2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
52 #include <asm/irq_regs.h>
54 typedef int (*remote_function_f
)(void *);
56 struct remote_function_call
{
57 struct task_struct
*p
;
58 remote_function_f func
;
63 static void remote_function(void *data
)
65 struct remote_function_call
*tfc
= data
;
66 struct task_struct
*p
= tfc
->p
;
70 if (task_cpu(p
) != smp_processor_id())
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
78 tfc
->ret
= -ESRCH
; /* No such (running) process */
83 tfc
->ret
= tfc
->func(tfc
->info
);
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
100 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
102 struct remote_function_call data
= {
111 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
114 } while (ret
== -EAGAIN
);
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
124 * Calls the function @func on the remote cpu.
126 * returns: @func return value or -ENXIO when the cpu is offline
128 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
130 struct remote_function_call data
= {
134 .ret
= -ENXIO
, /* No such CPU */
137 smp_call_function_single(cpu
, remote_function
, &data
, 1);
142 static inline struct perf_cpu_context
*
143 __get_cpu_context(struct perf_event_context
*ctx
)
145 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
148 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
149 struct perf_event_context
*ctx
)
151 raw_spin_lock(&cpuctx
->ctx
.lock
);
153 raw_spin_lock(&ctx
->lock
);
156 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
157 struct perf_event_context
*ctx
)
160 raw_spin_unlock(&ctx
->lock
);
161 raw_spin_unlock(&cpuctx
->ctx
.lock
);
164 #define TASK_TOMBSTONE ((void *)-1L)
166 static bool is_kernel_event(struct perf_event
*event
)
168 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
172 * On task ctx scheduling...
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
178 * This however results in two special cases:
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
191 struct perf_event_context
*, void *);
193 struct event_function_struct
{
194 struct perf_event
*event
;
199 static int event_function(void *info
)
201 struct event_function_struct
*efs
= info
;
202 struct perf_event
*event
= efs
->event
;
203 struct perf_event_context
*ctx
= event
->ctx
;
204 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
205 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
208 WARN_ON_ONCE(!irqs_disabled());
210 perf_ctx_lock(cpuctx
, task_ctx
);
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
216 if (ctx
->task
!= current
) {
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
228 WARN_ON_ONCE(!ctx
->is_active
);
230 * And since we have ctx->is_active, cpuctx->task_ctx must
233 WARN_ON_ONCE(task_ctx
!= ctx
);
235 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
238 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
240 perf_ctx_unlock(cpuctx
, task_ctx
);
245 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
247 struct perf_event_context
*ctx
= event
->ctx
;
248 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
249 struct event_function_struct efs
= {
255 if (!event
->parent
) {
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
261 lockdep_assert_held(&ctx
->mutex
);
265 cpu_function_call(event
->cpu
, event_function
, &efs
);
269 if (task
== TASK_TOMBSTONE
)
273 if (!task_function_call(task
, event_function
, &efs
))
276 raw_spin_lock_irq(&ctx
->lock
);
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
282 if (task
== TASK_TOMBSTONE
) {
283 raw_spin_unlock_irq(&ctx
->lock
);
286 if (ctx
->is_active
) {
287 raw_spin_unlock_irq(&ctx
->lock
);
290 func(event
, NULL
, ctx
, data
);
291 raw_spin_unlock_irq(&ctx
->lock
);
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
298 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
300 struct perf_event_context
*ctx
= event
->ctx
;
301 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
302 struct task_struct
*task
= READ_ONCE(ctx
->task
);
303 struct perf_event_context
*task_ctx
= NULL
;
305 WARN_ON_ONCE(!irqs_disabled());
308 if (task
== TASK_TOMBSTONE
)
314 perf_ctx_lock(cpuctx
, task_ctx
);
317 if (task
== TASK_TOMBSTONE
)
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
326 if (ctx
->is_active
) {
327 if (WARN_ON_ONCE(task
!= current
))
330 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
334 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
337 func(event
, cpuctx
, ctx
, data
);
339 perf_ctx_unlock(cpuctx
, task_ctx
);
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
348 * branch priv levels that need permission checks
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
355 EVENT_FLEXIBLE
= 0x1,
358 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 static void perf_sched_delayed(struct work_struct
*work
);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
368 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
369 static DEFINE_MUTEX(perf_sched_mutex
);
370 static atomic_t perf_sched_count
;
372 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
374 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
376 static atomic_t nr_mmap_events __read_mostly
;
377 static atomic_t nr_comm_events __read_mostly
;
378 static atomic_t nr_task_events __read_mostly
;
379 static atomic_t nr_freq_events __read_mostly
;
380 static atomic_t nr_switch_events __read_mostly
;
382 static LIST_HEAD(pmus
);
383 static DEFINE_MUTEX(pmus_lock
);
384 static struct srcu_struct pmus_srcu
;
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
393 int sysctl_perf_event_paranoid __read_mostly
= 2;
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
399 * max perf event sample rate
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
405 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
407 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
408 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
410 static int perf_sample_allowed_ns __read_mostly
=
411 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
413 static void update_perf_cpu_limits(void)
415 u64 tmp
= perf_sample_period_ns
;
417 tmp
*= sysctl_perf_cpu_time_max_percent
;
418 tmp
= div_u64(tmp
, 100);
422 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
425 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
427 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
428 void __user
*buffer
, size_t *lenp
,
431 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
437 * If throttling is disabled don't allow the write:
439 if (sysctl_perf_cpu_time_max_percent
== 100 ||
440 sysctl_perf_cpu_time_max_percent
== 0)
443 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
444 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
445 update_perf_cpu_limits();
450 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
452 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
453 void __user
*buffer
, size_t *lenp
,
456 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
461 if (sysctl_perf_cpu_time_max_percent
== 100 ||
462 sysctl_perf_cpu_time_max_percent
== 0) {
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns
, 0);
467 update_perf_cpu_limits();
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64
, running_sample_length
);
482 static u64 __report_avg
;
483 static u64 __report_allowed
;
485 static void perf_duration_warn(struct irq_work
*w
)
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg
, __report_allowed
,
491 sysctl_perf_event_sample_rate
);
494 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
496 void perf_sample_event_took(u64 sample_len_ns
)
498 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
506 /* Decay the counter by 1 average sample. */
507 running_len
= __this_cpu_read(running_sample_length
);
508 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
509 running_len
+= sample_len_ns
;
510 __this_cpu_write(running_sample_length
, running_len
);
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
517 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
518 if (avg_len
<= max_len
)
521 __report_avg
= avg_len
;
522 __report_allowed
= max_len
;
525 * Compute a throttle threshold 25% below the current duration.
527 avg_len
+= avg_len
/ 4;
528 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
534 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
535 WRITE_ONCE(max_samples_per_tick
, max
);
537 sysctl_perf_event_sample_rate
= max
* HZ
;
538 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
540 if (!irq_work_queue(&perf_duration_work
)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg
, __report_allowed
,
544 sysctl_perf_event_sample_rate
);
548 static atomic64_t perf_event_id
;
550 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
551 enum event_type_t event_type
);
553 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
554 enum event_type_t event_type
,
555 struct task_struct
*task
);
557 static void update_context_time(struct perf_event_context
*ctx
);
558 static u64
perf_event_time(struct perf_event
*event
);
560 void __weak
perf_event_print_debug(void) { }
562 extern __weak
const char *perf_pmu_name(void)
567 static inline u64
perf_clock(void)
569 return local_clock();
572 static inline u64
perf_event_clock(struct perf_event
*event
)
574 return event
->clock();
577 #ifdef CONFIG_CGROUP_PERF
580 perf_cgroup_match(struct perf_event
*event
)
582 struct perf_event_context
*ctx
= event
->ctx
;
583 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
585 /* @event doesn't care about cgroup */
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
599 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
600 event
->cgrp
->css
.cgroup
);
603 static inline void perf_detach_cgroup(struct perf_event
*event
)
605 css_put(&event
->cgrp
->css
);
609 static inline int is_cgroup_event(struct perf_event
*event
)
611 return event
->cgrp
!= NULL
;
614 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
616 struct perf_cgroup_info
*t
;
618 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
622 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
624 struct perf_cgroup_info
*info
;
629 info
= this_cpu_ptr(cgrp
->info
);
631 info
->time
+= now
- info
->timestamp
;
632 info
->timestamp
= now
;
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
637 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
639 __update_cgrp_time(cgrp_out
);
642 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
644 struct perf_cgroup
*cgrp
;
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
650 if (!is_cgroup_event(event
))
653 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
655 * Do not update time when cgroup is not active
657 if (cgrp
== event
->cgrp
)
658 __update_cgrp_time(event
->cgrp
);
662 perf_cgroup_set_timestamp(struct task_struct
*task
,
663 struct perf_event_context
*ctx
)
665 struct perf_cgroup
*cgrp
;
666 struct perf_cgroup_info
*info
;
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
673 if (!task
|| !ctx
->nr_cgroups
)
676 cgrp
= perf_cgroup_from_task(task
, ctx
);
677 info
= this_cpu_ptr(cgrp
->info
);
678 info
->timestamp
= ctx
->timestamp
;
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
685 * reschedule events based on the cgroup constraint of task.
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
690 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
692 struct perf_cpu_context
*cpuctx
;
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
701 local_irq_save(flags
);
704 * we reschedule only in the presence of cgroup
705 * constrained events.
708 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
709 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
710 if (cpuctx
->unique_pmu
!= pmu
)
711 continue; /* ensure we process each cpuctx once */
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
720 if (cpuctx
->ctx
.nr_cgroups
> 0) {
721 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
722 perf_pmu_disable(cpuctx
->ctx
.pmu
);
724 if (mode
& PERF_CGROUP_SWOUT
) {
725 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
733 if (mode
& PERF_CGROUP_SWIN
) {
734 WARN_ON_ONCE(cpuctx
->cgrp
);
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
742 cpuctx
->cgrp
= perf_cgroup_from_task(task
, &cpuctx
->ctx
);
743 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
745 perf_pmu_enable(cpuctx
->ctx
.pmu
);
746 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
750 local_irq_restore(flags
);
753 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
754 struct task_struct
*next
)
756 struct perf_cgroup
*cgrp1
;
757 struct perf_cgroup
*cgrp2
= NULL
;
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
765 cgrp1
= perf_cgroup_from_task(task
, NULL
);
766 cgrp2
= perf_cgroup_from_task(next
, NULL
);
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
774 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
779 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
780 struct task_struct
*task
)
782 struct perf_cgroup
*cgrp1
;
783 struct perf_cgroup
*cgrp2
= NULL
;
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
791 cgrp1
= perf_cgroup_from_task(task
, NULL
);
792 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
800 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
805 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
806 struct perf_event_attr
*attr
,
807 struct perf_event
*group_leader
)
809 struct perf_cgroup
*cgrp
;
810 struct cgroup_subsys_state
*css
;
811 struct fd f
= fdget(fd
);
817 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
818 &perf_event_cgrp_subsys
);
824 cgrp
= container_of(css
, struct perf_cgroup
, css
);
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
832 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
833 perf_detach_cgroup(event
);
842 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
844 struct perf_cgroup_info
*t
;
845 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
846 event
->shadow_ctx_time
= now
- t
->timestamp
;
850 perf_cgroup_defer_enabled(struct perf_event
*event
)
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
858 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
859 event
->cgrp_defer_enabled
= 1;
863 perf_cgroup_mark_enabled(struct perf_event
*event
,
864 struct perf_event_context
*ctx
)
866 struct perf_event
*sub
;
867 u64 tstamp
= perf_event_time(event
);
869 if (!event
->cgrp_defer_enabled
)
872 event
->cgrp_defer_enabled
= 0;
874 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
875 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
876 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
877 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
878 sub
->cgrp_defer_enabled
= 0;
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
888 list_update_cgroup_event(struct perf_event
*event
,
889 struct perf_event_context
*ctx
, bool add
)
891 struct perf_cpu_context
*cpuctx
;
893 if (!is_cgroup_event(event
))
896 if (add
&& ctx
->nr_cgroups
++)
898 else if (!add
&& --ctx
->nr_cgroups
)
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
904 cpuctx
= __get_cpu_context(ctx
);
905 cpuctx
->cgrp
= add
? event
->cgrp
: NULL
;
908 #else /* !CONFIG_CGROUP_PERF */
911 perf_cgroup_match(struct perf_event
*event
)
916 static inline void perf_detach_cgroup(struct perf_event
*event
)
919 static inline int is_cgroup_event(struct perf_event
*event
)
924 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
929 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
937 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
938 struct task_struct
*next
)
942 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
943 struct task_struct
*task
)
947 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
948 struct perf_event_attr
*attr
,
949 struct perf_event
*group_leader
)
955 perf_cgroup_set_timestamp(struct task_struct
*task
,
956 struct perf_event_context
*ctx
)
961 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
966 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
970 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
976 perf_cgroup_defer_enabled(struct perf_event
*event
)
981 perf_cgroup_mark_enabled(struct perf_event
*event
,
982 struct perf_event_context
*ctx
)
987 list_update_cgroup_event(struct perf_event
*event
,
988 struct perf_event_context
*ctx
, bool add
)
995 * set default to be dependent on timer tick just
998 #define PERF_CPU_HRTIMER (1000 / HZ)
1000 * function must be called with interrupts disbled
1002 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1004 struct perf_cpu_context
*cpuctx
;
1007 WARN_ON(!irqs_disabled());
1009 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1010 rotations
= perf_rotate_context(cpuctx
);
1012 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1014 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1016 cpuctx
->hrtimer_active
= 0;
1017 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1019 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1024 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1025 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu
->task_ctx_nr
== perf_sw_context
)
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1036 interval
= pmu
->hrtimer_interval_ms
;
1038 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1040 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1042 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1043 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
1044 timer
->function
= perf_mux_hrtimer_handler
;
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1049 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1050 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1051 unsigned long flags
;
1053 /* not for SW PMU */
1054 if (pmu
->task_ctx_nr
== perf_sw_context
)
1057 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1058 if (!cpuctx
->hrtimer_active
) {
1059 cpuctx
->hrtimer_active
= 1;
1060 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1061 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
1063 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1068 void perf_pmu_disable(struct pmu
*pmu
)
1070 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1072 pmu
->pmu_disable(pmu
);
1075 void perf_pmu_enable(struct pmu
*pmu
)
1077 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1079 pmu
->pmu_enable(pmu
);
1082 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1090 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1092 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1094 WARN_ON(!irqs_disabled());
1096 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1098 list_add(&ctx
->active_ctx_list
, head
);
1101 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1103 WARN_ON(!irqs_disabled());
1105 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1107 list_del_init(&ctx
->active_ctx_list
);
1110 static void get_ctx(struct perf_event_context
*ctx
)
1112 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
1115 static void free_ctx(struct rcu_head
*head
)
1117 struct perf_event_context
*ctx
;
1119 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1120 kfree(ctx
->task_ctx_data
);
1124 static void put_ctx(struct perf_event_context
*ctx
)
1126 if (atomic_dec_and_test(&ctx
->refcount
)) {
1127 if (ctx
->parent_ctx
)
1128 put_ctx(ctx
->parent_ctx
);
1129 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1130 put_task_struct(ctx
->task
);
1131 call_rcu(&ctx
->rcu_head
, free_ctx
);
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1153 * perf_event_alloc()
1155 * perf_try_init_event() [ child , 1 ]
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1171 * The places that change perf_event::ctx will issue:
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1196 static struct perf_event_context
*
1197 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1199 struct perf_event_context
*ctx
;
1203 ctx
= ACCESS_ONCE(event
->ctx
);
1204 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1210 mutex_lock_nested(&ctx
->mutex
, nesting
);
1211 if (event
->ctx
!= ctx
) {
1212 mutex_unlock(&ctx
->mutex
);
1220 static inline struct perf_event_context
*
1221 perf_event_ctx_lock(struct perf_event
*event
)
1223 return perf_event_ctx_lock_nested(event
, 0);
1226 static void perf_event_ctx_unlock(struct perf_event
*event
,
1227 struct perf_event_context
*ctx
)
1229 mutex_unlock(&ctx
->mutex
);
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1238 static __must_check
struct perf_event_context
*
1239 unclone_ctx(struct perf_event_context
*ctx
)
1241 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1243 lockdep_assert_held(&ctx
->lock
);
1246 ctx
->parent_ctx
= NULL
;
1252 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1255 * only top level events have the pid namespace they were created in
1258 event
= event
->parent
;
1260 return task_tgid_nr_ns(p
, event
->ns
);
1263 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1266 * only top level events have the pid namespace they were created in
1269 event
= event
->parent
;
1271 return task_pid_nr_ns(p
, event
->ns
);
1275 * If we inherit events we want to return the parent event id
1278 static u64
primary_event_id(struct perf_event
*event
)
1283 id
= event
->parent
->id
;
1289 * Get the perf_event_context for a task and lock it.
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1294 static struct perf_event_context
*
1295 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1297 struct perf_event_context
*ctx
;
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 * part of the read side critical section was irqs-enabled -- see
1304 * rcu_read_unlock_special().
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 * side critical section has interrupts disabled.
1309 local_irq_save(*flags
);
1311 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
1316 * perf_event_task_sched_out, though the
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1323 raw_spin_lock(&ctx
->lock
);
1324 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1325 raw_spin_unlock(&ctx
->lock
);
1327 local_irq_restore(*flags
);
1331 if (ctx
->task
== TASK_TOMBSTONE
||
1332 !atomic_inc_not_zero(&ctx
->refcount
)) {
1333 raw_spin_unlock(&ctx
->lock
);
1336 WARN_ON_ONCE(ctx
->task
!= task
);
1341 local_irq_restore(*flags
);
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1350 static struct perf_event_context
*
1351 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1353 struct perf_event_context
*ctx
;
1354 unsigned long flags
;
1356 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1359 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1364 static void perf_unpin_context(struct perf_event_context
*ctx
)
1366 unsigned long flags
;
1368 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1370 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1374 * Update the record of the current time in a context.
1376 static void update_context_time(struct perf_event_context
*ctx
)
1378 u64 now
= perf_clock();
1380 ctx
->time
+= now
- ctx
->timestamp
;
1381 ctx
->timestamp
= now
;
1384 static u64
perf_event_time(struct perf_event
*event
)
1386 struct perf_event_context
*ctx
= event
->ctx
;
1388 if (is_cgroup_event(event
))
1389 return perf_cgroup_event_time(event
);
1391 return ctx
? ctx
->time
: 0;
1395 * Update the total_time_enabled and total_time_running fields for a event.
1397 static void update_event_times(struct perf_event
*event
)
1399 struct perf_event_context
*ctx
= event
->ctx
;
1402 lockdep_assert_held(&ctx
->lock
);
1404 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1405 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1415 * That is why we treat cgroup events differently
1418 if (is_cgroup_event(event
))
1419 run_end
= perf_cgroup_event_time(event
);
1420 else if (ctx
->is_active
)
1421 run_end
= ctx
->time
;
1423 run_end
= event
->tstamp_stopped
;
1425 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1427 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1428 run_end
= event
->tstamp_stopped
;
1430 run_end
= perf_event_time(event
);
1432 event
->total_time_running
= run_end
- event
->tstamp_running
;
1437 * Update total_time_enabled and total_time_running for all events in a group.
1439 static void update_group_times(struct perf_event
*leader
)
1441 struct perf_event
*event
;
1443 update_event_times(leader
);
1444 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1445 update_event_times(event
);
1448 static struct list_head
*
1449 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1451 if (event
->attr
.pinned
)
1452 return &ctx
->pinned_groups
;
1454 return &ctx
->flexible_groups
;
1458 * Add a event from the lists for its context.
1459 * Must be called with ctx->mutex and ctx->lock held.
1462 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1465 lockdep_assert_held(&ctx
->lock
);
1467 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1468 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1471 * If we're a stand alone event or group leader, we go to the context
1472 * list, group events are kept attached to the group so that
1473 * perf_group_detach can, at all times, locate all siblings.
1475 if (event
->group_leader
== event
) {
1476 struct list_head
*list
;
1478 event
->group_caps
= event
->event_caps
;
1480 list
= ctx_group_list(event
, ctx
);
1481 list_add_tail(&event
->group_entry
, list
);
1484 list_update_cgroup_event(event
, ctx
, true);
1486 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1488 if (event
->attr
.inherit_stat
)
1495 * Initialize event state based on the perf_event_attr::disabled.
1497 static inline void perf_event__state_init(struct perf_event
*event
)
1499 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1500 PERF_EVENT_STATE_INACTIVE
;
1503 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1505 int entry
= sizeof(u64
); /* value */
1509 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1510 size
+= sizeof(u64
);
1512 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1513 size
+= sizeof(u64
);
1515 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1516 entry
+= sizeof(u64
);
1518 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1520 size
+= sizeof(u64
);
1524 event
->read_size
= size
;
1527 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1529 struct perf_sample_data
*data
;
1532 if (sample_type
& PERF_SAMPLE_IP
)
1533 size
+= sizeof(data
->ip
);
1535 if (sample_type
& PERF_SAMPLE_ADDR
)
1536 size
+= sizeof(data
->addr
);
1538 if (sample_type
& PERF_SAMPLE_PERIOD
)
1539 size
+= sizeof(data
->period
);
1541 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1542 size
+= sizeof(data
->weight
);
1544 if (sample_type
& PERF_SAMPLE_READ
)
1545 size
+= event
->read_size
;
1547 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1548 size
+= sizeof(data
->data_src
.val
);
1550 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1551 size
+= sizeof(data
->txn
);
1553 event
->header_size
= size
;
1557 * Called at perf_event creation and when events are attached/detached from a
1560 static void perf_event__header_size(struct perf_event
*event
)
1562 __perf_event_read_size(event
,
1563 event
->group_leader
->nr_siblings
);
1564 __perf_event_header_size(event
, event
->attr
.sample_type
);
1567 static void perf_event__id_header_size(struct perf_event
*event
)
1569 struct perf_sample_data
*data
;
1570 u64 sample_type
= event
->attr
.sample_type
;
1573 if (sample_type
& PERF_SAMPLE_TID
)
1574 size
+= sizeof(data
->tid_entry
);
1576 if (sample_type
& PERF_SAMPLE_TIME
)
1577 size
+= sizeof(data
->time
);
1579 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1580 size
+= sizeof(data
->id
);
1582 if (sample_type
& PERF_SAMPLE_ID
)
1583 size
+= sizeof(data
->id
);
1585 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1586 size
+= sizeof(data
->stream_id
);
1588 if (sample_type
& PERF_SAMPLE_CPU
)
1589 size
+= sizeof(data
->cpu_entry
);
1591 event
->id_header_size
= size
;
1594 static bool perf_event_validate_size(struct perf_event
*event
)
1597 * The values computed here will be over-written when we actually
1600 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1601 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1602 perf_event__id_header_size(event
);
1605 * Sum the lot; should not exceed the 64k limit we have on records.
1606 * Conservative limit to allow for callchains and other variable fields.
1608 if (event
->read_size
+ event
->header_size
+
1609 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1615 static void perf_group_attach(struct perf_event
*event
)
1617 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1620 * We can have double attach due to group movement in perf_event_open.
1622 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1625 event
->attach_state
|= PERF_ATTACH_GROUP
;
1627 if (group_leader
== event
)
1630 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1632 group_leader
->group_caps
&= event
->event_caps
;
1634 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1635 group_leader
->nr_siblings
++;
1637 perf_event__header_size(group_leader
);
1639 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1640 perf_event__header_size(pos
);
1644 * Remove a event from the lists for its context.
1645 * Must be called with ctx->mutex and ctx->lock held.
1648 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1650 WARN_ON_ONCE(event
->ctx
!= ctx
);
1651 lockdep_assert_held(&ctx
->lock
);
1654 * We can have double detach due to exit/hot-unplug + close.
1656 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1659 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1661 list_update_cgroup_event(event
, ctx
, false);
1664 if (event
->attr
.inherit_stat
)
1667 list_del_rcu(&event
->event_entry
);
1669 if (event
->group_leader
== event
)
1670 list_del_init(&event
->group_entry
);
1672 update_group_times(event
);
1675 * If event was in error state, then keep it
1676 * that way, otherwise bogus counts will be
1677 * returned on read(). The only way to get out
1678 * of error state is by explicit re-enabling
1681 if (event
->state
> PERF_EVENT_STATE_OFF
)
1682 event
->state
= PERF_EVENT_STATE_OFF
;
1687 static void perf_group_detach(struct perf_event
*event
)
1689 struct perf_event
*sibling
, *tmp
;
1690 struct list_head
*list
= NULL
;
1693 * We can have double detach due to exit/hot-unplug + close.
1695 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1698 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1701 * If this is a sibling, remove it from its group.
1703 if (event
->group_leader
!= event
) {
1704 list_del_init(&event
->group_entry
);
1705 event
->group_leader
->nr_siblings
--;
1709 if (!list_empty(&event
->group_entry
))
1710 list
= &event
->group_entry
;
1713 * If this was a group event with sibling events then
1714 * upgrade the siblings to singleton events by adding them
1715 * to whatever list we are on.
1717 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1719 list_move_tail(&sibling
->group_entry
, list
);
1720 sibling
->group_leader
= sibling
;
1722 /* Inherit group flags from the previous leader */
1723 sibling
->group_caps
= event
->group_caps
;
1725 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1729 perf_event__header_size(event
->group_leader
);
1731 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1732 perf_event__header_size(tmp
);
1735 static bool is_orphaned_event(struct perf_event
*event
)
1737 return event
->state
== PERF_EVENT_STATE_DEAD
;
1740 static inline int __pmu_filter_match(struct perf_event
*event
)
1742 struct pmu
*pmu
= event
->pmu
;
1743 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1747 * Check whether we should attempt to schedule an event group based on
1748 * PMU-specific filtering. An event group can consist of HW and SW events,
1749 * potentially with a SW leader, so we must check all the filters, to
1750 * determine whether a group is schedulable:
1752 static inline int pmu_filter_match(struct perf_event
*event
)
1754 struct perf_event
*child
;
1756 if (!__pmu_filter_match(event
))
1759 list_for_each_entry(child
, &event
->sibling_list
, group_entry
) {
1760 if (!__pmu_filter_match(child
))
1768 event_filter_match(struct perf_event
*event
)
1770 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
1771 perf_cgroup_match(event
) && pmu_filter_match(event
);
1775 event_sched_out(struct perf_event
*event
,
1776 struct perf_cpu_context
*cpuctx
,
1777 struct perf_event_context
*ctx
)
1779 u64 tstamp
= perf_event_time(event
);
1782 WARN_ON_ONCE(event
->ctx
!= ctx
);
1783 lockdep_assert_held(&ctx
->lock
);
1786 * An event which could not be activated because of
1787 * filter mismatch still needs to have its timings
1788 * maintained, otherwise bogus information is return
1789 * via read() for time_enabled, time_running:
1791 if (event
->state
== PERF_EVENT_STATE_INACTIVE
&&
1792 !event_filter_match(event
)) {
1793 delta
= tstamp
- event
->tstamp_stopped
;
1794 event
->tstamp_running
+= delta
;
1795 event
->tstamp_stopped
= tstamp
;
1798 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1801 perf_pmu_disable(event
->pmu
);
1803 event
->tstamp_stopped
= tstamp
;
1804 event
->pmu
->del(event
, 0);
1806 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1807 if (event
->pending_disable
) {
1808 event
->pending_disable
= 0;
1809 event
->state
= PERF_EVENT_STATE_OFF
;
1812 if (!is_software_event(event
))
1813 cpuctx
->active_oncpu
--;
1814 if (!--ctx
->nr_active
)
1815 perf_event_ctx_deactivate(ctx
);
1816 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1818 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1819 cpuctx
->exclusive
= 0;
1821 perf_pmu_enable(event
->pmu
);
1825 group_sched_out(struct perf_event
*group_event
,
1826 struct perf_cpu_context
*cpuctx
,
1827 struct perf_event_context
*ctx
)
1829 struct perf_event
*event
;
1830 int state
= group_event
->state
;
1832 perf_pmu_disable(ctx
->pmu
);
1834 event_sched_out(group_event
, cpuctx
, ctx
);
1837 * Schedule out siblings (if any):
1839 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1840 event_sched_out(event
, cpuctx
, ctx
);
1842 perf_pmu_enable(ctx
->pmu
);
1844 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1845 cpuctx
->exclusive
= 0;
1848 #define DETACH_GROUP 0x01UL
1851 * Cross CPU call to remove a performance event
1853 * We disable the event on the hardware level first. After that we
1854 * remove it from the context list.
