2 * arch/arm/mach-tegra/dma.c
4 * System DMA driver for NVIDIA Tegra SoCs
6 * Copyright (c) 2008-2009, NVIDIA Corporation.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/spinlock.h>
27 #include <linux/err.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
32 #include <mach/irqs.h>
33 #include <mach/iomap.h>
34 #include <mach/suspend.h>
36 #define APB_DMA_GEN 0x000
37 #define GEN_ENABLE (1<<31)
39 #define APB_DMA_CNTRL 0x010
41 #define APB_DMA_IRQ_MASK 0x01c
43 #define APB_DMA_IRQ_MASK_SET 0x020
45 #define APB_DMA_CHAN_CSR 0x000
46 #define CSR_ENB (1<<31)
47 #define CSR_IE_EOC (1<<30)
48 #define CSR_HOLD (1<<29)
49 #define CSR_DIR (1<<28)
50 #define CSR_ONCE (1<<27)
51 #define CSR_FLOW (1<<21)
52 #define CSR_REQ_SEL_SHIFT 16
53 #define CSR_REQ_SEL_MASK (0x1F<<CSR_REQ_SEL_SHIFT)
54 #define CSR_REQ_SEL_INVALID (31<<CSR_REQ_SEL_SHIFT)
55 #define CSR_WCOUNT_SHIFT 2
56 #define CSR_WCOUNT_MASK 0xFFFC
58 #define APB_DMA_CHAN_STA 0x004
59 #define STA_BUSY (1<<31)
60 #define STA_ISE_EOC (1<<30)
61 #define STA_HALT (1<<29)
62 #define STA_PING_PONG (1<<28)
63 #define STA_COUNT_SHIFT 2
64 #define STA_COUNT_MASK 0xFFFC
66 #define APB_DMA_CHAN_AHB_PTR 0x010
68 #define APB_DMA_CHAN_AHB_SEQ 0x014
69 #define AHB_SEQ_INTR_ENB (1<<31)
70 #define AHB_SEQ_BUS_WIDTH_SHIFT 28
71 #define AHB_SEQ_BUS_WIDTH_MASK (0x7<<AHB_SEQ_BUS_WIDTH_SHIFT)
72 #define AHB_SEQ_BUS_WIDTH_8 (0<<AHB_SEQ_BUS_WIDTH_SHIFT)
73 #define AHB_SEQ_BUS_WIDTH_16 (1<<AHB_SEQ_BUS_WIDTH_SHIFT)
74 #define AHB_SEQ_BUS_WIDTH_32 (2<<AHB_SEQ_BUS_WIDTH_SHIFT)
75 #define AHB_SEQ_BUS_WIDTH_64 (3<<AHB_SEQ_BUS_WIDTH_SHIFT)
76 #define AHB_SEQ_BUS_WIDTH_128 (4<<AHB_SEQ_BUS_WIDTH_SHIFT)
77 #define AHB_SEQ_DATA_SWAP (1<<27)
78 #define AHB_SEQ_BURST_MASK (0x7<<24)
79 #define AHB_SEQ_BURST_1 (4<<24)
80 #define AHB_SEQ_BURST_4 (5<<24)
81 #define AHB_SEQ_BURST_8 (6<<24)
82 #define AHB_SEQ_DBL_BUF (1<<19)
83 #define AHB_SEQ_WRAP_SHIFT 16
84 #define AHB_SEQ_WRAP_MASK (0x7<<AHB_SEQ_WRAP_SHIFT)
86 #define APB_DMA_CHAN_APB_PTR 0x018
88 #define APB_DMA_CHAN_APB_SEQ 0x01c
89 #define APB_SEQ_BUS_WIDTH_SHIFT 28
90 #define APB_SEQ_BUS_WIDTH_MASK (0x7<<APB_SEQ_BUS_WIDTH_SHIFT)
91 #define APB_SEQ_BUS_WIDTH_8 (0<<APB_SEQ_BUS_WIDTH_SHIFT)
92 #define APB_SEQ_BUS_WIDTH_16 (1<<APB_SEQ_BUS_WIDTH_SHIFT)
93 #define APB_SEQ_BUS_WIDTH_32 (2<<APB_SEQ_BUS_WIDTH_SHIFT)
94 #define APB_SEQ_BUS_WIDTH_64 (3<<APB_SEQ_BUS_WIDTH_SHIFT)
95 #define APB_SEQ_BUS_WIDTH_128 (4<<APB_SEQ_BUS_WIDTH_SHIFT)
96 #define APB_SEQ_DATA_SWAP (1<<27)
97 #define APB_SEQ_WRAP_SHIFT 16
98 #define APB_SEQ_WRAP_MASK (0x7<<APB_SEQ_WRAP_SHIFT)
100 #define TEGRA_SYSTEM_DMA_CH_NR 16
101 #define TEGRA_SYSTEM_DMA_AVP_CH_NUM 4
