2 * Symmetric key ciphers.
4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
21 * struct skcipher_request - Symmetric key cipher request
22 * @cryptlen: Number of bytes to encrypt or decrypt
23 * @iv: Initialisation Vector
24 * @src: Source SG list
25 * @dst: Destination SG list
26 * @base: Underlying async request request
27 * @__ctx: Start of private context data
29 struct skcipher_request
{
30 unsigned int cryptlen
;
34 struct scatterlist
*src
;
35 struct scatterlist
*dst
;
37 struct crypto_async_request base
;
39 void *__ctx
[] CRYPTO_MINALIGN_ATTR
;
42 struct crypto_skcipher
{
43 int (*setkey
)(struct crypto_skcipher
*tfm
, const u8
*key
,
45 int (*encrypt
)(struct skcipher_request
*req
);
46 int (*decrypt
)(struct skcipher_request
*req
);
52 struct crypto_tfm base
;
55 struct crypto_sync_skcipher
{
56 struct crypto_skcipher base
;
60 * struct skcipher_alg - symmetric key cipher definition
61 * @min_keysize: Minimum key size supported by the transformation. This is the
62 * smallest key length supported by this transformation algorithm.
63 * This must be set to one of the pre-defined values as this is
64 * not hardware specific. Possible values for this field can be
65 * found via git grep "_MIN_KEY_SIZE" include/crypto/
66 * @max_keysize: Maximum key size supported by the transformation. This is the
67 * largest key length supported by this transformation algorithm.
68 * This must be set to one of the pre-defined values as this is
69 * not hardware specific. Possible values for this field can be
70 * found via git grep "_MAX_KEY_SIZE" include/crypto/
71 * @setkey: Set key for the transformation. This function is used to either
72 * program a supplied key into the hardware or store the key in the
73 * transformation context for programming it later. Note that this
74 * function does modify the transformation context. This function can
75 * be called multiple times during the existence of the transformation
76 * object, so one must make sure the key is properly reprogrammed into
77 * the hardware. This function is also responsible for checking the key
78 * length for validity. In case a software fallback was put in place in
79 * the @cra_init call, this function might need to use the fallback if
80 * the algorithm doesn't support all of the key sizes.
81 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
82 * the supplied scatterlist containing the blocks of data. The crypto
83 * API consumer is responsible for aligning the entries of the
84 * scatterlist properly and making sure the chunks are correctly
85 * sized. In case a software fallback was put in place in the
86 * @cra_init call, this function might need to use the fallback if
87 * the algorithm doesn't support all of the key sizes. In case the
88 * key was stored in transformation context, the key might need to be
89 * re-programmed into the hardware in this function. This function
90 * shall not modify the transformation context, as this function may
91 * be called in parallel with the same transformation object.
92 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
93 * and the conditions are exactly the same.
94 * @init: Initialize the cryptographic transformation object. This function
95 * is used to initialize the cryptographic transformation object.
96 * This function is called only once at the instantiation time, right
97 * after the transformation context was allocated. In case the
98 * cryptographic hardware has some special requirements which need to
99 * be handled by software, this function shall check for the precise
100 * requirement of the transformation and put any software fallbacks
102 * @exit: Deinitialize the cryptographic transformation object. This is a
103 * counterpart to @init, used to remove various changes set in
105 * @ivsize: IV size applicable for transformation. The consumer must provide an
106 * IV of exactly that size to perform the encrypt or decrypt operation.
107 * @chunksize: Equal to the block size except for stream ciphers such as
108 * CTR where it is set to the underlying block size.
109 * @walksize: Equal to the chunk size except in cases where the algorithm is
110 * considerably more efficient if it can operate on multiple chunks
111 * in parallel. Should be a multiple of chunksize.
112 * @base: Definition of a generic crypto algorithm.
114 * All fields except @ivsize are mandatory and must be filled.