1857 __perf_remove_from_context(struct perf_event
*event
,
1858 struct perf_cpu_context
*cpuctx
,
1859 struct perf_event_context
*ctx
,
1862 unsigned long flags
= (unsigned long)info
;
1864 event_sched_out(event
, cpuctx
, ctx
);
1865 if (flags
& DETACH_GROUP
)
1866 perf_group_detach(event
);
1867 list_del_event(event
, ctx
);
1869 if (!ctx
->nr_events
&& ctx
->is_active
) {
1872 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
1873 cpuctx
->task_ctx
= NULL
;
1879 * Remove the event from a task's (or a CPU's) list of events.
1881 * If event->ctx is a cloned context, callers must make sure that
1882 * every task struct that event->ctx->task could possibly point to
1883 * remains valid. This is OK when called from perf_release since
1884 * that only calls us on the top-level context, which can't be a clone.
1885 * When called from perf_event_exit_task, it's OK because the
1886 * context has been detached from its task.
1888 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
1890 lockdep_assert_held(&event
->ctx
->mutex
);
1892 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
1896 * Cross CPU call to disable a performance event
1898 static void __perf_event_disable(struct perf_event
*event
,
1899 struct perf_cpu_context
*cpuctx
,
1900 struct perf_event_context
*ctx
,
1903 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
1906 update_context_time(ctx
);
1907 update_cgrp_time_from_event(event
);
1908 update_group_times(event
);
1909 if (event
== event
->group_leader
)
1910 group_sched_out(event
, cpuctx
, ctx
);
1912 event_sched_out(event
, cpuctx
, ctx
);
1913 event
->state
= PERF_EVENT_STATE_OFF
;
1919 * If event->ctx is a cloned context, callers must make sure that
1920 * every task struct that event->ctx->task could possibly point to
1921 * remains valid. This condition is satisifed when called through
1922 * perf_event_for_each_child or perf_event_for_each because they
1923 * hold the top-level event's child_mutex, so any descendant that
1924 * goes to exit will block in perf_event_exit_event().
1926 * When called from perf_pending_event it's OK because event->ctx
1927 * is the current context on this CPU and preemption is disabled,
1928 * hence we can't get into perf_event_task_sched_out for this context.
1930 static void _perf_event_disable(struct perf_event
*event
)
1932 struct perf_event_context
*ctx
= event
->ctx
;
1934 raw_spin_lock_irq(&ctx
->lock
);
1935 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
1936 raw_spin_unlock_irq(&ctx
->lock
);
1939 raw_spin_unlock_irq(&ctx
->lock
);
1941 event_function_call(event
, __perf_event_disable
, NULL
);
1944 void perf_event_disable_local(struct perf_event
*event
)
1946 event_function_local(event
, __perf_event_disable
, NULL
);
1950 * Strictly speaking kernel users cannot create groups and therefore this
1951 * interface does not need the perf_event_ctx_lock() magic.
1953 void perf_event_disable(struct perf_event
*event
)
1955 struct perf_event_context
*ctx
;
1957 ctx
= perf_event_ctx_lock(event
);
1958 _perf_event_disable(event
);
1959 perf_event_ctx_unlock(event
, ctx
);
1961 EXPORT_SYMBOL_GPL(perf_event_disable
);
1963 static void perf_set_shadow_time(struct perf_event
*event
,
1964 struct perf_event_context
*ctx
,
1968 * use the correct time source for the time snapshot
1970 * We could get by without this by leveraging the
1971 * fact that to get to this function, the caller
1972 * has most likely already called update_context_time()
1973 * and update_cgrp_time_xx() and thus both timestamp
1974 * are identical (or very close). Given that tstamp is,
1975 * already adjusted for cgroup, we could say that:
1976 * tstamp - ctx->timestamp
1978 * tstamp - cgrp->timestamp.
1980 * Then, in perf_output_read(), the calculation would
1981 * work with no changes because:
1982 * - event is guaranteed scheduled in
1983 * - no scheduled out in between
1984 * - thus the timestamp would be the same
1986 * But this is a bit hairy.
1988 * So instead, we have an explicit cgroup call to remain
1989 * within the time time source all along. We believe it
1990 * is cleaner and simpler to understand.
1992 if (is_cgroup_event(event
))
1993 perf_cgroup_set_shadow_time(event
, tstamp
);
1995 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1998 #define MAX_INTERRUPTS (~0ULL)
2000 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2001 static void perf_log_itrace_start(struct perf_event
*event
);
2004 event_sched_in(struct perf_event
*event
,
2005 struct perf_cpu_context
*cpuctx
,
2006 struct perf_event_context
*ctx
)
2008 u64 tstamp
= perf_event_time(event
);
2011 lockdep_assert_held(&ctx
->lock
);
2013 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2016 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2018 * Order event::oncpu write to happen before the ACTIVE state
2022 WRITE_ONCE(event
->state
, PERF_EVENT_STATE_ACTIVE
);
2025 * Unthrottle events, since we scheduled we might have missed several
2026 * ticks already, also for a heavily scheduling task there is little
2027 * guarantee it'll get a tick in a timely manner.
2029 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2030 perf_log_throttle(event
, 1);
2031 event
->hw
.interrupts
= 0;
2035 * The new state must be visible before we turn it on in the hardware:
2039 perf_pmu_disable(event
->pmu
);
2041 perf_set_shadow_time(event
, ctx
, tstamp
);
2043 perf_log_itrace_start(event
);
2045 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2046 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2052 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
2054 if (!is_software_event(event
))
2055 cpuctx
->active_oncpu
++;
2056 if (!ctx
->nr_active
++)
2057 perf_event_ctx_activate(ctx
);
2058 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2061 if (event
->attr
.exclusive
)
2062 cpuctx
->exclusive
= 1;
2065 perf_pmu_enable(event
->pmu
);
2071 group_sched_in(struct perf_event
*group_event
,
2072 struct perf_cpu_context
*cpuctx
,
2073 struct perf_event_context
*ctx
)
2075 struct perf_event
*event
, *partial_group
= NULL
;
2076 struct pmu
*pmu
= ctx
->pmu
;
2077 u64 now
= ctx
->time
;
2078 bool simulate
= false;
2080 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2083 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2085 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2086 pmu
->cancel_txn(pmu
);
2087 perf_mux_hrtimer_restart(cpuctx
);
2092 * Schedule in siblings as one group (if any):
2094 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2095 if (event_sched_in(event
, cpuctx
, ctx
)) {
2096 partial_group
= event
;
2101 if (!pmu
->commit_txn(pmu
))
2106 * Groups can be scheduled in as one unit only, so undo any
2107 * partial group before returning:
2108 * The events up to the failed event are scheduled out normally,
2109 * tstamp_stopped will be updated.
2111 * The failed events and the remaining siblings need to have
2112 * their timings updated as if they had gone thru event_sched_in()
2113 * and event_sched_out(). This is required to get consistent timings
2114 * across the group. This also takes care of the case where the group
2115 * could never be scheduled by ensuring tstamp_stopped is set to mark
2116 * the time the event was actually stopped, such that time delta
2117 * calculation in update_event_times() is correct.
2119 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2120 if (event
== partial_group
)
2124 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
2125 event
->tstamp_stopped
= now
;
2127 event_sched_out(event
, cpuctx
, ctx
);
2130 event_sched_out(group_event
, cpuctx
, ctx
);
2132 pmu
->cancel_txn(pmu
);
2134 perf_mux_hrtimer_restart(cpuctx
);
2140 * Work out whether we can put this event group on the CPU now.
2142 static int group_can_go_on(struct perf_event
*event
,
2143 struct perf_cpu_context
*cpuctx
,
2147 * Groups consisting entirely of software events can always go on.
2149 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2152 * If an exclusive group is already on, no other hardware
2155 if (cpuctx
->exclusive
)
2158 * If this group is exclusive and there are already
2159 * events on the CPU, it can't go on.
2161 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2164 * Otherwise, try to add it if all previous groups were able
2170 static void add_event_to_ctx(struct perf_event
*event
,
2171 struct perf_event_context
*ctx
)
2173 u64 tstamp
= perf_event_time(event
);
2175 list_add_event(event
, ctx
);
2176 perf_group_attach(event
);
2177 event
->tstamp_enabled
= tstamp
;
2178 event
->tstamp_running
= tstamp
;
2179 event
->tstamp_stopped
= tstamp
;
2182 static void ctx_sched_out(struct perf_event_context
*ctx
,
2183 struct perf_cpu_context
*cpuctx
,
2184 enum event_type_t event_type
);
2186 ctx_sched_in(struct perf_event_context
*ctx
,
2187 struct perf_cpu_context
*cpuctx
,
2188 enum event_type_t event_type
,
2189 struct task_struct
*task
);
2191 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2192 struct perf_event_context
*ctx
)
2194 if (!cpuctx
->task_ctx
)
2197 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2200 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2203 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2204 struct perf_event_context
*ctx
,
2205 struct task_struct
*task
)
2207 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2209 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2210 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2212 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2215 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2216 struct perf_event_context
*task_ctx
)
2218 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2220 task_ctx_sched_out(cpuctx
, task_ctx
);
2221 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2222 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2223 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2227 * Cross CPU call to install and enable a performance event
2229 * Very similar to remote_function() + event_function() but cannot assume that
2230 * things like ctx->is_active and cpuctx->task_ctx are set.
2232 static int __perf_install_in_context(void *info
)
2234 struct perf_event
*event
= info
;
2235 struct perf_event_context
*ctx
= event
->ctx
;
2236 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2237 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2238 bool activate
= true;
2241 raw_spin_lock(&cpuctx
->ctx
.lock
);
2243 raw_spin_lock(&ctx
->lock
);
2246 /* If we're on the wrong CPU, try again */
2247 if (task_cpu(ctx
->task
) != smp_processor_id()) {
2253 * If we're on the right CPU, see if the task we target is
2254 * current, if not we don't have to activate the ctx, a future
2255 * context switch will do that for us.
2257 if (ctx
->task
!= current
)
2260 WARN_ON_ONCE(cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2262 } else if (task_ctx
) {
2263 raw_spin_lock(&task_ctx
->lock
);
2267 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2268 add_event_to_ctx(event
, ctx
);
2269 ctx_resched(cpuctx
, task_ctx
);
2271 add_event_to_ctx(event
, ctx
);
2275 perf_ctx_unlock(cpuctx
, task_ctx
);
2281 * Attach a performance event to a context.
2283 * Very similar to event_function_call, see comment there.
2286 perf_install_in_context(struct perf_event_context
*ctx
,
2287 struct perf_event
*event
,
2290 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2292 lockdep_assert_held(&ctx
->mutex
);
2294 if (event
->cpu
!= -1)
2298 * Ensures that if we can observe event->ctx, both the event and ctx
2299 * will be 'complete'. See perf_iterate_sb_cpu().
2301 smp_store_release(&event
->ctx
, ctx
);
2304 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2309 * Should not happen, we validate the ctx is still alive before calling.
2311 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2315 * Installing events is tricky because we cannot rely on ctx->is_active
2316 * to be set in case this is the nr_events 0 -> 1 transition.
2320 * Cannot use task_function_call() because we need to run on the task's
2321 * CPU regardless of whether its current or not.
2323 if (!cpu_function_call(task_cpu(task
), __perf_install_in_context
, event
))
2326 raw_spin_lock_irq(&ctx
->lock
);
2328 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2330 * Cannot happen because we already checked above (which also
2331 * cannot happen), and we hold ctx->mutex, which serializes us
2332 * against perf_event_exit_task_context().
2334 raw_spin_unlock_irq(&ctx
->lock
);
2337 raw_spin_unlock_irq(&ctx
->lock
);
2339 * Since !ctx->is_active doesn't mean anything, we must IPI
2346 * Put a event into inactive state and update time fields.
2347 * Enabling the leader of a group effectively enables all
2348 * the group members that aren't explicitly disabled, so we
2349 * have to update their ->tstamp_enabled also.
2350 * Note: this works for group members as well as group leaders
2351 * since the non-leader members' sibling_lists will be empty.
2353 static void __perf_event_mark_enabled(struct perf_event
*event
)
2355 struct perf_event
*sub
;
2356 u64 tstamp
= perf_event_time(event
);
2358 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2359 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2360 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2361 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2362 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2367 * Cross CPU call to enable a performance event
2369 static void __perf_event_enable(struct perf_event
*event
,
2370 struct perf_cpu_context
*cpuctx
,
2371 struct perf_event_context
*ctx
,
2374 struct perf_event
*leader
= event
->group_leader
;
2375 struct perf_event_context
*task_ctx
;
2377 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2378 event
->state
<= PERF_EVENT_STATE_ERROR
)
2382 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2384 __perf_event_mark_enabled(event
);
2386 if (!ctx
->is_active
)
2389 if (!event_filter_match(event
)) {
2390 if (is_cgroup_event(event
))
2391 perf_cgroup_defer_enabled(event
);
2392 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2397 * If the event is in a group and isn't the group leader,
2398 * then don't put it on unless the group is on.
2400 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2401 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2405 task_ctx
= cpuctx
->task_ctx
;
2407 WARN_ON_ONCE(task_ctx
!= ctx
);
2409 ctx_resched(cpuctx
, task_ctx
);
2415 * If event->ctx is a cloned context, callers must make sure that
2416 * every task struct that event->ctx->task could possibly point to
2417 * remains valid. This condition is satisfied when called through
2418 * perf_event_for_each_child or perf_event_for_each as described
2419 * for perf_event_disable.
2421 static void _perf_event_enable(struct perf_event
*event
)
2423 struct perf_event_context
*ctx
= event
->ctx
;
2425 raw_spin_lock_irq(&ctx
->lock
);
2426 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2427 event
->state
< PERF_EVENT_STATE_ERROR
) {
2428 raw_spin_unlock_irq(&ctx
->lock
);
2433 * If the event is in error state, clear that first.
2435 * That way, if we see the event in error state below, we know that it
2436 * has gone back into error state, as distinct from the task having
2437 * been scheduled away before the cross-call arrived.
2439 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2440 event
->state
= PERF_EVENT_STATE_OFF
;
2441 raw_spin_unlock_irq(&ctx
->lock
);
2443 event_function_call(event
, __perf_event_enable
, NULL
);
2447 * See perf_event_disable();
2449 void perf_event_enable(struct perf_event
*event
)
2451 struct perf_event_context
*ctx
;
2453 ctx
= perf_event_ctx_lock(event
);
2454 _perf_event_enable(event
);
2455 perf_event_ctx_unlock(event
, ctx
);
2457 EXPORT_SYMBOL_GPL(perf_event_enable
);
2459 struct stop_event_data
{
2460 struct perf_event
*event
;
2461 unsigned int restart
;
2464 static int __perf_event_stop(void *info
)
2466 struct stop_event_data
*sd
= info
;
2467 struct perf_event
*event
= sd
->event
;
2469 /* if it's already INACTIVE, do nothing */
2470 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2473 /* matches smp_wmb() in event_sched_in() */
2477 * There is a window with interrupts enabled before we get here,
2478 * so we need to check again lest we try to stop another CPU's event.
2480 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2483 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2486 * May race with the actual stop (through perf_pmu_output_stop()),
2487 * but it is only used for events with AUX ring buffer, and such
2488 * events will refuse to restart because of rb::aux_mmap_count==0,
2489 * see comments in perf_aux_output_begin().
2491 * Since this is happening on a event-local CPU, no trace is lost
2495 event
->pmu
->start(event
, 0);
2500 static int perf_event_stop(struct perf_event
*event
, int restart
)
2502 struct stop_event_data sd
= {
2509 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2512 /* matches smp_wmb() in event_sched_in() */
2516 * We only want to restart ACTIVE events, so if the event goes
2517 * inactive here (event->oncpu==-1), there's nothing more to do;
2518 * fall through with ret==-ENXIO.
2520 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2521 __perf_event_stop
, &sd
);
2522 } while (ret
== -EAGAIN
);
2528 * In order to contain the amount of racy and tricky in the address filter
2529 * configuration management, it is a two part process:
2531 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2532 * we update the addresses of corresponding vmas in
2533 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2534 * (p2) when an event is scheduled in (pmu::add), it calls
2535 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2536 * if the generation has changed since the previous call.
2538 * If (p1) happens while the event is active, we restart it to force (p2).
2540 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2541 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2543 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2544 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2546 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2549 void perf_event_addr_filters_sync(struct perf_event
*event
)
2551 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2553 if (!has_addr_filter(event
))
2556 raw_spin_lock(&ifh
->lock
);
2557 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2558 event
->pmu
->addr_filters_sync(event
);
2559 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2561 raw_spin_unlock(&ifh
->lock
);
2563 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2565 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2568 * not supported on inherited events
2570 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2573 atomic_add(refresh
, &event
->event_limit
);
2574 _perf_event_enable(event
);
2580 * See perf_event_disable()
2582 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2584 struct perf_event_context
*ctx
;
2587 ctx
= perf_event_ctx_lock(event
);
2588 ret
= _perf_event_refresh(event
, refresh
);
2589 perf_event_ctx_unlock(event
, ctx
);
2593 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2595 static void ctx_sched_out(struct perf_event_context
*ctx
,
2596 struct perf_cpu_context
*cpuctx
,
2597 enum event_type_t event_type
)
2599 int is_active
= ctx
->is_active
;
2600 struct perf_event
*event
;
2602 lockdep_assert_held(&ctx
->lock
);
2604 if (likely(!ctx
->nr_events
)) {
2606 * See __perf_remove_from_context().
2608 WARN_ON_ONCE(ctx
->is_active
);
2610 WARN_ON_ONCE(cpuctx
->task_ctx
);
2614 ctx
->is_active
&= ~event_type
;
2615 if (!(ctx
->is_active
& EVENT_ALL
))
2619 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2620 if (!ctx
->is_active
)
2621 cpuctx
->task_ctx
= NULL
;
2625 * Always update time if it was set; not only when it changes.
2626 * Otherwise we can 'forget' to update time for any but the last
2627 * context we sched out. For example:
2629 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2630 * ctx_sched_out(.event_type = EVENT_PINNED)
2632 * would only update time for the pinned events.
2634 if (is_active
& EVENT_TIME
) {
2635 /* update (and stop) ctx time */
2636 update_context_time(ctx
);
2637 update_cgrp_time_from_cpuctx(cpuctx
);
2640 is_active
^= ctx
->is_active
; /* changed bits */
2642 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2645 perf_pmu_disable(ctx
->pmu
);
2646 if (is_active
& EVENT_PINNED
) {
2647 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2648 group_sched_out(event
, cpuctx
, ctx
);
2651 if (is_active
& EVENT_FLEXIBLE
) {
2652 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2653 group_sched_out(event
, cpuctx
, ctx
);
2655 perf_pmu_enable(ctx
->pmu
);
2659 * Test whether two contexts are equivalent, i.e. whether they have both been
2660 * cloned from the same version of the same context.
2662 * Equivalence is measured using a generation number in the context that is
2663 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2664 * and list_del_event().
2666 static int context_equiv(struct perf_event_context
*ctx1
,
2667 struct perf_event_context
*ctx2
)
2669 lockdep_assert_held(&ctx1
->lock
);
2670 lockdep_assert_held(&ctx2
->lock
);
2672 /* Pinning disables the swap optimization */
2673 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2676 /* If ctx1 is the parent of ctx2 */
2677 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2680 /* If ctx2 is the parent of ctx1 */
2681 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2685 * If ctx1 and ctx2 have the same parent; we flatten the parent
2686 * hierarchy, see perf_event_init_context().
2688 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2689 ctx1
->parent_gen
== ctx2
->parent_gen
)
2696 static void __perf_event_sync_stat(struct perf_event
*event
,
2697 struct perf_event
*next_event
)
2701 if (!event
->attr
.inherit_stat
)
2705 * Update the event value, we cannot use perf_event_read()
2706 * because we're in the middle of a context switch and have IRQs
2707 * disabled, which upsets smp_call_function_single(), however
2708 * we know the event must be on the current CPU, therefore we
2709 * don't need to use it.
2711 switch (event
->state
) {
2712 case PERF_EVENT_STATE_ACTIVE
:
2713 event
->pmu
->read(event
);
2716 case PERF_EVENT_STATE_INACTIVE
:
2717 update_event_times(event
);
2725 * In order to keep per-task stats reliable we need to flip the event
2726 * values when we flip the contexts.
2728 value
= local64_read(&next_event
->count
);
2729 value
= local64_xchg(&event
->count
, value
);
2730 local64_set(&next_event
->count
, value
);
2732 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2733 swap(event
->total_time_running
, next_event
->total_time_running
);
2736 * Since we swizzled the values, update the user visible data too.
2738 perf_event_update_userpage(event
);
2739 perf_event_update_userpage(next_event
);
2742 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2743 struct perf_event_context
*next_ctx
)
2745 struct perf_event
*event
, *next_event
;
2750 update_context_time(ctx
);
2752 event
= list_first_entry(&ctx
->event_list
,
2753 struct perf_event
, event_entry
);
2755 next_event
= list_first_entry(&next_ctx
->event_list
,
2756 struct perf_event
, event_entry
);
2758 while (&event
->event_entry
!= &ctx
->event_list
&&
2759 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2761 __perf_event_sync_stat(event
, next_event
);
2763 event
= list_next_entry(event
, event_entry
);
2764 next_event
= list_next_entry(next_event
, event_entry
);
2768 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2769 struct task_struct
*next
)
2771 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2772 struct perf_event_context
*next_ctx
;
2773 struct perf_event_context
*parent
, *next_parent
;
2774 struct perf_cpu_context
*cpuctx
;
2780 cpuctx
= __get_cpu_context(ctx
);
2781 if (!cpuctx
->task_ctx
)
2785 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2789 parent
= rcu_dereference(ctx
->parent_ctx
);
2790 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2792 /* If neither context have a parent context; they cannot be clones. */
2793 if (!parent
&& !next_parent
)
2796 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2798 * Looks like the two contexts are clones, so we might be
2799 * able to optimize the context switch. We lock both
2800 * contexts and check that they are clones under the
2801 * lock (including re-checking that neither has been
2802 * uncloned in the meantime). It doesn't matter which
2803 * order we take the locks because no other cpu could
2804 * be trying to lock both of these tasks.
2806 raw_spin_lock(&ctx
->lock
);
2807 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2808 if (context_equiv(ctx
, next_ctx
)) {
2809 WRITE_ONCE(ctx
->task
, next
);
2810 WRITE_ONCE(next_ctx
->task
, task
);
2812 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2815 * RCU_INIT_POINTER here is safe because we've not
2816 * modified the ctx and the above modification of
2817 * ctx->task and ctx->task_ctx_data are immaterial
2818 * since those values are always verified under
2819 * ctx->lock which we're now holding.
2821 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
2822 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
2826 perf_event_sync_stat(ctx
, next_ctx
);
2828 raw_spin_unlock(&next_ctx
->lock
);
2829 raw_spin_unlock(&ctx
->lock
);
2835 raw_spin_lock(&ctx
->lock
);
2836 task_ctx_sched_out(cpuctx
, ctx
);
2837 raw_spin_unlock(&ctx
->lock
);
2841 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
2843 void perf_sched_cb_dec(struct pmu
*pmu
)
2845 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2847 this_cpu_dec(perf_sched_cb_usages
);
2849 if (!--cpuctx
->sched_cb_usage
)
2850 list_del(&cpuctx
->sched_cb_entry
);
2854 void perf_sched_cb_inc(struct pmu
*pmu
)
2856 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2858 if (!cpuctx
->sched_cb_usage
++)
2859 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
2861 this_cpu_inc(perf_sched_cb_usages
);
2865 * This function provides the context switch callback to the lower code
2866 * layer. It is invoked ONLY when the context switch callback is enabled.
2868 * This callback is relevant even to per-cpu events; for example multi event
2869 * PEBS requires this to provide PID/TID information. This requires we flush
2870 * all queued PEBS records before we context switch to a new task.
2872 static void perf_pmu_sched_task(struct task_struct
*prev
,
2873 struct task_struct
*next
,
2876 struct perf_cpu_context
*cpuctx
;
2882 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
2883 pmu
= cpuctx
->unique_pmu
; /* software PMUs will not have sched_task */
2885 if (WARN_ON_ONCE(!pmu
->sched_task
))
2888 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2889 perf_pmu_disable(pmu
);
2891 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
2893 perf_pmu_enable(pmu
);
2894 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2898 static void perf_event_switch(struct task_struct
*task
,
2899 struct task_struct
*next_prev
, bool sched_in
);
2901 #define for_each_task_context_nr(ctxn) \
2902 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2905 * Called from scheduler to remove the events of the current task,
2906 * with interrupts disabled.
2908 * We stop each event and update the event value in event->count.
2910 * This does not protect us against NMI, but disable()
2911 * sets the disabled bit in the control field of event _before_
2912 * accessing the event control register. If a NMI hits, then it will
2913 * not restart the event.
2915 void __perf_event_task_sched_out(struct task_struct
*task
,
2916 struct task_struct
*next
)
2920 if (__this_cpu_read(perf_sched_cb_usages
))
2921 perf_pmu_sched_task(task
, next
, false);
2923 if (atomic_read(&nr_switch_events
))
2924 perf_event_switch(task
, next
, false);
2926 for_each_task_context_nr(ctxn
)
2927 perf_event_context_sched_out(task
, ctxn
, next
);
2930 * if cgroup events exist on this CPU, then we need
2931 * to check if we have to switch out PMU state.
2932 * cgroup event are system-wide mode only
2934 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2935 perf_cgroup_sched_out(task
, next
);
2939 * Called with IRQs disabled
2941 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2942 enum event_type_t event_type
)
2944 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2948 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2949 struct perf_cpu_context
*cpuctx
)
2951 struct perf_event
*event
;
2953 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2954 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2956 if (!event_filter_match(event
))
2959 /* may need to reset tstamp_enabled */
2960 if (is_cgroup_event(event
))
2961 perf_cgroup_mark_enabled(event
, ctx
);
2963 if (group_can_go_on(event
, cpuctx
, 1))
2964 group_sched_in(event
, cpuctx
, ctx
);
2967 * If this pinned group hasn't been scheduled,
2968 * put it in error state.
