2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
53 #include <asm/cpufeature.h>
56 static struct extent_io_ops btree_extent_io_ops
;
57 static void end_workqueue_fn(struct btrfs_work
*work
);
58 static void free_fs_root(struct btrfs_root
*root
);
59 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
62 struct btrfs_root
*root
);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
65 struct btrfs_root
*root
);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction
*t
);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
68 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
69 struct extent_io_tree
*dirty_pages
,
71 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
72 struct extent_io_tree
*pinned_extents
);
73 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
74 static void btrfs_error_commit_super(struct btrfs_root
*root
);
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_fs_info
*info
;
88 struct list_head list
;
89 struct btrfs_work work
;
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
97 struct async_submit_bio
{
100 struct list_head list
;
101 extent_submit_bio_hook_t
*submit_bio_start
;
102 extent_submit_bio_hook_t
*submit_bio_done
;
105 unsigned long bio_flags
;
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
111 struct btrfs_work work
;
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
143 static struct btrfs_lockdep_keyset
{
144 u64 id
; /* root objectid */
145 const char *name_stem
; /* lock name stem */
146 char names
[BTRFS_MAX_LEVEL
+ 1][20];
147 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
148 } btrfs_lockdep_keysets
[] = {
149 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
150 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
151 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
152 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
153 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
154 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
155 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
156 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
157 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
158 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
159 { .id
= 0, .name_stem
= "tree" },
162 void __init
btrfs_init_lockdep(void)
166 /* initialize lockdep class names */
167 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
168 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
170 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
171 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
172 "btrfs-%s-%02d", ks
->name_stem
, j
);
176 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
179 struct btrfs_lockdep_keyset
*ks
;
181 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
185 if (ks
->id
== objectid
)
188 lockdep_set_class_and_name(&eb
->lock
,
189 &ks
->keys
[level
], ks
->names
[level
]);
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
198 static struct extent_map
*btree_get_extent(struct inode
*inode
,
199 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
202 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
203 struct extent_map
*em
;
206 read_lock(&em_tree
->lock
);
207 em
= lookup_extent_mapping(em_tree
, start
, len
);
210 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
211 read_unlock(&em_tree
->lock
);
214 read_unlock(&em_tree
->lock
);
216 em
= alloc_extent_map();
218 em
= ERR_PTR(-ENOMEM
);
223 em
->block_len
= (u64
)-1;
225 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
227 write_lock(&em_tree
->lock
);
228 ret
= add_extent_mapping(em_tree
, em
, 0);
229 if (ret
== -EEXIST
) {
231 em
= lookup_extent_mapping(em_tree
, start
, len
);
238 write_unlock(&em_tree
->lock
);
244 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
246 return crc32c(seed
, data
, len
);
249 void btrfs_csum_final(u32 crc
, char *result
)
251 put_unaligned_le32(~crc
, result
);
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
258 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
261 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
264 unsigned long cur_len
;
265 unsigned long offset
= BTRFS_CSUM_SIZE
;
267 unsigned long map_start
;
268 unsigned long map_len
;
271 unsigned long inline_result
;
273 len
= buf
->len
- offset
;
275 err
= map_private_extent_buffer(buf
, offset
, 32,
276 &kaddr
, &map_start
, &map_len
);
279 cur_len
= min(len
, map_len
- (offset
- map_start
));
280 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
285 if (csum_size
> sizeof(inline_result
)) {
286 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
290 result
= (char *)&inline_result
;
293 btrfs_csum_final(crc
, result
);
296 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
299 memcpy(&found
, result
, csum_size
);
301 read_extent_buffer(buf
, &val
, 0, csum_size
);
302 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
305 root
->fs_info
->sb
->s_id
,
306 (unsigned long long)buf
->start
, val
, found
,
307 btrfs_header_level(buf
));
308 if (result
!= (char *)&inline_result
)
313 write_extent_buffer(buf
, result
, 0, csum_size
);
315 if (result
!= (char *)&inline_result
)
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
327 struct extent_buffer
*eb
, u64 parent_transid
,
330 struct extent_state
*cached_state
= NULL
;
333 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
339 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
341 if (extent_buffer_uptodate(eb
) &&
342 btrfs_header_generation(eb
) == parent_transid
) {
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348 (unsigned long long)eb
->start
,
349 (unsigned long long)parent_transid
,
350 (unsigned long long)btrfs_header_generation(eb
));
352 clear_extent_buffer_uptodate(eb
);
354 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
355 &cached_state
, GFP_NOFS
);
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
363 static int btrfs_check_super_csum(char *raw_disk_sb
)
365 struct btrfs_super_block
*disk_sb
=
366 (struct btrfs_super_block
*)raw_disk_sb
;
367 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
370 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
372 const int csum_size
= sizeof(crc
);
373 char result
[csum_size
];
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
380 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
381 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
382 btrfs_csum_final(crc
, result
);
384 if (memcmp(raw_disk_sb
