2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
49 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
51 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
53 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
56 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
57 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
62 short type
; /* 0 = integer
63 * 1 = binary / string (no translation)
66 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
67 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
68 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
69 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
70 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
71 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
72 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
73 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
74 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
75 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
76 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
77 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
78 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
79 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
80 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
81 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
82 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
83 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
84 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
85 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
86 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
87 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
88 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
89 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
90 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
91 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
92 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
93 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
94 { offsetof(xfs_sb_t
, sb_icount
), 0 },
95 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
96 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
97 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
98 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
99 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
100 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
101 { offsetof(xfs_sb_t
, sb_flags
), 0 },
102 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
103 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
104 { offsetof(xfs_sb_t
, sb_unit
), 0 },
105 { offsetof(xfs_sb_t
, sb_width
), 0 },
106 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
107 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
108 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
109 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
110 { offsetof(xfs_sb_t
, sb_features2
), 0 },
111 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
112 { sizeof(xfs_sb_t
), 0 }
115 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
116 static int xfs_uuid_table_size
;
117 static uuid_t
*xfs_uuid_table
;
120 * See if the UUID is unique among mounted XFS filesystems.
121 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
125 struct xfs_mount
*mp
)
127 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
130 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
133 if (uuid_is_nil(uuid
)) {
134 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
135 return XFS_ERROR(EINVAL
);
138 mutex_lock(&xfs_uuid_table_mutex
);
139 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
140 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
144 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
149 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
150 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
151 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
153 hole
= xfs_uuid_table_size
++;
155 xfs_uuid_table
[hole
] = *uuid
;
156 mutex_unlock(&xfs_uuid_table_mutex
);
161 mutex_unlock(&xfs_uuid_table_mutex
);
162 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
163 return XFS_ERROR(EINVAL
);
168 struct xfs_mount
*mp
)
170 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
173 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
176 mutex_lock(&xfs_uuid_table_mutex
);
177 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
178 if (uuid_is_nil(&xfs_uuid_table
[i
]))
180 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
182 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
185 ASSERT(i
< xfs_uuid_table_size
);
186 mutex_unlock(&xfs_uuid_table_mutex
);
191 * Reference counting access wrappers to the perag structures.
192 * Because we never free per-ag structures, the only thing we
193 * have to protect against changes is the tree structure itself.
196 xfs_perag_get(struct xfs_mount
*mp
, xfs_agnumber_t agno
)
198 struct xfs_perag
*pag
;
202 pag
= radix_tree_lookup(&mp
->m_perag_tree
, agno
);
204 ASSERT(atomic_read(&pag
->pag_ref
) >= 0);
205 ref
= atomic_inc_return(&pag
->pag_ref
);
208 trace_xfs_perag_get(mp
, agno
, ref
, _RET_IP_
);
213 * search from @first to find the next perag with the given tag set.
217 struct xfs_mount
*mp
,
218 xfs_agnumber_t first
,
221 struct xfs_perag
*pag
;
226 found
= radix_tree_gang_lookup_tag(&mp
->m_perag_tree
,
227 (void **)&pag
, first
, 1, tag
);
232 ref
= atomic_inc_return(&pag
->pag_ref
);
234 trace_xfs_perag_get_tag(mp
, pag
->pag_agno
, ref
, _RET_IP_
);
239 xfs_perag_put(struct xfs_perag
*pag
)
243 ASSERT(atomic_read(&pag
->pag_ref
) > 0);
244 ref
= atomic_dec_return(&pag
->pag_ref
);
245 trace_xfs_perag_put(pag
->pag_mount
, pag
->pag_agno
, ref
, _RET_IP_
);
250 struct rcu_head
*head
)
252 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
254 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
259 * Free up the per-ag resources associated with the mount structure.
266 struct xfs_perag
*pag
;
268 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
269 spin_lock(&mp
->m_perag_lock
);
270 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
271 spin_unlock(&mp
->m_perag_lock
);
273 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
274 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
279 * Check size of device based on the (data/realtime) block count.
280 * Note: this check is used by the growfs code as well as mount.
283 xfs_sb_validate_fsb_count(
287 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
288 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
290 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
291 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
293 #else /* Limited by UINT_MAX of sectors */
294 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
301 * Check the validity of the SB found.
304 xfs_mount_validate_sb(
307 bool check_inprogress
)
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
317 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
318 xfs_warn(mp
, "bad magic number");
319 return XFS_ERROR(EWRONGFS
);
322 if (!xfs_sb_good_version(sbp
)) {
323 xfs_warn(mp
, "bad version");
324 return XFS_ERROR(EWRONGFS
);
328 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
330 "filesystem is marked as having an external log; "
331 "specify logdev on the mount command line.");
332 return XFS_ERROR(EINVAL
);
336 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
338 "filesystem is marked as having an internal log; "
339 "do not specify logdev on the mount command line.");
340 return XFS_ERROR(EINVAL
);
344 * More sanity checking. Most of these were stolen directly from
348 sbp
->sb_agcount
<= 0 ||
349 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
350 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
351 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
352 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
353 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
354 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
355 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
356 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
357 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
358 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
359 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
360 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
361 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
362 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
363 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
364 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
365 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
366 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
367 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */) ||
368 sbp
->sb_dblocks
== 0 ||
369 sbp
->sb_dblocks
> XFS_MAX_DBLOCKS(sbp
) ||
370 sbp
->sb_dblocks
< XFS_MIN_DBLOCKS(sbp
))) {
371 XFS_CORRUPTION_ERROR("SB sanity check failed",
372 XFS_ERRLEVEL_LOW
, mp
, sbp
);
373 return XFS_ERROR(EFSCORRUPTED
);
377 * Until this is fixed only page-sized or smaller data blocks work.
379 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
381 "File system with blocksize %d bytes. "
382 "Only pagesize (%ld) or less will currently work.",
383 sbp
->sb_blocksize
, PAGE_SIZE
);
384 return XFS_ERROR(ENOSYS
);
388 * Currently only very few inode sizes are supported.
390 switch (sbp
->sb_inodesize
) {
397 xfs_warn(mp
, "inode size of %d bytes not supported",
399 return XFS_ERROR(ENOSYS
);
402 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
403 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
405 "file system too large to be mounted on this system.");
406 return XFS_ERROR(EFBIG
);
409 if (check_inprogress
&& sbp
->sb_inprogress
) {
410 xfs_warn(mp
, "Offline file system operation in progress!");
411 return XFS_ERROR(EFSCORRUPTED
);
415 * Version 1 directory format has never worked on Linux.