2970 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2971 update_group_times(event
);
2972 event
->state
= PERF_EVENT_STATE_ERROR
;
2978 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2979 struct perf_cpu_context
*cpuctx
)
2981 struct perf_event
*event
;
2984 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2985 /* Ignore events in OFF or ERROR state */
2986 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2989 * Listen to the 'cpu' scheduling filter constraint
2992 if (!event_filter_match(event
))
2995 /* may need to reset tstamp_enabled */
2996 if (is_cgroup_event(event
))
2997 perf_cgroup_mark_enabled(event
, ctx
);
2999 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
3000 if (group_sched_in(event
, cpuctx
, ctx
))
3007 ctx_sched_in(struct perf_event_context
*ctx
,
3008 struct perf_cpu_context
*cpuctx
,
3009 enum event_type_t event_type
,
3010 struct task_struct
*task
)
3012 int is_active
= ctx
->is_active
;
3015 lockdep_assert_held(&ctx
->lock
);
3017 if (likely(!ctx
->nr_events
))
3020 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3023 cpuctx
->task_ctx
= ctx
;
3025 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3028 is_active
^= ctx
->is_active
; /* changed bits */
3030 if (is_active
& EVENT_TIME
) {
3031 /* start ctx time */
3033 ctx
->timestamp
= now
;
3034 perf_cgroup_set_timestamp(task
, ctx
);
3038 * First go through the list and put on any pinned groups
3039 * in order to give them the best chance of going on.
3041 if (is_active
& EVENT_PINNED
)
3042 ctx_pinned_sched_in(ctx
, cpuctx
);
3044 /* Then walk through the lower prio flexible groups */
3045 if (is_active
& EVENT_FLEXIBLE
)
3046 ctx_flexible_sched_in(ctx
, cpuctx
);
3049 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3050 enum event_type_t event_type
,
3051 struct task_struct
*task
)
3053 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3055 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3058 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3059 struct task_struct
*task
)
3061 struct perf_cpu_context
*cpuctx
;
3063 cpuctx
= __get_cpu_context(ctx
);
3064 if (cpuctx
->task_ctx
== ctx
)
3067 perf_ctx_lock(cpuctx
, ctx
);
3068 perf_pmu_disable(ctx
->pmu
);
3070 * We want to keep the following priority order:
3071 * cpu pinned (that don't need to move), task pinned,
3072 * cpu flexible, task flexible.
3074 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3075 perf_event_sched_in(cpuctx
, ctx
, task
);
3076 perf_pmu_enable(ctx
->pmu
);
3077 perf_ctx_unlock(cpuctx
, ctx
);
3081 * Called from scheduler to add the events of the current task
3082 * with interrupts disabled.
3084 * We restore the event value and then enable it.
3086 * This does not protect us against NMI, but enable()
3087 * sets the enabled bit in the control field of event _before_
3088 * accessing the event control register. If a NMI hits, then it will
3089 * keep the event running.
3091 void __perf_event_task_sched_in(struct task_struct
*prev
,
3092 struct task_struct
*task
)
3094 struct perf_event_context
*ctx
;
3098 * If cgroup events exist on this CPU, then we need to check if we have
3099 * to switch in PMU state; cgroup event are system-wide mode only.
3101 * Since cgroup events are CPU events, we must schedule these in before
3102 * we schedule in the task events.
3104 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3105 perf_cgroup_sched_in(prev
, task
);
3107 for_each_task_context_nr(ctxn
) {
3108 ctx
= task
->perf_event_ctxp
[ctxn
];
3112 perf_event_context_sched_in(ctx
, task
);
3115 if (atomic_read(&nr_switch_events
))
3116 perf_event_switch(task
, prev
, true);
3118 if (__this_cpu_read(perf_sched_cb_usages
))
3119 perf_pmu_sched_task(prev
, task
, true);
3122 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3124 u64 frequency
= event
->attr
.sample_freq
;
3125 u64 sec
= NSEC_PER_SEC
;
3126 u64 divisor
, dividend
;
3128 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3130 count_fls
= fls64(count
);
3131 nsec_fls
= fls64(nsec
);
3132 frequency_fls
= fls64(frequency
);
3136 * We got @count in @nsec, with a target of sample_freq HZ
3137 * the target period becomes:
3140 * period = -------------------
3141 * @nsec * sample_freq
3146 * Reduce accuracy by one bit such that @a and @b converge
3147 * to a similar magnitude.
3149 #define REDUCE_FLS(a, b) \
3151 if (a##_fls > b##_fls) { \
3161 * Reduce accuracy until either term fits in a u64, then proceed with
3162 * the other, so that finally we can do a u64/u64 division.
3164 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3165 REDUCE_FLS(nsec
, frequency
);
3166 REDUCE_FLS(sec
, count
);
3169 if (count_fls
+ sec_fls
> 64) {
3170 divisor
= nsec
* frequency
;
3172 while (count_fls
+ sec_fls
> 64) {
3173 REDUCE_FLS(count
, sec
);
3177 dividend
= count
* sec
;
3179 dividend
= count
* sec
;
3181 while (nsec_fls
+ frequency_fls
> 64) {
3182 REDUCE_FLS(nsec
, frequency
);
3186 divisor
= nsec
* frequency
;
3192 return div64_u64(dividend
, divisor
);
3195 static DEFINE_PER_CPU(int, perf_throttled_count
);
3196 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3198 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3200 struct hw_perf_event
*hwc
= &event
->hw
;
3201 s64 period
, sample_period
;
3204 period
= perf_calculate_period(event
, nsec
, count
);
3206 delta
= (s64
)(period
- hwc
->sample_period
);
3207 delta
= (delta
+ 7) / 8; /* low pass filter */
3209 sample_period
= hwc
->sample_period
+ delta
;
3214 hwc
->sample_period
= sample_period
;
3216 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3218 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3220 local64_set(&hwc
->period_left
, 0);
3223 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3228 * combine freq adjustment with unthrottling to avoid two passes over the
3229 * events. At the same time, make sure, having freq events does not change
3230 * the rate of unthrottling as that would introduce bias.
3232 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3235 struct perf_event
*event
;
3236 struct hw_perf_event
*hwc
;
3237 u64 now
, period
= TICK_NSEC
;
3241 * only need to iterate over all events iff:
3242 * - context have events in frequency mode (needs freq adjust)
3243 * - there are events to unthrottle on this cpu
3245 if (!(ctx
->nr_freq
|| needs_unthr
))
3248 raw_spin_lock(&ctx
->lock
);
3249 perf_pmu_disable(ctx
->pmu
);
3251 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3252 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3255 if (!event_filter_match(event
))
3258 perf_pmu_disable(event
->pmu
);
3262 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3263 hwc
->interrupts
= 0;
3264 perf_log_throttle(event
, 1);
3265 event
->pmu
->start(event
, 0);
3268 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3272 * stop the event and update event->count
3274 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3276 now
= local64_read(&event
->count
);
3277 delta
= now
- hwc
->freq_count_stamp
;
3278 hwc
->freq_count_stamp
= now
;
3282 * reload only if value has changed
3283 * we have stopped the event so tell that
3284 * to perf_adjust_period() to avoid stopping it
3288 perf_adjust_period(event
, period
, delta
, false);
3290 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3292 perf_pmu_enable(event
->pmu
);
3295 perf_pmu_enable(ctx
->pmu
);
3296 raw_spin_unlock(&ctx
->lock
);
3300 * Round-robin a context's events:
3302 static void rotate_ctx(struct perf_event_context
*ctx
)
3305 * Rotate the first entry last of non-pinned groups. Rotation might be
3306 * disabled by the inheritance code.
3308 if (!ctx
->rotate_disable
)
3309 list_rotate_left(&ctx
->flexible_groups
);
3312 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3314 struct perf_event_context
*ctx
= NULL
;
3317 if (cpuctx
->ctx
.nr_events
) {
3318 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3322 ctx
= cpuctx
->task_ctx
;
3323 if (ctx
&& ctx
->nr_events
) {
3324 if (ctx
->nr_events
!= ctx
->nr_active
)
3331 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3332 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3334 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3336 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3338 rotate_ctx(&cpuctx
->ctx
);
3342 perf_event_sched_in(cpuctx
, ctx
, current
);
3344 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3345 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3351 void perf_event_task_tick(void)
3353 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3354 struct perf_event_context
*ctx
, *tmp
;
3357 WARN_ON(!irqs_disabled());
3359 __this_cpu_inc(perf_throttled_seq
);
3360 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3361 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3363 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3364 perf_adjust_freq_unthr_context(ctx
, throttled
);
3367 static int event_enable_on_exec(struct perf_event
*event
,
3368 struct perf_event_context
*ctx
)
3370 if (!event
->attr
.enable_on_exec
)
3373 event
->attr
.enable_on_exec
= 0;
3374 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3377 __perf_event_mark_enabled(event
);
3383 * Enable all of a task's events that have been marked enable-on-exec.
3384 * This expects task == current.
3386 static void perf_event_enable_on_exec(int ctxn
)
3388 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3389 struct perf_cpu_context
*cpuctx
;
3390 struct perf_event
*event
;
3391 unsigned long flags
;
3394 local_irq_save(flags
);
3395 ctx
= current
->perf_event_ctxp
[ctxn
];
3396 if (!ctx
|| !ctx
->nr_events
)
3399 cpuctx
= __get_cpu_context(ctx
);
3400 perf_ctx_lock(cpuctx
, ctx
);
3401 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3402 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
3403 enabled
|= event_enable_on_exec(event
, ctx
);
3406 * Unclone and reschedule this context if we enabled any event.
3409 clone_ctx
= unclone_ctx(ctx
);
3410 ctx_resched(cpuctx
, ctx
);
3412 perf_ctx_unlock(cpuctx
, ctx
);
3415 local_irq_restore(flags
);
3421 struct perf_read_data
{
3422 struct perf_event
*event
;
3427 static int find_cpu_to_read(struct perf_event
*event
, int local_cpu
)
3429 int event_cpu
= event
->oncpu
;
3430 u16 local_pkg
, event_pkg
;
3432 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3433 event_pkg
= topology_physical_package_id(event_cpu
);
3434 local_pkg
= topology_physical_package_id(local_cpu
);
3436 if (event_pkg
== local_pkg
)
3444 * Cross CPU call to read the hardware event
3446 static void __perf_event_read(void *info
)
3448 struct perf_read_data
*data
= info
;
3449 struct perf_event
*sub
, *event
= data
->event
;
3450 struct perf_event_context
*ctx
= event
->ctx
;
3451 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3452 struct pmu
*pmu
= event
->pmu
;
3455 * If this is a task context, we need to check whether it is
3456 * the current task context of this cpu. If not it has been
3457 * scheduled out before the smp call arrived. In that case
3458 * event->count would have been updated to a recent sample
3459 * when the event was scheduled out.
3461 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3464 raw_spin_lock(&ctx
->lock
);
3465 if (ctx
->is_active
) {
3466 update_context_time(ctx
);
3467 update_cgrp_time_from_event(event
);
3470 update_event_times(event
);
3471 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3480 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3484 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
3485 update_event_times(sub
);
3486 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3488 * Use sibling's PMU rather than @event's since
3489 * sibling could be on different (eg: software) PMU.
3491 sub
->pmu
->read(sub
);
3495 data
->ret
= pmu
->commit_txn(pmu
);
3498 raw_spin_unlock(&ctx
->lock
);
3501 static inline u64
perf_event_count(struct perf_event
*event
)
3503 if (event
->pmu
->count
)
3504 return event
->pmu
->count(event
);
3506 return __perf_event_count(event
);
3510 * NMI-safe method to read a local event, that is an event that
3512 * - either for the current task, or for this CPU
3513 * - does not have inherit set, for inherited task events
3514 * will not be local and we cannot read them atomically
3515 * - must not have a pmu::count method
3517 u64
perf_event_read_local(struct perf_event
*event
)
3519 unsigned long flags
;
3523 * Disabling interrupts avoids all counter scheduling (context
3524 * switches, timer based rotation and IPIs).
3526 local_irq_save(flags
);
3528 /* If this is a per-task event, it must be for current */
3529 WARN_ON_ONCE((event
->attach_state
& PERF_ATTACH_TASK
) &&
3530 event
->hw
.target
!= current
);
3532 /* If this is a per-CPU event, it must be for this CPU */
3533 WARN_ON_ONCE(!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3534 event
->cpu
!= smp_processor_id());
3537 * It must not be an event with inherit set, we cannot read
3538 * all child counters from atomic context.
3540 WARN_ON_ONCE(event
->attr
.inherit
);
3543 * It must not have a pmu::count method, those are not
3546 WARN_ON_ONCE(event
->pmu
->count
);
3549 * If the event is currently on this CPU, its either a per-task event,
3550 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3553 if (event
->oncpu
== smp_processor_id())
3554 event
->pmu
->read(event
);
3556 val
= local64_read(&event
->count
);
3557 local_irq_restore(flags
);
3562 static int perf_event_read(struct perf_event
*event
, bool group
)
3564 int ret
= 0, cpu_to_read
, local_cpu
;
3567 * If event is enabled and currently active on a CPU, update the
3568 * value in the event structure:
3570 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3571 struct perf_read_data data
= {
3577 local_cpu
= get_cpu();
3578 cpu_to_read
= find_cpu_to_read(event
, local_cpu
);
3582 * Purposely ignore the smp_call_function_single() return
3585 * If event->oncpu isn't a valid CPU it means the event got
3586 * scheduled out and that will have updated the event count.
3588 * Therefore, either way, we'll have an up-to-date event count
3591 (void)smp_call_function_single(cpu_to_read
, __perf_event_read
, &data
, 1);
3593 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3594 struct perf_event_context
*ctx
= event
->ctx
;
3595 unsigned long flags
;
3597 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3599 * may read while context is not active
3600 * (e.g., thread is blocked), in that case
3601 * we cannot update context time
3603 if (ctx
->is_active
) {
3604 update_context_time(ctx
);
3605 update_cgrp_time_from_event(event
);
3608 update_group_times(event
);
3610 update_event_times(event
);
3611 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3618 * Initialize the perf_event context in a task_struct:
3620 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3622 raw_spin_lock_init(&ctx
->lock
);
3623 mutex_init(&ctx
->mutex
);
3624 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3625 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3626 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3627 INIT_LIST_HEAD(&ctx
->event_list
);
3628 atomic_set(&ctx
->refcount
, 1);
3631 static struct perf_event_context
*
3632 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3634 struct perf_event_context
*ctx
;
3636 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3640 __perf_event_init_context(ctx
);
3643 get_task_struct(task
);
3650 static struct task_struct
*
3651 find_lively_task_by_vpid(pid_t vpid
)
3653 struct task_struct
*task
;
3659 task
= find_task_by_vpid(vpid
);
3661 get_task_struct(task
);
3665 return ERR_PTR(-ESRCH
);
3671 * Returns a matching context with refcount and pincount.
3673 static struct perf_event_context
*
3674 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3675 struct perf_event
*event
)
3677 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3678 struct perf_cpu_context
*cpuctx
;
3679 void *task_ctx_data
= NULL
;
3680 unsigned long flags
;
3682 int cpu
= event
->cpu
;
3685 /* Must be root to operate on a CPU event: */
3686 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3687 return ERR_PTR(-EACCES
);
3690 * We could be clever and allow to attach a event to an
3691 * offline CPU and activate it when the CPU comes up, but
3694 if (!cpu_online(cpu
))
3695 return ERR_PTR(-ENODEV
);
3697 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3706 ctxn
= pmu
->task_ctx_nr
;
3710 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3711 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3712 if (!task_ctx_data
) {
3719 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3721 clone_ctx
= unclone_ctx(ctx
);
3724 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3725 ctx
->task_ctx_data
= task_ctx_data
;
3726 task_ctx_data
= NULL
;
3728 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3733 ctx
= alloc_perf_context(pmu
, task
);
3738 if (task_ctx_data
) {
3739 ctx
->task_ctx_data
= task_ctx_data
;
3740 task_ctx_data
= NULL
;
3744 mutex_lock(&task
->perf_event_mutex
);
3746 * If it has already passed perf_event_exit_task().
3747 * we must see PF_EXITING, it takes this mutex too.
3749 if (task
->flags
& PF_EXITING
)
3751 else if (task
->perf_event_ctxp
[ctxn
])
3756 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3758 mutex_unlock(&task
->perf_event_mutex
);
3760 if (unlikely(err
)) {
3769 kfree(task_ctx_data
);
3773 kfree(task_ctx_data
);
3774 return ERR_PTR(err
);
3777 static void perf_event_free_filter(struct perf_event
*event
);
3778 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3780 static void free_event_rcu(struct rcu_head
*head
)
3782 struct perf_event
*event
;
3784 event
= container_of(head
, struct perf_event
, rcu_head
);
3786 put_pid_ns(event
->ns
);
3787 perf_event_free_filter(event
);
3791 static void ring_buffer_attach(struct perf_event
*event
,
3792 struct ring_buffer
*rb
);
3794 static void detach_sb_event(struct perf_event
*event
)
3796 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
3798 raw_spin_lock(&pel
->lock
);
3799 list_del_rcu(&event
->sb_list
);
3800 raw_spin_unlock(&pel
->lock
);
3803 static bool is_sb_event(struct perf_event
*event
)
3805 struct perf_event_attr
*attr
= &event
->attr
;
3810 if (event
->attach_state
& PERF_ATTACH_TASK
)
3813 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
3814 attr
->comm
|| attr
->comm_exec
||
3816 attr
->context_switch
)
3821 static void unaccount_pmu_sb_event(struct perf_event
*event
)
3823 if (is_sb_event(event
))
3824 detach_sb_event(event
);
3827 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3832 if (is_cgroup_event(event
))
3833 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3836 #ifdef CONFIG_NO_HZ_FULL
3837 static DEFINE_SPINLOCK(nr_freq_lock
);
3840 static void unaccount_freq_event_nohz(void)
3842 #ifdef CONFIG_NO_HZ_FULL
3843 spin_lock(&nr_freq_lock
);
3844 if (atomic_dec_and_test(&nr_freq_events
))
3845 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
3846 spin_unlock(&nr_freq_lock
);
3850 static void unaccount_freq_event(void)
3852 if (tick_nohz_full_enabled())
3853 unaccount_freq_event_nohz();
3855 atomic_dec(&nr_freq_events
);
3858 static void unaccount_event(struct perf_event
*event
)
3865 if (event
->attach_state
& PERF_ATTACH_TASK
)
3867 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3868 atomic_dec(&nr_mmap_events
);
3869 if (event
->attr
.comm
)
3870 atomic_dec(&nr_comm_events
);
3871 if (event
->attr
.task
)
3872 atomic_dec(&nr_task_events
);
3873 if (event
->attr
.freq
)
3874 unaccount_freq_event();
3875 if (event
->attr
.context_switch
) {
3877 atomic_dec(&nr_switch_events
);
3879 if (is_cgroup_event(event
))
3881 if (has_branch_stack(event
))
3885 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
3886 schedule_delayed_work(&perf_sched_work
, HZ
);
3889 unaccount_event_cpu(event
, event
->cpu
);
3891 unaccount_pmu_sb_event(event
);
3894 static void perf_sched_delayed(struct work_struct
*work
)
3896 mutex_lock(&perf_sched_mutex
);
3897 if (atomic_dec_and_test(&perf_sched_count
))
3898 static_branch_disable(&perf_sched_events
);
3899 mutex_unlock(&perf_sched_mutex
);
3903 * The following implement mutual exclusion of events on "exclusive" pmus
3904 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3905 * at a time, so we disallow creating events that might conflict, namely:
3907 * 1) cpu-wide events in the presence of per-task events,
3908 * 2) per-task events in the presence of cpu-wide events,
3909 * 3) two matching events on the same context.
3911 * The former two cases are handled in the allocation path (perf_event_alloc(),
3912 * _free_event()), the latter -- before the first perf_install_in_context().
3914 static int exclusive_event_init(struct perf_event
*event
)
3916 struct pmu
*pmu
= event
->pmu
;
3918 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3922 * Prevent co-existence of per-task and cpu-wide events on the
3923 * same exclusive pmu.
3925 * Negative pmu::exclusive_cnt means there are cpu-wide
3926 * events on this "exclusive" pmu, positive means there are
3929 * Since this is called in perf_event_alloc() path, event::ctx
3930 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3931 * to mean "per-task event", because unlike other attach states it
3932 * never gets cleared.
3934 if (event
->attach_state
& PERF_ATTACH_TASK
) {
3935 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
3938 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
3945 static void exclusive_event_destroy(struct perf_event
*event
)
3947 struct pmu
*pmu
= event
->pmu
;
3949 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3952 /* see comment in exclusive_event_init() */
3953 if (event
->attach_state
& PERF_ATTACH_TASK
)
3954 atomic_dec(&pmu
->exclusive_cnt
);
3956 atomic_inc(&pmu
->exclusive_cnt
);
3959 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
3961 if ((e1
->pmu
== e2
->pmu
) &&
3962 (e1
->cpu
== e2
->cpu
||
3969 /* Called under the same ctx::mutex as perf_install_in_context() */
3970 static bool exclusive_event_installable(struct perf_event
*event
,
3971 struct perf_event_context
*ctx
)
3973 struct perf_event
*iter_event
;
3974 struct pmu
*pmu
= event
->pmu
;
3976 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3979 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
3980 if (exclusive_event_match(iter_event
, event
))
3987 static void perf_addr_filters_splice(struct perf_event
*event
,
3988 struct list_head
*head
);
3990 static void _free_event(struct perf_event
*event
)
3992 irq_work_sync(&event
->pending
);
3994 unaccount_event(event
);
3998 * Can happen when we close an event with re-directed output.
4000 * Since we have a 0 refcount, perf_mmap_close() will skip
4001 * over us; possibly making our ring_buffer_put() the last.
4003 mutex_lock(&event
->mmap_mutex
);
4004 ring_buffer_attach(event
, NULL
);
4005 mutex_unlock(&event
->mmap_mutex
);
4008 if (is_cgroup_event(event
))
4009 perf_detach_cgroup(event
);
4011 if (!event
->parent
) {
4012 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4013 put_callchain_buffers();
4016 perf_event_free_bpf_prog(event
);
4017 perf_addr_filters_splice(event
, NULL
);
4018 kfree(event
->addr_filters_offs
);
4021 event
->destroy(event
);
4024 put_ctx(event
->ctx
);
4026 exclusive_event_destroy(event
);
4027 module_put(event
->pmu
->module
);
4029 call_rcu(&event
->rcu_head
, free_event_rcu
);
4033 * Used to free events which have a known refcount of 1, such as in error paths
4034 * where the event isn't exposed yet and inherited events.
4036 static void free_event(struct perf_event
*event
)
4038 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4039 "unexpected event refcount: %ld; ptr=%p\n",
4040 atomic_long_read(&event
->refcount
), event
)) {
4041 /* leak to avoid use-after-free */
4049 * Remove user event from the owner task.
4051 static void perf_remove_from_owner(struct perf_event
*event
)
4053 struct task_struct
*owner
;
4057 * Matches the smp_store_release() in perf_event_exit_task(). If we
4058 * observe !owner it means the list deletion is complete and we can
4059 * indeed free this event, otherwise we need to serialize on
4060 * owner->perf_event_mutex.
4062 owner
= lockless_dereference(event
->owner
);
4065 * Since delayed_put_task_struct() also drops the last
4066 * task reference we can safely take a new reference
4067 * while holding the rcu_read_lock().
4069 get_task_struct(owner
);
4075 * If we're here through perf_event_exit_task() we're already
4076 * holding ctx->mutex which would be an inversion wrt. the
4077 * normal lock order.
4079 * However we can safely take this lock because its the child
4082 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4085 * We have to re-check the event->owner field, if it is cleared
4086 * we raced with perf_event_exit_task(), acquiring the mutex
4087 * ensured they're done, and we can proceed with freeing the
4091 list_del_init(&event
->owner_entry
);
4092 smp_store_release(&event
->owner
, NULL
);
4094 mutex_unlock(&owner
->perf_event_mutex
);
4095 put_task_struct(owner
);
4099 static void put_event(struct perf_event
*event
)
4101 if (!atomic_long_dec_and_test(&event
->refcount
))
4108 * Kill an event dead; while event:refcount will preserve the event
4109 * object, it will not preserve its functionality. Once the last 'user'
4110 * gives up the object, we'll destroy the thing.
4112 int perf_event_release_kernel(struct perf_event
*event
)
4114 struct perf_event_context
*ctx
= event
->ctx
;
4115 struct perf_event
*child
, *tmp
;
4118 * If we got here through err_file: fput(event_file); we will not have
4119 * attached to a context yet.
4122 WARN_ON_ONCE(event
->attach_state
&
4123 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4127 if (!is_kernel_event(event
))
4128 perf_remove_from_owner(event
);
4130 ctx
= perf_event_ctx_lock(event
);
4131 WARN_ON_ONCE(ctx
->parent_ctx
);
4132 perf_remove_from_context(event
, DETACH_GROUP
);
4134 raw_spin_lock_irq(&ctx
->lock
);
4136 * Mark this even as STATE_DEAD, there is no external reference to it
4139 * Anybody acquiring event->child_mutex after the below loop _must_
4140 * also see this, most importantly inherit_event() which will avoid
4141 * placing more children on the list.
4143 * Thus this guarantees that we will in fact observe and kill _ALL_
4146 event
->state
= PERF_EVENT_STATE_DEAD
;
4147 raw_spin_unlock_irq(&ctx
->lock
);
4149 perf_event_ctx_unlock(event
, ctx
);
4152 mutex_lock(&event
->child_mutex
);
4153 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4156 * Cannot change, child events are not migrated, see the
4157 * comment with perf_event_ctx_lock_nested().
4159 ctx
= lockless_dereference(child
->ctx
);
4161 * Since child_mutex nests inside ctx::mutex, we must jump
4162 * through hoops. We start by grabbing a reference on the ctx.
4164 * Since the event cannot get freed while we hold the
4165 * child_mutex, the context must also exist and have a !0
4171 * Now that we have a ctx ref, we can drop child_mutex, and
4172 * acquire ctx::mutex without fear of it going away. Then we
4173 * can re-acquire child_mutex.
4175 mutex_unlock(&event
->child_mutex
);
4176 mutex_lock(&ctx
->mutex
);
4177 mutex_lock(&event
->child_mutex
);
4180 * Now that we hold ctx::mutex and child_mutex, revalidate our
4181 * state, if child is still the first entry, it didn't get freed
4182 * and we can continue doing so.
4184 tmp
= list_first_entry_or_null(&event
->child_list
,
4185 struct perf_event
, child_list
);
4187 perf_remove_from_context(child
, DETACH_GROUP
);
4188 list_del(&child
->child_list
);
4191 * This matches the refcount bump in inherit_event();
4192 * this can't be the last reference.
4197 mutex_unlock(&event
->child_mutex
);
4198 mutex_unlock(&ctx
->mutex
);
4202 mutex_unlock(&event
->child_mutex
);
4205 put_event(event
); /* Must be the 'last' reference */
4208 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4211 * Called when the last reference to the file is gone.