116 struct skcipher_alg
{
117 int (*setkey
)(struct crypto_skcipher
*tfm
, const u8
*key
,
118 unsigned int keylen
);
119 int (*encrypt
)(struct skcipher_request
*req
);
120 int (*decrypt
)(struct skcipher_request
*req
);
121 int (*init
)(struct crypto_skcipher
*tfm
);
122 void (*exit
)(struct crypto_skcipher
*tfm
);
124 unsigned int min_keysize
;
125 unsigned int max_keysize
;
127 unsigned int chunksize
;
128 unsigned int walksize
;
130 struct crypto_alg base
;
133 #define MAX_SYNC_SKCIPHER_REQSIZE 384
135 * This performs a type-check against the "tfm" argument to make sure
136 * all users have the correct skcipher tfm for doing on-stack requests.
138 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
139 char __##name##_desc[sizeof(struct skcipher_request) + \
140 MAX_SYNC_SKCIPHER_REQSIZE + \
141 (!(sizeof((struct crypto_sync_skcipher *)1 == \
143 ] CRYPTO_MINALIGN_ATTR; \
144 struct skcipher_request *name = (void *)__##name##_desc
147 * DOC: Symmetric Key Cipher API
149 * Symmetric key cipher API is used with the ciphers of type
150 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
152 * Asynchronous cipher operations imply that the function invocation for a
153 * cipher request returns immediately before the completion of the operation.
154 * The cipher request is scheduled as a separate kernel thread and therefore
155 * load-balanced on the different CPUs via the process scheduler. To allow
156 * the kernel crypto API to inform the caller about the completion of a cipher
157 * request, the caller must provide a callback function. That function is
158 * invoked with the cipher handle when the request completes.
160 * To support the asynchronous operation, additional information than just the
161 * cipher handle must be supplied to the kernel crypto API. That additional
162 * information is given by filling in the skcipher_request data structure.
164 * For the symmetric key cipher API, the state is maintained with the tfm
165 * cipher handle. A single tfm can be used across multiple calls and in
166 * parallel. For asynchronous block cipher calls, context data supplied and
167 * only used by the caller can be referenced the request data structure in
168 * addition to the IV used for the cipher request. The maintenance of such
169 * state information would be important for a crypto driver implementer to
170 * have, because when calling the callback function upon completion of the
171 * cipher operation, that callback function may need some information about
172 * which operation just finished if it invoked multiple in parallel. This
173 * state information is unused by the kernel crypto API.
176 static inline struct crypto_skcipher
*__crypto_skcipher_cast(
177 struct crypto_tfm
*tfm
)
179 return container_of(tfm
, struct crypto_skcipher
, base
);
183 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
184 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
186 * @type: specifies the type of the cipher
187 * @mask: specifies the mask for the cipher
189 * Allocate a cipher handle for an skcipher. The returned struct
190 * crypto_skcipher is the cipher handle that is required for any subsequent
191 * API invocation for that skcipher.
193 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
194 * of an error, PTR_ERR() returns the error code.
196 struct crypto_skcipher
*crypto_alloc_skcipher(const char *alg_name
,
199 struct crypto_sync_skcipher
*crypto_alloc_sync_skcipher(const char *alg_name
,
202 static inline struct crypto_tfm
*crypto_skcipher_tfm(
203 struct crypto_skcipher
*tfm
)
209 * crypto_free_skcipher() - zeroize and free cipher handle
210 * @tfm: cipher handle to be freed
212 static inline void crypto_free_skcipher(struct crypto_skcipher
*tfm
)
214 crypto_destroy_tfm(tfm
, crypto_skcipher_tfm(tfm
));
217 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher
*tfm
)
219 crypto_free_skcipher(&tfm
->base
);
223 * crypto_has_skcipher() - Search for the availability of an skcipher.
224 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
226 * @type: specifies the type of the cipher
227 * @mask: specifies the mask for the cipher
229 * Return: true when the skcipher is known to the kernel crypto API; false
232 static inline int crypto_has_skcipher(const char *alg_name
, u32 type
,
235 return crypto_has_alg(alg_name
, crypto_skcipher_type(type
),
236 crypto_skcipher_mask(mask
));
240 * crypto_has_skcipher2() - Search for the availability of an skcipher.