102 #define TEGRA_SYSTEM_DMA_CH_MIN 0
103 #define TEGRA_SYSTEM_DMA_CH_MAX \
104 (TEGRA_SYSTEM_DMA_CH_NR - TEGRA_SYSTEM_DMA_AVP_CH_NUM - 1)
106 #define NV_DMA_MAX_TRASFER_SIZE 0x10000
108 const unsigned int ahb_addr_wrap_table
[8] = {
109 0, 32, 64, 128, 256, 512, 1024, 2048
112 const unsigned int apb_addr_wrap_table
[8] = {0, 1, 2, 4, 8, 16, 32, 64};
114 const unsigned int bus_width_table
[5] = {8, 16, 32, 64, 128};
116 #define TEGRA_DMA_NAME_SIZE 16
117 struct tegra_dma_channel
{
118 struct list_head list
;
121 char name
[TEGRA_DMA_NAME_SIZE
];
125 int req_transfer_count
;
128 #define NV_DMA_MAX_CHANNELS 32
130 static bool tegra_dma_initialized
;
131 static DEFINE_MUTEX(tegra_dma_lock
);
133 static DECLARE_BITMAP(channel_usage
, NV_DMA_MAX_CHANNELS
);
134 static struct tegra_dma_channel dma_channels
[NV_DMA_MAX_CHANNELS
];
136 static void tegra_dma_update_hw(struct tegra_dma_channel
*ch
,
137 struct tegra_dma_req
*req
);
138 static void tegra_dma_update_hw_partial(struct tegra_dma_channel
*ch
,
139 struct tegra_dma_req
*req
);
140 static void tegra_dma_stop(struct tegra_dma_channel
*ch
);
142 void tegra_dma_flush(struct tegra_dma_channel
*ch
)
145 EXPORT_SYMBOL(tegra_dma_flush
);
147 void tegra_dma_dequeue(struct tegra_dma_channel
*ch
)
149 struct tegra_dma_req
*req
;
151 if (tegra_dma_is_empty(ch
))
154 req
= list_entry(ch
->list
.next
, typeof(*req
), node
);
156 tegra_dma_dequeue_req(ch
, req
);
160 void tegra_dma_stop(struct tegra_dma_channel
*ch
)
165 csr
= readl(ch
->addr
+ APB_DMA_CHAN_CSR
);
167 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
170 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
172 status
= readl(ch
->addr
+ APB_DMA_CHAN_STA
);
173 if (status
& STA_ISE_EOC
)
174 writel(status
, ch
->addr
+ APB_DMA_CHAN_STA
);
177 int tegra_dma_cancel(struct tegra_dma_channel
*ch
)
180 unsigned long irq_flags
;
182 spin_lock_irqsave(&ch
->lock
, irq_flags
);
183 while (!list_empty(&ch
->list
))
184 list_del(ch
->list
.next
);
186 csr
= readl(ch
->addr
+ APB_DMA_CHAN_CSR
);
187 csr
&= ~CSR_REQ_SEL_MASK
;
188 csr
|= CSR_REQ_SEL_INVALID
;
189 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
193 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
197 int tegra_dma_dequeue_req(struct tegra_dma_channel
*ch
,
198 struct tegra_dma_req
*_req
)
202 struct tegra_dma_req
*req
= NULL
;
204 unsigned long irq_flags
;
206 int req_transfer_count
;
208 spin_lock_irqsave(&ch
->lock
, irq_flags
);
209 list_for_each_entry(req
, &ch
->list
, node
) {
211 list_del(&req
->node
);
217 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
221 /* STOP the DMA and get the transfer count.
