6557 int refcnt;
6559 linkwatch_forget_dev(dev);
6561 rebroadcast_time = warning_time = jiffies;
6562 refcnt = netdev_refcnt_read(dev);
6564 while (refcnt != 0) {
6565 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6566 rtnl_lock();
6568 /* Rebroadcast unregister notification */
6569 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6571 __rtnl_unlock();
6572 rcu_barrier();
6573 rtnl_lock();
6575 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6576 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6577 &dev->state)) {
6578 /* We must not have linkwatch events
6579 * pending on unregister. If this
6580 * happens, we simply run the queue
6581 * unscheduled, resulting in a noop
6582 * for this device.
6584 linkwatch_run_queue();
6587 __rtnl_unlock();
6589 rebroadcast_time = jiffies;
6592 msleep(250);
6594 refcnt = netdev_refcnt_read(dev);
6596 if (time_after(jiffies, warning_time + 10 * HZ)) {
6597 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6598 dev->name, refcnt);
6599 warning_time = jiffies;
6604 /* The sequence is:
6606 * rtnl_lock();
6607 * ...
6608 * register_netdevice(x1);
6609 * register_netdevice(x2);
6610 * ...
6611 * unregister_netdevice(y1);
6612 * unregister_netdevice(y2);
6613 * ...
6614 * rtnl_unlock();
6615 * free_netdev(y1);
6616 * free_netdev(y2);
6618 * We are invoked by rtnl_unlock().
6619 * This allows us to deal with problems:
6620 * 1) We can delete sysfs objects which invoke hotplug
6621 * without deadlocking with linkwatch via keventd.
6622 * 2) Since we run with the RTNL semaphore not held, we can sleep
6623 * safely in order to wait for the netdev refcnt to drop to zero.
6625 * We must not return until all unregister events added during
6626 * the interval the lock was held have been completed.
6628 void netdev_run_todo(void)
6630 struct list_head list;
6632 /* Snapshot list, allow later requests */
6633 list_replace_init(&net_todo_list, &list);
6635 __rtnl_unlock();
6638 /* Wait for rcu callbacks to finish before next phase */
6639 if (!list_empty(&list))
6640 rcu_barrier();
6642 while (!list_empty(&list)) {
6643 struct net_device *dev
6644 = list_first_entry(&list, struct net_device, todo_list);
6645 list_del(&dev->todo_list);
6647 rtnl_lock();
6648 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6649 __rtnl_unlock();
6651 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6652 pr_err("network todo '%s' but state %d\n",
6653 dev->name, dev->reg_state);
6654 dump_stack();
6655 continue;
6658 dev->reg_state = NETREG_UNREGISTERED;
6660 netdev_wait_allrefs(dev);
6662 /* paranoia */
6663 BUG_ON(netdev_refcnt_read(dev));
6664 BUG_ON(!list_empty(&dev->ptype_all));
6665 BUG_ON(!list_empty(&dev->ptype_specific));
6666 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6667 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6668 WARN_ON(dev->dn_ptr);
6670 if (dev->destructor)
6671 dev->destructor(dev);
6673 /* Report a network device has been unregistered */
6674 rtnl_lock();
6675 dev_net(dev)->dev_unreg_count--;
6676 __rtnl_unlock();
6677 wake_up(&netdev_unregistering_wq);
6679 /* Free network device */
6680 kobject_put(&dev->dev.kobj);
6684 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6685 * fields in the same order, with only the type differing.
6687 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6688 const struct net_device_stats *netdev_stats)
6690 #if BITS_PER_LONG == 64
6691 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6692 memcpy(stats64, netdev_stats, sizeof(*stats64));
6693 #else
6694 size_t i, n = sizeof(*stats64) / sizeof(u64);
6695 const unsigned long *src = (const unsigned long *)netdev_stats;
6696 u64 *dst = (u64 *)stats64;
6698 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6699 sizeof(*stats64) / sizeof(u64));
6700 for (i = 0; i < n; i++)
6701 dst[i] = src[i];
6702 #endif
6704 EXPORT_SYMBOL(netdev_stats_to_stats64);
6707 * dev_get_stats - get network device statistics
6708 * @dev: device to get statistics from
6709 * @storage: place to store stats
6711 * Get network statistics from device. Return @storage.