241 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
243 * @type: specifies the type of the skcipher
244 * @mask: specifies the mask for the skcipher
246 * Return: true when the skcipher is known to the kernel crypto API; false
249 int crypto_has_skcipher2(const char *alg_name
, u32 type
, u32 mask
);
251 static inline const char *crypto_skcipher_driver_name(
252 struct crypto_skcipher
*tfm
)
254 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm
));
257 static inline struct skcipher_alg
*crypto_skcipher_alg(
258 struct crypto_skcipher
*tfm
)
260 return container_of(crypto_skcipher_tfm(tfm
)->__crt_alg
,
261 struct skcipher_alg
, base
);
264 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg
*alg
)
266 if ((alg
->base
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) ==
267 CRYPTO_ALG_TYPE_BLKCIPHER
)
268 return alg
->base
.cra_blkcipher
.ivsize
;
270 if (alg
->base
.cra_ablkcipher
.encrypt
)
271 return alg
->base
.cra_ablkcipher
.ivsize
;
277 * crypto_skcipher_ivsize() - obtain IV size
278 * @tfm: cipher handle
280 * The size of the IV for the skcipher referenced by the cipher handle is
281 * returned. This IV size may be zero if the cipher does not need an IV.
283 * Return: IV size in bytes
285 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher
*tfm
)
290 static inline unsigned int crypto_sync_skcipher_ivsize(
291 struct crypto_sync_skcipher
*tfm
)
293 return crypto_skcipher_ivsize(&tfm
->base
);
296 static inline unsigned int crypto_skcipher_alg_chunksize(
297 struct skcipher_alg
*alg
)
299 if ((alg
->base
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) ==
300 CRYPTO_ALG_TYPE_BLKCIPHER
)
301 return alg
->base
.cra_blocksize
;
303 if (alg
->base
.cra_ablkcipher
.encrypt
)
304 return alg
->base
.cra_blocksize
;
306 return alg
->chunksize
;
309 static inline unsigned int crypto_skcipher_alg_walksize(
310 struct skcipher_alg
*alg
)
312 if ((alg
->base
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) ==
313 CRYPTO_ALG_TYPE_BLKCIPHER
)
314 return alg
->base
.cra_blocksize
;
316 if (alg
->base
.cra_ablkcipher
.encrypt
)
317 return alg
->base
.cra_blocksize
;
319 return alg
->walksize
;
323 * crypto_skcipher_chunksize() - obtain chunk size
324 * @tfm: cipher handle
326 * The block size is set to one for ciphers such as CTR. However,
327 * you still need to provide incremental updates in multiples of
328 * the underlying block size as the IV does not have sub-block
329 * granularity. This is known in this API as the chunk size.
331 * Return: chunk size in bytes
333 static inline unsigned int crypto_skcipher_chunksize(
334 struct crypto_skcipher
*tfm
)
336 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm
));
340 * crypto_skcipher_walksize() - obtain walk size
341 * @tfm: cipher handle
343 * In some cases, algorithms can only perform optimally when operating on
344 * multiple blocks in parallel. This is reflected by the walksize, which
345 * must be a multiple of the chunksize (or equal if the concern does not
348 * Return: walk size in bytes
350 static inline unsigned int crypto_skcipher_walksize(
351 struct crypto_skcipher
*tfm
)
353 return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm
));
357 * crypto_skcipher_blocksize() - obtain block size of cipher
358 * @tfm: cipher handle
360 * The block size for the skcipher referenced with the cipher handle is
361 * returned. The caller may use that information to allocate appropriate
362 * memory for the data returned by the encryption or decryption operation
364 * Return: block size of cipher
366 static inline unsigned int crypto_skcipher_blocksize(
367 struct crypto_skcipher
*tfm
)
369 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm
));
372 static inline unsigned int crypto_sync_skcipher_blocksize(
373 struct crypto_sync_skcipher
*tfm
)
375 return crypto_skcipher_blocksize(&tfm
->base
);
378 static inline unsigned int crypto_skcipher_alignmask(
379 struct crypto_skcipher
*tfm
)
381 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm
));
384 static inline u32
crypto_skcipher_get_flags(struct crypto_skcipher
*tfm
)
386 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm
));
389 static inline void crypto_skcipher_set_flags(struct crypto_skcipher
*tfm
,
392 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm
), flags
);