417 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
418 xfs_warn(mp
, "file system using version 1 directory format");
419 return XFS_ERROR(ENOSYS
);
426 xfs_initialize_perag(
428 xfs_agnumber_t agcount
,
429 xfs_agnumber_t
*maxagi
)
431 xfs_agnumber_t index
;
432 xfs_agnumber_t first_initialised
= 0;
436 xfs_sb_t
*sbp
= &mp
->m_sb
;
440 * Walk the current per-ag tree so we don't try to initialise AGs
441 * that already exist (growfs case). Allocate and insert all the
442 * AGs we don't find ready for initialisation.
444 for (index
= 0; index
< agcount
; index
++) {
445 pag
= xfs_perag_get(mp
, index
);
450 if (!first_initialised
)
451 first_initialised
= index
;
453 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
456 pag
->pag_agno
= index
;
458 spin_lock_init(&pag
->pag_ici_lock
);
459 mutex_init(&pag
->pag_ici_reclaim_lock
);
460 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
461 spin_lock_init(&pag
->pag_buf_lock
);
462 pag
->pag_buf_tree
= RB_ROOT
;
464 if (radix_tree_preload(GFP_NOFS
))
467 spin_lock(&mp
->m_perag_lock
);
468 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
470 spin_unlock(&mp
->m_perag_lock
);
471 radix_tree_preload_end();
475 spin_unlock(&mp
->m_perag_lock
);
476 radix_tree_preload_end();
480 * If we mount with the inode64 option, or no inode overflows
481 * the legacy 32-bit address space clear the inode32 option.
483 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
484 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
486 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
487 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
489 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
491 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
)
492 index
= xfs_set_inode32(mp
);
494 index
= xfs_set_inode64(mp
);
502 for (; index
> first_initialised
; index
--) {
503 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
514 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
515 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
516 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
517 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
518 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
519 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
520 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
521 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
522 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
523 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
524 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
525 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
526 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
527 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
528 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
529 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
530 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
531 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
532 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
533 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
534 to
->sb_blocklog
= from
->sb_blocklog
;
535 to
->sb_sectlog
= from
->sb_sectlog
;
536 to
->sb_inodelog
= from
->sb_inodelog
;
537 to
->sb_inopblog
= from
->sb_inopblog
;
538 to
->sb_agblklog
= from
->sb_agblklog
;
539 to
->sb_rextslog
= from
->sb_rextslog
;
540 to
->sb_inprogress
= from
->sb_inprogress
;
541 to
->sb_imax_pct
= from
->sb_imax_pct
;
542 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
543 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
544 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
545 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
546 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
547 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
548 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
549 to
->sb_flags
= from
->sb_flags
;
550 to
->sb_shared_vn
= from
->sb_shared_vn
;
551 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
552 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
553 to
->sb_width
= be32_to_cpu(from
->sb_width
);
554 to
->sb_dirblklog
= from
->sb_dirblklog
;
555 to
->sb_logsectlog
= from
->sb_logsectlog
;
556 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
557 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
558 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
559 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
563 * Copy in core superblock to ondisk one.
565 * The fields argument is mask of superblock fields to copy.
573 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
574 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
584 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
585 first
= xfs_sb_info
[f
].offset
;
586 size
= xfs_sb_info
[f
+ 1].offset
- first
;
588 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
590 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
591 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
595 *(__be16
*)(to_ptr
+ first
) =
596 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
599 *(__be32
*)(to_ptr
+ first
) =
600 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
603 *(__be64
*)(to_ptr
+ first
) =
604 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
611 fields
&= ~(1LL << f
);
619 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
623 xfs_sb_from_disk(&sb
, XFS_BUF_TO_SBP(bp
));
626 * Only check the in progress field for the primary superblock as
627 * mkfs.xfs doesn't clear it from secondary superblocks.
629 error
= xfs_mount_validate_sb(mp
, &sb
, bp
->b_bn
== XFS_SB_DADDR
);
631 xfs_buf_ioerror(bp
, error
);
642 * We may be probed for a filesystem match, so we may not want to emit
643 * messages when the superblock buffer is not actually an XFS superblock.
644 * If we find an XFS superblock, the run a normal, noisy mount because we are
645 * really going to mount it and want to know about errors.
648 xfs_sb_quiet_read_verify(
653 xfs_sb_from_disk(&sb
, XFS_BUF_TO_SBP(bp
));
655 if (sb
.sb_magicnum
== XFS_SB_MAGIC
) {
656 /* XFS filesystem, verify noisily! */
657 xfs_sb_read_verify(bp
);
661 xfs_buf_ioerror(bp
, EWRONGFS
);
671 const struct xfs_buf_ops xfs_sb_buf_ops
= {
672 .verify_read
= xfs_sb_read_verify
,
673 .verify_write
= xfs_sb_write_verify
,
676 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops
= {
677 .verify_read
= xfs_sb_quiet_read_verify
,
678 .verify_write
= xfs_sb_write_verify
,
684 * Does the initial read of the superblock.
687 xfs_readsb(xfs_mount_t
*mp
, int flags
)
689 unsigned int sector_size
;
692 int loud
= !(flags
& XFS_MFSI_QUIET
);
694 ASSERT(mp
->m_sb_bp
== NULL
);
695 ASSERT(mp
->m_ddev_targp
!= NULL
);
698 * Allocate a (locked) buffer to hold the superblock.
699 * This will be kept around at all times to optimize
700 * access to the superblock.
702 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
705 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
706 BTOBB(sector_size
), 0,
707 loud
? &xfs_sb_buf_ops
708 : &xfs_sb_quiet_buf_ops
);
711 xfs_warn(mp
, "SB buffer read failed");
717 xfs_warn(mp
, "SB validate failed");
722 * Initialize the mount structure from the superblock.
724 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
727 * We must be able to do sector-sized and sector-aligned IO.
729 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
731 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
732 sector_size
, mp
->m_sb
.sb_sectsize
);
738 * If device sector size is smaller than the superblock size,
739 * re-read the superblock so the buffer is correctly sized.
741 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
743 sector_size
= mp
->m_sb
.sb_sectsize
;
747 /* Initialize per-cpu counters */
748 xfs_icsb_reinit_counters(mp
);
763 * Mount initialization code establishing various mount
764 * fields from the superblock associated with the given
768 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
770 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
771 spin_lock_init(&mp
->m_agirotor_lock
);
772 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
773 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
774 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
775 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
776 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
777 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
778 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
779 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
780 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
782 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
783 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
784 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
785 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
787 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
788 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
789 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
790 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
792 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
793 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
794 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
795 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
797 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
798 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
800 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
804 * xfs_initialize_perag_data
806 * Read in each per-ag structure so we can count up the number of
807 * allocated inodes, free inodes and used filesystem blocks as this
808 * information is no longer persistent in the superblock. Once we have
809 * this information, write it into the in-core superblock structure.