4213 static int perf_release(struct inode
*inode
, struct file
*file
)
4215 perf_event_release_kernel(file
->private_data
);
4219 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4221 struct perf_event
*child
;
4227 mutex_lock(&event
->child_mutex
);
4229 (void)perf_event_read(event
, false);
4230 total
+= perf_event_count(event
);
4232 *enabled
+= event
->total_time_enabled
+
4233 atomic64_read(&event
->child_total_time_enabled
);
4234 *running
+= event
->total_time_running
+
4235 atomic64_read(&event
->child_total_time_running
);
4237 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4238 (void)perf_event_read(child
, false);
4239 total
+= perf_event_count(child
);
4240 *enabled
+= child
->total_time_enabled
;
4241 *running
+= child
->total_time_running
;
4243 mutex_unlock(&event
->child_mutex
);
4247 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4249 static int __perf_read_group_add(struct perf_event
*leader
,
4250 u64 read_format
, u64
*values
)
4252 struct perf_event
*sub
;
4253 int n
= 1; /* skip @nr */
4256 ret
= perf_event_read(leader
, true);
4261 * Since we co-schedule groups, {enabled,running} times of siblings
4262 * will be identical to those of the leader, so we only publish one
4265 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4266 values
[n
++] += leader
->total_time_enabled
+
4267 atomic64_read(&leader
->child_total_time_enabled
);
4270 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4271 values
[n
++] += leader
->total_time_running
+
4272 atomic64_read(&leader
->child_total_time_running
);
4276 * Write {count,id} tuples for every sibling.
4278 values
[n
++] += perf_event_count(leader
);
4279 if (read_format
& PERF_FORMAT_ID
)
4280 values
[n
++] = primary_event_id(leader
);
4282 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4283 values
[n
++] += perf_event_count(sub
);
4284 if (read_format
& PERF_FORMAT_ID
)
4285 values
[n
++] = primary_event_id(sub
);
4291 static int perf_read_group(struct perf_event
*event
,
4292 u64 read_format
, char __user
*buf
)
4294 struct perf_event
*leader
= event
->group_leader
, *child
;
4295 struct perf_event_context
*ctx
= leader
->ctx
;
4299 lockdep_assert_held(&ctx
->mutex
);
4301 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4305 values
[0] = 1 + leader
->nr_siblings
;
4308 * By locking the child_mutex of the leader we effectively
4309 * lock the child list of all siblings.. XXX explain how.
4311 mutex_lock(&leader
->child_mutex
);
4313 ret
= __perf_read_group_add(leader
, read_format
, values
);
4317 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4318 ret
= __perf_read_group_add(child
, read_format
, values
);
4323 mutex_unlock(&leader
->child_mutex
);
4325 ret
= event
->read_size
;
4326 if (copy_to_user(buf
, values
, event
->read_size
))
4331 mutex_unlock(&leader
->child_mutex
);
4337 static int perf_read_one(struct perf_event
*event
,
4338 u64 read_format
, char __user
*buf
)
4340 u64 enabled
, running
;
4344 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
4345 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4346 values
[n
++] = enabled
;
4347 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4348 values
[n
++] = running
;
4349 if (read_format
& PERF_FORMAT_ID
)
4350 values
[n
++] = primary_event_id(event
);
4352 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4355 return n
* sizeof(u64
);
4358 static bool is_event_hup(struct perf_event
*event
)
4362 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4365 mutex_lock(&event
->child_mutex
);
4366 no_children
= list_empty(&event
->child_list
);
4367 mutex_unlock(&event
->child_mutex
);
4372 * Read the performance event - simple non blocking version for now
4375 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4377 u64 read_format
= event
->attr
.read_format
;
4381 * Return end-of-file for a read on a event that is in
4382 * error state (i.e. because it was pinned but it couldn't be
4383 * scheduled on to the CPU at some point).
4385 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4388 if (count
< event
->read_size
)
4391 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4392 if (read_format
& PERF_FORMAT_GROUP
)
4393 ret
= perf_read_group(event
, read_format
, buf
);
4395 ret
= perf_read_one(event
, read_format
, buf
);
4401 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4403 struct perf_event
*event
= file
->private_data
;
4404 struct perf_event_context
*ctx
;
4407 ctx
= perf_event_ctx_lock(event
);
4408 ret
= __perf_read(event
, buf
, count
);
4409 perf_event_ctx_unlock(event
, ctx
);
4414 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
4416 struct perf_event
*event
= file
->private_data
;
4417 struct ring_buffer
*rb
;
4418 unsigned int events
= POLLHUP
;
4420 poll_wait(file
, &event
->waitq
, wait
);
4422 if (is_event_hup(event
))
4426 * Pin the event->rb by taking event->mmap_mutex; otherwise
4427 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4429 mutex_lock(&event
->mmap_mutex
);
4432 events
= atomic_xchg(&rb
->poll
, 0);
4433 mutex_unlock(&event
->mmap_mutex
);
4437 static void _perf_event_reset(struct perf_event
*event
)
4439 (void)perf_event_read(event
, false);
4440 local64_set(&event
->count
, 0);
4441 perf_event_update_userpage(event
);
4445 * Holding the top-level event's child_mutex means that any
4446 * descendant process that has inherited this event will block
4447 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4448 * task existence requirements of perf_event_enable/disable.
4450 static void perf_event_for_each_child(struct perf_event
*event
,
4451 void (*func
)(struct perf_event
*))
4453 struct perf_event
*child
;
4455 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4457 mutex_lock(&event
->child_mutex
);
4459 list_for_each_entry(child
, &event
->child_list
, child_list
)
4461 mutex_unlock(&event
->child_mutex
);
4464 static void perf_event_for_each(struct perf_event
*event
,
4465 void (*func
)(struct perf_event
*))
4467 struct perf_event_context
*ctx
= event
->ctx
;
4468 struct perf_event
*sibling
;
4470 lockdep_assert_held(&ctx
->mutex
);
4472 event
= event
->group_leader
;
4474 perf_event_for_each_child(event
, func
);
4475 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
4476 perf_event_for_each_child(sibling
, func
);
4479 static void __perf_event_period(struct perf_event
*event
,
4480 struct perf_cpu_context
*cpuctx
,
4481 struct perf_event_context
*ctx
,
4484 u64 value
= *((u64
*)info
);
4487 if (event
->attr
.freq
) {
4488 event
->attr
.sample_freq
= value
;
4490 event
->attr
.sample_period
= value
;
4491 event
->hw
.sample_period
= value
;
4494 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4496 perf_pmu_disable(ctx
->pmu
);
4498 * We could be throttled; unthrottle now to avoid the tick
4499 * trying to unthrottle while we already re-started the event.
4501 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4502 event
->hw
.interrupts
= 0;
4503 perf_log_throttle(event
, 1);
4505 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4508 local64_set(&event
->hw
.period_left
, 0);
4511 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4512 perf_pmu_enable(ctx
->pmu
);
4516 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4520 if (!is_sampling_event(event
))
4523 if (copy_from_user(&value
, arg
, sizeof(value
)))
4529 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4532 event_function_call(event
, __perf_event_period
, &value
);
4537 static const struct file_operations perf_fops
;
4539 static inline int perf_fget_light(int fd
, struct fd
*p
)
4541 struct fd f
= fdget(fd
);
4545 if (f
.file
->f_op
!= &perf_fops
) {
4553 static int perf_event_set_output(struct perf_event
*event
,
4554 struct perf_event
*output_event
);
4555 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4556 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4558 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4560 void (*func
)(struct perf_event
*);
4564 case PERF_EVENT_IOC_ENABLE
:
4565 func
= _perf_event_enable
;
4567 case PERF_EVENT_IOC_DISABLE
:
4568 func
= _perf_event_disable
;
4570 case PERF_EVENT_IOC_RESET
:
4571 func
= _perf_event_reset
;
4574 case PERF_EVENT_IOC_REFRESH
:
4575 return _perf_event_refresh(event
, arg
);
4577 case PERF_EVENT_IOC_PERIOD
:
4578 return perf_event_period(event
, (u64 __user
*)arg
);
4580 case PERF_EVENT_IOC_ID
:
4582 u64 id
= primary_event_id(event
);
4584 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4589 case PERF_EVENT_IOC_SET_OUTPUT
:
4593 struct perf_event
*output_event
;
4595 ret
= perf_fget_light(arg
, &output
);
4598 output_event
= output
.file
->private_data
;
4599 ret
= perf_event_set_output(event
, output_event
);
4602 ret
= perf_event_set_output(event
, NULL
);
4607 case PERF_EVENT_IOC_SET_FILTER
:
4608 return perf_event_set_filter(event
, (void __user
*)arg
);
4610 case PERF_EVENT_IOC_SET_BPF
:
4611 return perf_event_set_bpf_prog(event
, arg
);
4613 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
4614 struct ring_buffer
*rb
;
4617 rb
= rcu_dereference(event
->rb
);
4618 if (!rb
|| !rb
->nr_pages
) {
4622 rb_toggle_paused(rb
, !!arg
);
4630 if (flags
& PERF_IOC_FLAG_GROUP
)
4631 perf_event_for_each(event
, func
);
4633 perf_event_for_each_child(event
, func
);
4638 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4640 struct perf_event
*event
= file
->private_data
;
4641 struct perf_event_context
*ctx
;
4644 ctx
= perf_event_ctx_lock(event
);
4645 ret
= _perf_ioctl(event
, cmd
, arg
);
4646 perf_event_ctx_unlock(event
, ctx
);
4651 #ifdef CONFIG_COMPAT
4652 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4655 switch (_IOC_NR(cmd
)) {
4656 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4657 case _IOC_NR(PERF_EVENT_IOC_ID
):
4658 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4659 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4660 cmd
&= ~IOCSIZE_MASK
;
4661 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4665 return perf_ioctl(file
, cmd
, arg
);
4668 # define perf_compat_ioctl NULL
4671 int perf_event_task_enable(void)
4673 struct perf_event_context
*ctx
;
4674 struct perf_event
*event
;
4676 mutex_lock(¤t
->perf_event_mutex
);
4677 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4678 ctx
= perf_event_ctx_lock(event
);
4679 perf_event_for_each_child(event
, _perf_event_enable
);
4680 perf_event_ctx_unlock(event
, ctx
);
4682 mutex_unlock(¤t
->perf_event_mutex
);
4687 int perf_event_task_disable(void)
4689 struct perf_event_context
*ctx
;
4690 struct perf_event
*event
;
4692 mutex_lock(¤t
->perf_event_mutex
);
4693 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4694 ctx
= perf_event_ctx_lock(event
);
4695 perf_event_for_each_child(event
, _perf_event_disable
);
4696 perf_event_ctx_unlock(event
, ctx
);
4698 mutex_unlock(¤t
->perf_event_mutex
);
4703 static int perf_event_index(struct perf_event
*event
)
4705 if (event
->hw
.state
& PERF_HES_STOPPED
)
4708 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4711 return event
->pmu
->event_idx(event
);
4714 static void calc_timer_values(struct perf_event
*event
,
4721 *now
= perf_clock();
4722 ctx_time
= event
->shadow_ctx_time
+ *now
;
4723 *enabled
= ctx_time
- event
->tstamp_enabled
;
4724 *running
= ctx_time
- event
->tstamp_running
;
4727 static void perf_event_init_userpage(struct perf_event
*event
)
4729 struct perf_event_mmap_page
*userpg
;
4730 struct ring_buffer
*rb
;
4733 rb
= rcu_dereference(event
->rb
);
4737 userpg
= rb
->user_page
;
4739 /* Allow new userspace to detect that bit 0 is deprecated */
4740 userpg
->cap_bit0_is_deprecated
= 1;
4741 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4742 userpg
->data_offset
= PAGE_SIZE
;
4743 userpg
->data_size
= perf_data_size(rb
);
4749 void __weak
arch_perf_update_userpage(
4750 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4755 * Callers need to ensure there can be no nesting of this function, otherwise
4756 * the seqlock logic goes bad. We can not serialize this because the arch
4757 * code calls this from NMI context.
4759 void perf_event_update_userpage(struct perf_event
*event
)
4761 struct perf_event_mmap_page
*userpg
;
4762 struct ring_buffer
*rb
;
4763 u64 enabled
, running
, now
;
4766 rb
= rcu_dereference(event
->rb
);
4771 * compute total_time_enabled, total_time_running
4772 * based on snapshot values taken when the event
4773 * was last scheduled in.
4775 * we cannot simply called update_context_time()
4776 * because of locking issue as we can be called in
4779 calc_timer_values(event
, &now
, &enabled
, &running
);
4781 userpg
= rb
->user_page
;
4783 * Disable preemption so as to not let the corresponding user-space
4784 * spin too long if we get preempted.
4789 userpg
->index
= perf_event_index(event
);
4790 userpg
->offset
= perf_event_count(event
);
4792 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4794 userpg
->time_enabled
= enabled
+
4795 atomic64_read(&event
->child_total_time_enabled
);
4797 userpg
->time_running
= running
+
4798 atomic64_read(&event
->child_total_time_running
);
4800 arch_perf_update_userpage(event
, userpg
, now
);
4809 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4811 struct perf_event
*event
= vma
->vm_file
->private_data
;
4812 struct ring_buffer
*rb
;
4813 int ret
= VM_FAULT_SIGBUS
;
4815 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4816 if (vmf
->pgoff
== 0)
4822 rb
= rcu_dereference(event
->rb
);
4826 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4829 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4833 get_page(vmf
->page
);
4834 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4835 vmf
->page
->index
= vmf
->pgoff
;
4844 static void ring_buffer_attach(struct perf_event
*event
,
4845 struct ring_buffer
*rb
)
4847 struct ring_buffer
*old_rb
= NULL
;
4848 unsigned long flags
;
4852 * Should be impossible, we set this when removing
4853 * event->rb_entry and wait/clear when adding event->rb_entry.
4855 WARN_ON_ONCE(event
->rcu_pending
);
4858 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4859 list_del_rcu(&event
->rb_entry
);
4860 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4862 event
->rcu_batches
= get_state_synchronize_rcu();
4863 event
->rcu_pending
= 1;
4867 if (event
->rcu_pending
) {
4868 cond_synchronize_rcu(event
->rcu_batches
);
4869 event
->rcu_pending
= 0;
4872 spin_lock_irqsave(&rb
->event_lock
, flags
);
4873 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4874 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4878 * Avoid racing with perf_mmap_close(AUX): stop the event
4879 * before swizzling the event::rb pointer; if it's getting
4880 * unmapped, its aux_mmap_count will be 0 and it won't
4881 * restart. See the comment in __perf_pmu_output_stop().
4883 * Data will inevitably be lost when set_output is done in
4884 * mid-air, but then again, whoever does it like this is
4885 * not in for the data anyway.
4888 perf_event_stop(event
, 0);
4890 rcu_assign_pointer(event
->rb
, rb
);
4893 ring_buffer_put(old_rb
);
4895 * Since we detached before setting the new rb, so that we
4896 * could attach the new rb, we could have missed a wakeup.
4899 wake_up_all(&event
->waitq
);
4903 static void ring_buffer_wakeup(struct perf_event
*event
)
4905 struct ring_buffer
*rb
;
4908 rb
= rcu_dereference(event
->rb
);
4910 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4911 wake_up_all(&event
->waitq
);
4916 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4918 struct ring_buffer
*rb
;
4921 rb
= rcu_dereference(event
->rb
);
4923 if (!atomic_inc_not_zero(&rb
->refcount
))
4931 void ring_buffer_put(struct ring_buffer
*rb
)
4933 if (!atomic_dec_and_test(&rb
->refcount
))
4936 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4938 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4941 static void perf_mmap_open(struct vm_area_struct
*vma
)
4943 struct perf_event
*event
= vma
->vm_file
->private_data
;
4945 atomic_inc(&event
->mmap_count
);
4946 atomic_inc(&event
->rb
->mmap_count
);
4949 atomic_inc(&event
->rb
->aux_mmap_count
);
4951 if (event
->pmu
->event_mapped
)
4952 event
->pmu
->event_mapped(event
);
4955 static void perf_pmu_output_stop(struct perf_event
*event
);
4958 * A buffer can be mmap()ed multiple times; either directly through the same
4959 * event, or through other events by use of perf_event_set_output().
4961 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4962 * the buffer here, where we still have a VM context. This means we need
4963 * to detach all events redirecting to us.
4965 static void perf_mmap_close(struct vm_area_struct
*vma
)
4967 struct perf_event
*event
= vma
->vm_file
->private_data
;
4969 struct ring_buffer
*rb
= ring_buffer_get(event
);
4970 struct user_struct
*mmap_user
= rb
->mmap_user
;
4971 int mmap_locked
= rb
->mmap_locked
;
4972 unsigned long size
= perf_data_size(rb
);
4974 if (event
->pmu
->event_unmapped
)
4975 event
->pmu
->event_unmapped(event
);
4978 * rb->aux_mmap_count will always drop before rb->mmap_count and
4979 * event->mmap_count, so it is ok to use event->mmap_mutex to
4980 * serialize with perf_mmap here.
4982 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
4983 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
4985 * Stop all AUX events that are writing to this buffer,
4986 * so that we can free its AUX pages and corresponding PMU
4987 * data. Note that after rb::aux_mmap_count dropped to zero,
4988 * they won't start any more (see perf_aux_output_begin()).
4990 perf_pmu_output_stop(event
);
4992 /* now it's safe to free the pages */
4993 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
4994 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
4996 /* this has to be the last one */
4998 WARN_ON_ONCE(atomic_read(&rb
->aux_refcount
));
5000 mutex_unlock(&event
->mmap_mutex
);
5003 atomic_dec(&rb
->mmap_count
);
5005 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5008 ring_buffer_attach(event
, NULL
);
5009 mutex_unlock(&event
->mmap_mutex
);
5011 /* If there's still other mmap()s of this buffer, we're done. */
5012 if (atomic_read(&rb
->mmap_count
))
5016 * No other mmap()s, detach from all other events that might redirect
5017 * into the now unreachable buffer. Somewhat complicated by the
5018 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5022 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5023 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5025 * This event is en-route to free_event() which will
5026 * detach it and remove it from the list.
5032 mutex_lock(&event
->mmap_mutex
);
5034 * Check we didn't race with perf_event_set_output() which can
5035 * swizzle the rb from under us while we were waiting to
5036 * acquire mmap_mutex.
5038 * If we find a different rb; ignore this event, a next
5039 * iteration will no longer find it on the list. We have to
5040 * still restart the iteration to make sure we're not now
5041 * iterating the wrong list.
5043 if (event
->rb
== rb
)
5044 ring_buffer_attach(event
, NULL
);
5046 mutex_unlock(&event
->mmap_mutex
);
5050 * Restart the iteration; either we're on the wrong list or
5051 * destroyed its integrity by doing a deletion.
5058 * It could be there's still a few 0-ref events on the list; they'll
5059 * get cleaned up by free_event() -- they'll also still have their
5060 * ref on the rb and will free it whenever they are done with it.
5062 * Aside from that, this buffer is 'fully' detached and unmapped,
5063 * undo the VM accounting.
5066 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
5067 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
5068 free_uid(mmap_user
);
5071 ring_buffer_put(rb
); /* could be last */
5074 static const struct vm_operations_struct perf_mmap_vmops
= {
5075 .open
= perf_mmap_open
,
5076 .close
= perf_mmap_close
, /* non mergable */
5077 .fault
= perf_mmap_fault
,
5078 .page_mkwrite
= perf_mmap_fault
,
5081 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5083 struct perf_event
*event
= file
->private_data
;
5084 unsigned long user_locked
, user_lock_limit
;
5085 struct user_struct
*user
= current_user();
5086 unsigned long locked
, lock_limit
;
5087 struct ring_buffer
*rb
= NULL
;
5088 unsigned long vma_size
;
5089 unsigned long nr_pages
;
5090 long user_extra
= 0, extra
= 0;
5091 int ret
= 0, flags
= 0;
5094 * Don't allow mmap() of inherited per-task counters. This would
5095 * create a performance issue due to all children writing to the
5098 if (event
->cpu
== -1 && event
->attr
.inherit
)
5101 if (!(vma
->vm_flags
& VM_SHARED
))
5104 vma_size
= vma
->vm_end
- vma
->vm_start
;
5106 if (vma
->vm_pgoff
== 0) {
5107 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5110 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5111 * mapped, all subsequent mappings should have the same size
5112 * and offset. Must be above the normal perf buffer.
5114 u64 aux_offset
, aux_size
;
5119 nr_pages
= vma_size
/ PAGE_SIZE
;
5121 mutex_lock(&event
->mmap_mutex
);
5128 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
5129 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
5131 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5134 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5137 /* already mapped with a different offset */
5138 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5141 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5144 /* already mapped with a different size */
5145 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5148 if (!is_power_of_2(nr_pages
))
5151 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5154 if (rb_has_aux(rb
)) {
5155 atomic_inc(&rb
->aux_mmap_count
);
5160 atomic_set(&rb
->aux_mmap_count
, 1);
5161 user_extra
= nr_pages
;
5167 * If we have rb pages ensure they're a power-of-two number, so we
5168 * can do bitmasks instead of modulo.
5170 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5173 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5176 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5178 mutex_lock(&event
->mmap_mutex
);
5180 if (event
->rb
->nr_pages
!= nr_pages
) {
5185 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5187 * Raced against perf_mmap_close() through
5188 * perf_event_set_output(). Try again, hope for better
5191 mutex_unlock(&event
->mmap_mutex
);
5198 user_extra
= nr_pages
+ 1;
5201 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5204 * Increase the limit linearly with more CPUs:
5206 user_lock_limit
*= num_online_cpus();
5208 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
5210 if (user_locked
> user_lock_limit
)
5211 extra
= user_locked
- user_lock_limit
;
5213 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5214 lock_limit
>>= PAGE_SHIFT
;
5215 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
5217 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
5218 !capable(CAP_IPC_LOCK
)) {
5223 WARN_ON(!rb
&& event
->rb
);
5225 if (vma
->vm_flags
& VM_WRITE
)
5226 flags
|= RING_BUFFER_WRITABLE
;
5229 rb
= rb_alloc(nr_pages
,
5230 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5238 atomic_set(&rb
->mmap_count
, 1);
5239 rb
->mmap_user
= get_current_user();
5240 rb
->mmap_locked
= extra
;
5242 ring_buffer_attach(event
, rb
);
5244 perf_event_init_userpage(event
);
5245 perf_event_update_userpage(event
);
5247 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5248 event
->attr
.aux_watermark
, flags
);
5250 rb
->aux_mmap_locked
= extra
;
5255 atomic_long_add(user_extra
, &user
->locked_vm
);
5256 vma
->vm_mm
->pinned_vm
+= extra
;
5258 atomic_inc(&event
->mmap_count
);
5260 atomic_dec(&rb
->mmap_count
);
5263 mutex_unlock(&event
->mmap_mutex
);
5266 * Since pinned accounting is per vm we cannot allow fork() to copy our
5269 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5270 vma
->vm_ops
= &perf_mmap_vmops
;
5272 if (event
->pmu
->event_mapped
)
5273 event
->pmu
->event_mapped(event
);
5278 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5280 struct inode
*inode
= file_inode(filp
);
5281 struct perf_event
*event
= filp
->private_data
;
5285 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5286 inode_unlock(inode
);
5294 static const struct file_operations perf_fops
= {
5295 .llseek
= no_llseek
,
5296 .release
= perf_release
,
5299 .unlocked_ioctl
= perf_ioctl
,
5300 .compat_ioctl
= perf_compat_ioctl
,
5302 .fasync
= perf_fasync
,
5308 * If there's data, ensure we set the poll() state and publish everything
5309 * to user-space before waking everybody up.
5312 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5314 /* only the parent has fasync state */
5316 event
= event
->parent
;
5317 return &event
->fasync
;
5320 void perf_event_wakeup(struct perf_event
*event
)
5322 ring_buffer_wakeup(event
);
5324 if (event
->pending_kill
) {
5325 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5326 event
->pending_kill
= 0;
5330 static void perf_pending_event(struct irq_work
*entry
)
5332 struct perf_event
*event
= container_of(entry
,
5333 struct perf_event
, pending
);
5336 rctx
= perf_swevent_get_recursion_context();
5338 * If we 'fail' here, that's OK, it means recursion is already disabled
5339 * and we won't recurse 'further'.
5342 if (event
->pending_disable
) {
5343 event
->pending_disable
= 0;
5344 perf_event_disable_local(event
);
5347 if (event
->pending_wakeup
) {
5348 event
->pending_wakeup
= 0;
5349 perf_event_wakeup(event
);
5353 perf_swevent_put_recursion_context(rctx
);
5357 * We assume there is only KVM supporting the callbacks.
5358 * Later on, we might change it to a list if there is
5359 * another virtualization implementation supporting the callbacks.
5361 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5363 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5365 perf_guest_cbs
= cbs
;
5368 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5370 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5372 perf_guest_cbs
= NULL
;
5375 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5378 perf_output_sample_regs(struct perf_output_handle
*handle
,
5379 struct pt_regs
*regs
, u64 mask
)
5382 DECLARE_BITMAP(_mask
, 64);
5384 bitmap_from_u64(_mask
, mask
);
5385 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
5388 val
= perf_reg_value(regs
, bit
);
5389 perf_output_put(handle
, val
);
5393 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5394 struct pt_regs
*regs
,
5395 struct pt_regs
*regs_user_copy
)
5397 if (user_mode(regs
)) {
5398 regs_user
->abi
= perf_reg_abi(current
);
5399 regs_user
->regs
= regs
;
5400 } else if (current
->mm
) {
5401 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5403 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5404 regs_user
->regs
= NULL
;
5408 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5409 struct pt_regs
*regs
)
5411 regs_intr
->regs
= regs
;
5412 regs_intr
->abi
= perf_reg_abi(current
);
5417 * Get remaining task size from user stack pointer.
5419 * It'd be better to take stack vma map and limit this more
5420 * precisly, but there's no way to get it safely under interrupt,
5421 * so using TASK_SIZE as limit.
5423 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5425 unsigned long addr
= perf_user_stack_pointer(regs
);
5427 if (!addr
|| addr
>= TASK_SIZE
)
5430 return TASK_SIZE
- addr
;
5434 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5435 struct pt_regs
*regs
)
5439 /* No regs, no stack pointer, no dump. */
5444 * Check if we fit in with the requested stack size into the:
5446 * If we don't, we limit the size to the TASK_SIZE.
5448 * - remaining sample size
5449 * If we don't, we customize the stack size to
5450 * fit in to the remaining sample size.
5453 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5454 stack_size
= min(stack_size
, (u16
) task_size
);
5456 /* Current header size plus static size and dynamic size. */
5457 header_size
+= 2 * sizeof(u64
);
5459 /* Do we fit in with the current stack dump size? */
5460 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5462 * If we overflow the maximum size for the sample,
5463 * we customize the stack dump size to fit in.