222 * Getting the transfer count is tricky.
223 * - Change the source selector to invalid to stop the DMA from
225 * - Read the status register to know the number of pending
226 * bytes to be transferred.
227 * - Finally stop or program the DMA to the next buffer in the
230 csr
= readl(ch
->addr
+ APB_DMA_CHAN_CSR
);
231 csr
&= ~CSR_REQ_SEL_MASK
;
232 csr
|= CSR_REQ_SEL_INVALID
;
233 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
235 /* Get the transfer count */
236 status
= readl(ch
->addr
+ APB_DMA_CHAN_STA
);
237 to_transfer
= (status
& STA_COUNT_MASK
) >> STA_COUNT_SHIFT
;
238 req_transfer_count
= ch
->req_transfer_count
;
239 req_transfer_count
+= 1;
242 req
->bytes_transferred
= req_transfer_count
;
244 if (status
& STA_BUSY
)
245 req
->bytes_transferred
-= to_transfer
;
247 /* In continuous transfer mode, DMA only tracks the count of the
248 * half DMA buffer. So, if the DMA already finished half the DMA
249 * then add the half buffer to the completed count.
251 * FIXME: There can be a race here. What if the req to
252 * dequue happens at the same time as the DMA just moved to
253 * the new buffer and SW didn't yet received the interrupt?
255 if (ch
->mode
& TEGRA_DMA_MODE_CONTINOUS
)
256 if (req
->buffer_status
== TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL
)
257 req
->bytes_transferred
+= req_transfer_count
;
259 req
->bytes_transferred
*= 4;
262 if (!list_empty(&ch
->list
)) {
263 /* if the list is not empty, queue the next request */
264 struct tegra_dma_req
*next_req
;
265 next_req
= list_entry(ch
->list
.next
,
266 typeof(*next_req
), node
);
267 tegra_dma_update_hw(ch
, next_req
);
269 req
->status
= -TEGRA_DMA_REQ_ERROR_ABORTED
;
271 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
273 /* Callback should be called without any lock */
277 EXPORT_SYMBOL(tegra_dma_dequeue_req
);
279 bool tegra_dma_is_empty(struct tegra_dma_channel
*ch
)
281 unsigned long irq_flags
;
284 spin_lock_irqsave(&ch
->lock
, irq_flags
);
285 if (list_empty(&ch
->list
))
289 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
292 EXPORT_SYMBOL(tegra_dma_is_empty
);
294 bool tegra_dma_is_req_inflight(struct tegra_dma_channel
*ch
,
295 struct tegra_dma_req
*_req
)
297 unsigned long irq_flags
;
298 struct tegra_dma_req
*req
;
300 spin_lock_irqsave(&ch
->lock
, irq_flags
);
301 list_for_each_entry(req
, &ch
->list
, node
) {
303 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
307 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
310 EXPORT_SYMBOL(tegra_dma_is_req_inflight
);
312 int tegra_dma_enqueue_req(struct tegra_dma_channel
*ch
,
313 struct tegra_dma_req
*req
)
315 unsigned long irq_flags
;
316 struct tegra_dma_req
*_req
;
319 if (req
->size
> NV_DMA_MAX_TRASFER_SIZE
||
320 req
->source_addr
& 0x3 || req
->dest_addr
& 0x3) {
321 pr_err("Invalid DMA request for channel %d\n", ch