, result
, csum_size
))
387 if (ret
&& btrfs_super_generation(disk_sb
) < 10) {
388 printk(KERN_WARNING
"btrfs: super block crcs don't match, older mkfs detected\n");
393 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
394 printk(KERN_ERR
"btrfs: unsupported checksum algorithm %u\n",
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
406 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
407 struct extent_buffer
*eb
,
408 u64 start
, u64 parent_transid
)
410 struct extent_io_tree
*io_tree
;
415 int failed_mirror
= 0;
417 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
418 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
420 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
422 btree_get_extent
, mirror_num
);
424 if (!verify_parent_transid(io_tree
, eb
,
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
436 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
439 num_copies
= btrfs_num_copies(root
->fs_info
,
444 if (!failed_mirror
) {
446 failed_mirror
= eb
->read_mirror
;
450 if (mirror_num
== failed_mirror
)
453 if (mirror_num
> num_copies
)
457 if (failed
&& !ret
&& failed_mirror
)
458 repair_eb_io_failure(root
, eb
, failed_mirror
);
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
468 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
470 struct extent_io_tree
*tree
;
471 u64 start
= page_offset(page
);
473 struct extent_buffer
*eb
;
475 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
477 eb
= (struct extent_buffer
*)page
->private;
478 if (page
!= eb
->pages
[0])
480 found_start
= btrfs_header_bytenr(eb
);
481 if (found_start
!= start
) {
485 if (!PageUptodate(page
)) {
489 csum_tree_block(root
, eb
, 0);
493 static int check_tree_block_fsid(struct btrfs_root
*root
,
494 struct extent_buffer
*eb
)
496 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
497 u8 fsid
[BTRFS_UUID_SIZE
];
500 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
503 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
507 fs_devices
= fs_devices
->seed
;
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
518 static noinline
int check_leaf(struct btrfs_root
*root
,
519 struct extent_buffer
*leaf
)
521 struct btrfs_key key
;
522 struct btrfs_key leaf_key
;
523 u32 nritems
= btrfs_header_nritems(leaf
);
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root
)) {
532 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
543 for (slot
= 0; slot
< nritems
- 1; slot
++) {
544 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
545 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
549 CORRUPT("bad key order", leaf
, root
, slot
);
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
558 if (btrfs_item_offset_nr(leaf
, slot
) !=
559 btrfs_item_end_nr(leaf
, slot
+ 1)) {
560 CORRUPT("slot offset bad", leaf
, root
, slot
);
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
569 if (btrfs_item_end_nr(leaf
, slot
) >
570 BTRFS_LEAF_DATA_SIZE(root
)) {
571 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
579 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
580 struct extent_state
*state
, int mirror
)
582 struct extent_io_tree
*tree
;
585 struct extent_buffer
*eb
;
586 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
593 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
594 eb
= (struct extent_buffer
*)page
->private;
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
599 extent_buffer_get(eb
);
601 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
605 eb
->read_mirror
= mirror
;
606 if (test_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
)) {
611 found_start
= btrfs_header_bytenr(eb
);
612 if (found_start
!= eb
->start
) {
613 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
615 (unsigned long long)found_start
,
616 (unsigned long long)eb
->start
);
620 if (check_tree_block_fsid(root
, eb
)) {
621 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb
->start
);
626 found_level
= btrfs_header_level(eb
);
627 if (found_level
>= BTRFS_MAX_LEVEL
) {
628 btrfs_info(root
->fs_info
, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb
));
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
637 ret
= csum_tree_block(root
, eb
, 1);
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
648 if (found_level
== 0 && check_leaf(root
, eb
)) {
649 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
654 set_extent_buffer_uptodate(eb
);
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
658 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
666 atomic_inc(&eb
->io_pages
);
667 clear_extent_buffer_uptodate(eb
);
669 free_extent_buffer(eb
);
674 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
676 struct extent_buffer
*eb
;
677 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
679 eb
= (struct extent_buffer
*)page
->private;
680 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
681 eb
->read_mirror
= failed_mirror
;
682 atomic_dec(&eb
->io_pages
);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
684 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
685 return -EIO
; /* we fixed nothing */
688 static void end_workqueue_bio(struct bio
*bio
, int err
)
690 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
691 struct btrfs_fs_info
*fs_info
;
693 fs_info
= end_io_wq
->info
;
694 end_io_wq
->error
= err
;
695 end_io_wq
->work
.func
= end_workqueue_fn
;
696 end_io_wq
->work
.flags
= 0;
698 if (bio
->bi_rw
& REQ_WRITE
) {
699 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
700 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
702 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
703 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
705 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
706 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
709 btrfs_queue_worker(&fs_info
->endio_write_workers
,
712 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
713 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
715 else if (end_io_wq
->metadata
)
716 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
719 btrfs_queue_worker(&fs_info
->endio_workers
,
725 * For the metadata arg you want
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
735 struct end_io_wq
*end_io_wq
;
736 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
740 end_io_wq
->private = bio
->bi_private
;
741 end_io_wq
->end_io
= bio
->bi_end_io
;
742 end_io_wq
->info
= info
;
743 end_io_wq