812 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
814 xfs_agnumber_t index
;
816 xfs_sb_t
*sbp
= &mp
->m_sb
;
820 uint64_t bfreelst
= 0;
824 for (index
= 0; index
< agcount
; index
++) {
826 * read the agf, then the agi. This gets us
827 * all the information we need and populates the
828 * per-ag structures for us.
830 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
834 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
837 pag
= xfs_perag_get(mp
, index
);
838 ifree
+= pag
->pagi_freecount
;
839 ialloc
+= pag
->pagi_count
;
840 bfree
+= pag
->pagf_freeblks
;
841 bfreelst
+= pag
->pagf_flcount
;
842 btree
+= pag
->pagf_btreeblks
;
846 * Overwrite incore superblock counters with just-read data
848 spin_lock(&mp
->m_sb_lock
);
849 sbp
->sb_ifree
= ifree
;
850 sbp
->sb_icount
= ialloc
;
851 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
852 spin_unlock(&mp
->m_sb_lock
);
854 /* Fixup the per-cpu counters as well. */
855 xfs_icsb_reinit_counters(mp
);
861 * Update alignment values based on mount options and sb values
864 xfs_update_alignment(xfs_mount_t
*mp
)
866 xfs_sb_t
*sbp
= &(mp
->m_sb
);
870 * If stripe unit and stripe width are not multiples
871 * of the fs blocksize turn off alignment.
873 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
874 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
875 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
876 xfs_warn(mp
, "alignment check failed: "
877 "(sunit/swidth vs. blocksize)");
878 return XFS_ERROR(EINVAL
);
880 mp
->m_dalign
= mp
->m_swidth
= 0;
883 * Convert the stripe unit and width to FSBs.
885 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
886 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
887 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
888 xfs_warn(mp
, "alignment check failed: "
889 "(sunit/swidth vs. ag size)");
890 return XFS_ERROR(EINVAL
);
893 "stripe alignment turned off: sunit(%d)/swidth(%d) "
894 "incompatible with agsize(%d)",
895 mp
->m_dalign
, mp
->m_swidth
,
900 } else if (mp
->m_dalign
) {
901 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
903 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
904 xfs_warn(mp
, "alignment check failed: "
905 "sunit(%d) less than bsize(%d)",
908 return XFS_ERROR(EINVAL
);
915 * Update superblock with new values
918 if (xfs_sb_version_hasdalign(sbp
)) {
919 if (sbp
->sb_unit
!= mp
->m_dalign
) {
920 sbp
->sb_unit
= mp
->m_dalign
;
921 mp
->m_update_flags
|= XFS_SB_UNIT
;
923 if (sbp
->sb_width
!= mp
->m_swidth
) {
924 sbp
->sb_width
= mp
->m_swidth
;
925 mp
->m_update_flags
|= XFS_SB_WIDTH
;
928 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
929 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
930 mp
->m_dalign
= sbp
->sb_unit
;
931 mp
->m_swidth
= sbp
->sb_width
;
938 * Set the maximum inode count for this filesystem
941 xfs_set_maxicount(xfs_mount_t
*mp
)
943 xfs_sb_t
*sbp
= &(mp
->m_sb
);
946 if (sbp
->sb_imax_pct
) {
948 * Make sure the maximum inode count is a multiple
949 * of the units we allocate inodes in.
951 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
953 do_div(icount
, mp
->m_ialloc_blks
);
954 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
962 * Set the default minimum read and write sizes unless
963 * already specified in a mount option.
964 * We use smaller I/O sizes when the file system
965 * is being used for NFS service (wsync mount option).
968 xfs_set_rw_sizes(xfs_mount_t
*mp
)
970 xfs_sb_t
*sbp
= &(mp
->m_sb
);
971 int readio_log
, writeio_log
;
973 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
974 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
975 readio_log
= XFS_WSYNC_READIO_LOG
;
976 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
978 readio_log
= XFS_READIO_LOG_LARGE
;
979 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
982 readio_log
= mp
->m_readio_log
;
983 writeio_log
= mp
->m_writeio_log
;
986 if (sbp
->sb_blocklog
> readio_log
) {
987 mp
->m_readio_log
= sbp
->sb_blocklog
;
989 mp
->m_readio_log
= readio_log
;
991 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
992 if (sbp
->sb_blocklog
> writeio_log
) {
993 mp
->m_writeio_log
= sbp
->sb_blocklog
;
995 mp
->m_writeio_log
= writeio_log
;
997 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
1001 * precalculate the low space thresholds for dynamic speculative preallocation.
1004 xfs_set_low_space_thresholds(
1005 struct xfs_mount
*mp
)
1009 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
1010 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
1013 mp
->m_low_space
[i
] = space
* (i
+ 1);
1019 * Set whether we're using inode alignment.
1022 xfs_set_inoalignment(xfs_mount_t
*mp
)
1024 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
1025 mp
->m_sb
.sb_inoalignmt
>=
1026 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
1027 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
1029 mp
->m_inoalign_mask
= 0;
1031 * If we are using stripe alignment, check whether
1032 * the stripe unit is a multiple of the inode alignment
1034 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
1035 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
1036 mp
->m_sinoalign
= mp
->m_dalign
;
1038 mp
->m_sinoalign
= 0;
1042 * Check that the data (and log if separate) are an ok size.
1045 xfs_check_sizes(xfs_mount_t
*mp
)
1050 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
1051 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
1052 xfs_warn(mp
, "filesystem size mismatch detected");
1053 return XFS_ERROR(EFBIG
);
1055 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
1056 d
- XFS_FSS_TO_BB(mp
, 1),
1057 XFS_FSS_TO_BB(mp
, 1), 0, NULL
);
1059 xfs_warn(mp
, "last sector read failed");
1064 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
1065 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
1066 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
1067 xfs_warn(mp
, "log size mismatch detected");
1068 return XFS_ERROR(EFBIG
);
1070 bp
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
1071 d
- XFS_FSB_TO_BB(mp
, 1),
1072 XFS_FSB_TO_BB(mp
, 1), 0, NULL
);
1074 xfs_warn(mp
, "log device read failed");
1083 * Clear the quotaflags in memory and in the superblock.
1086 xfs_mount_reset_sbqflags(
1087 struct xfs_mount
*mp
)
1090 struct xfs_trans
*tp
;
1095 * It is OK to look at sb_qflags here in mount path,
1096 * without m_sb_lock.