->id
);
325 spin_lock_irqsave(&ch
->lock
, irq_flags
);
327 list_for_each_entry(_req
, &ch
->list
, node
) {
329 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
334 req
->bytes_transferred
= 0;
336 req
->buffer_status
= 0;
337 if (list_empty(&ch
->list
))
340 list_add_tail(&req
->node
, &ch
->list
);
343 tegra_dma_update_hw(ch
, req
);
345 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
349 EXPORT_SYMBOL(tegra_dma_enqueue_req
);
351 struct tegra_dma_channel
*tegra_dma_allocate_channel(int mode
)
354 struct tegra_dma_channel
*ch
= NULL
;
356 if (WARN_ON(!tegra_dma_initialized
))
359 mutex_lock(&tegra_dma_lock
);
361 /* first channel is the shared channel */
362 if (mode
& TEGRA_DMA_SHARED
) {
363 channel
= TEGRA_SYSTEM_DMA_CH_MIN
;
365 channel
= find_first_zero_bit(channel_usage
,
366 ARRAY_SIZE(dma_channels
));
367 if (channel
>= ARRAY_SIZE(dma_channels
))
370 __set_bit(channel
, channel_usage
);
371 ch
= &dma_channels
[channel
];
375 mutex_unlock(&tegra_dma_lock
);
378 EXPORT_SYMBOL(tegra_dma_allocate_channel
);
380 void tegra_dma_free_channel(struct tegra_dma_channel
*ch
)
382 if (ch
->mode
& TEGRA_DMA_SHARED
)
384 tegra_dma_cancel(ch
);
385 mutex_lock(&tegra_dma_lock
);
386 __clear_bit(ch
->id
, channel_usage
);
387 mutex_unlock(&tegra_dma_lock
);
389 EXPORT_SYMBOL(tegra_dma_free_channel
);
391 static void tegra_dma_update_hw_partial(struct tegra_dma_channel
*ch
,
392 struct tegra_dma_req
*req
)
397 if (req
->to_memory
) {
398 apb_ptr
= req
->source_addr
;
399 ahb_ptr
= req
->dest_addr
;
401 apb_ptr
= req
->dest_addr
;
402 ahb_ptr
= req
->source_addr
;
404 writel(apb_ptr
, ch
->addr
+ APB_DMA_CHAN_APB_PTR
);
405 writel(ahb_ptr
, ch
->addr
+ APB_DMA_CHAN_AHB_PTR
);
407 req
->status
= TEGRA_DMA_REQ_INFLIGHT
;
411 static void tegra_dma_update_hw(struct tegra_dma_channel
*ch
,
412 struct tegra_dma_req
*req
)
426 csr
= CSR_IE_EOC
| CSR_FLOW
;
427 ahb_seq
= AHB_SEQ_INTR_ENB
| AHB_SEQ_BURST_1
;
430 csr
|= req
->req_sel
<< CSR_REQ_SEL_SHIFT
;
432 /* One shot mode is always single buffered,
433 * continuous mode is always double buffered
435 if (ch
->mode
& TEGRA_DMA_MODE_ONESHOT
) {
437 ch
->req_transfer_count
= (req
->size
>> 2) - 1;
439 ahb_seq
|= AHB_SEQ_DBL_BUF
;
441 /* In double buffered mode, we set the size to half the
442 * requested size and interrupt when half the buffer
444 ch
->req_transfer_count
= (req
->size
>> 3) - 1;
447 csr
|= ch
->req_transfer_count
<< CSR_WCOUNT_SHIFT
;
449 if (req
->to_memory
) {
450 apb_ptr
= req
->source_addr
;
451 ahb_ptr
= req
->dest_addr
;
453 apb_addr_wrap
= req
->source_wrap
;
454 ahb_addr_wrap
= req
->dest_wrap
;
455 apb_bus_width
= req
->source_bus_width
;
456 ahb_bus_width
= req
->dest_bus_width
;
460 apb_ptr
= req
->dest_addr
;
461 ahb_ptr
= req
->source_addr
;
463 apb_addr_wrap
= req
->dest_wrap
;