6712 * The device driver may provide its own method by setting
6713 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6714 * otherwise the internal statistics structure is used.
6716 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6717 struct rtnl_link_stats64 *storage)
6719 const struct net_device_ops *ops = dev->netdev_ops;
6721 if (ops->ndo_get_stats64) {
6722 memset(storage, 0, sizeof(*storage));
6723 ops->ndo_get_stats64(dev, storage);
6724 } else if (ops->ndo_get_stats) {
6725 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6726 } else {
6727 netdev_stats_to_stats64(storage, &dev->stats);
6729 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6730 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6731 return storage;
6733 EXPORT_SYMBOL(dev_get_stats);
6735 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6737 struct netdev_queue *queue = dev_ingress_queue(dev);
6739 #ifdef CONFIG_NET_CLS_ACT
6740 if (queue)
6741 return queue;
6742 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6743 if (!queue)
6744 return NULL;
6745 netdev_init_one_queue(dev, queue, NULL);
6746 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6747 queue->qdisc_sleeping = &noop_qdisc;
6748 rcu_assign_pointer(dev->ingress_queue, queue);
6749 #endif
6750 return queue;
6753 static const struct ethtool_ops default_ethtool_ops;
6755 void netdev_set_default_ethtool_ops(struct net_device *dev,
6756 const struct ethtool_ops *ops)
6758 if (dev->ethtool_ops == &default_ethtool_ops)
6759 dev->ethtool_ops = ops;
6761 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6763 void netdev_freemem(struct net_device *dev)
6765 char *addr = (char *)dev - dev->padded;
6767 kvfree(addr);
6771 * alloc_netdev_mqs - allocate network device
6772 * @sizeof_priv: size of private data to allocate space for
6773 * @name: device name format string
6774 * @name_assign_type: origin of device name
6775 * @setup: callback to initialize device
6776 * @txqs: the number of TX subqueues to allocate
6777 * @rxqs: the number of RX subqueues to allocate
6779 * Allocates a struct net_device with private data area for driver use
6780 * and performs basic initialization. Also allocates subqueue structs
6781 * for each queue on the device.
6783 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6784 unsigned char name_assign_type,
6785 void (*setup)(struct net_device *),
6786 unsigned int txqs, unsigned int rxqs)
6788 struct net_device *dev;
6789 size_t alloc_size;
6790 struct net_device *p;
6792 BUG_ON(strlen(name) >= sizeof(dev->name));
6794 if (txqs < 1) {
6795 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6796 return NULL;
6799 #ifdef CONFIG_SYSFS
6800 if (rxqs < 1) {
6801 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6802 return NULL;
6804 #endif
6806 alloc_size = sizeof(struct net_device);
6807 if (sizeof_priv) {
6808 /* ensure 32-byte alignment of private area */
6809 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6810 alloc_size += sizeof_priv;
6812 /* ensure 32-byte alignment of whole construct */
6813 alloc_size += NETDEV_ALIGN - 1;
6815 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6816 if (!p)
6817 p = vzalloc(alloc_size);
6818 if (!p)
6819 return NULL;
6821 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6822 dev->padded = (char *)dev - (char *)p;
6824 dev->pcpu_refcnt = alloc_percpu(int);
6825 if (!dev->pcpu_refcnt)
6826 goto free_dev;
6828 if (dev_addr_init(dev))
6829 goto free_pcpu;
6831 dev_mc_init(dev);
6832 dev_uc_init(dev);
6834 dev_net_set(dev, &init_net);
6836 dev->gso_max_size = GSO_MAX_SIZE;