1098 if (mp
->m_sb
.sb_qflags
== 0)
1100 spin_lock(&mp
->m_sb_lock
);
1101 mp
->m_sb
.sb_qflags
= 0;
1102 spin_unlock(&mp
->m_sb_lock
);
1105 * If the fs is readonly, let the incore superblock run
1106 * with quotas off but don't flush the update out to disk
1108 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1111 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
1112 error
= xfs_trans_reserve(tp
, 0, XFS_QM_SBCHANGE_LOG_RES(mp
),
1113 0, 0, XFS_DEFAULT_LOG_COUNT
);
1115 xfs_trans_cancel(tp
, 0);
1116 xfs_alert(mp
, "%s: Superblock update failed!", __func__
);
1120 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1121 return xfs_trans_commit(tp
, 0);
1125 xfs_default_resblks(xfs_mount_t
*mp
)
1130 * We default to 5% or 8192 fsbs of space reserved, whichever is
1131 * smaller. This is intended to cover concurrent allocation
1132 * transactions when we initially hit enospc. These each require a 4
1133 * block reservation. Hence by default we cover roughly 2000 concurrent
1134 * allocation reservations.
1136 resblks
= mp
->m_sb
.sb_dblocks
;
1137 do_div(resblks
, 20);
1138 resblks
= min_t(__uint64_t
, resblks
, 8192);
1143 * This function does the following on an initial mount of a file system:
1144 * - reads the superblock from disk and init the mount struct
1145 * - if we're a 32-bit kernel, do a size check on the superblock
1146 * so we don't mount terabyte filesystems
1147 * - init mount struct realtime fields
1148 * - allocate inode hash table for fs
1149 * - init directory manager
1150 * - perform recovery and init the log manager
1156 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1159 uint quotamount
= 0;
1160 uint quotaflags
= 0;
1163 xfs_mount_common(mp
, sbp
);
1166 * Check for a mismatched features2 values. Older kernels
1167 * read & wrote into the wrong sb offset for sb_features2
1168 * on some platforms due to xfs_sb_t not being 64bit size aligned
1169 * when sb_features2 was added, which made older superblock
1170 * reading/writing routines swap it as a 64-bit value.
1172 * For backwards compatibility, we make both slots equal.
1174 * If we detect a mismatched field, we OR the set bits into the
1175 * existing features2 field in case it has already been modified; we
1176 * don't want to lose any features. We then update the bad location
1177 * with the ORed value so that older kernels will see any features2
1178 * flags, and mark the two fields as needing updates once the
1179 * transaction subsystem is online.
1181 if (xfs_sb_has_mismatched_features2(sbp
)) {
1182 xfs_warn(mp
, "correcting sb_features alignment problem");
1183 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1184 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1185 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1188 * Re-check for ATTR2 in case it was found in bad_features2
1191 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1192 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1193 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1196 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1197 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1198 xfs_sb_version_removeattr2(&mp
->m_sb
);
1199 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1201 /* update sb_versionnum for the clearing of the morebits */
1202 if (!sbp
->sb_features2
)
1203 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1207 * Check if sb_agblocks is aligned at stripe boundary
1208 * If sb_agblocks is NOT aligned turn off m_dalign since
1209 * allocator alignment is within an ag, therefore ag has
1210 * to be aligned at stripe boundary.
1212 error
= xfs_update_alignment(mp
);
1216 xfs_alloc_compute_maxlevels(mp
);
1217 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1218 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1219 xfs_ialloc_compute_maxlevels(mp
);
1221 xfs_set_maxicount(mp
);
1223 error
= xfs_uuid_mount(mp
);
1228 * Set the minimum read and write sizes
1230 xfs_set_rw_sizes(mp
);
1232 /* set the low space thresholds for dynamic preallocation */
1233 xfs_set_low_space_thresholds(mp
);
1236 * Set the inode cluster size.
1237 * This may still be overridden by the file system
1238 * block size if it is larger than the chosen cluster size.
1240 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1243 * Set inode alignment fields
1245 xfs_set_inoalignment(mp
);
1248 * Check that the data (and log if separate) are an ok size.
1250 error
= xfs_check_sizes(mp
);
1252 goto out_remove_uuid
;
1255 * Initialize realtime fields in the mount structure
1257 error
= xfs_rtmount_init(mp
);
1259 xfs_warn(mp
, "RT mount failed");
1260 goto out_remove_uuid
;
1264 * Copies the low order bits of the timestamp and the randomly
1265 * set "sequence" number out of a UUID.
1267 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1269 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1274 * Initialize the attribute manager's entries.
1276 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1279 * Initialize the precomputed transaction reservations values.
1284 * Allocate and initialize the per-ag data.
1286 spin_lock_init(&mp
->m_perag_lock
);
1287 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
1288 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
1290 xfs_warn(mp
, "Failed per-ag init: %d", error
);
1291 goto out_remove_uuid
;
1294 if (!sbp
->sb_logblocks
) {
1295 xfs_warn(mp
, "no log defined");
1296 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1297 error
= XFS_ERROR(EFSCORRUPTED
);
1298 goto out_free_perag
;
1302 * log's mount-time initialization. Perform 1st part recovery if needed
1304 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1305 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1306 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1308 xfs_warn(mp
, "log mount failed");
1313 * Now the log is mounted, we know if it was an unclean shutdown or
1314 * not. If it was, with the first phase of recovery has completed, we
1315 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1316 * but they are recovered transactionally in the second recovery phase
1319 * Hence we can safely re-initialise incore superblock counters from
1320 * the per-ag data. These may not be correct if the filesystem was not
1321 * cleanly unmounted, so we need to wait for recovery to finish before
1324 * If the filesystem was cleanly unmounted, then we can trust the
1325 * values in the superblock to be correct and we don't need to do
1328 * If we are currently making the filesystem, the initialisation will
1329 * fail as the perag data is in an undefined state.
1331 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1332 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1333 !mp
->m_sb
.sb_inprogress
) {
1334 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1340 * Get and sanity-check the root inode.
1341 * Save the pointer to it in the mount structure.
1343 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
1345 xfs_warn(mp
, "failed to read root inode");
1346 goto out_log_dealloc
;
1349 ASSERT(rip
!= NULL
);
1351 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
1352 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
1353 (unsigned long long)rip
->i_ino
);
1354 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1355 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1357 error
= XFS_ERROR(EFSCORRUPTED
);
1360 mp
->m_rootip
= rip
; /* save it */
1362 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1365 * Initialize realtime inode pointers in the mount structure
1367 error
= xfs_rtmount_inodes(mp
);
1370 * Free up the root inode.