464 ahb_addr_wrap
= req
->source_wrap
;
465 apb_bus_width
= req
->dest_bus_width
;
466 ahb_bus_width
= req
->source_bus_width
;
472 /* set address wrap for APB size */
475 if (apb_addr_wrap_table
[index
] == apb_addr_wrap
)
478 } while (index
< ARRAY_SIZE(apb_addr_wrap_table
));
479 BUG_ON(index
== ARRAY_SIZE(apb_addr_wrap_table
));
480 apb_seq
|= index
<< APB_SEQ_WRAP_SHIFT
;
482 /* set address wrap for AHB size */
485 if (ahb_addr_wrap_table
[index
] == ahb_addr_wrap
)
488 } while (index
< ARRAY_SIZE(ahb_addr_wrap_table
));
489 BUG_ON(index
== ARRAY_SIZE(ahb_addr_wrap_table
));
490 ahb_seq
|= index
<< AHB_SEQ_WRAP_SHIFT
;
492 for (index
= 0; index
< ARRAY_SIZE(bus_width_table
); index
++) {
493 if (bus_width_table
[index
] == ahb_bus_width
)
496 BUG_ON(index
== ARRAY_SIZE(bus_width_table
));
497 ahb_seq
|= index
<< AHB_SEQ_BUS_WIDTH_SHIFT
;
499 for (index
= 0; index
< ARRAY_SIZE(bus_width_table
); index
++) {
500 if (bus_width_table
[index
] == apb_bus_width
)
503 BUG_ON(index
== ARRAY_SIZE(bus_width_table
));
504 apb_seq
|= index
<< APB_SEQ_BUS_WIDTH_SHIFT
;
506 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
507 writel(apb_seq
, ch
->addr
+ APB_DMA_CHAN_APB_SEQ
);
508 writel(apb_ptr
, ch
->addr
+ APB_DMA_CHAN_APB_PTR
);
509 writel(ahb_seq
, ch
->addr
+ APB_DMA_CHAN_AHB_SEQ
);
510 writel(ahb_ptr
, ch
->addr
+ APB_DMA_CHAN_AHB_PTR
);
513 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
515 req
->status
= TEGRA_DMA_REQ_INFLIGHT
;
518 static void handle_oneshot_dma(struct tegra_dma_channel
*ch
)
520 struct tegra_dma_req
*req
;
521 unsigned long irq_flags
;
523 spin_lock_irqsave(&ch
->lock
, irq_flags
);
524 if (list_empty(&ch
->list
)) {
525 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
529 req
= list_entry(ch
->list
.next
, typeof(*req
), node
);
531 int bytes_transferred
;
533 bytes_transferred
= ch
->req_transfer_count
;
534 bytes_transferred
+= 1;
535 bytes_transferred
<<= 2;
537 list_del(&req
->node
);
538 req
->bytes_transferred
= bytes_transferred
;
539 req
->status
= TEGRA_DMA_REQ_SUCCESS
;
541 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
542 /* Callback should be called without any lock */
543 pr_debug("%s: transferred %d bytes\n", __func__
,
544 req
->bytes_transferred
);
546 spin_lock_irqsave(&ch
->lock
, irq_flags
);
549 if (!list_empty(&ch
->list
)) {
550 req
= list_entry(ch
->list
.next
, typeof(*req
), node
);
551 /* the complete function we just called may have enqueued
552 another req, in which case dma has already started */
553 if (req
->status
!= TEGRA_DMA_REQ_INFLIGHT
)
554 tegra_dma_update_hw(ch
, req
);
556 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
559 static void handle_continuous_dma(struct tegra_dma_channel
*ch
)
561 struct tegra_dma_req
*req
;
562 unsigned long irq_flags
;
564 spin_lock_irqsave(&ch
->lock
, irq_flags