6837 dev->gso_max_segs = GSO_MAX_SEGS;
6838 dev->gso_min_segs = 0;
6840 INIT_LIST_HEAD(&dev->napi_list);
6841 INIT_LIST_HEAD(&dev->unreg_list);
6842 INIT_LIST_HEAD(&dev->close_list);
6843 INIT_LIST_HEAD(&dev->link_watch_list);
6844 INIT_LIST_HEAD(&dev->adj_list.upper);
6845 INIT_LIST_HEAD(&dev->adj_list.lower);
6846 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6847 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6848 INIT_LIST_HEAD(&dev->ptype_all);
6849 INIT_LIST_HEAD(&dev->ptype_specific);
6850 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6851 setup(dev);
6853 dev->num_tx_queues = txqs;
6854 dev->real_num_tx_queues = txqs;
6855 if (netif_alloc_netdev_queues(dev))
6856 goto free_all;
6858 #ifdef CONFIG_SYSFS
6859 dev->num_rx_queues = rxqs;
6860 dev->real_num_rx_queues = rxqs;
6861 if (netif_alloc_rx_queues(dev))
6862 goto free_all;
6863 #endif
6865 strcpy(dev->name, name);
6866 dev->name_assign_type = name_assign_type;
6867 dev->group = INIT_NETDEV_GROUP;
6868 if (!dev->ethtool_ops)
6869 dev->ethtool_ops = &default_ethtool_ops;
6870 return dev;
6872 free_all:
6873 free_netdev(dev);
6874 return NULL;
6876 free_pcpu:
6877 free_percpu(dev->pcpu_refcnt);
6878 free_dev:
6879 netdev_freemem(dev);
6880 return NULL;
6882 EXPORT_SYMBOL(alloc_netdev_mqs);
6885 * free_netdev - free network device
6886 * @dev: device
6888 * This function does the last stage of destroying an allocated device
6889 * interface. The reference to the device object is released.
6890 * If this is the last reference then it will be freed.
6892 void free_netdev(struct net_device *dev)
6894 struct napi_struct *p, *n;
6896 netif_free_tx_queues(dev);
6897 #ifdef CONFIG_SYSFS
6898 kvfree(dev->_rx);
6899 #endif
6901 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6903 /* Flush device addresses */
6904 dev_addr_flush(dev);
6906 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6907 netif_napi_del(p);
6909 free_percpu(dev->pcpu_refcnt);
6910 dev->pcpu_refcnt = NULL;
6912 /* Compatibility with error handling in drivers */
6913 if (dev->reg_state == NETREG_UNINITIALIZED) {
6914 netdev_freemem(dev);
6915 return;
6918 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6919 dev->reg_state = NETREG_RELEASED;
6921 /* will free via device release */
6922 put_device(&dev->dev);
6924 EXPORT_SYMBOL(free_netdev);
6927 * synchronize_net - Synchronize with packet receive processing
6929 * Wait for packets currently being received to be done.
6930 * Does not block later packets from starting.
6932 void synchronize_net(void)
6934 might_sleep();
6935 if (rtnl_is_locked())
6936 synchronize_rcu_expedited();
6937 else
6938 synchronize_rcu();
6940 EXPORT_SYMBOL(synchronize_net);
6943 * unregister_netdevice_queue - remove device from the kernel
6944 * @dev: device
6945 * @head: list
6947 * This function shuts down a device interface and removes it
6948 * from the kernel tables.
6949 * If head not NULL, device is queued to be unregistered later.
6951 * Callers must hold the rtnl semaphore. You may want
6952 * unregister_netdev() instead of this.
6955 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6957 ASSERT_RTNL();
6959 if (head) {
6960 list_move_tail(&dev->unreg_list, head);
6961 } else {
6962 rollback_registered(dev);
6963 /* Finish processing unregister after unlock */
6964 net_set_todo(dev);
6967 EXPORT_SYMBOL(unregister_netdevice_queue);
6970 * unregister_netdevice_many - unregister many devices
6971 * @head: list of devices
6973 * Note: As most callers use a stack allocated list_head,
6974 * we force a list_del() to make sure stack wont be corrupted later.