->error
= 0;
744 end_io_wq
->bio
= bio
;
745 end_io_wq
->metadata
= metadata
;
747 bio
->bi_private
= end_io_wq
;
748 bio
->bi_end_io
= end_workqueue_bio
;
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
754 unsigned long limit
= min_t(unsigned long,
755 info
->workers
.max_workers
,
756 info
->fs_devices
->open_devices
);
760 static void run_one_async_start(struct btrfs_work
*work
)
762 struct async_submit_bio
*async
;
765 async
= container_of(work
, struct async_submit_bio
, work
);
766 ret
= async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
767 async
->mirror_num
, async
->bio_flags
,
773 static void run_one_async_done(struct btrfs_work
*work
)
775 struct btrfs_fs_info
*fs_info
;
776 struct async_submit_bio
*async
;
779 async
= container_of(work
, struct async_submit_bio
, work
);
780 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
782 limit
= btrfs_async_submit_limit(fs_info
);
783 limit
= limit
* 2 / 3;
785 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
786 waitqueue_active(&fs_info
->async_submit_wait
))
787 wake_up(&fs_info
->async_submit_wait
);
789 /* If an error occured we just want to clean up the bio and move on */
791 bio_endio(async
->bio
, async
->error
);
795 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
796 async
->mirror_num
, async
->bio_flags
,
800 static void run_one_async_free(struct btrfs_work
*work
)
802 struct async_submit_bio
*async
;
804 async
= container_of(work
, struct async_submit_bio
, work
);
808 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
809 int rw
, struct bio
*bio
, int mirror_num
,
810 unsigned long bio_flags
,
812 extent_submit_bio_hook_t
*submit_bio_start
,
813 extent_submit_bio_hook_t
*submit_bio_done
)
815 struct async_submit_bio
*async
;
817 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
821 async
->inode
= inode
;
824 async
->mirror_num
= mirror_num
;
825 async
->submit_bio_start
= submit_bio_start
;
826 async
->submit_bio_done
= submit_bio_done
;
828 async
->work
.func
= run_one_async_start
;
829 async
->work
.ordered_func
= run_one_async_done
;
830 async
->work
.ordered_free
= run_one_async_free
;
832 async
->work
.flags
= 0;
833 async
->bio_flags
= bio_flags
;
834 async
->bio_offset
= bio_offset
;
838 atomic_inc(&fs_info
->nr_async_submits
);
841 btrfs_set_work_high_prio(&async
->work
);
843 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
845 while (atomic_read(&fs_info
->async_submit_draining
) &&
846 atomic_read(&fs_info
->nr_async_submits
)) {
847 wait_event(fs_info
->async_submit_wait
,
848 (atomic_read(&fs_info
->nr_async_submits
) == 0));
854 static int btree_csum_one_bio(struct bio
*bio
)
856 struct bio_vec
*bvec
= bio
->bi_io_vec
;
858 struct btrfs_root
*root
;
861 WARN_ON(bio
->bi_vcnt
<= 0);
862 while (bio_index
< bio
->bi_vcnt
) {
863 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
864 ret
= csum_dirty_buffer(root
, bvec
->bv_page
);
873 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
874 struct bio
*bio
, int mirror_num
,
875 unsigned long bio_flags
,
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
882 return btree_csum_one_bio(bio
);
885 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
886 int mirror_num
, unsigned long bio_flags
,
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
895 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
901 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
903 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
912 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
913 int mirror_num
, unsigned long bio_flags
,
916 int async
= check_async_write(inode
, bio_flags
);
919 if (!(rw
& REQ_WRITE
)) {
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
924 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
928 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
931 ret
= btree_csum_one_bio(bio
);
934 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
941 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
942 inode
, rw
, bio
, mirror_num
, 0,
944 __btree_submit_bio_start
,
945 __btree_submit_bio_done
);
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space
*mapping
,
957 struct page
*newpage
, struct page
*page
,
958 enum migrate_mode mode
)
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
970 if (page_has_private(page
) &&
971 !try_to_release_page(page
, GFP_KERNEL
))
973 return migrate_page(mapping
, newpage
, page
, mode
);
978 static int btree_writepages(struct address_space
*mapping
,
979 struct writeback_control
*wbc
)
981 struct extent_io_tree
*tree
;
982 struct btrfs_fs_info
*fs_info
;
985 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
986 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
988 if (wbc
->for_kupdate
)
991 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
992 /* this is a bit racy, but that's ok */
993 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
994 BTRFS_DIRTY_METADATA_THRESH
);
998 return btree_write_cache_pages(mapping
, wbc
);
1001 static int btree_readpage(struct file
*file
, struct page
*page
)
1003 struct extent_io_tree
*tree
;
1004 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1005 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1008 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1010 if (PageWriteback(page
) || PageDirty(page
))
1013 return try_release_extent_buffer(page
);
1016 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1017 unsigned int length
)
1019 struct extent_io_tree
*tree
;
1020 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1021 extent_invalidatepage(tree
, page
, offset
);
1022 btree_releasepage(page
, GFP_NOFS
);
1023 if (PagePrivate(page
)) {
1024 printk(KERN_WARNING
"btrfs warning page private not zero "
1025 "on page %llu\n", (unsigned long long)page_offset(page
));
1026 ClearPagePrivate(page
);
1027 set_page_private(page
, 0);
1028 page_cache_release(page
);
1032 static int btree_set_page_dirty(struct page
*page
)
1035 struct extent_buffer
*eb
;
1037 BUG_ON(!PagePrivate(page
));
1038 eb
= (struct extent_buffer
*)page
->private;
1040 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1041 BUG_ON(!atomic_read(&eb
->refs
));
1042 btrfs_assert_tree_locked(eb
);
1044 return __set_page_dirty_nobuffers(page
);
1047 static const struct address_space_operations btree_aops
= {
1048 .readpage
= btree_readpage
,
1049 .writepages
= btree_writepages
,
1050 .releasepage