395 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher
*tfm
,
398 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm
), flags
);
401 static inline u32
crypto_sync_skcipher_get_flags(
402 struct crypto_sync_skcipher
*tfm
)
404 return crypto_skcipher_get_flags(&tfm
->base
);
407 static inline void crypto_sync_skcipher_set_flags(
408 struct crypto_sync_skcipher
*tfm
, u32 flags
)
410 crypto_skcipher_set_flags(&tfm
->base
, flags
);
413 static inline void crypto_sync_skcipher_clear_flags(
414 struct crypto_sync_skcipher
*tfm
, u32 flags
)
416 crypto_skcipher_clear_flags(&tfm
->base
, flags
);
420 * crypto_skcipher_setkey() - set key for cipher
421 * @tfm: cipher handle
422 * @key: buffer holding the key
423 * @keylen: length of the key in bytes
425 * The caller provided key is set for the skcipher referenced by the cipher
428 * Note, the key length determines the cipher type. Many block ciphers implement
429 * different cipher modes depending on the key size, such as AES-128 vs AES-192
430 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
433 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
435 static inline int crypto_skcipher_setkey(struct crypto_skcipher
*tfm
,
436 const u8
*key
, unsigned int keylen
)
438 return tfm
->setkey(tfm
, key
, keylen
);
441 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher
*tfm
,
442 const u8
*key
, unsigned int keylen
)
444 return crypto_skcipher_setkey(&tfm
->base
, key
, keylen
);
447 static inline unsigned int crypto_skcipher_default_keysize(
448 struct crypto_skcipher
*tfm
)
454 * crypto_skcipher_reqtfm() - obtain cipher handle from request
455 * @req: skcipher_request out of which the cipher handle is to be obtained
457 * Return the crypto_skcipher handle when furnishing an skcipher_request
460 * Return: crypto_skcipher handle
462 static inline struct crypto_skcipher
*crypto_skcipher_reqtfm(
463 struct skcipher_request
*req
)
465 return __crypto_skcipher_cast(req
->base
.tfm
);
468 static inline struct crypto_sync_skcipher
*crypto_sync_skcipher_reqtfm(
469 struct skcipher_request
*req
)
471 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
473 return container_of(tfm
, struct crypto_sync_skcipher
, base
);
477 * crypto_skcipher_encrypt() - encrypt plaintext
478 * @req: reference to the skcipher_request handle that holds all information
479 * needed to perform the cipher operation
481 * Encrypt plaintext data using the skcipher_request handle. That data
482 * structure and how it is filled with data is discussed with the
483 * skcipher_request_* functions.
485 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
487 static inline int crypto_skcipher_encrypt(struct skcipher_request
*req
)
489 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
490 struct crypto_alg
*alg
= tfm
->base
.__crt_alg
;
491 unsigned int cryptlen
= req
->cryptlen
;
494 crypto_stats_get(alg
);
495 if (crypto_skcipher_get_flags(tfm
) & CRYPTO_TFM_NEED_KEY
)
498 ret
= tfm
->encrypt(req
);
499 crypto_stats_skcipher_encrypt(cryptlen
, ret
, alg
);
504 * crypto_skcipher_decrypt() - decrypt ciphertext
505 * @req: reference to the skcipher_request handle that holds all information
506 * needed to perform the cipher operation
508 * Decrypt ciphertext data using the skcipher_request handle. That data
509 * structure and how it is filled with data is discussed with the
510 * skcipher_request_* functions.
512 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
514 static inline int crypto_skcipher_decrypt(struct skcipher_request
*req
)
516 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
517 struct crypto_alg
*alg
= tfm
->base
.__crt_alg
;
518 unsigned int cryptlen
= req
->cryptlen
;
521 crypto_stats_get(alg
);
522 if (crypto_skcipher_get_flags(tfm
) & CRYPTO_TFM_NEED_KEY
)
525 ret
= tfm
->decrypt(req
);
526 crypto_stats_skcipher_decrypt(cryptlen
, ret
, alg
);
531 * DOC: Symmetric Key Cipher Request Handle
533 * The skcipher_request data structure contains all pointers to data
534 * required for the symmetric key cipher operation. This includes the cipher
535 * handle (which can be used by multiple skcipher_request instances), pointer
536 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
537 * as a handle to the skcipher_request_* API calls in a similar way as
538 * skcipher handle to the crypto_skcipher_* API calls.