6976 void unregister_netdevice_many(struct list_head *head)
6978 struct net_device *dev;
6980 if (!list_empty(head)) {
6981 rollback_registered_many(head);
6982 list_for_each_entry(dev, head, unreg_list)
6983 net_set_todo(dev);
6984 list_del(head);
6987 EXPORT_SYMBOL(unregister_netdevice_many);
6990 * unregister_netdev - remove device from the kernel
6991 * @dev: device
6993 * This function shuts down a device interface and removes it
6994 * from the kernel tables.
6996 * This is just a wrapper for unregister_netdevice that takes
6997 * the rtnl semaphore. In general you want to use this and not
6998 * unregister_netdevice.
7000 void unregister_netdev(struct net_device *dev)
7002 rtnl_lock();
7003 unregister_netdevice(dev);
7004 rtnl_unlock();
7006 EXPORT_SYMBOL(unregister_netdev);
7009 * dev_change_net_namespace - move device to different nethost namespace
7010 * @dev: device
7011 * @net: network namespace
7012 * @pat: If not NULL name pattern to try if the current device name
7013 * is already taken in the destination network namespace.
7015 * This function shuts down a device interface and moves it
7016 * to a new network namespace. On success 0 is returned, on
7017 * a failure a netagive errno code is returned.
7019 * Callers must hold the rtnl semaphore.
7022 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7024 int err;
7026 ASSERT_RTNL();
7028 /* Don't allow namespace local devices to be moved. */
7029 err = -EINVAL;
7030 if (dev->features & NETIF_F_NETNS_LOCAL)
7031 goto out;
7033 /* Ensure the device has been registrered */
7034 if (dev->reg_state != NETREG_REGISTERED)
7035 goto out;
7037 /* Get out if there is nothing todo */
7038 err = 0;
7039 if (net_eq(dev_net(dev), net))
7040 goto out;
7042 /* Pick the destination device name, and ensure
7043 * we can use it in the destination network namespace.
7045 err = -EEXIST;
7046 if (__dev_get_by_name(net, dev->name)) {
7047 /* We get here if we can't use the current device name */
7048 if (!pat)
7049 goto out;
7050 if (dev_get_valid_name(net, dev, pat) < 0)
7051 goto out;
7055 * And now a mini version of register_netdevice unregister_netdevice.
7058 /* If device is running close it first. */
7059 dev_close(dev);
7061 /* And unlink it from device chain */
7062 err = -ENODEV;
7063 unlist_netdevice(dev);
7065 synchronize_net();
7067 /* Shutdown queueing discipline. */
7068 dev_shutdown(dev);
7070 /* Notify protocols, that we are about to destroy
7071 this device. They should clean all the things.
7073 Note that dev->reg_state stays at NETREG_REGISTERED.
7074 This is wanted because this way 8021q and macvlan know
7075 the device is just moving and can keep their slaves up.
7077 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7078 rcu_barrier();
7079 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7080 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7083 * Flush the unicast and multicast chains
7085 dev_uc_flush(dev);
7086 dev_mc_flush(dev);
7088 /* Send a netdev-removed uevent to the old namespace */
7089 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7090 netdev_adjacent_del_links(dev);
7092 /* Actually switch the network namespace */
7093 dev_net_set(dev, net);
7095 /* If there is an ifindex conflict assign a new one */
7096 if (__dev_get_by_index(net, dev->ifindex))
7097 dev->ifindex = dev_new_index(net);
7099 /* Send a netdev-add uevent to the new namespace */
7100 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7101 netdev_adjacent_add_links(dev);
7103 /* Fixup kobjects */
7104 err = device_rename(&dev->dev, dev->name);
7105 WARN_ON(err);
7107 /* Add the device back in the hashes */
7108 list_netdevice(dev);
7110 /* Notify protocols, that a new device appeared. */
7111 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7114 * Prevent userspace races by waiting until the network
7115 * device is fully setup before sending notifications.