);
565 if (list_empty(&ch
->list
)) {
566 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
570 req
= list_entry(ch
->list
.next
, typeof(*req
), node
);
572 if (req
->buffer_status
== TEGRA_DMA_REQ_BUF_STATUS_EMPTY
) {
573 bool is_dma_ping_complete
;
574 is_dma_ping_complete
= (readl(ch
->addr
+ APB_DMA_CHAN_STA
)
575 & STA_PING_PONG
) ? true : false;
577 is_dma_ping_complete
= !is_dma_ping_complete
;
578 /* Out of sync - Release current buffer */
579 if (!is_dma_ping_complete
) {
580 int bytes_transferred
;
582 bytes_transferred
= ch
->req_transfer_count
;
583 bytes_transferred
+= 1;
584 bytes_transferred
<<= 3;
585 req
->buffer_status
= TEGRA_DMA_REQ_BUF_STATUS_FULL
;
586 req
->bytes_transferred
= bytes_transferred
;
587 req
->status
= TEGRA_DMA_REQ_SUCCESS
;
590 if (!list_is_last(&req
->node
, &ch
->list
)) {
591 struct tegra_dma_req
*next_req
;
593 next_req
= list_entry(req
->node
.next
,
594 typeof(*next_req
), node
);
595 tegra_dma_update_hw(ch
, next_req
);
598 list_del(&req
->node
);
600 /* DMA lock is NOT held when callbak is called */
601 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
605 /* Load the next request into the hardware, if available
607 if (!list_is_last(&req
->node
, &ch
->list
)) {
608 struct tegra_dma_req
*next_req
;
610 next_req
= list_entry(req
->node
.next
,
611 typeof(*next_req
), node
);
612 tegra_dma_update_hw_partial(ch
, next_req
);
614 req
->buffer_status
= TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL
;
615 req
->status
= TEGRA_DMA_REQ_SUCCESS
;
616 /* DMA lock is NOT held when callback is called */
617 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
618 if (likely(req
->threshold
))
622 } else if (req
->buffer_status
==
623 TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL
) {
624 /* Callback when the buffer is completely full (i.e on
625 * the second interrupt */
626 int bytes_transferred
;
628 bytes_transferred
= ch
->req_transfer_count
;
629 bytes_transferred
+= 1;
630 bytes_transferred
<<= 3;
632 req
->buffer_status
= TEGRA_DMA_REQ_BUF_STATUS_FULL
;
633 req
->bytes_transferred
= bytes_transferred
;
634 req
->status
= TEGRA_DMA_REQ_SUCCESS
;
635 list_del(&req
->node
);
637 /* DMA lock is NOT held when callbak is called */
638 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
646 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
649 static irqreturn_t
dma_isr(int irq
, void *data
)
651 struct tegra_dma_channel
*ch
= data
;
652 unsigned long status
;
654 status
= readl(ch
->addr
+ APB_DMA_CHAN_STA
);
655 if (status
& STA_ISE_EOC
)
656 writel(status
, ch
->addr
+ APB_DMA_CHAN_STA
);
658 pr_warning("Got a spurious ISR for DMA channel %d\n", ch
->id
);
661 return IRQ_WAKE_THREAD
;
664 static irqreturn_t
dma_thread_fn(int irq
, void *data
)
666 struct tegra_dma_channel
*ch
= data
;
668 if (ch
->mode