1372 xfs_warn(mp
, "failed to read RT inodes");
1377 * If this is a read-only mount defer the superblock updates until
1378 * the next remount into writeable mode. Otherwise we would never
1379 * perform the update e.g. for the root filesystem.
1381 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1382 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1384 xfs_warn(mp
, "failed to write sb changes");
1390 * Initialise the XFS quota management subsystem for this mount
1392 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1393 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1397 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1400 * If a file system had quotas running earlier, but decided to
1401 * mount without -o uquota/pquota/gquota options, revoke the
1402 * quotachecked license.
1404 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1405 xfs_notice(mp
, "resetting quota flags");
1406 error
= xfs_mount_reset_sbqflags(mp
);
1413 * Finish recovering the file system. This part needed to be
1414 * delayed until after the root and real-time bitmap inodes
1415 * were consistently read in.
1417 error
= xfs_log_mount_finish(mp
);
1419 xfs_warn(mp
, "log mount finish failed");
1424 * Complete the quota initialisation, post-log-replay component.
1427 ASSERT(mp
->m_qflags
== 0);
1428 mp
->m_qflags
= quotaflags
;
1430 xfs_qm_mount_quotas(mp
);
1434 * Now we are mounted, reserve a small amount of unused space for
1435 * privileged transactions. This is needed so that transaction
1436 * space required for critical operations can dip into this pool
1437 * when at ENOSPC. This is needed for operations like create with
1438 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1439 * are not allowed to use this reserved space.
1441 * This may drive us straight to ENOSPC on mount, but that implies
1442 * we were already there on the last unmount. Warn if this occurs.
1444 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1445 resblks
= xfs_default_resblks(mp
);
1446 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1449 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1455 xfs_rtunmount_inodes(mp
);
1459 xfs_log_unmount(mp
);
1461 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1462 xfs_wait_buftarg(mp
->m_logdev_targp
);
1463 xfs_wait_buftarg(mp
->m_ddev_targp
);
1467 xfs_uuid_unmount(mp
);
1473 * This flushes out the inodes,dquots and the superblock, unmounts the
1474 * log and makes sure that incore structures are freed.
1478 struct xfs_mount
*mp
)
1483 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
1485 xfs_qm_unmount_quotas(mp
);
1486 xfs_rtunmount_inodes(mp
);
1487 IRELE(mp
->m_rootip
);
1490 * We can potentially deadlock here if we have an inode cluster
1491 * that has been freed has its buffer still pinned in memory because
1492 * the transaction is still sitting in a iclog. The stale inodes
1493 * on that buffer will have their flush locks held until the
1494 * transaction hits the disk and the callbacks run. the inode
1495 * flush takes the flush lock unconditionally and with nothing to
1496 * push out the iclog we will never get that unlocked. hence we
1497 * need to force the log first.
1499 xfs_log_force(mp
, XFS_LOG_SYNC
);
1502 * Flush all pending changes from the AIL.
1504 xfs_ail_push_all_sync(mp
->m_ail
);
1507 * And reclaim all inodes. At this point there should be no dirty
1508 * inodes and none should be pinned or locked, but use synchronous
1509 * reclaim just to be sure. We can stop background inode reclaim
1510 * here as well if it is still running.
1512 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1513 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1518 * Unreserve any blocks we have so that when we unmount we don't account
1519 * the reserved free space as used. This is really only necessary for
1520 * lazy superblock counting because it trusts the incore superblock
1521 * counters to be absolutely correct on clean unmount.
1523 * We don't bother correcting this elsewhere for lazy superblock
1524 * counting because on mount of an unclean filesystem we reconstruct the
1525 * correct counter value and this is irrelevant.
1527 * For non-lazy counter filesystems, this doesn't matter at all because
1528 * we only every apply deltas to the superblock and hence the incore
1529 * value does not matter....
1532 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1534 xfs_warn(mp
, "Unable to free reserved block pool. "
1535 "Freespace may not be correct on next mount.");
1537 error
= xfs_log_sbcount(mp
);
1539 xfs_warn(mp
, "Unable to update superblock counters. "
1540 "Freespace may not be correct on next mount.");
1542 xfs_log_unmount(mp
);
1543 xfs_uuid_unmount(mp
);
1546 xfs_errortag_clearall(mp
, 0);
1552 xfs_fs_writable(xfs_mount_t
*mp
)
1554 return !(mp
->m_super
->s_writers
.frozen
|| XFS_FORCED_SHUTDOWN(mp
) ||
1555 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1561 * Sync the superblock counters to disk.
1563 * Note this code can be called during the process of freezing, so
1564 * we may need to use the transaction allocator which does not
1565 * block when the transaction subsystem is in its frozen state.
1568 xfs_log_sbcount(xfs_mount_t
*mp
)
1573 if (!xfs_fs_writable(mp
))
1576 xfs_icsb_sync_counters(mp
, 0);
1579 * we don't need to do this if we are updating the superblock
1580 * counters on every modification.
1582 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1585 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1586 error
= xfs_trans_reserve(tp
, 0, XFS_SB_LOG_RES(mp
), 0, 0,
1587 XFS_DEFAULT_LOG_COUNT
);
1589 xfs_trans_cancel(tp
, 0);
1593 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1594 xfs_trans_set_sync(tp
);
1595 error
= xfs_trans_commit(tp
, 0);
1600 * xfs_mod_sb() can be used to copy arbitrary changes to the
1601 * in-core superblock into the superblock buffer to be logged.
1602 * It does not provide the higher level of locking that is
1603 * needed to protect the in-core superblock from concurrent
1607 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1619 bp
= xfs_trans_getsb(tp
, mp
, 0);
1620 first
= sizeof(xfs_sb_t
);
1623 /* translate/copy */
1625 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1627 /* find modified range */
1628 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1629 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1630 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1632 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1633 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1634 first
= xfs_sb_info
[f
].offset
;
1636 xfs_trans_log_buf(tp
, bp
, first
, last
);
1641 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1642 * a delta to a specified field in the in-core superblock. Simply
1643 * switch on the field indicated and apply the delta to that field.
1644 * Fields are not allowed to dip below zero, so if the delta would
1645 * do this do not apply it and return EINVAL.
1647 * The m_sb_lock must be held when this routine is called.
1650 xfs_mod_incore_sb_unlocked(
1652 xfs_sb_field_t field
,
1656 int scounter
; /* short counter for 32 bit fields */
1657 long long lcounter
; /* long counter for 64 bit fields */
1658 long long res_used
, rem
;
1661 * With the in-core superblock spin lock held, switch
1662 * on the indicated field. Apply the delta to the
1663 * proper field. If the fields value would dip below
1664 * 0, then do not apply the delta and return EINVAL.