7117 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7119 synchronize_net();
7120 err = 0;
7121 out:
7122 return err;
7124 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7126 static int dev_cpu_callback(struct notifier_block *nfb,
7127 unsigned long action,
7128 void *ocpu)
7130 struct sk_buff **list_skb;
7131 struct sk_buff *skb;
7132 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7133 struct softnet_data *sd, *oldsd;
7135 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7136 return NOTIFY_OK;
7138 local_irq_disable();
7139 cpu = smp_processor_id();
7140 sd = &per_cpu(softnet_data, cpu);
7141 oldsd = &per_cpu(softnet_data, oldcpu);
7143 /* Find end of our completion_queue. */
7144 list_skb = &sd->completion_queue;
7145 while (*list_skb)
7146 list_skb = &(*list_skb)->next;
7147 /* Append completion queue from offline CPU. */
7148 *list_skb = oldsd->completion_queue;
7149 oldsd->completion_queue = NULL;
7151 /* Append output queue from offline CPU. */
7152 if (oldsd->output_queue) {
7153 *sd->output_queue_tailp = oldsd->output_queue;
7154 sd->output_queue_tailp = oldsd->output_queue_tailp;
7155 oldsd->output_queue = NULL;
7156 oldsd->output_queue_tailp = &oldsd->output_queue;
7158 /* Append NAPI poll list from offline CPU, with one exception :
7159 * process_backlog() must be called by cpu owning percpu backlog.
7160 * We properly handle process_queue & input_pkt_queue later.
7162 while (!list_empty(&oldsd->poll_list)) {
7163 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7164 struct napi_struct,
7165 poll_list);
7167 list_del_init(&napi->poll_list);
7168 if (napi->poll == process_backlog)
7169 napi->state = 0;
7170 else
7171 ____napi_schedule(sd, napi);
7174 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7175 local_irq_enable();
7177 /* Process offline CPU's input_pkt_queue */
7178 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7179 netif_rx_ni(skb);
7180 input_queue_head_incr(oldsd);
7182 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7183 netif_rx_ni(skb);
7184 input_queue_head_incr(oldsd);
7187 return NOTIFY_OK;
7192 * netdev_increment_features - increment feature set by one
7193 * @all: current feature set
7194 * @one: new feature set
7195 * @mask: mask feature set
7197 * Computes a new feature set after adding a device with feature set
7198 * @one to the master device with current feature set @all. Will not
7199 * enable anything that is off in @mask. Returns the new feature set.
7201 netdev_features_t netdev_increment_features(netdev_features_t all,
7202 netdev_features_t one, netdev_features_t mask)
7204 if (mask & NETIF_F_GEN_CSUM)
7205 mask |= NETIF_F_ALL_CSUM;
7206 mask |= NETIF_F_VLAN_CHALLENGED;
7208 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7209 all &= one | ~NETIF_F_ALL_FOR_ALL;
7211 /* If one device supports hw checksumming, set for all. */
7212 if (all & NETIF_F_GEN_CSUM)
7213 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7215 return all;
7217 EXPORT_SYMBOL(netdev_increment_features);
7219 static struct hlist_head * __net_init netdev_create_hash(void)
7221 int i;
7222 struct hlist_head *hash;
7224 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7225 if (hash != NULL)
7226 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7227 INIT_HLIST_HEAD(&hash[i]);
7229 return hash;
7232 /* Initialize per network namespace state */
7233 static int __net_init netdev_init(struct net *net)
7235 if (net != &init_net)
7236 INIT_LIST_HEAD(&net->dev_base_head);
7238 net->dev_name_head = netdev_create_hash();
7239 if (net->dev_name_head == NULL)
7240 goto err_name;
7242 net->dev_index_head = netdev_create_hash();
7243 if (net->dev_index_head == NULL)
7244 goto err_idx;
7246 return 0;
7248 err_idx:
7249 kfree(net->dev_name_head);
7250 err_name:
7251 return -ENOMEM;
7255 * netdev_drivername - network driver for the device
7256 * @dev: network device
7258 * Determine network driver for device.