& TEGRA_DMA_MODE_ONESHOT
)
669 handle_oneshot_dma(ch
);
671 handle_continuous_dma(ch
);
677 int __init
tegra_dma_init(void)
685 bitmap_fill(channel_usage
, NV_DMA_MAX_CHANNELS
);
687 c
= clk_get_sys("tegra-dma", NULL
);
689 pr_err("Unable to get clock for APB DMA\n");
695 pr_err("Unable to enable clock for APB DMA\n");
699 addr
= IO_ADDRESS(TEGRA_APB_DMA_BASE
);
700 writel(GEN_ENABLE
, addr
+ APB_DMA_GEN
);
701 writel(0, addr
+ APB_DMA_CNTRL
);
702 writel(0xFFFFFFFFul
>> (31 - TEGRA_SYSTEM_DMA_CH_MAX
),
703 addr
+ APB_DMA_IRQ_MASK_SET
);
705 for (i
= TEGRA_SYSTEM_DMA_CH_MIN
; i
<= TEGRA_SYSTEM_DMA_CH_MAX
; i
++) {
706 struct tegra_dma_channel
*ch
= &dma_channels
[i
];
709 snprintf(ch
->name
, TEGRA_DMA_NAME_SIZE
, "dma_channel_%d", i
);
711 ch
->addr
= IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE
+
712 TEGRA_APB_DMA_CH0_SIZE
* i
);
714 spin_lock_init(&ch
->lock
);
715 INIT_LIST_HEAD(&ch
->list
);
717 irq
= INT_APB_DMA_CH0
+ i
;
718 ret
= request_threaded_irq(irq
, dma_isr
, dma_thread_fn
, 0,
719 dma_channels
[i
].name
, ch
);
721 pr_err("Failed to register IRQ %d for DMA %d\n",
727 __clear_bit(i
, channel_usage
);
729 /* mark the shared channel allocated */
730 __set_bit(TEGRA_SYSTEM_DMA_CH_MIN
, channel_usage
);
732 tegra_dma_initialized
= true;
736 writel(0, addr
+ APB_DMA_GEN
);
737 for (i
= TEGRA_SYSTEM_DMA_CH_MIN
; i
<= TEGRA_SYSTEM_DMA_CH_MAX
; i
++) {
738 struct tegra_dma_channel
*ch
= &dma_channels
[i
];
740 free_irq(ch
->irq
, ch
);
744 postcore_initcall(tegra_dma_init
);
747 static u32 apb_dma
[5*TEGRA_SYSTEM_DMA_CH_NR
+ 3];
749 void tegra_dma_suspend(void)
751 void __iomem
*addr
= IO_ADDRESS(TEGRA_APB_DMA_BASE
);
755 *ctx
++ = readl(addr
+ APB_DMA_GEN
);
756 *ctx
++ = readl(addr
+ APB_DMA_CNTRL
);
757 *ctx
++ = readl(addr
+ APB_DMA_IRQ_MASK
);
759 for (i
= 0; i
< TEGRA_SYSTEM_DMA_CH_NR
; i
++) {
760 addr
= IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE
+
761 TEGRA_APB_DMA_CH0_SIZE
* i
);
763 *ctx
++ = readl(addr
+ APB_DMA_CHAN_CSR
);
764 *ctx
++ = readl(addr
+ APB_DMA_CHAN_AHB_PTR
);
765 *ctx
++ = readl(addr
+ APB_DMA_CHAN_AHB_SEQ
);
766 *ctx
++ = readl(addr
+ APB_DMA_CHAN_APB_PTR
);
767 *ctx
++ = readl(addr
+ APB_DMA_CHAN_APB_SEQ
);
771 void tegra_dma_resume(void)
773 void __iomem
*addr
= IO_ADDRESS(TEGRA_APB_DMA_BASE
);
777 writel(*ctx
++, addr
+ APB_DMA_GEN
);
778 writel(*ctx
++, addr
+ APB_DMA_CNTRL
);
779 writel(*ctx
++, addr
+ APB_DMA_IRQ_MASK
);
781 for (i
= 0; i
< TEGRA_SYSTEM_DMA_CH_NR
; i
++) {
782 addr
= IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE
+
783 TEGRA_APB_DMA_CH0_SIZE
* i
);
785 writel(*ctx
++, addr
+ APB_DMA_CHAN_CSR
);
786 writel(*ctx
++, addr
+ APB_DMA_CHAN_AHB_PTR
);
787 writel(*ctx
++, addr
+ APB_DMA_CHAN_AHB_SEQ
);
788 writel(*ctx
++, addr
+ APB_DMA_CHAN_APB_PTR
);
789 writel(*ctx
++, addr
+ APB_DMA_CHAN_APB_SEQ
);