5465 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5466 stack_size
= round_up(stack_size
, sizeof(u64
));
5473 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5474 struct pt_regs
*regs
)
5476 /* Case of a kernel thread, nothing to dump */
5479 perf_output_put(handle
, size
);
5488 * - the size requested by user or the best one we can fit
5489 * in to the sample max size
5491 * - user stack dump data
5493 * - the actual dumped size
5497 perf_output_put(handle
, dump_size
);
5500 sp
= perf_user_stack_pointer(regs
);
5501 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5502 dyn_size
= dump_size
- rem
;
5504 perf_output_skip(handle
, rem
);
5507 perf_output_put(handle
, dyn_size
);
5511 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5512 struct perf_sample_data
*data
,
5513 struct perf_event
*event
)
5515 u64 sample_type
= event
->attr
.sample_type
;
5517 data
->type
= sample_type
;
5518 header
->size
+= event
->id_header_size
;
5520 if (sample_type
& PERF_SAMPLE_TID
) {
5521 /* namespace issues */
5522 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5523 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5526 if (sample_type
& PERF_SAMPLE_TIME
)
5527 data
->time
= perf_event_clock(event
);
5529 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5530 data
->id
= primary_event_id(event
);
5532 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5533 data
->stream_id
= event
->id
;
5535 if (sample_type
& PERF_SAMPLE_CPU
) {
5536 data
->cpu_entry
.cpu
= raw_smp_processor_id();
5537 data
->cpu_entry
.reserved
= 0;
5541 void perf_event_header__init_id(struct perf_event_header
*header
,
5542 struct perf_sample_data
*data
,
5543 struct perf_event
*event
)
5545 if (event
->attr
.sample_id_all
)
5546 __perf_event_header__init_id(header
, data
, event
);
5549 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
5550 struct perf_sample_data
*data
)
5552 u64 sample_type
= data
->type
;
5554 if (sample_type
& PERF_SAMPLE_TID
)
5555 perf_output_put(handle
, data
->tid_entry
);
5557 if (sample_type
& PERF_SAMPLE_TIME
)
5558 perf_output_put(handle
, data
->time
);
5560 if (sample_type
& PERF_SAMPLE_ID
)
5561 perf_output_put(handle
, data
->id
);
5563 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5564 perf_output_put(handle
, data
->stream_id
);
5566 if (sample_type
& PERF_SAMPLE_CPU
)
5567 perf_output_put(handle
, data
->cpu_entry
);
5569 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5570 perf_output_put(handle
, data
->id
);
5573 void perf_event__output_id_sample(struct perf_event
*event
,
5574 struct perf_output_handle
*handle
,
5575 struct perf_sample_data
*sample
)
5577 if (event
->attr
.sample_id_all
)
5578 __perf_event__output_id_sample(handle
, sample
);
5581 static void perf_output_read_one(struct perf_output_handle
*handle
,
5582 struct perf_event
*event
,
5583 u64 enabled
, u64 running
)
5585 u64 read_format
= event
->attr
.read_format
;
5589 values
[n
++] = perf_event_count(event
);
5590 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5591 values
[n
++] = enabled
+
5592 atomic64_read(&event
->child_total_time_enabled
);
5594 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5595 values
[n
++] = running
+
5596 atomic64_read(&event
->child_total_time_running
);
5598 if (read_format
& PERF_FORMAT_ID
)
5599 values
[n
++] = primary_event_id(event
);
5601 __output_copy(handle
, values
, n
* sizeof(u64
));
5605 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5607 static void perf_output_read_group(struct perf_output_handle
*handle
,
5608 struct perf_event
*event
,
5609 u64 enabled
, u64 running
)
5611 struct perf_event
*leader
= event
->group_leader
, *sub
;
5612 u64 read_format
= event
->attr
.read_format
;
5616 values
[n
++] = 1 + leader
->nr_siblings
;
5618 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5619 values
[n
++] = enabled
;
5621 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5622 values
[n
++] = running
;
5624 if (leader
!= event
)
5625 leader
->pmu
->read(leader
);
5627 values
[n
++] = perf_event_count(leader
);
5628 if (read_format
& PERF_FORMAT_ID
)
5629 values
[n
++] = primary_event_id(leader
);
5631 __output_copy(handle
, values
, n
* sizeof(u64
));
5633 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5636 if ((sub
!= event
) &&
5637 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5638 sub
->pmu
->read(sub
);
5640 values
[n
++] = perf_event_count(sub
);
5641 if (read_format
& PERF_FORMAT_ID
)
5642 values
[n
++] = primary_event_id(sub
);
5644 __output_copy(handle
, values
, n
* sizeof(u64
));
5648 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5649 PERF_FORMAT_TOTAL_TIME_RUNNING)
5651 static void perf_output_read(struct perf_output_handle
*handle
,
5652 struct perf_event
*event
)
5654 u64 enabled
= 0, running
= 0, now
;
5655 u64 read_format
= event
->attr
.read_format
;
5658 * compute total_time_enabled, total_time_running
5659 * based on snapshot values taken when the event
5660 * was last scheduled in.
5662 * we cannot simply called update_context_time()
5663 * because of locking issue as we are called in
5666 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5667 calc_timer_values(event
, &now
, &enabled
, &running
);
5669 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5670 perf_output_read_group(handle
, event
, enabled
, running
);
5672 perf_output_read_one(handle
, event
, enabled
, running
);
5675 void perf_output_sample(struct perf_output_handle
*handle
,
5676 struct perf_event_header
*header
,
5677 struct perf_sample_data
*data
,
5678 struct perf_event
*event
)
5680 u64 sample_type
= data
->type
;
5682 perf_output_put(handle
, *header
);
5684 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5685 perf_output_put(handle
, data
->id
);
5687 if (sample_type
& PERF_SAMPLE_IP
)
5688 perf_output_put(handle
, data
->ip
);
5690 if (sample_type
& PERF_SAMPLE_TID
)
5691 perf_output_put(handle
, data
->tid_entry
);
5693 if (sample_type
& PERF_SAMPLE_TIME
)
5694 perf_output_put(handle
, data
->time
);
5696 if (sample_type
& PERF_SAMPLE_ADDR
)
5697 perf_output_put(handle
, data
->addr
);
5699 if (sample_type
& PERF_SAMPLE_ID
)
5700 perf_output_put(handle
, data
->id
);
5702 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5703 perf_output_put(handle
, data
->stream_id
);
5705 if (sample_type
& PERF_SAMPLE_CPU
)
5706 perf_output_put(handle
, data
->cpu_entry
);
5708 if (sample_type
& PERF_SAMPLE_PERIOD
)
5709 perf_output_put(handle
, data
->period
);
5711 if (sample_type
& PERF_SAMPLE_READ
)
5712 perf_output_read(handle
, event
);
5714 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5715 if (data
->callchain
) {
5718 if (data
->callchain
)
5719 size
+= data
->callchain
->nr
;
5721 size
*= sizeof(u64
);
5723 __output_copy(handle
, data
->callchain
, size
);
5726 perf_output_put(handle
, nr
);
5730 if (sample_type
& PERF_SAMPLE_RAW
) {
5731 struct perf_raw_record
*raw
= data
->raw
;
5734 struct perf_raw_frag
*frag
= &raw
->frag
;
5736 perf_output_put(handle
, raw
->size
);
5739 __output_custom(handle
, frag
->copy
,
5740 frag
->data
, frag
->size
);
5742 __output_copy(handle
, frag
->data
,
5745 if (perf_raw_frag_last(frag
))
5750 __output_skip(handle
, NULL
, frag
->pad
);
5756 .size
= sizeof(u32
),
5759 perf_output_put(handle
, raw
);
5763 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5764 if (data
->br_stack
) {
5767 size
= data
->br_stack
->nr
5768 * sizeof(struct perf_branch_entry
);
5770 perf_output_put(handle
, data
->br_stack
->nr
);
5771 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5774 * we always store at least the value of nr
5777 perf_output_put(handle
, nr
);
5781 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5782 u64 abi
= data
->regs_user
.abi
;
5785 * If there are no regs to dump, notice it through
5786 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5788 perf_output_put(handle
, abi
);
5791 u64 mask
= event
->attr
.sample_regs_user
;
5792 perf_output_sample_regs(handle
,
5793 data
->regs_user
.regs
,
5798 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5799 perf_output_sample_ustack(handle
,
5800 data
->stack_user_size
,
5801 data
->regs_user
.regs
);
5804 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5805 perf_output_put(handle
, data
->weight
);
5807 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5808 perf_output_put(handle
, data
->data_src
.val
);
5810 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5811 perf_output_put(handle
, data
->txn
);
5813 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5814 u64 abi
= data
->regs_intr
.abi
;
5816 * If there are no regs to dump, notice it through
5817 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5819 perf_output_put(handle
, abi
);
5822 u64 mask
= event
->attr
.sample_regs_intr
;
5824 perf_output_sample_regs(handle
,
5825 data
->regs_intr
.regs
,
5830 if (!event
->attr
.watermark
) {
5831 int wakeup_events
= event
->attr
.wakeup_events
;
5833 if (wakeup_events
) {
5834 struct ring_buffer
*rb
= handle
->rb
;
5835 int events
= local_inc_return(&rb
->events
);
5837 if (events
>= wakeup_events
) {
5838 local_sub(wakeup_events
, &rb
->events
);
5839 local_inc(&rb
->wakeup
);
5845 void perf_prepare_sample(struct perf_event_header
*header
,
5846 struct perf_sample_data
*data
,
5847 struct perf_event
*event
,
5848 struct pt_regs
*regs
)
5850 u64 sample_type
= event
->attr
.sample_type
;
5852 header
->type
= PERF_RECORD_SAMPLE
;
5853 header
->size
= sizeof(*header
) + event
->header_size
;
5856 header
->misc
|= perf_misc_flags(regs
);
5858 __perf_event_header__init_id(header
, data
, event
);
5860 if (sample_type
& PERF_SAMPLE_IP
)
5861 data
->ip
= perf_instruction_pointer(regs
);
5863 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5866 data
->callchain
= perf_callchain(event
, regs
);
5868 if (data
->callchain
)
5869 size
+= data
->callchain
->nr
;
5871 header
->size
+= size
* sizeof(u64
);
5874 if (sample_type
& PERF_SAMPLE_RAW
) {
5875 struct perf_raw_record
*raw
= data
->raw
;
5879 struct perf_raw_frag
*frag
= &raw
->frag
;
5884 if (perf_raw_frag_last(frag
))
5889 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
5890 raw
->size
= size
- sizeof(u32
);
5891 frag
->pad
= raw
->size
- sum
;
5896 header
->size
+= size
;
5899 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5900 int size
= sizeof(u64
); /* nr */
5901 if (data
->br_stack
) {
5902 size
+= data
->br_stack
->nr
5903 * sizeof(struct perf_branch_entry
);
5905 header
->size
+= size
;
5908 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
5909 perf_sample_regs_user(&data
->regs_user
, regs
,
5910 &data
->regs_user_copy
);
5912 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5913 /* regs dump ABI info */
5914 int size
= sizeof(u64
);
5916 if (data
->regs_user
.regs
) {
5917 u64 mask
= event
->attr
.sample_regs_user
;
5918 size
+= hweight64(mask
) * sizeof(u64
);
5921 header
->size
+= size
;
5924 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5926 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5927 * processed as the last one or have additional check added
5928 * in case new sample type is added, because we could eat
5929 * up the rest of the sample size.
5931 u16 stack_size
= event
->attr
.sample_stack_user
;
5932 u16 size
= sizeof(u64
);
5934 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5935 data
->regs_user
.regs
);
5938 * If there is something to dump, add space for the dump
5939 * itself and for the field that tells the dynamic size,
5940 * which is how many have been actually dumped.
5943 size
+= sizeof(u64
) + stack_size
;
5945 data
->stack_user_size
= stack_size
;
5946 header
->size
+= size
;
5949 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5950 /* regs dump ABI info */
5951 int size
= sizeof(u64
);
5953 perf_sample_regs_intr(&data
->regs_intr
, regs
);
5955 if (data
->regs_intr
.regs
) {
5956 u64 mask
= event
->attr
.sample_regs_intr
;
5958 size
+= hweight64(mask
) * sizeof(u64
);
5961 header
->size
+= size
;
5965 static void __always_inline
5966 __perf_event_output(struct perf_event
*event
,
5967 struct perf_sample_data
*data
,
5968 struct pt_regs
*regs
,
5969 int (*output_begin
)(struct perf_output_handle
*,
5970 struct perf_event
*,
5973 struct perf_output_handle handle
;
5974 struct perf_event_header header
;
5976 /* protect the callchain buffers */
5979 perf_prepare_sample(&header
, data
, event
, regs
);
5981 if (output_begin(&handle
, event
, header
.size
))
5984 perf_output_sample(&handle
, &header
, data
, event
);
5986 perf_output_end(&handle
);
5993 perf_event_output_forward(struct perf_event
*event
,
5994 struct perf_sample_data
*data
,
5995 struct pt_regs
*regs
)
5997 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6001 perf_event_output_backward(struct perf_event
*event
,
6002 struct perf_sample_data
*data
,
6003 struct pt_regs
*regs
)
6005 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6009 perf_event_output(struct perf_event
*event
,
6010 struct perf_sample_data
*data
,
6011 struct pt_regs
*regs
)
6013 __perf_event_output(event
, data
, regs
, perf_output_begin
);
6020 struct perf_read_event
{
6021 struct perf_event_header header
;
6028 perf_event_read_event(struct perf_event
*event
,
6029 struct task_struct
*task
)
6031 struct perf_output_handle handle
;
6032 struct perf_sample_data sample
;
6033 struct perf_read_event read_event
= {
6035 .type
= PERF_RECORD_READ
,
6037 .size
= sizeof(read_event
) + event
->read_size
,
6039 .pid
= perf_event_pid(event
, task
),
6040 .tid
= perf_event_tid(event
, task
),
6044 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
6045 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
6049 perf_output_put(&handle
, read_event
);
6050 perf_output_read(&handle
, event
);
6051 perf_event__output_id_sample(event
, &handle
, &sample
);
6053 perf_output_end(&handle
);
6056 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
6059 perf_iterate_ctx(struct perf_event_context
*ctx
,
6060 perf_iterate_f output
,
6061 void *data
, bool all
)
6063 struct perf_event
*event
;
6065 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6067 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6069 if (!event_filter_match(event
))
6073 output(event
, data
);
6077 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
6079 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
6080 struct perf_event
*event
;
6082 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
6084 * Skip events that are not fully formed yet; ensure that
6085 * if we observe event->ctx, both event and ctx will be
6086 * complete enough. See perf_install_in_context().
6088 if (!smp_load_acquire(&event
->ctx
))
6091 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6093 if (!event_filter_match(event
))
6095 output(event
, data
);
6100 * Iterate all events that need to receive side-band events.
6102 * For new callers; ensure that account_pmu_sb_event() includes
6103 * your event, otherwise it might not get delivered.
6106 perf_iterate_sb(perf_iterate_f output
, void *data
,
6107 struct perf_event_context
*task_ctx
)
6109 struct perf_event_context
*ctx
;
6116 * If we have task_ctx != NULL we only notify the task context itself.
6117 * The task_ctx is set only for EXIT events before releasing task
6121 perf_iterate_ctx(task_ctx
, output
, data
, false);
6125 perf_iterate_sb_cpu(output
, data
);
6127 for_each_task_context_nr(ctxn
) {
6128 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6130 perf_iterate_ctx(ctx
, output
, data
, false);
6138 * Clear all file-based filters at exec, they'll have to be
6139 * re-instated when/if these objects are mmapped again.
6141 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
6143 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6144 struct perf_addr_filter
*filter
;
6145 unsigned int restart
= 0, count
= 0;
6146 unsigned long flags
;
6148 if (!has_addr_filter(event
))
6151 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6152 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6153 if (filter
->inode
) {
6154 event
->addr_filters_offs
[count
] = 0;
6162 event
->addr_filters_gen
++;
6163 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6166 perf_event_stop(event
, 1);
6169 void perf_event_exec(void)
6171 struct perf_event_context
*ctx
;
6175 for_each_task_context_nr(ctxn
) {
6176 ctx
= current
->perf_event_ctxp
[ctxn
];
6180 perf_event_enable_on_exec(ctxn
);
6182 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
6188 struct remote_output
{
6189 struct ring_buffer
*rb
;
6193 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
6195 struct perf_event
*parent
= event
->parent
;
6196 struct remote_output
*ro
= data
;
6197 struct ring_buffer
*rb
= ro
->rb
;
6198 struct stop_event_data sd
= {
6202 if (!has_aux(event
))
6209 * In case of inheritance, it will be the parent that links to the
6210 * ring-buffer, but it will be the child that's actually using it.
6212 * We are using event::rb to determine if the event should be stopped,
6213 * however this may race with ring_buffer_attach() (through set_output),
6214 * which will make us skip the event that actually needs to be stopped.
6215 * So ring_buffer_attach() has to stop an aux event before re-assigning
6218 if (rcu_dereference(parent
->rb
) == rb
)
6219 ro
->err
= __perf_event_stop(&sd
);
6222 static int __perf_pmu_output_stop(void *info
)
6224 struct perf_event
*event
= info
;
6225 struct pmu
*pmu
= event
->pmu
;
6226 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6227 struct remote_output ro
= {
6232 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
6233 if (cpuctx
->task_ctx
)
6234 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
6241 static void perf_pmu_output_stop(struct perf_event
*event
)
6243 struct perf_event
*iter
;
6248 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
6250 * For per-CPU events, we need to make sure that neither they
6251 * nor their children are running; for cpu==-1 events it's
6252 * sufficient to stop the event itself if it's active, since
6253 * it can't have children.
6257 cpu
= READ_ONCE(iter
->oncpu
);
6262 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
6263 if (err
== -EAGAIN
) {
6272 * task tracking -- fork/exit
6274 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6277 struct perf_task_event
{
6278 struct task_struct
*task
;
6279 struct perf_event_context
*task_ctx
;
6282 struct perf_event_header header
;
6292 static int perf_event_task_match(struct perf_event
*event
)
6294 return event
->attr
.comm
|| event
->attr
.mmap
||
6295 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
6299 static void perf_event_task_output(struct perf_event
*event
,
6302 struct perf_task_event
*task_event
= data
;
6303 struct perf_output_handle handle
;
6304 struct perf_sample_data sample
;
6305 struct task_struct
*task
= task_event
->task
;
6306 int ret
, size
= task_event
->event_id
.header
.size
;
6308 if (!perf_event_task_match(event
))
6311 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
6313 ret
= perf_output_begin(&handle
, event
,
6314 task_event
->event_id
.header
.size
);
6318 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
6319 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
6321 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
6322 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
6324 task_event
->event_id
.time
= perf_event_clock(event
);
6326 perf_output_put(&handle
, task_event
->event_id
);
6328 perf_event__output_id_sample(event
, &handle
, &sample
);
6330 perf_output_end(&handle
);
6332 task_event
->event_id
.header
.size
= size
;
6335 static void perf_event_task(struct task_struct
*task
,
6336 struct perf_event_context
*task_ctx
,
6339 struct perf_task_event task_event
;
6341 if (!atomic_read(&nr_comm_events
) &&
6342 !atomic_read(&nr_mmap_events
) &&
6343 !atomic_read(&nr_task_events
))
6346 task_event
= (struct perf_task_event
){
6348 .task_ctx
= task_ctx
,
6351 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
6353 .size
= sizeof(task_event
.event_id
),
6363 perf_iterate_sb(perf_event_task_output
,
6368 void perf_event_fork(struct task_struct
*task
)
6370 perf_event_task(task
, NULL
, 1);
6377 struct perf_comm_event
{
6378 struct task_struct
*task
;
6383 struct perf_event_header header
;
6390 static int perf_event_comm_match(struct perf_event
*event
)
6392 return event
->attr
.comm
;
6395 static void perf_event_comm_output(struct perf_event
*event
,
6398 struct perf_comm_event
*comm_event
= data
;
6399 struct perf_output_handle handle
;
6400 struct perf_sample_data sample
;
6401 int size
= comm_event
->event_id
.header
.size
;
6404 if (!perf_event_comm_match(event
))
6407 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
6408 ret
= perf_output_begin(&handle
, event
,
6409 comm_event
->event_id
.header
.size
);
6414 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
6415 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
6417 perf_output_put(&handle
, comm_event
->event_id
);
6418 __output_copy(&handle
, comm_event
->comm
,
6419 comm_event
->comm_size
);
6421 perf_event__output_id_sample(event
, &handle
, &sample
);
6423 perf_output_end(&handle
);
6425 comm_event
->event_id
.header
.size
= size
;
6428 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
6430 char comm
[TASK_COMM_LEN
];
6433 memset(comm
, 0, sizeof(comm
));
6434 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
6435 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
6437 comm_event
->comm
= comm
;
6438 comm_event
->comm_size
= size
;
6440 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
6442 perf_iterate_sb(perf_event_comm_output
,
6447 void perf_event_comm(struct task_struct
*task
, bool exec
)
6449 struct perf_comm_event comm_event
;
6451 if (!atomic_read(&nr_comm_events
))
6454 comm_event
= (struct perf_comm_event
){
6460 .type
= PERF_RECORD_COMM
,
6461 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
6469 perf_event_comm_event(&comm_event
);
6476 struct perf_mmap_event
{
6477 struct vm_area_struct
*vma
;
6479 const char *file_name
;
6487 struct perf_event_header header
;
6497 static int perf_event_mmap_match(struct perf_event
*event
,
6500 struct perf_mmap_event
*mmap_event
= data
;
6501 struct vm_area_struct
*vma
= mmap_event
->vma
;
6502 int executable
= vma
->vm_flags
& VM_EXEC
;
6504 return (!executable
&& event
->attr
.mmap_data
) ||
6505 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
6508 static void perf_event_mmap_output(struct perf_event
*event
,
6511 struct perf_mmap_event
*mmap_event
= data
;
6512 struct perf_output_handle handle
;
6513 struct perf_sample_data sample
;
6514 int size
= mmap_event
->event_id
.header
.size
;
6517 if (!perf_event_mmap_match(event
, data
))
6520 if (event
->attr
.mmap2
) {
6521 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
6522 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
6523 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
6524 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
6525 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
6526 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
6527 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
6530 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
6531 ret
= perf_output_begin(&handle
, event
,
6532 mmap_event
->event_id
.header
.size
);
6536 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
6537 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
6539 perf_output_put(&handle
, mmap_event
->event_id
);
6541 if (event
->attr
.mmap2
) {
6542 perf_output_put(&handle
, mmap_event
->maj
);
6543 perf_output_put(&handle
, mmap_event
->min
);
6544 perf_output_put(&handle
, mmap_event
->ino
);
6545 perf_output_put(&handle
, mmap_event
->ino_generation
);
6546 perf_output_put(&handle
, mmap_event
->prot
);
6547 perf_output_put(&handle
, mmap_event
->flags
);
6550 __output_copy(&handle
, mmap_event
->file_name
,
6551 mmap_event
->file_size
);
6553 perf_event__output_id_sample(event
, &handle
, &sample
);
6555 perf_output_end(&handle
);
6557 mmap_event
->event_id
.header
.size
= size
;
6560 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
6562 struct vm_area_struct
*vma
= mmap_event
->vma
;
6563 struct file
*file
= vma
->vm_file
;
6564 int maj
= 0, min
= 0;
6565 u64 ino
= 0, gen
= 0;
6566 u32 prot
= 0, flags
= 0;
6573 struct inode
*inode
;
6576 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6582 * d_path() works from the end of the rb backwards, so we
6583 * need to add enough zero bytes after the string to handle
6584 * the 64bit alignment we do later.
6586 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
6591 inode
= file_inode(vma
->vm_file
);
6592 dev
= inode
->i_sb
->s_dev
;
6594 gen
= inode
->i_generation
;
6598 if (vma
->vm_flags
& VM_READ
)
6600 if (vma
->vm_flags
& VM_WRITE
)
6602 if (vma
->vm_flags
& VM_EXEC
)
6605 if (vma
->vm_flags
& VM_MAYSHARE
)
6608 flags
= MAP_PRIVATE
;
6610 if (vma
->vm_flags
& VM_DENYWRITE
)
6611 flags
|= MAP_DENYWRITE
;
6612 if (vma
->vm_flags
& VM_MAYEXEC
)
6613 flags
|= MAP_EXECUTABLE
;
6614 if (vma
->vm_flags
& VM_LOCKED
)
6615 flags
|= MAP_LOCKED
;
6616 if (vma
->vm_flags
& VM_HUGETLB
)
6617 flags
|= MAP_HUGETLB
;
6621 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
6622 name
= (char *) vma
->vm_ops
->name(vma
);
6627 name
= (char *)arch_vma_name(vma
);
6631 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
6632 vma
->vm_end
>= vma
->vm_mm
->brk
) {
6636 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
6637 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
6647 strlcpy(tmp
, name
, sizeof(tmp
));
6651 * Since our buffer works in 8 byte units we need to align our string
6652 * size to a multiple of 8. However, we must guarantee the tail end is
6653 * zero'd out to avoid leaking random bits to userspace.
6655 size
= strlen(name
)+1;
6656 while (!IS_ALIGNED(size
, sizeof(u64
)))
6657 name
[size
++] = '\0';
6659 mmap_event
->file_name
= name
;
6660 mmap_event
->file_size
= size
;
6661 mmap_event
->maj
= maj
;
6662 mmap_event
->min
= min
;
6663 mmap_event
->ino
= ino
;
6664 mmap_event
->ino_generation
= gen
;
6665 mmap_event
->prot
= prot
;
6666 mmap_event
->flags
= flags
;
6668 if (!(vma
->vm_flags
& VM_EXEC
))
6669 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
6671 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
6673 perf_iterate_sb(perf_event_mmap_output
,
6681 * Check whether inode and address range match filter criteria.