7260 const char *netdev_drivername(const struct net_device *dev)
7262 const struct device_driver *driver;
7263 const struct device *parent;
7264 const char *empty = "";
7266 parent = dev->dev.parent;
7267 if (!parent)
7268 return empty;
7270 driver = parent->driver;
7271 if (driver && driver->name)
7272 return driver->name;
7273 return empty;
7276 static void __netdev_printk(const char *level, const struct net_device *dev,
7277 struct va_format *vaf)
7279 if (dev && dev->dev.parent) {
7280 dev_printk_emit(level[1] - '0',
7281 dev->dev.parent,
7282 "%s %s %s%s: %pV",
7283 dev_driver_string(dev->dev.parent),
7284 dev_name(dev->dev.parent),
7285 netdev_name(dev), netdev_reg_state(dev),
7286 vaf);
7287 } else if (dev) {
7288 printk("%s%s%s: %pV",
7289 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7290 } else {
7291 printk("%s(NULL net_device): %pV", level, vaf);
7295 void netdev_printk(const char *level, const struct net_device *dev,
7296 const char *format, ...)
7298 struct va_format vaf;
7299 va_list args;
7301 va_start(args, format);
7303 vaf.fmt = format;
7304 vaf.va = &args;
7306 __netdev_printk(level, dev, &vaf);
7308 va_end(args);
7310 EXPORT_SYMBOL(netdev_printk);
7312 #define define_netdev_printk_level(func, level) \
7313 void func(const struct net_device *dev, const char *fmt, ...) \
7315 struct va_format vaf; \
7316 va_list args; \
7318 va_start(args, fmt); \
7320 vaf.fmt = fmt; \
7321 vaf.va = &args; \
7323 __netdev_printk(level, dev, &vaf); \
7325 va_end(args); \
7327 EXPORT_SYMBOL(func);
7329 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7330 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7331 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7332 define_netdev_printk_level(netdev_err, KERN_ERR);
7333 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7334 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7335 define_netdev_printk_level(netdev_info, KERN_INFO);
7337 static void __net_exit netdev_exit(struct net *net)
7339 kfree(net->dev_name_head);
7340 kfree(net->dev_index_head);
7343 static struct pernet_operations __net_initdata netdev_net_ops = {
7344 .init = netdev_init,
7345 .exit = netdev_exit,
7348 static void __net_exit default_device_exit(struct net *net)
7350 struct net_device *dev, *aux;
7352 * Push all migratable network devices back to the
7353 * initial network namespace
7355 rtnl_lock();
7356 for_each_netdev_safe(net, dev, aux) {
7357 int err;
7358 char fb_name[IFNAMSIZ];
7360 /* Ignore unmoveable devices (i.e. loopback) */
7361 if (dev->features & NETIF_F_NETNS_LOCAL)
7362 continue;
7364 /* Leave virtual devices for the generic cleanup */
7365 if (dev->rtnl_link_ops)
7366 continue;
7368 /* Push remaining network devices to init_net */
7369 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7370 err = dev_change_net_namespace(dev, &init_net, fb_name);
7371 if (err) {
7372 pr_emerg("%s: failed to move %s to init_net: %d\n",
7373 __func__, dev->name, err);
7374 BUG();
7377 rtnl_unlock();
7380 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7382 /* Return with the rtnl_lock held when there are no network
7383 * devices unregistering in any network namespace in net_list.