1667 case XFS_SBS_ICOUNT
:
1668 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1672 return XFS_ERROR(EINVAL
);
1674 mp
->m_sb
.sb_icount
= lcounter
;
1677 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1681 return XFS_ERROR(EINVAL
);
1683 mp
->m_sb
.sb_ifree
= lcounter
;
1685 case XFS_SBS_FDBLOCKS
:
1686 lcounter
= (long long)
1687 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1688 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1690 if (delta
> 0) { /* Putting blocks back */
1691 if (res_used
> delta
) {
1692 mp
->m_resblks_avail
+= delta
;
1694 rem
= delta
- res_used
;
1695 mp
->m_resblks_avail
= mp
->m_resblks
;
1698 } else { /* Taking blocks away */
1700 if (lcounter
>= 0) {
1701 mp
->m_sb
.sb_fdblocks
= lcounter
+
1702 XFS_ALLOC_SET_ASIDE(mp
);
1707 * We are out of blocks, use any available reserved
1708 * blocks if were allowed to.
1711 return XFS_ERROR(ENOSPC
);
1713 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1714 if (lcounter
>= 0) {
1715 mp
->m_resblks_avail
= lcounter
;
1718 printk_once(KERN_WARNING
1719 "Filesystem \"%s\": reserve blocks depleted! "
1720 "Consider increasing reserve pool size.",
1722 return XFS_ERROR(ENOSPC
);
1725 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1727 case XFS_SBS_FREXTENTS
:
1728 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1731 return XFS_ERROR(ENOSPC
);
1733 mp
->m_sb
.sb_frextents
= lcounter
;
1735 case XFS_SBS_DBLOCKS
:
1736 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1740 return XFS_ERROR(EINVAL
);
1742 mp
->m_sb
.sb_dblocks
= lcounter
;
1744 case XFS_SBS_AGCOUNT
:
1745 scounter
= mp
->m_sb
.sb_agcount
;
1749 return XFS_ERROR(EINVAL
);
1751 mp
->m_sb
.sb_agcount
= scounter
;
1753 case XFS_SBS_IMAX_PCT
:
1754 scounter
= mp
->m_sb
.sb_imax_pct
;
1758 return XFS_ERROR(EINVAL
);
1760 mp
->m_sb
.sb_imax_pct
= scounter
;
1762 case XFS_SBS_REXTSIZE
:
1763 scounter
= mp
->m_sb
.sb_rextsize
;
1767 return XFS_ERROR(EINVAL
);
1769 mp
->m_sb
.sb_rextsize
= scounter
;
1771 case XFS_SBS_RBMBLOCKS
:
1772 scounter
= mp
->m_sb
.sb_rbmblocks
;
1776 return XFS_ERROR(EINVAL
);
1778 mp
->m_sb
.sb_rbmblocks
= scounter
;
1780 case XFS_SBS_RBLOCKS
:
1781 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1785 return XFS_ERROR(EINVAL
);
1787 mp
->m_sb
.sb_rblocks
= lcounter
;
1789 case XFS_SBS_REXTENTS
:
1790 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1794 return XFS_ERROR(EINVAL
);
1796 mp
->m_sb
.sb_rextents
= lcounter
;
1798 case XFS_SBS_REXTSLOG
:
1799 scounter
= mp
->m_sb
.sb_rextslog
;
1803 return XFS_ERROR(EINVAL
);
1805 mp
->m_sb
.sb_rextslog
= scounter
;
1809 return XFS_ERROR(EINVAL
);
1814 * xfs_mod_incore_sb() is used to change a field in the in-core
1815 * superblock structure by the specified delta. This modification
1816 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1817 * routine to do the work.
1821 struct xfs_mount
*mp
,
1822 xfs_sb_field_t field
,
1828 #ifdef HAVE_PERCPU_SB
1829 ASSERT(field
< XFS_SBS_ICOUNT
|| field
> XFS_SBS_FDBLOCKS
);
1831 spin_lock(&mp
->m_sb_lock
);
1832 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1833 spin_unlock(&mp
->m_sb_lock
);
1839 * Change more than one field in the in-core superblock structure at a time.
1841 * The fields and changes to those fields are specified in the array of
1842 * xfs_mod_sb structures passed in. Either all of the specified deltas
1843 * will be applied or none of them will. If any modified field dips below 0,
1844 * then all modifications will be backed out and EINVAL will be returned.
1846 * Note that this function may not be used for the superblock values that
1847 * are tracked with the in-memory per-cpu counters - a direct call to
1848 * xfs_icsb_modify_counters is required for these.
1851 xfs_mod_incore_sb_batch(
1852 struct xfs_mount
*mp
,
1861 * Loop through the array of mod structures and apply each individually.
1862 * If any fail, then back out all those which have already been applied.
1863 * Do all of this within the scope of the m_sb_lock so that all of the
1864 * changes will be atomic.
1866 spin_lock(&mp
->m_sb_lock
);
1867 for (msbp
= msb
; msbp
< (msb
+ nmsb
); msbp
++) {
1868 ASSERT(msbp
->msb_field
< XFS_SBS_ICOUNT
||
1869 msbp
->msb_field
> XFS_SBS_FDBLOCKS
);
1871 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1872 msbp
->msb_delta
, rsvd
);
1876 spin_unlock(&mp
->m_sb_lock
);
1880 while (--msbp
>= msb
) {
1881 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1882 -msbp
->msb_delta
, rsvd
);
1885 spin_unlock(&mp
->m_sb_lock
);
1890 * xfs_getsb() is called to obtain the buffer for the superblock.
1891 * The buffer is returned locked and read in from disk.
1892 * The buffer should be released with a call to xfs_brelse().
1894 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1895 * the superblock buffer if it can be locked without sleeping.
1896 * If it can't then we'll return NULL.
1900 struct xfs_mount
*mp
,
1903 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1905 if (!xfs_buf_trylock(bp
)) {
1906 if (flags
& XBF_TRYLOCK
)
1912 ASSERT(XFS_BUF_ISDONE(bp
));
1917 * Used to free the superblock along various error paths.
1921 struct xfs_mount
*mp
)
1923 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1931 * Used to log changes to the superblock unit and width fields which could
1932 * be altered by the mount options, as well as any potential sb_features2
1933 * fixup. Only the first superblock is updated.