6683 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
6684 struct file
*file
, unsigned long offset
,
6687 if (filter
->inode
!= file
->f_inode
)
6690 if (filter
->offset
> offset
+ size
)
6693 if (filter
->offset
+ filter
->size
< offset
)
6699 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
6701 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6702 struct vm_area_struct
*vma
= data
;
6703 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
, flags
;
6704 struct file
*file
= vma
->vm_file
;
6705 struct perf_addr_filter
*filter
;
6706 unsigned int restart
= 0, count
= 0;
6708 if (!has_addr_filter(event
))
6714 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6715 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6716 if (perf_addr_filter_match(filter
, file
, off
,
6717 vma
->vm_end
- vma
->vm_start
)) {
6718 event
->addr_filters_offs
[count
] = vma
->vm_start
;
6726 event
->addr_filters_gen
++;
6727 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6730 perf_event_stop(event
, 1);
6734 * Adjust all task's events' filters to the new vma
6736 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
6738 struct perf_event_context
*ctx
;
6742 * Data tracing isn't supported yet and as such there is no need
6743 * to keep track of anything that isn't related to executable code:
6745 if (!(vma
->vm_flags
& VM_EXEC
))
6749 for_each_task_context_nr(ctxn
) {
6750 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6754 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
6759 void perf_event_mmap(struct vm_area_struct
*vma
)
6761 struct perf_mmap_event mmap_event
;
6763 if (!atomic_read(&nr_mmap_events
))
6766 mmap_event
= (struct perf_mmap_event
){
6772 .type
= PERF_RECORD_MMAP
,
6773 .misc
= PERF_RECORD_MISC_USER
,
6778 .start
= vma
->vm_start
,
6779 .len
= vma
->vm_end
- vma
->vm_start
,
6780 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
6782 /* .maj (attr_mmap2 only) */
6783 /* .min (attr_mmap2 only) */
6784 /* .ino (attr_mmap2 only) */
6785 /* .ino_generation (attr_mmap2 only) */
6786 /* .prot (attr_mmap2 only) */
6787 /* .flags (attr_mmap2 only) */
6790 perf_addr_filters_adjust(vma
);
6791 perf_event_mmap_event(&mmap_event
);
6794 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
6795 unsigned long size
, u64 flags
)
6797 struct perf_output_handle handle
;
6798 struct perf_sample_data sample
;
6799 struct perf_aux_event
{
6800 struct perf_event_header header
;
6806 .type
= PERF_RECORD_AUX
,
6808 .size
= sizeof(rec
),
6816 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6817 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6822 perf_output_put(&handle
, rec
);
6823 perf_event__output_id_sample(event
, &handle
, &sample
);
6825 perf_output_end(&handle
);
6829 * Lost/dropped samples logging
6831 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
6833 struct perf_output_handle handle
;
6834 struct perf_sample_data sample
;
6838 struct perf_event_header header
;
6840 } lost_samples_event
= {
6842 .type
= PERF_RECORD_LOST_SAMPLES
,
6844 .size
= sizeof(lost_samples_event
),
6849 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
6851 ret
= perf_output_begin(&handle
, event
,
6852 lost_samples_event
.header
.size
);
6856 perf_output_put(&handle
, lost_samples_event
);
6857 perf_event__output_id_sample(event
, &handle
, &sample
);
6858 perf_output_end(&handle
);
6862 * context_switch tracking
6865 struct perf_switch_event
{
6866 struct task_struct
*task
;
6867 struct task_struct
*next_prev
;
6870 struct perf_event_header header
;
6876 static int perf_event_switch_match(struct perf_event
*event
)
6878 return event
->attr
.context_switch
;
6881 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
6883 struct perf_switch_event
*se
= data
;
6884 struct perf_output_handle handle
;
6885 struct perf_sample_data sample
;
6888 if (!perf_event_switch_match(event
))
6891 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6892 if (event
->ctx
->task
) {
6893 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
6894 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
6896 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
6897 se
->event_id
.header
.size
= sizeof(se
->event_id
);
6898 se
->event_id
.next_prev_pid
=
6899 perf_event_pid(event
, se
->next_prev
);
6900 se
->event_id
.next_prev_tid
=
6901 perf_event_tid(event
, se
->next_prev
);
6904 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
6906 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
6910 if (event
->ctx
->task
)
6911 perf_output_put(&handle
, se
->event_id
.header
);
6913 perf_output_put(&handle
, se
->event_id
);
6915 perf_event__output_id_sample(event
, &handle
, &sample
);
6917 perf_output_end(&handle
);
6920 static void perf_event_switch(struct task_struct
*task
,
6921 struct task_struct
*next_prev
, bool sched_in
)
6923 struct perf_switch_event switch_event
;
6925 /* N.B. caller checks nr_switch_events != 0 */
6927 switch_event
= (struct perf_switch_event
){
6929 .next_prev
= next_prev
,
6933 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
6936 /* .next_prev_pid */
6937 /* .next_prev_tid */
6941 perf_iterate_sb(perf_event_switch_output
,
6947 * IRQ throttle logging
6950 static void perf_log_throttle(struct perf_event
*event
, int enable
)
6952 struct perf_output_handle handle
;
6953 struct perf_sample_data sample
;
6957 struct perf_event_header header
;
6961 } throttle_event
= {
6963 .type
= PERF_RECORD_THROTTLE
,
6965 .size
= sizeof(throttle_event
),
6967 .time
= perf_event_clock(event
),
6968 .id
= primary_event_id(event
),
6969 .stream_id
= event
->id
,
6973 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
6975 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
6977 ret
= perf_output_begin(&handle
, event
,
6978 throttle_event
.header
.size
);
6982 perf_output_put(&handle
, throttle_event
);
6983 perf_event__output_id_sample(event
, &handle
, &sample
);
6984 perf_output_end(&handle
);
6987 static void perf_log_itrace_start(struct perf_event
*event
)
6989 struct perf_output_handle handle
;
6990 struct perf_sample_data sample
;
6991 struct perf_aux_event
{
6992 struct perf_event_header header
;
6999 event
= event
->parent
;
7001 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
7002 event
->hw
.itrace_started
)
7005 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
7006 rec
.header
.misc
= 0;
7007 rec
.header
.size
= sizeof(rec
);
7008 rec
.pid
= perf_event_pid(event
, current
);
7009 rec
.tid
= perf_event_tid(event
, current
);
7011 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7012 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7017 perf_output_put(&handle
, rec
);
7018 perf_event__output_id_sample(event
, &handle
, &sample
);
7020 perf_output_end(&handle
);
7024 * Generic event overflow handling, sampling.
7027 static int __perf_event_overflow(struct perf_event
*event
,
7028 int throttle
, struct perf_sample_data
*data
,
7029 struct pt_regs
*regs
)
7031 int events
= atomic_read(&event
->event_limit
);
7032 struct hw_perf_event
*hwc
= &event
->hw
;
7037 * Non-sampling counters might still use the PMI to fold short
7038 * hardware counters, ignore those.
7040 if (unlikely(!is_sampling_event(event
)))
7043 seq
= __this_cpu_read(perf_throttled_seq
);
7044 if (seq
!= hwc
->interrupts_seq
) {
7045 hwc
->interrupts_seq
= seq
;
7046 hwc
->interrupts
= 1;
7049 if (unlikely(throttle
7050 && hwc
->interrupts
>= max_samples_per_tick
)) {
7051 __this_cpu_inc(perf_throttled_count
);
7052 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
7053 hwc
->interrupts
= MAX_INTERRUPTS
;
7054 perf_log_throttle(event
, 0);
7059 if (event
->attr
.freq
) {
7060 u64 now
= perf_clock();
7061 s64 delta
= now
- hwc
->freq_time_stamp
;
7063 hwc
->freq_time_stamp
= now
;
7065 if (delta
> 0 && delta
< 2*TICK_NSEC
)
7066 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
7070 * XXX event_limit might not quite work as expected on inherited
7074 event
->pending_kill
= POLL_IN
;
7075 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
7077 event
->pending_kill
= POLL_HUP
;
7078 event
->pending_disable
= 1;
7079 irq_work_queue(&event
->pending
);
7082 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
7084 if (*perf_event_fasync(event
) && event
->pending_kill
) {
7085 event
->pending_wakeup
= 1;
7086 irq_work_queue(&event
->pending
);
7092 int perf_event_overflow(struct perf_event
*event
,
7093 struct perf_sample_data
*data
,
7094 struct pt_regs
*regs
)
7096 return __perf_event_overflow(event
, 1, data
, regs
);
7100 * Generic software event infrastructure
7103 struct swevent_htable
{
7104 struct swevent_hlist
*swevent_hlist
;
7105 struct mutex hlist_mutex
;
7108 /* Recursion avoidance in each contexts */
7109 int recursion
[PERF_NR_CONTEXTS
];
7112 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
7115 * We directly increment event->count and keep a second value in
7116 * event->hw.period_left to count intervals. This period event
7117 * is kept in the range [-sample_period, 0] so that we can use the
7121 u64
perf_swevent_set_period(struct perf_event
*event
)
7123 struct hw_perf_event
*hwc
= &event
->hw
;
7124 u64 period
= hwc
->last_period
;
7128 hwc
->last_period
= hwc
->sample_period
;
7131 old
= val
= local64_read(&hwc
->period_left
);
7135 nr
= div64_u64(period
+ val
, period
);
7136 offset
= nr
* period
;
7138 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
7144 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
7145 struct perf_sample_data
*data
,
7146 struct pt_regs
*regs
)
7148 struct hw_perf_event
*hwc
= &event
->hw
;
7152 overflow
= perf_swevent_set_period(event
);
7154 if (hwc
->interrupts
== MAX_INTERRUPTS
)
7157 for (; overflow
; overflow
--) {
7158 if (__perf_event_overflow(event
, throttle
,
7161 * We inhibit the overflow from happening when
7162 * hwc->interrupts == MAX_INTERRUPTS.
7170 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
7171 struct perf_sample_data
*data
,
7172 struct pt_regs
*regs
)
7174 struct hw_perf_event
*hwc
= &event
->hw
;
7176 local64_add(nr
, &event
->count
);
7181 if (!is_sampling_event(event
))
7184 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
7186 return perf_swevent_overflow(event
, 1, data
, regs
);
7188 data
->period
= event
->hw
.last_period
;
7190 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
7191 return perf_swevent_overflow(event
, 1, data
, regs
);
7193 if (local64_add_negative(nr
, &hwc
->period_left
))
7196 perf_swevent_overflow(event
, 0, data
, regs
);
7199 static int perf_exclude_event(struct perf_event
*event
,
7200 struct pt_regs
*regs
)
7202 if (event
->hw
.state
& PERF_HES_STOPPED
)
7206 if (event
->attr
.exclude_user
&& user_mode(regs
))
7209 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
7216 static int perf_swevent_match(struct perf_event
*event
,
7217 enum perf_type_id type
,
7219 struct perf_sample_data
*data
,
7220 struct pt_regs
*regs
)
7222 if (event
->attr
.type
!= type
)
7225 if (event
->attr
.config
!= event_id
)
7228 if (perf_exclude_event(event
, regs
))
7234 static inline u64
swevent_hash(u64 type
, u32 event_id
)
7236 u64 val
= event_id
| (type
<< 32);
7238 return hash_64(val
, SWEVENT_HLIST_BITS
);
7241 static inline struct hlist_head
*
7242 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
7244 u64 hash
= swevent_hash(type
, event_id
);
7246 return &hlist
->heads
[hash
];
7249 /* For the read side: events when they trigger */
7250 static inline struct hlist_head
*
7251 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
7253 struct swevent_hlist
*hlist
;
7255 hlist
= rcu_dereference(swhash
->swevent_hlist
);
7259 return __find_swevent_head(hlist
, type
, event_id
);
7262 /* For the event head insertion and removal in the hlist */
7263 static inline struct hlist_head
*
7264 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
7266 struct swevent_hlist
*hlist
;
7267 u32 event_id
= event
->attr
.config
;
7268 u64 type
= event
->attr
.type
;
7271 * Event scheduling is always serialized against hlist allocation
7272 * and release. Which makes the protected version suitable here.
7273 * The context lock guarantees that.
7275 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
7276 lockdep_is_held(&event
->ctx
->lock
));
7280 return __find_swevent_head(hlist
, type
, event_id
);
7283 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
7285 struct perf_sample_data
*data
,
7286 struct pt_regs
*regs
)
7288 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7289 struct perf_event
*event
;
7290 struct hlist_head
*head
;
7293 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
7297 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7298 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
7299 perf_swevent_event(event
, nr
, data
, regs
);
7305 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
7307 int perf_swevent_get_recursion_context(void)
7309 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7311 return get_recursion_context(swhash
->recursion
);
7313 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
7315 void perf_swevent_put_recursion_context(int rctx
)
7317 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7319 put_recursion_context(swhash
->recursion
, rctx
);
7322 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7324 struct perf_sample_data data
;
7326 if (WARN_ON_ONCE(!regs
))
7329 perf_sample_data_init(&data
, addr
, 0);
7330 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
7333 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7337 preempt_disable_notrace();
7338 rctx
= perf_swevent_get_recursion_context();
7339 if (unlikely(rctx
< 0))
7342 ___perf_sw_event(event_id
, nr
, regs
, addr
);
7344 perf_swevent_put_recursion_context(rctx
);
7346 preempt_enable_notrace();
7349 static void perf_swevent_read(struct perf_event
*event
)
7353 static int perf_swevent_add(struct perf_event
*event
, int flags
)
7355 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7356 struct hw_perf_event
*hwc
= &event
->hw
;
7357 struct hlist_head
*head
;
7359 if (is_sampling_event(event
)) {
7360 hwc
->last_period
= hwc
->sample_period
;
7361 perf_swevent_set_period(event
);
7364 hwc
->state
= !(flags
& PERF_EF_START
);
7366 head
= find_swevent_head(swhash
, event
);
7367 if (WARN_ON_ONCE(!head
))
7370 hlist_add_head_rcu(&event
->hlist_entry
, head
);
7371 perf_event_update_userpage(event
);
7376 static void perf_swevent_del(struct perf_event
*event
, int flags
)
7378 hlist_del_rcu(&event
->hlist_entry
);
7381 static void perf_swevent_start(struct perf_event
*event
, int flags
)
7383 event
->hw
.state
= 0;
7386 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
7388 event
->hw
.state
= PERF_HES_STOPPED
;
7391 /* Deref the hlist from the update side */
7392 static inline struct swevent_hlist
*
7393 swevent_hlist_deref(struct swevent_htable
*swhash
)
7395 return rcu_dereference_protected(swhash
->swevent_hlist
,
7396 lockdep_is_held(&swhash
->hlist_mutex
));
7399 static void swevent_hlist_release(struct swevent_htable
*swhash
)
7401 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
7406 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
7407 kfree_rcu(hlist
, rcu_head
);
7410 static void swevent_hlist_put_cpu(int cpu
)
7412 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7414 mutex_lock(&swhash
->hlist_mutex
);
7416 if (!--swhash
->hlist_refcount
)
7417 swevent_hlist_release(swhash
);
7419 mutex_unlock(&swhash
->hlist_mutex
);
7422 static void swevent_hlist_put(void)
7426 for_each_possible_cpu(cpu
)
7427 swevent_hlist_put_cpu(cpu
);
7430 static int swevent_hlist_get_cpu(int cpu
)
7432 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7435 mutex_lock(&swhash
->hlist_mutex
);
7436 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
7437 struct swevent_hlist
*hlist
;
7439 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
7444 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7446 swhash
->hlist_refcount
++;
7448 mutex_unlock(&swhash
->hlist_mutex
);
7453 static int swevent_hlist_get(void)
7455 int err
, cpu
, failed_cpu
;
7458 for_each_possible_cpu(cpu
) {
7459 err
= swevent_hlist_get_cpu(cpu
);
7469 for_each_possible_cpu(cpu
) {
7470 if (cpu
== failed_cpu
)
7472 swevent_hlist_put_cpu(cpu
);
7479 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
7481 static void sw_perf_event_destroy(struct perf_event
*event
)
7483 u64 event_id
= event
->attr
.config
;
7485 WARN_ON(event
->parent
);
7487 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
7488 swevent_hlist_put();
7491 static int perf_swevent_init(struct perf_event
*event
)
7493 u64 event_id
= event
->attr
.config
;
7495 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7499 * no branch sampling for software events
7501 if (has_branch_stack(event
))
7505 case PERF_COUNT_SW_CPU_CLOCK
:
7506 case PERF_COUNT_SW_TASK_CLOCK
:
7513 if (event_id
>= PERF_COUNT_SW_MAX
)
7516 if (!event
->parent
) {
7519 err
= swevent_hlist_get();
7523 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
7524 event
->destroy
= sw_perf_event_destroy
;
7530 static struct pmu perf_swevent
= {
7531 .task_ctx_nr
= perf_sw_context
,
7533 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7535 .event_init
= perf_swevent_init
,
7536 .add
= perf_swevent_add
,
7537 .del
= perf_swevent_del
,
7538 .start
= perf_swevent_start
,
7539 .stop
= perf_swevent_stop
,
7540 .read
= perf_swevent_read
,
7543 #ifdef CONFIG_EVENT_TRACING
7545 static int perf_tp_filter_match(struct perf_event
*event
,
7546 struct perf_sample_data
*data
)
7548 void *record
= data
->raw
->frag
.data
;
7550 /* only top level events have filters set */
7552 event
= event
->parent
;
7554 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
7559 static int perf_tp_event_match(struct perf_event
*event
,
7560 struct perf_sample_data
*data
,
7561 struct pt_regs
*regs
)
7563 if (event
->hw
.state
& PERF_HES_STOPPED
)
7566 * All tracepoints are from kernel-space.
7568 if (event
->attr
.exclude_kernel
)
7571 if (!perf_tp_filter_match(event
, data
))
7577 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
7578 struct trace_event_call
*call
, u64 count
,
7579 struct pt_regs
*regs
, struct hlist_head
*head
,
7580 struct task_struct
*task
)
7582 struct bpf_prog
*prog
= call
->prog
;
7585 *(struct pt_regs
**)raw_data
= regs
;
7586 if (!trace_call_bpf(prog
, raw_data
) || hlist_empty(head
)) {
7587 perf_swevent_put_recursion_context(rctx
);
7591 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
7594 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
7596 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
7597 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
7598 struct task_struct
*task
)
7600 struct perf_sample_data data
;
7601 struct perf_event
*event
;
7603 struct perf_raw_record raw
= {
7610 perf_sample_data_init(&data
, 0, 0);
7613 perf_trace_buf_update(record
, event_type
);
7615 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7616 if (perf_tp_event_match(event
, &data
, regs
))
7617 perf_swevent_event(event
, count
, &data
, regs
);
7621 * If we got specified a target task, also iterate its context and
7622 * deliver this event there too.
7624 if (task
&& task
!= current
) {
7625 struct perf_event_context
*ctx
;
7626 struct trace_entry
*entry
= record
;
7629 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
7633 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7634 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7636 if (event
->attr
.config
!= entry
->type
)
7638 if (perf_tp_event_match(event
, &data
, regs
))
7639 perf_swevent_event(event
, count
, &data
, regs
);
7645 perf_swevent_put_recursion_context(rctx
);
7647 EXPORT_SYMBOL_GPL(perf_tp_event
);
7649 static void tp_perf_event_destroy(struct perf_event
*event
)
7651 perf_trace_destroy(event
);
7654 static int perf_tp_event_init(struct perf_event
*event
)
7658 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7662 * no branch sampling for tracepoint events
7664 if (has_branch_stack(event
))
7667 err
= perf_trace_init(event
);
7671 event
->destroy
= tp_perf_event_destroy
;
7676 static struct pmu perf_tracepoint
= {
7677 .task_ctx_nr
= perf_sw_context
,
7679 .event_init
= perf_tp_event_init
,
7680 .add
= perf_trace_add
,
7681 .del
= perf_trace_del
,
7682 .start
= perf_swevent_start
,
7683 .stop
= perf_swevent_stop
,
7684 .read
= perf_swevent_read
,
7687 static inline void perf_tp_register(void)
7689 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
7692 static void perf_event_free_filter(struct perf_event
*event
)
7694 ftrace_profile_free_filter(event
);
7697 #ifdef CONFIG_BPF_SYSCALL
7698 static void bpf_overflow_handler(struct perf_event
*event
,
7699 struct perf_sample_data
*data
,
7700 struct pt_regs
*regs
)
7702 struct bpf_perf_event_data_kern ctx
= {
7709 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
7712 ret
= BPF_PROG_RUN(event
->prog
, (void *)&ctx
);
7715 __this_cpu_dec(bpf_prog_active
);
7720 event
->orig_overflow_handler(event
, data
, regs
);
7723 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7725 struct bpf_prog
*prog
;
7727 if (event
->overflow_handler_context
)
7728 /* hw breakpoint or kernel counter */
7734 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
7736 return PTR_ERR(prog
);
7739 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
7740 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
7744 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7746 struct bpf_prog
*prog
= event
->prog
;
7751 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
7756 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7760 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7765 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7767 bool is_kprobe
, is_tracepoint
;
7768 struct bpf_prog
*prog
;
7770 if (event
->attr
.type
== PERF_TYPE_HARDWARE
||
7771 event
->attr
.type
== PERF_TYPE_SOFTWARE
)
7772 return perf_event_set_bpf_handler(event
, prog_fd
);
7774 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7777 if (event
->tp_event
->prog
)
7780 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
7781 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
7782 if (!is_kprobe
&& !is_tracepoint
)
7783 /* bpf programs can only be attached to u/kprobe or tracepoint */
7786 prog
= bpf_prog_get(prog_fd
);
7788 return PTR_ERR(prog
);
7790 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
7791 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
7792 /* valid fd, but invalid bpf program type */
7797 if (is_tracepoint
) {
7798 int off
= trace_event_get_offsets(event
->tp_event
);
7800 if (prog
->aux
->max_ctx_offset
> off
) {
7805 event
->tp_event
->prog
= prog
;
7810 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7812 struct bpf_prog
*prog
;
7814 perf_event_free_bpf_handler(event
);
7816 if (!event
->tp_event
)
7819 prog
= event
->tp_event
->prog
;
7821 event
->tp_event
->prog
= NULL
;
7828 static inline void perf_tp_register(void)
7832 static void perf_event_free_filter(struct perf_event
*event
)
7836 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7841 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7844 #endif /* CONFIG_EVENT_TRACING */
7846 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7847 void perf_bp_event(struct perf_event
*bp
, void *data
)
7849 struct perf_sample_data sample
;
7850 struct pt_regs
*regs
= data
;
7852 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
7854 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
7855 perf_swevent_event(bp
, 1, &sample
, regs
);
7860 * Allocate a new address filter
7862 static struct perf_addr_filter
*
7863 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
7865 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
7866 struct perf_addr_filter
*filter
;
7868 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
7872 INIT_LIST_HEAD(&filter
->entry
);
7873 list_add_tail(&filter
->entry
, filters
);
7878 static void free_filters_list(struct list_head
*filters
)
7880 struct perf_addr_filter
*filter
, *iter
;
7882 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
7884 iput(filter
->inode
);
7885 list_del(&filter
->entry
);
7891 * Free existing address filters and optionally install new ones
7893 static void perf_addr_filters_splice(struct perf_event
*event
,
7894 struct list_head
*head
)
7896 unsigned long flags
;
7899 if (!has_addr_filter(event
))
7902 /* don't bother with children, they don't have their own filters */
7906 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
7908 list_splice_init(&event
->addr_filters
.list
, &list
);
7910 list_splice(head
, &event
->addr_filters
.list
);
7912 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
7914 free_filters_list(&list
);
7918 * Scan through mm's vmas and see if one of them matches the
7919 * @filter; if so, adjust filter's address range.
7920 * Called with mm::mmap_sem down for reading.
7922 static unsigned long perf_addr_filter_apply(struct perf_addr_filter
*filter
,
7923 struct mm_struct
*mm
)
7925 struct vm_area_struct
*vma
;
7927 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
7928 struct file
*file
= vma
->vm_file
;
7929 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
7930 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
7935 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
7938 return vma
->vm_start
;
7945 * Update event's address range filters based on the
7946 * task's existing mappings, if any.
7948 static void perf_event_addr_filters_apply(struct perf_event
*event
)
7950 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7951 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
7952 struct perf_addr_filter
*filter
;
7953 struct mm_struct
*mm
= NULL
;
7954 unsigned int count
= 0;
7955 unsigned long flags
;
7958 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7959 * will stop on the parent's child_mutex that our caller is also holding
7961 if (task
== TASK_TOMBSTONE
)
7964 mm
= get_task_mm(event
->ctx
->task
);
7968 down_read(&mm
->mmap_sem
);
7970 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
7971 list_for_each_entry(filter
, &ifh
->list
, entry
) {
7972 event
->addr_filters_offs
[count
] = 0;
7975 * Adjust base offset if the filter is associated to a binary
7976 * that needs to be mapped:
7979 event
->addr_filters_offs
[count
] =
7980 perf_addr_filter_apply(filter
, mm
);
7985 event
->addr_filters_gen
++;
7986 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
7988 up_read(&mm
->mmap_sem
);
7993 perf_event_stop(event
, 1);
7997 * Address range filtering: limiting the data to certain
7998 * instruction address ranges. Filters are ioctl()ed to us from
7999 * userspace as ascii strings.
8001 * Filter string format:
8004 * where ACTION is one of the
8005 * * "filter": limit the trace to this region
8006 * * "start": start tracing from this address
8007 * * "stop": stop tracing at this address/region;
8009 * * for kernel addresses: <start address>[/<size>]
8010 * * for object files: <start address>[/<size>]@</path/to/object/file>
8012 * if <size> is not specified, the range is treated as a single address.
8025 IF_STATE_ACTION
= 0,
8030 static const match_table_t if_tokens
= {
8031 { IF_ACT_FILTER
, "filter" },
8032 { IF_ACT_START
, "start" },
8033 { IF_ACT_STOP
, "stop" },
8034 { IF_SRC_FILE
, "%u/%u@%s" },
8035 { IF_SRC_KERNEL
, "%u/%u" },
8036 { IF_SRC_FILEADDR
, "%u@%s" },
8037 { IF_SRC_KERNELADDR
, "%u" },
8041 * Address filter string parser
8044 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
8045 struct list_head
*filters
)
8047 struct perf_addr_filter
*filter
= NULL
;
8048 char *start
, *orig
, *filename
= NULL
;
8050 substring_t args
[MAX_OPT_ARGS
];
8051 int state
= IF_STATE_ACTION
, token
;
8052 unsigned int kernel
= 0;
8055 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
8059 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
8065 /* filter definition begins */
8066 if (state
== IF_STATE_ACTION
) {
8067 filter
= perf_addr_filter_new(event
, filters
);
8072 token
= match_token(start
, if_tokens
, args
);
8079 if (state
!= IF_STATE_ACTION
)
8082 state
= IF_STATE_SOURCE
;
8085 case IF_SRC_KERNELADDR
:
8089 case IF_SRC_FILEADDR
:
8091 if (state
!= IF_STATE_SOURCE
)
8094 if (token
== IF_SRC_FILE
|| token
== IF_SRC_KERNEL
)
8098 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
8102 if (filter
->range
) {
8104 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
8109 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
8110 int fpos
= filter
->range
? 2 : 1;
8112 filename
= match_strdup(&args
[fpos
]);
8119 state
= IF_STATE_END
;
8127 * Filter definition is fully parsed, validate and install it.
8128 * Make sure that it doesn't contradict itself or the event's
8131 if (state
== IF_STATE_END
) {
8132 if (kernel
&& event
->attr
.exclude_kernel
)
8139 /* look up the path and grab its inode */
8140 ret
= kern_path(filename
, LOOKUP_FOLLOW
, &path
);
8142 goto fail_free_name
;
8144 filter
->inode
= igrab(d_inode(path
.dentry
));
8150 if (!filter
->inode
||
8151 !S_ISREG(filter
->inode
->i_mode
))
8152 /* free_filters_list() will iput() */
8156 /* ready to consume more filters */
8157 state
= IF_STATE_ACTION
;
8162 if (state
!= IF_STATE_ACTION
)
8172 free_filters_list(filters
);
8179 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
8185 * Since this is called in perf_ioctl() path, we're already holding
8188 lockdep_assert_held(&event
->ctx
->mutex
);
8190 if (WARN_ON_ONCE(event
->parent
))
8194 * For now, we only support filtering in per-task events; doing so
8195 * for CPU-wide events requires additional context switching trickery,
8196 * since same object code will be mapped at different virtual
8197 * addresses in different processes.