= btree_releasepage
,
1051 .invalidatepage
= btree_invalidatepage
,
1052 #ifdef CONFIG_MIGRATION
1053 .migratepage
= btree_migratepage
,
1055 .set_page_dirty
= btree_set_page_dirty
,
1058 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1061 struct extent_buffer
*buf
= NULL
;
1062 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1065 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1068 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1069 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1070 free_extent_buffer(buf
);
1074 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1075 int mirror_num
, struct extent_buffer
**eb
)
1077 struct extent_buffer
*buf
= NULL
;
1078 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1079 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1082 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1086 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1088 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1089 btree_get_extent
, mirror_num
);
1091 free_extent_buffer(buf
);
1095 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1096 free_extent_buffer(buf
);
1098 } else if (extent_buffer_uptodate(buf
)) {
1101 free_extent_buffer(buf
);
1106 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1107 u64 bytenr
, u32 blocksize
)
1109 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1110 struct extent_buffer
*eb
;
1111 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1116 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1117 u64 bytenr
, u32 blocksize
)
1119 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1120 struct extent_buffer
*eb
;
1122 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1128 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1130 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1131 buf
->start
+ buf
->len
- 1);
1134 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1136 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1137 buf
->start
, buf
->start
+ buf
->len
- 1);
1140 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1141 u32 blocksize
, u64 parent_transid
)
1143 struct extent_buffer
*buf
= NULL
;
1146 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1150 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1155 void clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1156 struct extent_buffer
*buf
)
1158 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1160 if (btrfs_header_generation(buf
) ==
1161 fs_info
->running_transaction
->transid
) {
1162 btrfs_assert_tree_locked(buf
);
1164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1165 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1167 fs_info
->dirty_metadata_batch
);
1168 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169 btrfs_set_lock_blocking(buf
);
1170 clear_extent_buffer_dirty(buf
);
1175 static void __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1176 u32 stripesize
, struct btrfs_root
*root
,
1177 struct btrfs_fs_info
*fs_info
,
1181 root
->commit_root
= NULL
;
1182 root
->sectorsize
= sectorsize
;
1183 root
->nodesize
= nodesize
;
1184 root
->leafsize
= leafsize
;
1185 root
->stripesize
= stripesize
;
1187 root
->track_dirty
= 0;
1189 root
->orphan_item_inserted
= 0;
1190 root
->orphan_cleanup_state
= 0;
1192 root
->objectid
= objectid
;
1193 root
->last_trans
= 0;
1194 root
->highest_objectid
= 0;
1196 root
->inode_tree
= RB_ROOT
;
1197 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1198 root
->block_rsv
= NULL
;
1199 root
->orphan_block_rsv
= NULL
;
1201 INIT_LIST_HEAD(&root
->dirty_list
);
1202 INIT_LIST_HEAD(&root
->root_list
);
1203 INIT_LIST_HEAD(&root
->logged_list
[0]);
1204 INIT_LIST_HEAD(&root
->logged_list
[1]);
1205 spin_lock_init(&root
->orphan_lock
);
1206 spin_lock_init(&root
->inode_lock
);
1207 spin_lock_init(&root
->accounting_lock
);
1208 spin_lock_init(&root
->log_extents_lock
[0]);
1209 spin_lock_init(&root
->log_extents_lock
[1]);
1210 mutex_init(&root
->objectid_mutex
);
1211 mutex_init(&root
->log_mutex
);
1212 init_waitqueue_head(&root
->log_writer_wait
);
1213 init_waitqueue_head(&root
->log_commit_wait
[0]);
1214 init_waitqueue_head(&root
->log_commit_wait
[1]);
1215 atomic_set(&root
->log_commit
[0], 0);
1216 atomic_set(&root
->log_commit
[1], 0);
1217 atomic_set(&root
->log_writers
, 0);
1218 atomic_set(&root
->log_batch
, 0);
1219 atomic_set(&root
->orphan_inodes
, 0);
1220 root
->log_transid
= 0;
1221 root
->last_log_commit
= 0;
1222 extent_io_tree_init(&root
->dirty_log_pages
,
1223 fs_info
->btree_inode
->i_mapping
);
1225 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1226 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1227 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1228 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1229 root
->defrag_trans_start
= fs_info
->generation
;
1230 init_completion(&root
->kobj_unregister
);
1231 root
->defrag_running
= 0;
1232 root
->root_key
.objectid
= objectid
;
1235 spin_lock_init(&root
->root_item_lock
);
1238 static int __must_check
find_and_setup_root(struct btrfs_root
*tree_root
,
1239 struct btrfs_fs_info
*fs_info
,
1241 struct btrfs_root
*root
)
1247 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1248 tree_root
->sectorsize
, tree_root
->stripesize
,
1249 root
, fs_info
, objectid
);
1250 ret
= btrfs_find_last_root(tree_root
, objectid
,
1251 &root
->root_item
, &root
->root_key
);
1257 generation
= btrfs_root_generation(&root
->root_item
);
1258 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1259 root
->commit_root
= NULL
;
1260 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1261 blocksize
, generation
);
1262 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1263 free_extent_buffer(root
->node
);
1267 root
->commit_root
= btrfs_root_node(root
);
1271 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1273 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1275 root
->fs_info
= fs_info
;
1279 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1280 struct btrfs_fs_info
*fs_info
,
1283 struct extent_buffer
*leaf
;
1284 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1285 struct btrfs_root
*root
;
1286 struct btrfs_key key
;
1291 root
= btrfs_alloc_root(fs_info
);
1293 return ERR_PTR(-ENOMEM
);
1295 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1296 tree_root
->sectorsize
, tree_root
->stripesize
,
1297 root
, fs_info