1943 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1944 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1945 XFS_SB_VERSIONNUM
));
1947 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1948 error
= xfs_trans_reserve(tp
, 0, XFS_SB_LOG_RES(mp
), 0, 0,
1949 XFS_DEFAULT_LOG_COUNT
);
1951 xfs_trans_cancel(tp
, 0);
1954 xfs_mod_sb(tp
, fields
);
1955 error
= xfs_trans_commit(tp
, 0);
1960 * If the underlying (data/log/rt) device is readonly, there are some
1961 * operations that cannot proceed.
1964 xfs_dev_is_read_only(
1965 struct xfs_mount
*mp
,
1968 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1969 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1970 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1971 xfs_notice(mp
, "%s required on read-only device.", message
);
1972 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1978 #ifdef HAVE_PERCPU_SB
1980 * Per-cpu incore superblock counters
1982 * Simple concept, difficult implementation
1984 * Basically, replace the incore superblock counters with a distributed per cpu
1985 * counter for contended fields (e.g. free block count).
1987 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1988 * hence needs to be accurately read when we are running low on space. Hence
1989 * there is a method to enable and disable the per-cpu counters based on how
1990 * much "stuff" is available in them.
1992 * Basically, a counter is enabled if there is enough free resource to justify
1993 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1994 * ENOSPC), then we disable the counters to synchronise all callers and
1995 * re-distribute the available resources.
1997 * If, once we redistributed the available resources, we still get a failure,
1998 * we disable the per-cpu counter and go through the slow path.
2000 * The slow path is the current xfs_mod_incore_sb() function. This means that
2001 * when we disable a per-cpu counter, we need to drain its resources back to
2002 * the global superblock. We do this after disabling the counter to prevent
2003 * more threads from queueing up on the counter.
2005 * Essentially, this means that we still need a lock in the fast path to enable
2006 * synchronisation between the global counters and the per-cpu counters. This
2007 * is not a problem because the lock will be local to a CPU almost all the time
2008 * and have little contention except when we get to ENOSPC conditions.
2010 * Basically, this lock becomes a barrier that enables us to lock out the fast
2011 * path while we do things like enabling and disabling counters and
2012 * synchronising the counters.
2016 * 1. m_sb_lock before picking up per-cpu locks
2017 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2018 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2019 * 4. modifying per-cpu counters requires holding per-cpu lock
2020 * 5. modifying global counters requires holding m_sb_lock
2021 * 6. enabling or disabling a counter requires holding the m_sb_lock
2022 * and _none_ of the per-cpu locks.
2024 * Disabled counters are only ever re-enabled by a balance operation
2025 * that results in more free resources per CPU than a given threshold.
2026 * To ensure counters don't remain disabled, they are rebalanced when
2027 * the global resource goes above a higher threshold (i.e. some hysteresis
2028 * is present to prevent thrashing).
2031 #ifdef CONFIG_HOTPLUG_CPU
2033 * hot-plug CPU notifier support.
2035 * We need a notifier per filesystem as we need to be able to identify
2036 * the filesystem to balance the counters out. This is achieved by
2037 * having a notifier block embedded in the xfs_mount_t and doing pointer
2038 * magic to get the mount pointer from the notifier block address.
2041 xfs_icsb_cpu_notify(
2042 struct notifier_block
*nfb
,
2043 unsigned long action
,
2046 xfs_icsb_cnts_t
*cntp
;
2049 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2050 cntp
= (xfs_icsb_cnts_t
*)
2051 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2053 case CPU_UP_PREPARE
:
2054 case CPU_UP_PREPARE_FROZEN
:
2055 /* Easy Case - initialize the area and locks, and
2056 * then rebalance when online does everything else for us. */
2057 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2060 case CPU_ONLINE_FROZEN
:
2062 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2063 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2064 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2065 xfs_icsb_unlock(mp
);
2068 case CPU_DEAD_FROZEN
:
2069 /* Disable all the counters, then fold the dead cpu's
2070 * count into the total on the global superblock and
2071 * re-enable the counters. */
2073 spin_lock(&mp
->m_sb_lock
);
2074 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2075 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2076 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2078 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2079 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2080 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2082 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2084 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2085 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2086 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2087 spin_unlock(&mp
->m_sb_lock
);
2088 xfs_icsb_unlock(mp
);
2094 #endif /* CONFIG_HOTPLUG_CPU */
2097 xfs_icsb_init_counters(
2100 xfs_icsb_cnts_t
*cntp
;
2103 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2104 if (mp
->m_sb_cnts
== NULL
)
2107 #ifdef CONFIG_HOTPLUG_CPU
2108 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2109 mp
->m_icsb_notifier
.priority
= 0;
2110 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2111 #endif /* CONFIG_HOTPLUG_CPU */
2113 for_each_online_cpu(i
) {
2114 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2115 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2118 mutex_init(&mp
->m_icsb_mutex
);
2121 * start with all counters disabled so that the
2122 * initial balance kicks us off correctly
2124 mp
->m_icsb_counters
= -1;
2129 xfs_icsb_reinit_counters(
2134 * start with all counters disabled so that the
2135 * initial balance kicks us off correctly
2137 mp
->m_icsb_counters
= -1;
2138 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2139 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2140 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2141 xfs_icsb_unlock(mp
);
2145 xfs_icsb_destroy_counters(
2148 if (mp
->m_sb_cnts
) {
2149 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2150 free_percpu(mp
->m_sb_cnts
);
2152 mutex_destroy(&mp
->m_icsb_mutex
);
2157 xfs_icsb_cnts_t
*icsbp
)
2159 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2165 xfs_icsb_unlock_cntr(
2166 xfs_icsb_cnts_t
*icsbp
)
2168 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2173 xfs_icsb_lock_all_counters(
2176 xfs_icsb_cnts_t
*cntp
;
2179 for_each_online_cpu(i
) {
2180 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2181 xfs_icsb_lock_cntr(cntp
);
2186 xfs_icsb_unlock_all_counters(
2189 xfs_icsb_cnts_t
*cntp
;
2192 for_each_online_cpu(i
) {
2193 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2194 xfs_icsb_unlock_cntr(cntp
);
2201 xfs_icsb_cnts_t
*cnt
,
2204 xfs_icsb_cnts_t
*cntp
;
2207 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2209 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2210 xfs_icsb_lock_all_counters(mp
);
2212 for_each_online_cpu(i
) {