542 * crypto_skcipher_reqsize() - obtain size of the request data structure
543 * @tfm: cipher handle
545 * Return: number of bytes
547 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher
*tfm
)
553 * skcipher_request_set_tfm() - update cipher handle reference in request
554 * @req: request handle to be modified
555 * @tfm: cipher handle that shall be added to the request handle
557 * Allow the caller to replace the existing skcipher handle in the request
558 * data structure with a different one.
560 static inline void skcipher_request_set_tfm(struct skcipher_request
*req
,
561 struct crypto_skcipher
*tfm
)
563 req
->base
.tfm
= crypto_skcipher_tfm(tfm
);
566 static inline void skcipher_request_set_sync_tfm(struct skcipher_request
*req
,
567 struct crypto_sync_skcipher
*tfm
)
569 skcipher_request_set_tfm(req
, &tfm
->base
);
572 static inline struct skcipher_request
*skcipher_request_cast(
573 struct crypto_async_request
*req
)
575 return container_of(req
, struct skcipher_request
, base
);
579 * skcipher_request_alloc() - allocate request data structure
580 * @tfm: cipher handle to be registered with the request
581 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
583 * Allocate the request data structure that must be used with the skcipher
584 * encrypt and decrypt API calls. During the allocation, the provided skcipher
585 * handle is registered in the request data structure.
587 * Return: allocated request handle in case of success, or NULL if out of memory
589 static inline struct skcipher_request
*skcipher_request_alloc(
590 struct crypto_skcipher
*tfm
, gfp_t gfp
)
592 struct skcipher_request
*req
;
594 req
= kmalloc(sizeof(struct skcipher_request
) +
595 crypto_skcipher_reqsize(tfm
), gfp
);
598 skcipher_request_set_tfm(req
, tfm
);
604 * skcipher_request_free() - zeroize and free request data structure
605 * @req: request data structure cipher handle to be freed
607 static inline void skcipher_request_free(struct skcipher_request
*req
)
612 static inline void skcipher_request_zero(struct skcipher_request
*req
)
614 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
616 memzero_explicit(req
, sizeof(*req
) + crypto_skcipher_reqsize(tfm
));
620 * skcipher_request_set_callback() - set asynchronous callback function
621 * @req: request handle
622 * @flags: specify zero or an ORing of the flags
623 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
624 * increase the wait queue beyond the initial maximum size;
625 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
626 * @compl: callback function pointer to be registered with the request handle
627 * @data: The data pointer refers to memory that is not used by the kernel
628 * crypto API, but provided to the callback function for it to use. Here,
629 * the caller can provide a reference to memory the callback function can
630 * operate on. As the callback function is invoked asynchronously to the
631 * related functionality, it may need to access data structures of the
632 * related functionality which can be referenced using this pointer. The
633 * callback function can access the memory via the "data" field in the
634 * crypto_async_request data structure provided to the callback function.
636 * This function allows setting the callback function that is triggered once the
637 * cipher operation completes.
639 * The callback function is registered with the skcipher_request handle and
640 * must comply with the following template::
642 * void callback_function(struct crypto_async_request *req, int error)
644 static inline void skcipher_request_set_callback(struct skcipher_request
*req
,
646 crypto_completion_t
compl,
649 req
->base
.complete
= compl;
650 req
->base
.data
= data
;
651 req
->base
.flags
= flags
;
655 * skcipher_request_set_crypt() - set data buffers
656 * @req: request handle
657 * @src: source scatter / gather list
658 * @dst: destination scatter / gather list
659 * @cryptlen: number of bytes to process from @src
660 * @iv: IV for the cipher operation which must comply with the IV size defined
661 * by crypto_skcipher_ivsize
663 * This function allows setting of the source data and destination data
664 * scatter / gather lists.
666 * For encryption, the source is treated as the plaintext and the
667 * destination is the ciphertext. For a decryption operation, the use is
668 * reversed - the source is the ciphertext and the destination is the plaintext.
670 static inline void skcipher_request_set_crypt(
671 struct skcipher_request
*req
,
672 struct scatterlist
*src
, struct scatterlist
*dst
,
673 unsigned int cryptlen
, void *iv
)
677 req
->cryptlen
= cryptlen
;
681 #endif /* _CRYPTO_SKCIPHER_H */