8199 if (!event
->ctx
->task
)
8202 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
8206 ret
= event
->pmu
->addr_filters_validate(&filters
);
8208 free_filters_list(&filters
);
8212 /* remove existing filters, if any */
8213 perf_addr_filters_splice(event
, &filters
);
8215 /* install new filters */
8216 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
8221 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
8226 if ((event
->attr
.type
!= PERF_TYPE_TRACEPOINT
||
8227 !IS_ENABLED(CONFIG_EVENT_TRACING
)) &&
8228 !has_addr_filter(event
))
8231 filter_str
= strndup_user(arg
, PAGE_SIZE
);
8232 if (IS_ERR(filter_str
))
8233 return PTR_ERR(filter_str
);
8235 if (IS_ENABLED(CONFIG_EVENT_TRACING
) &&
8236 event
->attr
.type
== PERF_TYPE_TRACEPOINT
)
8237 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
,
8239 else if (has_addr_filter(event
))
8240 ret
= perf_event_set_addr_filter(event
, filter_str
);
8247 * hrtimer based swevent callback
8250 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
8252 enum hrtimer_restart ret
= HRTIMER_RESTART
;
8253 struct perf_sample_data data
;
8254 struct pt_regs
*regs
;
8255 struct perf_event
*event
;
8258 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
8260 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
8261 return HRTIMER_NORESTART
;
8263 event
->pmu
->read(event
);
8265 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
8266 regs
= get_irq_regs();
8268 if (regs
&& !perf_exclude_event(event
, regs
)) {
8269 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
8270 if (__perf_event_overflow(event
, 1, &data
, regs
))
8271 ret
= HRTIMER_NORESTART
;
8274 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
8275 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
8280 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
8282 struct hw_perf_event
*hwc
= &event
->hw
;
8285 if (!is_sampling_event(event
))
8288 period
= local64_read(&hwc
->period_left
);
8293 local64_set(&hwc
->period_left
, 0);
8295 period
= max_t(u64
, 10000, hwc
->sample_period
);
8297 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
8298 HRTIMER_MODE_REL_PINNED
);
8301 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
8303 struct hw_perf_event
*hwc
= &event
->hw
;
8305 if (is_sampling_event(event
)) {
8306 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
8307 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
8309 hrtimer_cancel(&hwc
->hrtimer
);
8313 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
8315 struct hw_perf_event
*hwc
= &event
->hw
;
8317 if (!is_sampling_event(event
))
8320 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
8321 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
8324 * Since hrtimers have a fixed rate, we can do a static freq->period
8325 * mapping and avoid the whole period adjust feedback stuff.
8327 if (event
->attr
.freq
) {
8328 long freq
= event
->attr
.sample_freq
;
8330 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
8331 hwc
->sample_period
= event
->attr
.sample_period
;
8332 local64_set(&hwc
->period_left
, hwc
->sample_period
);
8333 hwc
->last_period
= hwc
->sample_period
;
8334 event
->attr
.freq
= 0;
8339 * Software event: cpu wall time clock
8342 static void cpu_clock_event_update(struct perf_event
*event
)
8347 now
= local_clock();
8348 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8349 local64_add(now
- prev
, &event
->count
);
8352 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
8354 local64_set(&event
->hw
.prev_count
, local_clock());
8355 perf_swevent_start_hrtimer(event
);
8358 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
8360 perf_swevent_cancel_hrtimer(event
);
8361 cpu_clock_event_update(event
);
8364 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
8366 if (flags
& PERF_EF_START
)
8367 cpu_clock_event_start(event
, flags
);
8368 perf_event_update_userpage(event
);
8373 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
8375 cpu_clock_event_stop(event
, flags
);
8378 static void cpu_clock_event_read(struct perf_event
*event
)
8380 cpu_clock_event_update(event
);
8383 static int cpu_clock_event_init(struct perf_event
*event
)
8385 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8388 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
8392 * no branch sampling for software events
8394 if (has_branch_stack(event
))
8397 perf_swevent_init_hrtimer(event
);
8402 static struct pmu perf_cpu_clock
= {
8403 .task_ctx_nr
= perf_sw_context
,
8405 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8407 .event_init
= cpu_clock_event_init
,
8408 .add
= cpu_clock_event_add
,
8409 .del
= cpu_clock_event_del
,
8410 .start
= cpu_clock_event_start
,
8411 .stop
= cpu_clock_event_stop
,
8412 .read
= cpu_clock_event_read
,
8416 * Software event: task time clock
8419 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
8424 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8426 local64_add(delta
, &event
->count
);
8429 static void task_clock_event_start(struct perf_event
*event
, int flags
)
8431 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
8432 perf_swevent_start_hrtimer(event
);
8435 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
8437 perf_swevent_cancel_hrtimer(event
);
8438 task_clock_event_update(event
, event
->ctx
->time
);
8441 static int task_clock_event_add(struct perf_event
*event
, int flags
)
8443 if (flags
& PERF_EF_START
)
8444 task_clock_event_start(event
, flags
);
8445 perf_event_update_userpage(event
);
8450 static void task_clock_event_del(struct perf_event
*event
, int flags
)
8452 task_clock_event_stop(event
, PERF_EF_UPDATE
);
8455 static void task_clock_event_read(struct perf_event
*event
)
8457 u64 now
= perf_clock();
8458 u64 delta
= now
- event
->ctx
->timestamp
;
8459 u64 time
= event
->ctx
->time
+ delta
;
8461 task_clock_event_update(event
, time
);
8464 static int task_clock_event_init(struct perf_event
*event
)
8466 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8469 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
8473 * no branch sampling for software events
8475 if (has_branch_stack(event
))
8478 perf_swevent_init_hrtimer(event
);
8483 static struct pmu perf_task_clock
= {
8484 .task_ctx_nr
= perf_sw_context
,
8486 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8488 .event_init
= task_clock_event_init
,
8489 .add
= task_clock_event_add
,
8490 .del
= task_clock_event_del
,
8491 .start
= task_clock_event_start
,
8492 .stop
= task_clock_event_stop
,
8493 .read
= task_clock_event_read
,
8496 static void perf_pmu_nop_void(struct pmu
*pmu
)
8500 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
8504 static int perf_pmu_nop_int(struct pmu
*pmu
)
8509 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
8511 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
8513 __this_cpu_write(nop_txn_flags
, flags
);
8515 if (flags
& ~PERF_PMU_TXN_ADD
)
8518 perf_pmu_disable(pmu
);
8521 static int perf_pmu_commit_txn(struct pmu
*pmu
)
8523 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8525 __this_cpu_write(nop_txn_flags
, 0);
8527 if (flags
& ~PERF_PMU_TXN_ADD
)
8530 perf_pmu_enable(pmu
);
8534 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
8536 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8538 __this_cpu_write(nop_txn_flags
, 0);
8540 if (flags
& ~PERF_PMU_TXN_ADD
)
8543 perf_pmu_enable(pmu
);
8546 static int perf_event_idx_default(struct perf_event
*event
)
8552 * Ensures all contexts with the same task_ctx_nr have the same
8553 * pmu_cpu_context too.
8555 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
8562 list_for_each_entry(pmu
, &pmus
, entry
) {
8563 if (pmu
->task_ctx_nr
== ctxn
)
8564 return pmu
->pmu_cpu_context
;
8570 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
8574 for_each_possible_cpu(cpu
) {
8575 struct perf_cpu_context
*cpuctx
;
8577 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8579 if (cpuctx
->unique_pmu
== old_pmu
)
8580 cpuctx
->unique_pmu
= pmu
;
8584 static void free_pmu_context(struct pmu
*pmu
)
8588 mutex_lock(&pmus_lock
);
8590 * Like a real lame refcount.
8592 list_for_each_entry(i
, &pmus
, entry
) {
8593 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
8594 update_pmu_context(i
, pmu
);
8599 free_percpu(pmu
->pmu_cpu_context
);
8601 mutex_unlock(&pmus_lock
);
8605 * Let userspace know that this PMU supports address range filtering:
8607 static ssize_t
nr_addr_filters_show(struct device
*dev
,
8608 struct device_attribute
*attr
,
8611 struct pmu
*pmu
= dev_get_drvdata(dev
);
8613 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
8615 DEVICE_ATTR_RO(nr_addr_filters
);
8617 static struct idr pmu_idr
;
8620 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
8622 struct pmu
*pmu
= dev_get_drvdata(dev
);
8624 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
8626 static DEVICE_ATTR_RO(type
);
8629 perf_event_mux_interval_ms_show(struct device
*dev
,
8630 struct device_attribute
*attr
,
8633 struct pmu
*pmu
= dev_get_drvdata(dev
);
8635 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
8638 static DEFINE_MUTEX(mux_interval_mutex
);
8641 perf_event_mux_interval_ms_store(struct device
*dev
,
8642 struct device_attribute
*attr
,
8643 const char *buf
, size_t count
)
8645 struct pmu
*pmu
= dev_get_drvdata(dev
);
8646 int timer
, cpu
, ret
;
8648 ret
= kstrtoint(buf
, 0, &timer
);
8655 /* same value, noting to do */
8656 if (timer
== pmu
->hrtimer_interval_ms
)
8659 mutex_lock(&mux_interval_mutex
);
8660 pmu
->hrtimer_interval_ms
= timer
;
8662 /* update all cpuctx for this PMU */
8664 for_each_online_cpu(cpu
) {
8665 struct perf_cpu_context
*cpuctx
;
8666 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8667 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
8669 cpu_function_call(cpu
,
8670 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
8673 mutex_unlock(&mux_interval_mutex
);
8677 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
8679 static struct attribute
*pmu_dev_attrs
[] = {
8680 &dev_attr_type
.attr
,
8681 &dev_attr_perf_event_mux_interval_ms
.attr
,
8684 ATTRIBUTE_GROUPS(pmu_dev
);
8686 static int pmu_bus_running
;
8687 static struct bus_type pmu_bus
= {
8688 .name
= "event_source",
8689 .dev_groups
= pmu_dev_groups
,
8692 static void pmu_dev_release(struct device
*dev
)
8697 static int pmu_dev_alloc(struct pmu
*pmu
)
8701 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
8705 pmu
->dev
->groups
= pmu
->attr_groups
;
8706 device_initialize(pmu
->dev
);
8707 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
8711 dev_set_drvdata(pmu
->dev
, pmu
);
8712 pmu
->dev
->bus
= &pmu_bus
;
8713 pmu
->dev
->release
= pmu_dev_release
;
8714 ret
= device_add(pmu
->dev
);
8718 /* For PMUs with address filters, throw in an extra attribute: */
8719 if (pmu
->nr_addr_filters
)
8720 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8729 device_del(pmu
->dev
);
8732 put_device(pmu
->dev
);
8736 static struct lock_class_key cpuctx_mutex
;
8737 static struct lock_class_key cpuctx_lock
;
8739 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
8743 mutex_lock(&pmus_lock
);
8745 pmu
->pmu_disable_count
= alloc_percpu(int);
8746 if (!pmu
->pmu_disable_count
)
8755 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
8763 if (pmu_bus_running
) {
8764 ret
= pmu_dev_alloc(pmu
);
8770 if (pmu
->task_ctx_nr
== perf_hw_context
) {
8771 static int hw_context_taken
= 0;
8774 * Other than systems with heterogeneous CPUs, it never makes
8775 * sense for two PMUs to share perf_hw_context. PMUs which are
8776 * uncore must use perf_invalid_context.
8778 if (WARN_ON_ONCE(hw_context_taken
&&
8779 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
8780 pmu
->task_ctx_nr
= perf_invalid_context
;
8782 hw_context_taken
= 1;
8785 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
8786 if (pmu
->pmu_cpu_context
)
8787 goto got_cpu_context
;
8790 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
8791 if (!pmu
->pmu_cpu_context
)
8794 for_each_possible_cpu(cpu
) {
8795 struct perf_cpu_context
*cpuctx
;
8797 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8798 __perf_event_init_context(&cpuctx
->ctx
);
8799 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
8800 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
8801 cpuctx
->ctx
.pmu
= pmu
;
8803 __perf_mux_hrtimer_init(cpuctx
, cpu
);
8805 cpuctx
->unique_pmu
= pmu
;
8809 if (!pmu
->start_txn
) {
8810 if (pmu
->pmu_enable
) {
8812 * If we have pmu_enable/pmu_disable calls, install
8813 * transaction stubs that use that to try and batch
8814 * hardware accesses.
8816 pmu
->start_txn
= perf_pmu_start_txn
;
8817 pmu
->commit_txn
= perf_pmu_commit_txn
;
8818 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
8820 pmu
->start_txn
= perf_pmu_nop_txn
;
8821 pmu
->commit_txn
= perf_pmu_nop_int
;
8822 pmu
->cancel_txn
= perf_pmu_nop_void
;
8826 if (!pmu
->pmu_enable
) {
8827 pmu
->pmu_enable
= perf_pmu_nop_void
;
8828 pmu
->pmu_disable
= perf_pmu_nop_void
;
8831 if (!pmu
->event_idx
)
8832 pmu
->event_idx
= perf_event_idx_default
;
8834 list_add_rcu(&pmu
->entry
, &pmus
);
8835 atomic_set(&pmu
->exclusive_cnt
, 0);
8838 mutex_unlock(&pmus_lock
);
8843 device_del(pmu
->dev
);
8844 put_device(pmu
->dev
);
8847 if (pmu
->type
>= PERF_TYPE_MAX
)
8848 idr_remove(&pmu_idr
, pmu
->type
);
8851 free_percpu(pmu
->pmu_disable_count
);
8854 EXPORT_SYMBOL_GPL(perf_pmu_register
);
8856 void perf_pmu_unregister(struct pmu
*pmu
)
8858 mutex_lock(&pmus_lock
);
8859 list_del_rcu(&pmu
->entry
);
8860 mutex_unlock(&pmus_lock
);
8863 * We dereference the pmu list under both SRCU and regular RCU, so
8864 * synchronize against both of those.
8866 synchronize_srcu(&pmus_srcu
);
8869 free_percpu(pmu
->pmu_disable_count
);
8870 if (pmu
->type
>= PERF_TYPE_MAX
)
8871 idr_remove(&pmu_idr
, pmu
->type
);
8872 if (pmu
->nr_addr_filters
)
8873 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8874 device_del(pmu
->dev
);
8875 put_device(pmu
->dev
);
8876 free_pmu_context(pmu
);
8878 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
8880 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
8882 struct perf_event_context
*ctx
= NULL
;
8885 if (!try_module_get(pmu
->module
))
8888 if (event
->group_leader
!= event
) {
8890 * This ctx->mutex can nest when we're called through
8891 * inheritance. See the perf_event_ctx_lock_nested() comment.
8893 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
8894 SINGLE_DEPTH_NESTING
);
8899 ret
= pmu
->event_init(event
);
8902 perf_event_ctx_unlock(event
->group_leader
, ctx
);
8905 module_put(pmu
->module
);
8910 static struct pmu
*perf_init_event(struct perf_event
*event
)
8912 struct pmu
*pmu
= NULL
;
8916 idx
= srcu_read_lock(&pmus_srcu
);
8919 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
8922 ret
= perf_try_init_event(pmu
, event
);
8928 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
8929 ret
= perf_try_init_event(pmu
, event
);
8933 if (ret
!= -ENOENT
) {
8938 pmu
= ERR_PTR(-ENOENT
);
8940 srcu_read_unlock(&pmus_srcu
, idx
);
8945 static void attach_sb_event(struct perf_event
*event
)
8947 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
8949 raw_spin_lock(&pel
->lock
);
8950 list_add_rcu(&event
->sb_list
, &pel
->list
);
8951 raw_spin_unlock(&pel
->lock
);
8955 * We keep a list of all !task (and therefore per-cpu) events
8956 * that need to receive side-band records.
8958 * This avoids having to scan all the various PMU per-cpu contexts
8961 static void account_pmu_sb_event(struct perf_event
*event
)
8963 if (is_sb_event(event
))
8964 attach_sb_event(event
);
8967 static void account_event_cpu(struct perf_event
*event
, int cpu
)
8972 if (is_cgroup_event(event
))
8973 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
8976 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8977 static void account_freq_event_nohz(void)
8979 #ifdef CONFIG_NO_HZ_FULL
8980 /* Lock so we don't race with concurrent unaccount */
8981 spin_lock(&nr_freq_lock
);
8982 if (atomic_inc_return(&nr_freq_events
) == 1)
8983 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
8984 spin_unlock(&nr_freq_lock
);
8988 static void account_freq_event(void)
8990 if (tick_nohz_full_enabled())
8991 account_freq_event_nohz();
8993 atomic_inc(&nr_freq_events
);
8997 static void account_event(struct perf_event
*event
)
9004 if (event
->attach_state
& PERF_ATTACH_TASK
)
9006 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
9007 atomic_inc(&nr_mmap_events
);
9008 if (event
->attr
.comm
)
9009 atomic_inc(&nr_comm_events
);
9010 if (event
->attr
.task
)
9011 atomic_inc(&nr_task_events
);
9012 if (event
->attr
.freq
)
9013 account_freq_event();
9014 if (event
->attr
.context_switch
) {
9015 atomic_inc(&nr_switch_events
);
9018 if (has_branch_stack(event
))
9020 if (is_cgroup_event(event
))
9024 if (atomic_inc_not_zero(&perf_sched_count
))
9027 mutex_lock(&perf_sched_mutex
);
9028 if (!atomic_read(&perf_sched_count
)) {
9029 static_branch_enable(&perf_sched_events
);
9031 * Guarantee that all CPUs observe they key change and
9032 * call the perf scheduling hooks before proceeding to
9033 * install events that need them.
9035 synchronize_sched();
9038 * Now that we have waited for the sync_sched(), allow further
9039 * increments to by-pass the mutex.
9041 atomic_inc(&perf_sched_count
);
9042 mutex_unlock(&perf_sched_mutex
);
9046 account_event_cpu(event
, event
->cpu
);
9048 account_pmu_sb_event(event
);
9052 * Allocate and initialize a event structure
9054 static struct perf_event
*
9055 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
9056 struct task_struct
*task
,
9057 struct perf_event
*group_leader
,
9058 struct perf_event
*parent_event
,
9059 perf_overflow_handler_t overflow_handler
,
9060 void *context
, int cgroup_fd
)
9063 struct perf_event
*event
;
9064 struct hw_perf_event
*hwc
;
9067 if ((unsigned)cpu
>= nr_cpu_ids
) {
9068 if (!task
|| cpu
!= -1)
9069 return ERR_PTR(-EINVAL
);
9072 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
9074 return ERR_PTR(-ENOMEM
);
9077 * Single events are their own group leaders, with an
9078 * empty sibling list:
9081 group_leader
= event
;
9083 mutex_init(&event
->child_mutex
);
9084 INIT_LIST_HEAD(&event
->child_list
);
9086 INIT_LIST_HEAD(&event
->group_entry
);
9087 INIT_LIST_HEAD(&event
->event_entry
);
9088 INIT_LIST_HEAD(&event
->sibling_list
);
9089 INIT_LIST_HEAD(&event
->rb_entry
);
9090 INIT_LIST_HEAD(&event
->active_entry
);
9091 INIT_LIST_HEAD(&event
->addr_filters
.list
);
9092 INIT_HLIST_NODE(&event
->hlist_entry
);
9095 init_waitqueue_head(&event
->waitq
);
9096 init_irq_work(&event
->pending
, perf_pending_event
);
9098 mutex_init(&event
->mmap_mutex
);
9099 raw_spin_lock_init(&event
->addr_filters
.lock
);
9101 atomic_long_set(&event
->refcount
, 1);
9103 event
->attr
= *attr
;
9104 event
->group_leader
= group_leader
;
9108 event
->parent
= parent_event
;
9110 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
9111 event
->id
= atomic64_inc_return(&perf_event_id
);
9113 event
->state
= PERF_EVENT_STATE_INACTIVE
;
9116 event
->attach_state
= PERF_ATTACH_TASK
;
9118 * XXX pmu::event_init needs to know what task to account to
9119 * and we cannot use the ctx information because we need the
9120 * pmu before we get a ctx.
9122 event
->hw
.target
= task
;
9125 event
->clock
= &local_clock
;
9127 event
->clock
= parent_event
->clock
;
9129 if (!overflow_handler
&& parent_event
) {
9130 overflow_handler
= parent_event
->overflow_handler
;
9131 context
= parent_event
->overflow_handler_context
;
9132 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9133 if (overflow_handler
== bpf_overflow_handler
) {
9134 struct bpf_prog
*prog
= bpf_prog_inc(parent_event
->prog
);
9137 err
= PTR_ERR(prog
);
9141 event
->orig_overflow_handler
=
9142 parent_event
->orig_overflow_handler
;
9147 if (overflow_handler
) {
9148 event
->overflow_handler
= overflow_handler
;
9149 event
->overflow_handler_context
= context
;
9150 } else if (is_write_backward(event
)){
9151 event
->overflow_handler
= perf_event_output_backward
;
9152 event
->overflow_handler_context
= NULL
;
9154 event
->overflow_handler
= perf_event_output_forward
;
9155 event
->overflow_handler_context
= NULL
;
9158 perf_event__state_init(event
);
9163 hwc
->sample_period
= attr
->sample_period
;
9164 if (attr
->freq
&& attr
->sample_freq
)
9165 hwc
->sample_period
= 1;
9166 hwc
->last_period
= hwc
->sample_period
;
9168 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9171 * we currently do not support PERF_FORMAT_GROUP on inherited events
9173 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
9176 if (!has_branch_stack(event
))
9177 event
->attr
.branch_sample_type
= 0;
9179 if (cgroup_fd
!= -1) {
9180 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
9185 pmu
= perf_init_event(event
);
9188 else if (IS_ERR(pmu
)) {
9193 err
= exclusive_event_init(event
);
9197 if (has_addr_filter(event
)) {
9198 event
->addr_filters_offs
= kcalloc(pmu
->nr_addr_filters
,
9199 sizeof(unsigned long),
9201 if (!event
->addr_filters_offs
)
9204 /* force hw sync on the address filters */
9205 event
->addr_filters_gen
= 1;
9208 if (!event
->parent
) {
9209 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
9210 err
= get_callchain_buffers(attr
->sample_max_stack
);
9212 goto err_addr_filters
;
9216 /* symmetric to unaccount_event() in _free_event() */
9217 account_event(event
);
9222 kfree(event
->addr_filters_offs
);
9225 exclusive_event_destroy(event
);
9229 event
->destroy(event
);
9230 module_put(pmu
->module
);
9232 if (is_cgroup_event(event
))
9233 perf_detach_cgroup(event
);
9235 put_pid_ns(event
->ns
);
9238 return ERR_PTR(err
);
9241 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
9242 struct perf_event_attr
*attr
)
9247 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
9251 * zero the full structure, so that a short copy will be nice.
9253 memset(attr
, 0, sizeof(*attr
));
9255 ret
= get_user(size
, &uattr
->size
);
9259 if (size
> PAGE_SIZE
) /* silly large */
9262 if (!size
) /* abi compat */
9263 size
= PERF_ATTR_SIZE_VER0
;
9265 if (size
< PERF_ATTR_SIZE_VER0
)
9269 * If we're handed a bigger struct than we know of,
9270 * ensure all the unknown bits are 0 - i.e. new
9271 * user-space does not rely on any kernel feature
9272 * extensions we dont know about yet.
9274 if (size
> sizeof(*attr
)) {
9275 unsigned char __user
*addr
;
9276 unsigned char __user
*end
;
9279 addr
= (void __user
*)uattr
+ sizeof(*attr
);
9280 end
= (void __user
*)uattr
+ size
;
9282 for (; addr
< end
; addr
++) {
9283 ret
= get_user(val
, addr
);
9289 size
= sizeof(*attr
);
9292 ret
= copy_from_user(attr
, uattr
, size
);
9296 if (attr
->__reserved_1
)
9299 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
9302 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
9305 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
9306 u64 mask
= attr
->branch_sample_type
;
9308 /* only using defined bits */
9309 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
9312 /* at least one branch bit must be set */
9313 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
9316 /* propagate priv level, when not set for branch */
9317 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
9319 /* exclude_kernel checked on syscall entry */
9320 if (!attr
->exclude_kernel
)
9321 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
9323 if (!attr
->exclude_user
)
9324 mask
|= PERF_SAMPLE_BRANCH_USER
;
9326 if (!attr
->exclude_hv
)
9327 mask
|= PERF_SAMPLE_BRANCH_HV
;
9329 * adjust user setting (for HW filter setup)
9331 attr
->branch_sample_type
= mask
;
9333 /* privileged levels capture (kernel, hv): check permissions */
9334 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
9335 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9339 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
9340 ret
= perf_reg_validate(attr
->sample_regs_user
);
9345 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
9346 if (!arch_perf_have_user_stack_dump())
9350 * We have __u32 type for the size, but so far
9351 * we can only use __u16 as maximum due to the
9352 * __u16 sample size limit.
9354 if (attr
->sample_stack_user
>= USHRT_MAX
)
9356 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
9360 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
9361 ret
= perf_reg_validate(attr
->sample_regs_intr
);
9366 put_user(sizeof(*attr
), &uattr
->size
);
9372 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
9374 struct ring_buffer
*rb
= NULL
;
9380 /* don't allow circular references */
9381 if (event
== output_event
)
9385 * Don't allow cross-cpu buffers
9387 if (output_event
->cpu
!= event
->cpu
)
9391 * If its not a per-cpu rb, it must be the same task.
9393 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
9397 * Mixing clocks in the same buffer is trouble you don't need.
9399 if (output_event
->clock
!= event
->clock
)
9403 * Either writing ring buffer from beginning or from end.
9404 * Mixing is not allowed.
9406 if (is_write_backward(output_event
) != is_write_backward(event
))
9410 * If both events generate aux data, they must be on the same PMU
9412 if (has_aux(event
) && has_aux(output_event
) &&
9413 event
->pmu
!= output_event
->pmu
)
9417 mutex_lock(&event
->mmap_mutex
);
9418 /* Can't redirect output if we've got an active mmap() */
9419 if (atomic_read(&event
->mmap_count
))
9423 /* get the rb we want to redirect to */
9424 rb
= ring_buffer_get(output_event
);
9429 ring_buffer_attach(event
, rb
);
9433 mutex_unlock(&event
->mmap_mutex
);
9439 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
9445 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
9448 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
9450 bool nmi_safe
= false;
9453 case CLOCK_MONOTONIC
:
9454 event
->clock
= &ktime_get_mono_fast_ns
;
9458 case CLOCK_MONOTONIC_RAW
:
9459 event
->clock
= &ktime_get_raw_fast_ns
;
9463 case CLOCK_REALTIME
:
9464 event
->clock
= &ktime_get_real_ns
;
9467 case CLOCK_BOOTTIME
:
9468 event
->clock
= &ktime_get_boot_ns
;
9472 event
->clock
= &ktime_get_tai_ns
;
9479 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
9486 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9488 * @attr_uptr: event_id type attributes for monitoring/sampling
9491 * @group_fd: group leader event fd
9493 SYSCALL_DEFINE5(perf_event_open
,
9494 struct perf_event_attr __user
*, attr_uptr
,
9495 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
9497 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
9498 struct perf_event
*event
, *sibling
;
9499 struct perf_event_attr attr
;
9500 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
9501 struct file
*event_file
= NULL
;
9502 struct fd group
= {NULL
, 0};
9503 struct task_struct
*task
= NULL
;
9508 int f_flags
= O_RDWR
;
9511 /* for future expandability... */
9512 if (flags
& ~PERF_FLAG_ALL
)
9515 err
= perf_copy_attr(attr_uptr
, &attr
);
9519 if (!attr
.exclude_kernel
) {
9520 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9525 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
9528 if (attr
.sample_period
& (1ULL << 63))
9532 if (!attr
.sample_max_stack
)
9533 attr
.sample_max_stack
= sysctl_perf_event_max_stack
;
9536 * In cgroup mode, the pid argument is used to pass the fd
9537 * opened to the cgroup directory in cgroupfs. The cpu argument
9538 * designates the cpu on which to monitor threads from that
9541 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
9544 if (flags
& PERF_FLAG_FD_CLOEXEC
)
9545 f_flags
|= O_CLOEXEC
;
9547 event_fd
= get_unused_fd_flags(f_flags
);
9551 if (group_fd
!= -1) {
9552 err
= perf_fget_light(group_fd
, &group
);
9555 group_leader
= group
.file
->private_data
;
9556 if (flags
& PERF_FLAG_FD_OUTPUT
)
9557 output_event
= group_leader
;
9558 if (flags
& PERF_FLAG_FD_NO_GROUP
)
9559 group_leader
= NULL
;
9562 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
9563 task
= find_lively_task_by_vpid(pid
);
9565 err
= PTR_ERR(task
);
9570 if (task
&& group_leader
&&
9571 group_leader
->attr
.inherit
!= attr
.inherit
) {
9579 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
9584 * Reuse ptrace permission checks for now.