2213 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2214 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2215 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2216 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2219 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2220 xfs_icsb_unlock_all_counters(mp
);
2224 xfs_icsb_counter_disabled(
2226 xfs_sb_field_t field
)
2228 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2229 return test_bit(field
, &mp
->m_icsb_counters
);
2233 xfs_icsb_disable_counter(
2235 xfs_sb_field_t field
)
2237 xfs_icsb_cnts_t cnt
;
2239 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2242 * If we are already disabled, then there is nothing to do
2243 * here. We check before locking all the counters to avoid
2244 * the expensive lock operation when being called in the
2245 * slow path and the counter is already disabled. This is
2246 * safe because the only time we set or clear this state is under
2249 if (xfs_icsb_counter_disabled(mp
, field
))
2252 xfs_icsb_lock_all_counters(mp
);
2253 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2254 /* drain back to superblock */
2256 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2258 case XFS_SBS_ICOUNT
:
2259 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2262 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2264 case XFS_SBS_FDBLOCKS
:
2265 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2272 xfs_icsb_unlock_all_counters(mp
);
2276 xfs_icsb_enable_counter(
2278 xfs_sb_field_t field
,
2282 xfs_icsb_cnts_t
*cntp
;
2285 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2287 xfs_icsb_lock_all_counters(mp
);
2288 for_each_online_cpu(i
) {
2289 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2291 case XFS_SBS_ICOUNT
:
2292 cntp
->icsb_icount
= count
+ resid
;
2295 cntp
->icsb_ifree
= count
+ resid
;
2297 case XFS_SBS_FDBLOCKS
:
2298 cntp
->icsb_fdblocks
= count
+ resid
;
2306 clear_bit(field
, &mp
->m_icsb_counters
);
2307 xfs_icsb_unlock_all_counters(mp
);
2311 xfs_icsb_sync_counters_locked(
2315 xfs_icsb_cnts_t cnt
;
2317 xfs_icsb_count(mp
, &cnt
, flags
);
2319 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2320 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2321 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2322 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2323 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2324 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2328 * Accurate update of per-cpu counters to incore superblock
2331 xfs_icsb_sync_counters(
2335 spin_lock(&mp
->m_sb_lock
);
2336 xfs_icsb_sync_counters_locked(mp
, flags
);
2337 spin_unlock(&mp
->m_sb_lock
);
2341 * Balance and enable/disable counters as necessary.
2343 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2344 * chosen to be the same number as single on disk allocation chunk per CPU, and
2345 * free blocks is something far enough zero that we aren't going thrash when we
2346 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2347 * prevent looping endlessly when xfs_alloc_space asks for more than will
2348 * be distributed to a single CPU but each CPU has enough blocks to be
2351 * Note that we can be called when counters are already disabled.
2352 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2353 * prevent locking every per-cpu counter needlessly.
2356 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2357 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2358 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2360 xfs_icsb_balance_counter_locked(
2362 xfs_sb_field_t field
,
2365 uint64_t count
, resid
;
2366 int weight
= num_online_cpus();
2367 uint64_t min
= (uint64_t)min_per_cpu
;
2369 /* disable counter and sync counter */
2370 xfs_icsb_disable_counter(mp
, field
);
2372 /* update counters - first CPU gets residual*/
2374 case XFS_SBS_ICOUNT
:
2375 count
= mp
->m_sb
.sb_icount
;
2376 resid
= do_div(count
, weight
);
2377 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2381 count
= mp
->m_sb
.sb_ifree
;
2382 resid
= do_div(count
, weight
);
2383 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2386 case XFS_SBS_FDBLOCKS
:
2387 count
= mp
->m_sb
.sb_fdblocks
;
2388 resid
= do_div(count
, weight
);
2389 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2394 count
= resid
= 0; /* quiet, gcc */
2398 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2402 xfs_icsb_balance_counter(
2404 xfs_sb_field_t fields
,
2407 spin_lock(&mp
->m_sb_lock
);
2408 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2409 spin_unlock(&mp
->m_sb_lock
);
2413 xfs_icsb_modify_counters(
2415 xfs_sb_field_t field
,
2419 xfs_icsb_cnts_t
*icsbp
;
2420 long long lcounter
; /* long counter for 64 bit fields */
2426 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2429 * if the counter is disabled, go to slow path
2431 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2433 xfs_icsb_lock_cntr(icsbp
);
2434 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2435 xfs_icsb_unlock_cntr(icsbp
);
2440 case XFS_SBS_ICOUNT
:
2441 lcounter
= icsbp
->icsb_icount
;
2443 if (unlikely(lcounter
< 0))
2444 goto balance_counter
;
2445 icsbp
->icsb_icount
= lcounter
;
2449 lcounter
= icsbp
->icsb_ifree
;
2451 if (unlikely(lcounter
< 0))
2452 goto balance_counter
;
2453 icsbp
->icsb_ifree
= lcounter
;
2456 case XFS_SBS_FDBLOCKS
:
2457 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2459 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2461 if (unlikely(lcounter
< 0))
2462 goto balance_counter
;
2463 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2469 xfs_icsb_unlock_cntr(icsbp
);
2477 * serialise with a mutex so we don't burn lots of cpu on
2478 * the superblock lock. We still need to hold the superblock
2479 * lock, however, when we modify the global structures.
2484 * Now running atomically.
2486 * If the counter is enabled, someone has beaten us to rebalancing.
2487 * Drop the lock and try again in the fast path....
2489 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2490 xfs_icsb_unlock(mp
);
2495 * The counter is currently disabled. Because we are
2496 * running atomically here, we know a rebalance cannot
2497 * be in progress. Hence we can go straight to operating
2498 * on the global superblock. We do not call xfs_mod_incore_sb()
2499 * here even though we need to get the m_sb_lock. Doing so
2500 * will cause us to re-enter this function and deadlock.
2501 * Hence we get the m_sb_lock ourselves and then call
2502 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2503 * directly on the global counters.
2505 spin_lock(&mp
->m_sb_lock
);
2506 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2507 spin_unlock(&mp
->m_sb_lock
);
2510 * Now that we've modified the global superblock, we
2511 * may be able to re-enable the distributed counters
2512 * (e.g. lots of space just got freed). After that
2516 xfs_icsb_balance_counter(mp
, field
, 0);
2517 xfs_icsb_unlock(mp
);
2521 xfs_icsb_unlock_cntr(icsbp
);
2525 * We may have multiple threads here if multiple per-cpu
2526 * counters run dry at the same time. This will mean we can
2527 * do more balances than strictly necessary but it is not
2528 * the common slowpath case.
2533 * running atomically.
2535 * This will leave the counter in the correct state for future
2536 * accesses. After the rebalance, we simply try again and our retry
2537 * will either succeed through the fast path or slow path without
2538 * another balance operation being required.
2540 xfs_icsb_balance_counter(mp
, field
, delta
);
2541 xfs_icsb_unlock(mp
);