, objectid
);
1298 root
->root_key
.objectid
= objectid
;
1299 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1300 root
->root_key
.offset
= 0;
1302 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1303 0, objectid
, NULL
, 0, 0, 0);
1305 ret
= PTR_ERR(leaf
);
1310 bytenr
= leaf
->start
;
1311 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1312 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1313 btrfs_set_header_generation(leaf
, trans
->transid
);
1314 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1315 btrfs_set_header_owner(leaf
, objectid
);
1318 write_extent_buffer(leaf
, fs_info
->fsid
,
1319 (unsigned long)btrfs_header_fsid(leaf
),
1321 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1322 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
1324 btrfs_mark_buffer_dirty(leaf
);
1326 root
->commit_root
= btrfs_root_node(root
);
1327 root
->track_dirty
= 1;
1330 root
->root_item
.flags
= 0;
1331 root
->root_item
.byte_limit
= 0;
1332 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1333 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1334 btrfs_set_root_level(&root
->root_item
, 0);
1335 btrfs_set_root_refs(&root
->root_item
, 1);
1336 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1337 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1338 btrfs_set_root_dirid(&root
->root_item
, 0);
1340 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1341 root
->root_item
.drop_level
= 0;
1343 key
.objectid
= objectid
;
1344 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1346 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1350 btrfs_tree_unlock(leaf
);
1356 btrfs_tree_unlock(leaf
);
1357 free_extent_buffer(leaf
);
1361 return ERR_PTR(ret
);
1364 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1365 struct btrfs_fs_info
*fs_info
)
1367 struct btrfs_root
*root
;
1368 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1369 struct extent_buffer
*leaf
;
1371 root
= btrfs_alloc_root(fs_info
);
1373 return ERR_PTR(-ENOMEM
);
1375 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1376 tree_root
->sectorsize
, tree_root
->stripesize
,
1377 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1379 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1380 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1381 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1383 * log trees do not get reference counted because they go away
1384 * before a real commit is actually done. They do store pointers
1385 * to file data extents, and those reference counts still get
1386 * updated (along with back refs to the log tree).
1390 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1391 BTRFS_TREE_LOG_OBJECTID
, NULL
,
1395 return ERR_CAST(leaf
);
1398 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1399 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1400 btrfs_set_header_generation(leaf
, trans
->transid
);
1401 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1402 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1405 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1406 (unsigned long)btrfs_header_fsid(root
->node
),
1408 btrfs_mark_buffer_dirty(root
->node
);
1409 btrfs_tree_unlock(root
->node
);
1413 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1414 struct btrfs_fs_info
*fs_info
)
1416 struct btrfs_root
*log_root
;
1418 log_root
= alloc_log_tree(trans
, fs_info
);
1419 if (IS_ERR(log_root
))
1420 return PTR_ERR(log_root
);
1421 WARN_ON(fs_info
->log_root_tree
);
1422 fs_info
->log_root_tree
= log_root
;
1426 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1427 struct btrfs_root
*root
)
1429 struct btrfs_root
*log_root
;
1430 struct btrfs_inode_item
*inode_item
;
1432 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1433 if (IS_ERR(log_root
))
1434 return PTR_ERR(log_root
);
1436 log_root
->last_trans
= trans
->transid
;
1437 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1439 inode_item
= &log_root
->root_item
.inode
;
1440 inode_item
->generation
= cpu_to_le64(1);
1441 inode_item
->size
= cpu_to_le64(3);
1442 inode_item
->nlink
= cpu_to_le32(1);
1443 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1444 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1446 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1448 WARN_ON(root
->log_root
);
1449 root
->log_root
= log_root
;
1450 root
->log_transid
= 0;
1451 root
->last_log_commit
= 0;
1455 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1456 struct btrfs_key
*location
)
1458 struct btrfs_root
*root
;
1459 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1460 struct btrfs_path
*path
;
1461 struct extent_buffer
*l
;
1467 root
= btrfs_alloc_root(fs_info
);
1469 return ERR_PTR(-ENOMEM
);
1470 if (location
->offset
== (u64
)-1) {
1471 ret
= find_and_setup_root(tree_root
, fs_info
,
1472 location
->objectid
, root
);
1475 return ERR_PTR(ret
);
1480 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1481 tree_root
->sectorsize
, tree_root
->stripesize
,
1482 root
, fs_info
, location
->objectid
);
1484 path
= btrfs_alloc_path();
1487 return ERR_PTR(-ENOMEM
);
1489 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1492 slot
= path
->slots
[0];
1493 btrfs_read_root_item(l
, slot
, &root
->root_item
);
1494 memcpy(&root
->root_key
, location
, sizeof(*location
));
1496 btrfs_free_path(path
);
1501 return ERR_PTR(ret
);
1504 generation
= btrfs_root_generation(&root
->root_item
);
1505 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1506 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1507 blocksize
, generation
);
1508 if (!root
->node
|| !extent_buffer_uptodate(root
->node
)) {
1509 ret
= (!root
->node
) ? -ENOMEM
: -EIO
;
1511 free_extent_buffer(root
->node
);
1513 return ERR_PTR(ret
);
1516 root
->commit_root
= btrfs_root_node(root
);
1518 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1520 btrfs_check_and_init_root_item(&root
->root_item
);
1526 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1527 struct btrfs_key
*location
)
1529 struct btrfs_root
*root
;
1532 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1533 return fs_info
->tree_root
;
1534 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1535 return fs_info
->extent_root
;
1536 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1537 return fs_info
->chunk_root
;
1538 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1539 return fs_info