9586 * We must hold cred_guard_mutex across this and any potential
9587 * perf_install_in_context() call for this new event to
9588 * serialize against exec() altering our credentials (and the
9589 * perf_event_exit_task() that could imply).
9592 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
9596 if (flags
& PERF_FLAG_PID_CGROUP
)
9599 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
9600 NULL
, NULL
, cgroup_fd
);
9601 if (IS_ERR(event
)) {
9602 err
= PTR_ERR(event
);
9606 if (is_sampling_event(event
)) {
9607 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
9614 * Special case software events and allow them to be part of
9615 * any hardware group.
9619 if (attr
.use_clockid
) {
9620 err
= perf_event_set_clock(event
, attr
.clockid
);
9625 if (pmu
->task_ctx_nr
== perf_sw_context
)
9626 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
9629 (is_software_event(event
) != is_software_event(group_leader
))) {
9630 if (is_software_event(event
)) {
9632 * If event and group_leader are not both a software
9633 * event, and event is, then group leader is not.
9635 * Allow the addition of software events to !software
9636 * groups, this is safe because software events never
9639 pmu
= group_leader
->pmu
;
9640 } else if (is_software_event(group_leader
) &&
9641 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9643 * In case the group is a pure software group, and we
9644 * try to add a hardware event, move the whole group to
9645 * the hardware context.
9652 * Get the target context (task or percpu):
9654 ctx
= find_get_context(pmu
, task
, event
);
9660 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
9666 * Look up the group leader (we will attach this event to it):
9672 * Do not allow a recursive hierarchy (this new sibling
9673 * becoming part of another group-sibling):
9675 if (group_leader
->group_leader
!= group_leader
)
9678 /* All events in a group should have the same clock */
9679 if (group_leader
->clock
!= event
->clock
)
9683 * Do not allow to attach to a group in a different
9684 * task or CPU context:
9688 * Make sure we're both on the same task, or both
9691 if (group_leader
->ctx
->task
!= ctx
->task
)
9695 * Make sure we're both events for the same CPU;
9696 * grouping events for different CPUs is broken; since
9697 * you can never concurrently schedule them anyhow.
9699 if (group_leader
->cpu
!= event
->cpu
)
9702 if (group_leader
->ctx
!= ctx
)
9707 * Only a group leader can be exclusive or pinned
9709 if (attr
.exclusive
|| attr
.pinned
)
9714 err
= perf_event_set_output(event
, output_event
);
9719 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
9721 if (IS_ERR(event_file
)) {
9722 err
= PTR_ERR(event_file
);
9728 gctx
= group_leader
->ctx
;
9729 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
9730 if (gctx
->task
== TASK_TOMBSTONE
) {
9735 mutex_lock(&ctx
->mutex
);
9738 if (ctx
->task
== TASK_TOMBSTONE
) {
9743 if (!perf_event_validate_size(event
)) {
9749 * Must be under the same ctx::mutex as perf_install_in_context(),
9750 * because we need to serialize with concurrent event creation.
9752 if (!exclusive_event_installable(event
, ctx
)) {
9753 /* exclusive and group stuff are assumed mutually exclusive */
9754 WARN_ON_ONCE(move_group
);
9760 WARN_ON_ONCE(ctx
->parent_ctx
);
9763 * This is the point on no return; we cannot fail hereafter. This is
9764 * where we start modifying current state.
9769 * See perf_event_ctx_lock() for comments on the details
9770 * of swizzling perf_event::ctx.
9772 perf_remove_from_context(group_leader
, 0);
9774 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9776 perf_remove_from_context(sibling
, 0);
9781 * Wait for everybody to stop referencing the events through
9782 * the old lists, before installing it on new lists.
9787 * Install the group siblings before the group leader.
9789 * Because a group leader will try and install the entire group
9790 * (through the sibling list, which is still in-tact), we can
9791 * end up with siblings installed in the wrong context.
9793 * By installing siblings first we NO-OP because they're not
9794 * reachable through the group lists.
9796 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9798 perf_event__state_init(sibling
);
9799 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
9804 * Removing from the context ends up with disabled
9805 * event. What we want here is event in the initial
9806 * startup state, ready to be add into new context.
9808 perf_event__state_init(group_leader
);
9809 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
9813 * Now that all events are installed in @ctx, nothing
9814 * references @gctx anymore, so drop the last reference we have
9821 * Precalculate sample_data sizes; do while holding ctx::mutex such
9822 * that we're serialized against further additions and before
9823 * perf_install_in_context() which is the point the event is active and
9824 * can use these values.
9826 perf_event__header_size(event
);
9827 perf_event__id_header_size(event
);
9829 event
->owner
= current
;
9831 perf_install_in_context(ctx
, event
, event
->cpu
);
9832 perf_unpin_context(ctx
);
9835 mutex_unlock(&gctx
->mutex
);
9836 mutex_unlock(&ctx
->mutex
);
9839 mutex_unlock(&task
->signal
->cred_guard_mutex
);
9840 put_task_struct(task
);
9845 mutex_lock(¤t
->perf_event_mutex
);
9846 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
9847 mutex_unlock(¤t
->perf_event_mutex
);
9850 * Drop the reference on the group_event after placing the
9851 * new event on the sibling_list. This ensures destruction
9852 * of the group leader will find the pointer to itself in
9853 * perf_group_detach().
9856 fd_install(event_fd
, event_file
);
9861 mutex_unlock(&gctx
->mutex
);
9862 mutex_unlock(&ctx
->mutex
);
9866 perf_unpin_context(ctx
);
9870 * If event_file is set, the fput() above will have called ->release()
9871 * and that will take care of freeing the event.
9877 mutex_unlock(&task
->signal
->cred_guard_mutex
);
9882 put_task_struct(task
);
9886 put_unused_fd(event_fd
);
9891 * perf_event_create_kernel_counter
9893 * @attr: attributes of the counter to create
9894 * @cpu: cpu in which the counter is bound
9895 * @task: task to profile (NULL for percpu)
9898 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
9899 struct task_struct
*task
,
9900 perf_overflow_handler_t overflow_handler
,
9903 struct perf_event_context
*ctx
;
9904 struct perf_event
*event
;
9908 * Get the target context (task or percpu):
9911 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
9912 overflow_handler
, context
, -1);
9913 if (IS_ERR(event
)) {
9914 err
= PTR_ERR(event
);
9918 /* Mark owner so we could distinguish it from user events. */
9919 event
->owner
= TASK_TOMBSTONE
;
9921 ctx
= find_get_context(event
->pmu
, task
, event
);
9927 WARN_ON_ONCE(ctx
->parent_ctx
);
9928 mutex_lock(&ctx
->mutex
);
9929 if (ctx
->task
== TASK_TOMBSTONE
) {
9934 if (!exclusive_event_installable(event
, ctx
)) {
9939 perf_install_in_context(ctx
, event
, cpu
);
9940 perf_unpin_context(ctx
);
9941 mutex_unlock(&ctx
->mutex
);
9946 mutex_unlock(&ctx
->mutex
);
9947 perf_unpin_context(ctx
);
9952 return ERR_PTR(err
);
9954 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
9956 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
9958 struct perf_event_context
*src_ctx
;
9959 struct perf_event_context
*dst_ctx
;
9960 struct perf_event
*event
, *tmp
;
9963 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
9964 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
9967 * See perf_event_ctx_lock() for comments on the details
9968 * of swizzling perf_event::ctx.
9970 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
9971 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
9973 perf_remove_from_context(event
, 0);
9974 unaccount_event_cpu(event
, src_cpu
);
9976 list_add(&event
->migrate_entry
, &events
);
9980 * Wait for the events to quiesce before re-instating them.
9985 * Re-instate events in 2 passes.
9987 * Skip over group leaders and only install siblings on this first
9988 * pass, siblings will not get enabled without a leader, however a
9989 * leader will enable its siblings, even if those are still on the old
9992 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
9993 if (event
->group_leader
== event
)
9996 list_del(&event
->migrate_entry
);
9997 if (event
->state
>= PERF_EVENT_STATE_OFF
)
9998 event
->state
= PERF_EVENT_STATE_INACTIVE
;
9999 account_event_cpu(event
, dst_cpu
);
10000 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10005 * Once all the siblings are setup properly, install the group leaders
10008 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10009 list_del(&event
->migrate_entry
);
10010 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10011 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10012 account_event_cpu(event
, dst_cpu
);
10013 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10016 mutex_unlock(&dst_ctx
->mutex
);
10017 mutex_unlock(&src_ctx
->mutex
);
10019 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
10021 static void sync_child_event(struct perf_event
*child_event
,
10022 struct task_struct
*child
)
10024 struct perf_event
*parent_event
= child_event
->parent
;
10027 if (child_event
->attr
.inherit_stat
)
10028 perf_event_read_event(child_event
, child
);
10030 child_val
= perf_event_count(child_event
);
10033 * Add back the child's count to the parent's count:
10035 atomic64_add(child_val
, &parent_event
->child_count
);
10036 atomic64_add(child_event
->total_time_enabled
,
10037 &parent_event
->child_total_time_enabled
);
10038 atomic64_add(child_event
->total_time_running
,
10039 &parent_event
->child_total_time_running
);
10043 perf_event_exit_event(struct perf_event
*child_event
,
10044 struct perf_event_context
*child_ctx
,
10045 struct task_struct
*child
)
10047 struct perf_event
*parent_event
= child_event
->parent
;
10050 * Do not destroy the 'original' grouping; because of the context
10051 * switch optimization the original events could've ended up in a
10052 * random child task.
10054 * If we were to destroy the original group, all group related
10055 * operations would cease to function properly after this random
10058 * Do destroy all inherited groups, we don't care about those
10059 * and being thorough is better.
10061 raw_spin_lock_irq(&child_ctx
->lock
);
10062 WARN_ON_ONCE(child_ctx
->is_active
);
10065 perf_group_detach(child_event
);
10066 list_del_event(child_event
, child_ctx
);
10067 child_event
->state
= PERF_EVENT_STATE_EXIT
; /* is_event_hup() */
10068 raw_spin_unlock_irq(&child_ctx
->lock
);
10071 * Parent events are governed by their filedesc, retain them.
10073 if (!parent_event
) {
10074 perf_event_wakeup(child_event
);
10078 * Child events can be cleaned up.
10081 sync_child_event(child_event
, child
);
10084 * Remove this event from the parent's list
10086 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
10087 mutex_lock(&parent_event
->child_mutex
);
10088 list_del_init(&child_event
->child_list
);
10089 mutex_unlock(&parent_event
->child_mutex
);
10092 * Kick perf_poll() for is_event_hup().
10094 perf_event_wakeup(parent_event
);
10095 free_event(child_event
);
10096 put_event(parent_event
);
10099 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
10101 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
10102 struct perf_event
*child_event
, *next
;
10104 WARN_ON_ONCE(child
!= current
);
10106 child_ctx
= perf_pin_task_context(child
, ctxn
);
10111 * In order to reduce the amount of tricky in ctx tear-down, we hold
10112 * ctx::mutex over the entire thing. This serializes against almost
10113 * everything that wants to access the ctx.
10115 * The exception is sys_perf_event_open() /
10116 * perf_event_create_kernel_count() which does find_get_context()
10117 * without ctx::mutex (it cannot because of the move_group double mutex
10118 * lock thing). See the comments in perf_install_in_context().
10120 mutex_lock(&child_ctx
->mutex
);
10123 * In a single ctx::lock section, de-schedule the events and detach the
10124 * context from the task such that we cannot ever get it scheduled back
10127 raw_spin_lock_irq(&child_ctx
->lock
);
10128 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
);
10131 * Now that the context is inactive, destroy the task <-> ctx relation
10132 * and mark the context dead.
10134 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
10135 put_ctx(child_ctx
); /* cannot be last */
10136 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
10137 put_task_struct(current
); /* cannot be last */
10139 clone_ctx
= unclone_ctx(child_ctx
);
10140 raw_spin_unlock_irq(&child_ctx
->lock
);
10143 put_ctx(clone_ctx
);
10146 * Report the task dead after unscheduling the events so that we
10147 * won't get any samples after PERF_RECORD_EXIT. We can however still
10148 * get a few PERF_RECORD_READ events.
10150 perf_event_task(child
, child_ctx
, 0);
10152 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
10153 perf_event_exit_event(child_event
, child_ctx
, child
);
10155 mutex_unlock(&child_ctx
->mutex
);
10157 put_ctx(child_ctx
);
10161 * When a child task exits, feed back event values to parent events.
10163 * Can be called with cred_guard_mutex held when called from
10164 * install_exec_creds().
10166 void perf_event_exit_task(struct task_struct
*child
)
10168 struct perf_event
*event
, *tmp
;
10171 mutex_lock(&child
->perf_event_mutex
);
10172 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
10174 list_del_init(&event
->owner_entry
);
10177 * Ensure the list deletion is visible before we clear
10178 * the owner, closes a race against perf_release() where
10179 * we need to serialize on the owner->perf_event_mutex.
10181 smp_store_release(&event
->owner
, NULL
);
10183 mutex_unlock(&child
->perf_event_mutex
);
10185 for_each_task_context_nr(ctxn
)
10186 perf_event_exit_task_context(child
, ctxn
);
10189 * The perf_event_exit_task_context calls perf_event_task
10190 * with child's task_ctx, which generates EXIT events for
10191 * child contexts and sets child->perf_event_ctxp[] to NULL.
10192 * At this point we need to send EXIT events to cpu contexts.
10194 perf_event_task(child
, NULL
, 0);
10197 static void perf_free_event(struct perf_event
*event
,
10198 struct perf_event_context
*ctx
)
10200 struct perf_event
*parent
= event
->parent
;
10202 if (WARN_ON_ONCE(!parent
))
10205 mutex_lock(&parent
->child_mutex
);
10206 list_del_init(&event
->child_list
);
10207 mutex_unlock(&parent
->child_mutex
);
10211 raw_spin_lock_irq(&ctx
->lock
);
10212 perf_group_detach(event
);
10213 list_del_event(event
, ctx
);
10214 raw_spin_unlock_irq(&ctx
->lock
);
10219 * Free an unexposed, unused context as created by inheritance by
10220 * perf_event_init_task below, used by fork() in case of fail.
10222 * Not all locks are strictly required, but take them anyway to be nice and
10223 * help out with the lockdep assertions.
10225 void perf_event_free_task(struct task_struct
*task
)
10227 struct perf_event_context
*ctx
;
10228 struct perf_event
*event
, *tmp
;
10231 for_each_task_context_nr(ctxn
) {
10232 ctx
= task
->perf_event_ctxp
[ctxn
];
10236 mutex_lock(&ctx
->mutex
);
10238 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
10240 perf_free_event(event
, ctx
);
10242 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
10244 perf_free_event(event
, ctx
);
10246 if (!list_empty(&ctx
->pinned_groups
) ||
10247 !list_empty(&ctx
->flexible_groups
))
10250 mutex_unlock(&ctx
->mutex
);
10256 void perf_event_delayed_put(struct task_struct
*task
)
10260 for_each_task_context_nr(ctxn
)
10261 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
10264 struct file
*perf_event_get(unsigned int fd
)
10268 file
= fget_raw(fd
);
10270 return ERR_PTR(-EBADF
);
10272 if (file
->f_op
!= &perf_fops
) {
10274 return ERR_PTR(-EBADF
);
10280 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
10283 return ERR_PTR(-EINVAL
);
10285 return &event
->attr
;
10289 * inherit a event from parent task to child task:
10291 static struct perf_event
*
10292 inherit_event(struct perf_event
*parent_event
,
10293 struct task_struct
*parent
,
10294 struct perf_event_context
*parent_ctx
,
10295 struct task_struct
*child
,
10296 struct perf_event
*group_leader
,
10297 struct perf_event_context
*child_ctx
)
10299 enum perf_event_active_state parent_state
= parent_event
->state
;
10300 struct perf_event
*child_event
;
10301 unsigned long flags
;
10304 * Instead of creating recursive hierarchies of events,
10305 * we link inherited events back to the original parent,
10306 * which has a filp for sure, which we use as the reference
10309 if (parent_event
->parent
)
10310 parent_event
= parent_event
->parent
;
10312 child_event
= perf_event_alloc(&parent_event
->attr
,
10315 group_leader
, parent_event
,
10317 if (IS_ERR(child_event
))
10318 return child_event
;
10321 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10322 * must be under the same lock in order to serialize against
10323 * perf_event_release_kernel(), such that either we must observe
10324 * is_orphaned_event() or they will observe us on the child_list.
10326 mutex_lock(&parent_event
->child_mutex
);
10327 if (is_orphaned_event(parent_event
) ||
10328 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
10329 mutex_unlock(&parent_event
->child_mutex
);
10330 free_event(child_event
);
10334 get_ctx(child_ctx
);
10337 * Make the child state follow the state of the parent event,
10338 * not its attr.disabled bit. We hold the parent's mutex,
10339 * so we won't race with perf_event_{en, dis}able_family.
10341 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
10342 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
10344 child_event
->state
= PERF_EVENT_STATE_OFF
;
10346 if (parent_event
->attr
.freq
) {
10347 u64 sample_period
= parent_event
->hw
.sample_period
;
10348 struct hw_perf_event
*hwc
= &child_event
->hw
;
10350 hwc
->sample_period
= sample_period
;
10351 hwc
->last_period
= sample_period
;
10353 local64_set(&hwc
->period_left
, sample_period
);
10356 child_event
->ctx
= child_ctx
;
10357 child_event
->overflow_handler
= parent_event
->overflow_handler
;
10358 child_event
->overflow_handler_context
10359 = parent_event
->overflow_handler_context
;
10362 * Precalculate sample_data sizes
10364 perf_event__header_size(child_event
);
10365 perf_event__id_header_size(child_event
);
10368 * Link it up in the child's context:
10370 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
10371 add_event_to_ctx(child_event
, child_ctx
);
10372 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
10375 * Link this into the parent event's child list
10377 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
10378 mutex_unlock(&parent_event
->child_mutex
);
10380 return child_event
;
10383 static int inherit_group(struct perf_event
*parent_event
,
10384 struct task_struct
*parent
,
10385 struct perf_event_context
*parent_ctx
,
10386 struct task_struct
*child
,
10387 struct perf_event_context
*child_ctx
)
10389 struct perf_event
*leader
;
10390 struct perf_event
*sub
;
10391 struct perf_event
*child_ctr
;
10393 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
10394 child
, NULL
, child_ctx
);
10395 if (IS_ERR(leader
))
10396 return PTR_ERR(leader
);
10397 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
10398 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
10399 child
, leader
, child_ctx
);
10400 if (IS_ERR(child_ctr
))
10401 return PTR_ERR(child_ctr
);
10407 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
10408 struct perf_event_context
*parent_ctx
,
10409 struct task_struct
*child
, int ctxn
,
10410 int *inherited_all
)
10413 struct perf_event_context
*child_ctx
;
10415 if (!event
->attr
.inherit
) {
10416 *inherited_all
= 0;
10420 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10423 * This is executed from the parent task context, so
10424 * inherit events that have been marked for cloning.
10425 * First allocate and initialize a context for the
10429 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
10433 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
10436 ret
= inherit_group(event
, parent
, parent_ctx
,
10440 *inherited_all
= 0;
10446 * Initialize the perf_event context in task_struct
10448 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
10450 struct perf_event_context
*child_ctx
, *parent_ctx
;
10451 struct perf_event_context
*cloned_ctx
;
10452 struct perf_event
*event
;
10453 struct task_struct
*parent
= current
;
10454 int inherited_all
= 1;
10455 unsigned long flags
;
10458 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
10462 * If the parent's context is a clone, pin it so it won't get
10463 * swapped under us.
10465 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
10470 * No need to check if parent_ctx != NULL here; since we saw
10471 * it non-NULL earlier, the only reason for it to become NULL
10472 * is if we exit, and since we're currently in the middle of
10473 * a fork we can't be exiting at the same time.
10477 * Lock the parent list. No need to lock the child - not PID
10478 * hashed yet and not running, so nobody can access it.
10480 mutex_lock(&parent_ctx
->mutex
);
10483 * We dont have to disable NMIs - we are only looking at
10484 * the list, not manipulating it:
10486 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
10487 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10488 child
, ctxn
, &inherited_all
);
10494 * We can't hold ctx->lock when iterating the ->flexible_group list due
10495 * to allocations, but we need to prevent rotation because
10496 * rotate_ctx() will change the list from interrupt context.
10498 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10499 parent_ctx
->rotate_disable
= 1;
10500 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10502 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
10503 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10504 child
, ctxn
, &inherited_all
);
10509 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10510 parent_ctx
->rotate_disable
= 0;
10512 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10514 if (child_ctx
&& inherited_all
) {
10516 * Mark the child context as a clone of the parent
10517 * context, or of whatever the parent is a clone of.
10519 * Note that if the parent is a clone, the holding of
10520 * parent_ctx->lock avoids it from being uncloned.
10522 cloned_ctx
= parent_ctx
->parent_ctx
;
10524 child_ctx
->parent_ctx
= cloned_ctx
;
10525 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
10527 child_ctx
->parent_ctx
= parent_ctx
;
10528 child_ctx
->parent_gen
= parent_ctx
->generation
;
10530 get_ctx(child_ctx
->parent_ctx
);
10533 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10534 mutex_unlock(&parent_ctx
->mutex
);
10536 perf_unpin_context(parent_ctx
);
10537 put_ctx(parent_ctx
);
10543 * Initialize the perf_event context in task_struct
10545 int perf_event_init_task(struct task_struct
*child
)
10549 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
10550 mutex_init(&child
->perf_event_mutex
);
10551 INIT_LIST_HEAD(&child
->perf_event_list
);
10553 for_each_task_context_nr(ctxn
) {
10554 ret
= perf_event_init_context(child
, ctxn
);
10556 perf_event_free_task(child
);
10564 static void __init
perf_event_init_all_cpus(void)
10566 struct swevent_htable
*swhash
;
10569 for_each_possible_cpu(cpu
) {
10570 swhash
= &per_cpu(swevent_htable
, cpu
);
10571 mutex_init(&swhash
->hlist_mutex
);
10572 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
10574 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
10575 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
10577 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
10581 int perf_event_init_cpu(unsigned int cpu
)
10583 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
10585 mutex_lock(&swhash
->hlist_mutex
);
10586 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
10587 struct swevent_hlist
*hlist
;
10589 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
10591 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
10593 mutex_unlock(&swhash
->hlist_mutex
);
10597 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10598 static void __perf_event_exit_context(void *__info
)
10600 struct perf_event_context
*ctx
= __info
;
10601 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
10602 struct perf_event
*event
;
10604 raw_spin_lock(&ctx
->lock
);
10605 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
10606 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
10607 raw_spin_unlock(&ctx
->lock
);
10610 static void perf_event_exit_cpu_context(int cpu
)
10612 struct perf_event_context
*ctx
;
10616 idx
= srcu_read_lock(&pmus_srcu
);
10617 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
10618 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
10620 mutex_lock(&ctx
->mutex
);
10621 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
10622 mutex_unlock(&ctx
->mutex
);
10624 srcu_read_unlock(&pmus_srcu
, idx
);
10628 static void perf_event_exit_cpu_context(int cpu
) { }
10632 int perf_event_exit_cpu(unsigned int cpu
)
10634 perf_event_exit_cpu_context(cpu
);
10639 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
10643 for_each_online_cpu(cpu
)
10644 perf_event_exit_cpu(cpu
);
10650 * Run the perf reboot notifier at the very last possible moment so that
10651 * the generic watchdog code runs as long as possible.
10653 static struct notifier_block perf_reboot_notifier
= {
10654 .notifier_call
= perf_reboot
,
10655 .priority
= INT_MIN
,
10658 void __init
perf_event_init(void)
10662 idr_init(&pmu_idr
);
10664 perf_event_init_all_cpus();
10665 init_srcu_struct(&pmus_srcu
);
10666 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
10667 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
10668 perf_pmu_register(&perf_task_clock
, NULL
, -1);
10669 perf_tp_register();
10670 perf_event_init_cpu(smp_processor_id());
10671 register_reboot_notifier(&perf_reboot_notifier
);
10673 ret
= init_hw_breakpoint();
10674 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
10677 * Build time assertion that we keep the data_head at the intended
10678 * location. IOW, validation we got the __reserved[] size right.
10680 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
10684 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
10687 struct perf_pmu_events_attr
*pmu_attr
=
10688 container_of(attr
, struct perf_pmu_events_attr
, attr
);
10690 if (pmu_attr
->event_str
)
10691 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
10695 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
10697 static int __init
perf_event_sysfs_init(void)
10702 mutex_lock(&pmus_lock
);
10704 ret
= bus_register(&pmu_bus
);
10708 list_for_each_entry(pmu
, &pmus
, entry
) {
10709 if (!pmu
->name
|| pmu
->type
< 0)
10712 ret
= pmu_dev_alloc(pmu
);
10713 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
10715 pmu_bus_running
= 1;
10719 mutex_unlock(&pmus_lock
);
10723 device_initcall(perf_event_sysfs_init
);
10725 #ifdef CONFIG_CGROUP_PERF
10726 static struct cgroup_subsys_state
*
10727 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
10729 struct perf_cgroup
*jc
;
10731 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
10733 return ERR_PTR(-ENOMEM
);
10735 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
10738 return ERR_PTR(-ENOMEM
);
10744 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
10746 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
10748 free_percpu(jc
->info
);
10752 static int __perf_cgroup_move(void *info
)
10754 struct task_struct
*task
= info
;
10756 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
10761 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
10763 struct task_struct
*task
;
10764 struct cgroup_subsys_state
*css
;
10766 cgroup_taskset_for_each(task
, css
, tset
)
10767 task_function_call(task
, __perf_cgroup_move
, task
);
10770 struct cgroup_subsys perf_event_cgrp_subsys
= {
10771 .css_alloc
= perf_cgroup_css_alloc
,
10772 .css_free
= perf_cgroup_css_free
,
10773 .attach
= perf_cgroup_attach
,
10775 #endif /* CONFIG_CGROUP_PERF */