7385 struct net *net;
7386 bool unregistering;
7387 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7389 add_wait_queue(&netdev_unregistering_wq, &wait);
7390 for (;;) {
7391 unregistering = false;
7392 rtnl_lock();
7393 list_for_each_entry(net, net_list, exit_list) {
7394 if (net->dev_unreg_count > 0) {
7395 unregistering = true;
7396 break;
7399 if (!unregistering)
7400 break;
7401 __rtnl_unlock();
7403 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7405 remove_wait_queue(&netdev_unregistering_wq, &wait);
7408 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7410 /* At exit all network devices most be removed from a network
7411 * namespace. Do this in the reverse order of registration.
7412 * Do this across as many network namespaces as possible to
7413 * improve batching efficiency.
7415 struct net_device *dev;
7416 struct net *net;
7417 LIST_HEAD(dev_kill_list);
7419 /* To prevent network device cleanup code from dereferencing
7420 * loopback devices or network devices that have been freed
7421 * wait here for all pending unregistrations to complete,
7422 * before unregistring the loopback device and allowing the
7423 * network namespace be freed.
7425 * The netdev todo list containing all network devices
7426 * unregistrations that happen in default_device_exit_batch
7427 * will run in the rtnl_unlock() at the end of
7428 * default_device_exit_batch.
7430 rtnl_lock_unregistering(net_list);
7431 list_for_each_entry(net, net_list, exit_list) {
7432 for_each_netdev_reverse(net, dev) {
7433 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7434 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7435 else
7436 unregister_netdevice_queue(dev, &dev_kill_list);
7439 unregister_netdevice_many(&dev_kill_list);
7440 rtnl_unlock();
7443 static struct pernet_operations __net_initdata default_device_ops = {
7444 .exit = default_device_exit,
7445 .exit_batch = default_device_exit_batch,
7449 * Initialize the DEV module. At boot time this walks the device list and
7450 * unhooks any devices that fail to initialise (normally hardware not
7451 * present) and leaves us with a valid list of present and active devices.
7456 * This is called single threaded during boot, so no need
7457 * to take the rtnl semaphore.
7459 static int __init net_dev_init(void)
7461 int i, rc = -ENOMEM;
7463 BUG_ON(!dev_boot_phase);
7465 if (dev_proc_init())
7466 goto out;
7468 if (netdev_kobject_init())
7469 goto out;
7471 INIT_LIST_HEAD(&ptype_all);
7472 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7473 INIT_LIST_HEAD(&ptype_base[i]);
7475 INIT_LIST_HEAD(&offload_base);
7477 if (register_pernet_subsys(&netdev_net_ops))
7478 goto out;
7481 * Initialise the packet receive queues.
7484 for_each_possible_cpu(i) {
7485 struct softnet_data *sd = &per_cpu(softnet_data, i);
7487 skb_queue_head_init(&sd->input_pkt_queue);
7488 skb_queue_head_init(&sd->process_queue);
7489 INIT_LIST_HEAD(&sd->poll_list);
7490 sd->output_queue_tailp = &sd->output_queue;
7491 #ifdef CONFIG_RPS
7492 sd->csd.func = rps_trigger_softirq;
7493 sd->csd.info = sd;
7494 sd->cpu = i;
7495 #endif
7497 sd->backlog.poll = process_backlog;
7498 sd->backlog.weight = weight_p;
7501 dev_boot_phase = 0;
7503 /* The loopback device is special if any other network devices
7504 * is present in a network namespace the loopback device must
7505 * be present. Since we now dynamically allocate and free the
7506 * loopback device ensure this invariant is maintained by
7507 * keeping the loopback device as the first device on the
7508 * list of network devices. Ensuring the loopback devices
7509 * is the first device that appears and the last network device
7510 * that disappears.
7512 if (register_pernet_device(&loopback_net_ops))
7513 goto out;
7515 if (register_pernet_device(&default_device_ops))
7516 goto out;
7518 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7519 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7521 hotcpu_notifier(dev_cpu_callback, 0);
7522 dst_init();
7523 rc = 0;
7524 out:
7525 return rc;
7528 subsys_initcall(net_dev_init);