->dev_root
;
1540 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1541 return fs_info
->csum_root
;
1542 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1543 return fs_info
->quota_root
? fs_info
->quota_root
:
1546 spin_lock(&fs_info
->fs_roots_radix_lock
);
1547 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1548 (unsigned long)location
->objectid
);
1549 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1553 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1557 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1558 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1560 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1565 btrfs_init_free_ino_ctl(root
);
1566 mutex_init(&root
->fs_commit_mutex
);
1567 spin_lock_init(&root
->cache_lock
);
1568 init_waitqueue_head(&root
->cache_wait
);
1570 ret
= get_anon_bdev(&root
->anon_dev
);
1574 if (btrfs_root_refs(&root
->root_item
) == 0) {
1579 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1583 root
->orphan_item_inserted
= 1;
1585 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1589 spin_lock(&fs_info
->fs_roots_radix_lock
);
1590 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1591 (unsigned long)root
->root_key
.objectid
,
1596 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1597 radix_tree_preload_end();
1599 if (ret
== -EEXIST
) {
1606 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1607 root
->root_key
.objectid
);
1612 return ERR_PTR(ret
);
1615 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1617 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1619 struct btrfs_device
*device
;
1620 struct backing_dev_info
*bdi
;
1623 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1626 bdi
= blk_get_backing_dev_info(device
->bdev
);
1627 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1637 * If this fails, caller must call bdi_destroy() to get rid of the
1640 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1644 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1645 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1649 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1650 bdi
->congested_fn
= btrfs_congested_fn
;
1651 bdi
->congested_data
= info
;
1656 * called by the kthread helper functions to finally call the bio end_io
1657 * functions. This is where read checksum verification actually happens
1659 static void end_workqueue_fn(struct btrfs_work
*work
)
1662 struct end_io_wq
*end_io_wq
;
1663 struct btrfs_fs_info
*fs_info
;
1666 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1667 bio
= end_io_wq
->bio
;
1668 fs_info
= end_io_wq
->info
;
1670 error
= end_io_wq
->error
;
1671 bio
->bi_private
= end_io_wq
->private;
1672 bio
->bi_end_io
= end_io_wq
->end_io
;
1674 bio_endio(bio
, error
);
1677 static int cleaner_kthread(void *arg
)
1679 struct btrfs_root
*root
= arg
;
1684 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1685 down_read_trylock(&root
->fs_info
->sb
->s_umount
)) {
1686 if (mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1687 btrfs_run_delayed_iputs(root
);
1688 again
= btrfs_clean_one_deleted_snapshot(root
);
1689 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1691 btrfs_run_defrag_inodes(root
->fs_info
);
1692 up_read(&root
->fs_info
->sb
->s_umount
);
1695 if (!try_to_freeze() && !again
) {
1696 set_current_state(TASK_INTERRUPTIBLE
);
1697 if (!kthread_should_stop())
1699 __set_current_state(TASK_RUNNING
);
1701 } while (!kthread_should_stop());
1705 static int transaction_kthread(void *arg
)
1707 struct btrfs_root
*root
= arg
;
1708 struct btrfs_trans_handle
*trans
;
1709 struct btrfs_transaction
*cur
;
1712 unsigned long delay
;
1716 cannot_commit
= false;
1718 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1720 spin_lock(&root
->fs_info
->trans_lock
);
1721 cur
= root
->fs_info
->running_transaction
;
1723 spin_unlock(&root
->fs_info
->trans_lock
);
1727 now
= get_seconds();
1728 if (!cur
->blocked
&&
1729 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1730 spin_unlock(&root
->fs_info
->trans_lock
);
1734 transid
= cur
->transid
;
1735 spin_unlock(&root
->fs_info
->trans_lock
);
1737 /* If the file system is aborted, this will always fail. */
1738 trans
= btrfs_attach_transaction(root
);
1739 if (IS_ERR(trans
)) {
1740 if (PTR_ERR(trans
) != -ENOENT
)
1741 cannot_commit
= true;
1744 if (transid
== trans
->transid
) {
1745 btrfs_commit_transaction(trans
, root
);
1747 btrfs_end_transaction(trans
, root
);
1750 wake_up_process(root
->fs_info
->cleaner_kthread
);
1751 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1753 if (!try_to_freeze()) {
1754 set_current_state(TASK_INTERRUPTIBLE
);
1755 if (!kthread_should_stop() &&
1756 (!btrfs_transaction_blocked(root
->fs_info
) ||
1758 schedule_timeout(delay
);
1759 __set_current_state(TASK_RUNNING
);
1761 } while (!kthread_should_stop());
1766 * this will find the highest generation in the array of
1767 * root backups. The index of the highest array is returned,
1768 * or -1 if we can't find anything.
1770 * We check to make sure the array is valid by comparing the
1771 * generation of the latest root in the array with the generation
1772 * in the super block. If they don't match we pitch it.
1774 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1777 int newest_index
= -1;
1778 struct btrfs_root_backup
*root_backup
;
1781 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1782 root_backup
= info
->super_copy
->super_roots
+ i
;
1783 cur
= btrfs_backup_tree_root_gen(root_backup
);
1784 if (cur
== newest_gen
)
1788 /* check to see if we actually wrapped around */
1789 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1790 root_backup
= info
->super_copy
->super_roots
;
1791 cur
= btrfs_backup_tree_root_gen(root_backup
);
1792 if (cur
== newest_gen
)
1795 return newest_index
;
1800 * find the oldest backup so we know where to store new entries
1801 * in the backup array. This will set the backup_root_index
1802 * field in the fs_info struct
1804 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1807 int newest_index
= -1;
1809 newest_index
= find_newest_super_backup(info
, newest_gen
);
1810 /* if there was garbage in there, just move along */
1811 if (newest_index
== -1) {
1812 info
->backup_root_index
= 0;
1814 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1819 * copy all the root pointers into the super backup array.
1820 * this will bump the backup pointer by one when it is
1823 static void backup_super_roots(struct btrfs_fs_info
*info
)
1826 struct btrfs_root_backup
*root_backup
;
1829 next_backup
= info
->backup_root_index
;
1830 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1831 BTRFS_NUM_BACKUP_ROOTS
;
1834 * just overwrite the last backup if we're at the same generation
1835 * this happens only at umount
1837 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1838 if (btrfs_backup_tree_root_gen(root_backup
) ==
1839 btrfs_header_generation(info
->tree_root
->node
))
1840 next_backup
= last_backup
;
1842 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1845 * make sure all of our padding and empty slots get zero filled
1846 * regardless of which ones we use today
1848 memset(root_backup
, 0, sizeof(*root_backup
));
1850 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1852 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1853 btrfs_set_backup_tree_root_gen(root_backup
,
1854 btrfs_header_generation(info
->tree_root
->node
));
1856 btrfs_set_backup_tree_root_level(root_backup
,
1857 btrfs_header_level(info
->tree_root
->node
));
1859 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1860 btrfs_set_backup_chunk_root_gen(root_backup
,
1861 btrfs_header_generation(info
->chunk_root
->node
));
1862 btrfs_set_backup_chunk_root_level(root_backup
,
1863 btrfs_header_level(info
->chunk_root
->node
));
1865 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1866 btrfs_set_backup_extent_root_gen(root_backup
,
1867 btrfs_header_generation(info
->extent_root
->node
));
1868 btrfs_set_backup_extent_root_level(root_backup
,
1869 btrfs_header_level(info
->extent_root
->node
));
1872 * we might commit during log recovery, which happens before we set
1873 * the fs_root. Make sure it is valid before we fill it in.
1875 if (info
->fs_root
&& info
->fs_root
->node
) {
1876 btrfs_set_backup_fs_root(root_backup
,
1877 info
->fs_root
->node
->start
);
1878 btrfs_set_backup_fs_root_gen(root_backup
,
1879 btrfs_header_generation(info
->fs_root
->node
));
1880 btrfs_set_backup_fs_root_level(root_backup
,
1881 btrfs_header_level(info
->fs_root
->node
));
1884 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1885 btrfs_set_backup_dev_root_gen(root_backup
,
1886 btrfs_header_generation(info
->dev_root
->node
));
1887 btrfs_set_backup_dev_root_level(root_backup
,
1888 btrfs_header_level(info
->dev_root
->node
));
1890 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1891 btrfs_set_backup_csum_root_gen(root_backup
,
1892 btrfs_header_generation(info
->csum_root
->node
));
1893 btrfs_set_backup_csum_root_level(root_backup
,
1894 btrfs_header_level(info
->csum_root
->node
));
1896 btrfs_set_backup_total_bytes(root_backup
,
1897 btrfs_super_total_bytes(info
->super_copy
));
1898 btrfs_set_backup_bytes_used(root_backup
,
1899 btrfs_super_bytes_used(info
->super_copy
));
1900 btrfs_set_backup_num_devices(root_backup
,
1901 btrfs_super_num_devices(info
->super_copy
));
1904 * if we don't copy this out to the super_copy, it won't get remembered
1905 * for the next commit
1907 memcpy(&info
->super_copy
->super_roots
,
1908 &info
->super_for_commit
->super_roots
,
1909 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1913 * this copies info out of the root backup array and back into
1914 * the in-memory super block. It is meant to help iterate through
1915 * the array, so you send it the number of backups you've already
1916 * tried and the last backup index you used.
1918 * this returns -1 when it has tried all the backups
1920 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1921 struct btrfs_super_block
*super
,
1922 int *num_backups_tried
, int *backup_index
)
1924 struct btrfs_root_backup
*root_backup
;
1925 int newest
= *backup_index
;
1927 if (*num_backups_tried
== 0) {
1928 u64 gen
= btrfs_super_generation(super
);
1930 newest
= find_newest_super_backup(info
, gen
);
1934 *backup_index
= newest
;
1935 *num_backups_tried
= 1;
1936 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1937 /* we've tried all the backups, all done */
1940 /* jump to the next oldest backup */
1941 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1942 BTRFS_NUM_BACKUP_ROOTS
;
1943 *backup_index
= newest
;
1944 *num_backups_tried
+= 1;
1946 root_backup
= super
->super_roots
+ newest
;
1948 btrfs_set_super_generation(super
,
1949 btrfs_backup_tree_root_gen(root_backup
));
1950 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1951 btrfs_set_super_root_level(super
,
1952 btrfs_backup_tree_root_level(root_backup
));
1953 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1956 * fixme: the total bytes and num_devices need to match or we should
1959 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1960 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1964 /* helper to cleanup workers */
1965 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1967 btrfs_stop_workers(&fs_info
->generic_worker
);
1968 btrfs_stop_workers(&fs_info
->fixup_workers
);
1969 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1970 btrfs_stop_workers(&fs_info
->workers
);
1971 btrfs_stop_workers(&fs_info
->endio_workers
);
1972 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1973 btrfs_stop_workers(&fs_info
->endio_raid56_workers
);
1974 btrfs_stop_workers(&fs_info
->rmw_workers
);
1975 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
1976 btrfs_stop_workers(&fs_info
->endio_write_workers
);
1977 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
1978 btrfs_stop_workers(&fs_info
->submit_workers
);
1979 btrfs_stop_workers(&fs_info
->delayed_workers
);
1980 btrfs_stop_workers(&fs_info
->caching_workers
);
1981 btrfs_stop_workers(&fs_info
->readahead_workers
);
1982 btrfs_stop_workers(&fs_info
->flush_workers
);
1983 btrfs_stop_workers(&fs_info
->qgroup_rescan_workers
);
1986 /* helper to cleanup tree roots */
1987 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
1989 free_extent_buffer(info
->tree_root
->node
);
1990 free_extent_buffer(info
->tree_root
->commit_root
);
1991 info
->tree_root
->node
= NULL
;
1992 info
->tree_root
->commit_root
= NULL
;
1994 if (info
->dev_root
) {
1995 free_extent_buffer(info
->dev_root
->node
);
1996 free_extent_buffer(info
->dev_root
->commit_root
);
1997 info
->dev_root
->node
= NULL
;
1998 info
->dev_root
->commit_root
= NULL
;
2000 if (info
->extent_root
) {
2001 free_extent_buffer(info
->extent_root
->node
);
2002 free_extent_buffer(info
->extent_root
->commit_root
);
2003 info
->extent_root
->node
= NULL
;
2004 info
->extent_root
->commit_root
= NULL
;
2006 if (info
->csum_root
) {
2007 free_extent_buffer(info
->csum_root
->node
);
2008 free_extent_buffer(info
->csum_root
->commit_root
);
2009 info
->csum_root
->node
= NULL
;
2010 info
->csum_root
->commit_root
= NULL
;
2012 if (info
->quota_root
) {
2013 free_extent_buffer(info
->quota_root
->node
);
2014 free_extent_buffer(info
->quota_root
->commit_root
);
2015 info
->quota_root
->node
= NULL
;
2016 info
->quota_root
->commit_root
= NULL
;
2019 free_extent_buffer(info
->chunk_root
->node
);
2020 free_extent_buffer(info
->chunk_root
->commit_root
);
2021 info
->chunk_root
->node
= NULL
;
2022 info
->chunk_root
->commit_root
= NULL
;
2026 static void del_fs_roots(struct btrfs_fs_info
*fs_info
)
2029 struct btrfs_root
*gang
[8];
2032 while (!list_empty(&fs_info
->dead_roots
)) {
2033 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2034 struct btrfs_root
, root_list
);
2035 list_del(&gang
[0]->root_list
);
2037 if (gang
[0]->in_radix
) {
2038 btrfs_free_fs_root(fs_info
, gang
[0]);
2040 free_extent_buffer(gang
[0]->node
);
2041 free_extent_buffer(gang
[0]->commit_root
);
2047 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2052 for (i
= 0; i
< ret
; i
++)
2053 btrfs_free_fs_root(fs_info
, gang
[i
]);
2057 int open_ctree(struct super_block
*sb
,
2058 struct btrfs_fs_devices
*fs_devices
,
2068 struct btrfs_key location
;
2069 struct buffer_head
*bh
;
2070 struct btrfs_super_block
*disk_super
;
2071 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2072 struct btrfs_root
*tree_root
;
2073 struct btrfs_root
*extent_root
;
2074 struct btrfs_root
*csum_root
;
2075 struct btrfs_root
*chunk_root
;
2076 struct btrfs_root
*dev_root
;
2077 struct btrfs_root
*quota_root
;
2078 struct btrfs_root
*log_tree_root
;
2081 int num_backups_tried
= 0;
2082 int backup_index
= 0;
2084 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
2085 extent_root
= fs_info
->extent_root
= btrfs_alloc_root(fs_info
);
2086 csum_root
= fs_info
->csum_root
= btrfs_alloc_root(fs_info
);
2087 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
2088 dev_root
= fs_info
->dev_root
= btrfs_alloc_root(fs_info
);
2089 quota_root
= fs_info
->quota_root
= btrfs_alloc_root(fs_info
);
2091 if (!tree_root
|| !extent_root
|| !csum_root
||
2092 !chunk_root
|| !dev_root
|| !quota_root
) {
2097 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2103 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2109 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0);
2114 fs_info
->dirty_metadata_batch
= PAGE_CACHE_SIZE
*
2115 (1 + ilog2(nr_cpu_ids
));
2117 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0);
2120 goto fail_dirty_metadata_bytes
;
2123 fs_info
->btree_inode
= new_inode(sb
);
2124 if (!fs_info
->btree_inode
) {
2126 goto fail_delalloc_bytes
;
2129 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2131 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2132 INIT_LIST_HEAD(&fs_info
->trans_list
);
2133 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2134 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2135 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
2136 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2137 spin_lock_init(&fs_info
->delalloc_lock
);
2138 spin_lock_init(&fs_info
->trans_lock
);
2139 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2140 spin_lock_init(&fs_info
->delayed_iput_lock
);
2141 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2142 spin_lock_init(&fs_info
->free_chunk_lock
);
2143 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2144 spin_lock_init(&fs_info
->super_lock
);
2145 rwlock_init(&fs_info
->tree_mod_log_lock
);
2146 mutex_init(&fs_info
->reloc_mutex
);
2147 seqlock_init(&fs_info
->profiles_lock
);
2149 init_completion(&fs_info
->kobj_unregister
);
2150 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2151 INIT_LIST_HEAD(&fs_info
->space_info
);
2152 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2153 btrfs_mapping_init(&fs_info
->mapping_tree
);
2154 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2155 BTRFS_BLOCK_RSV_GLOBAL
);
2156 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2157 BTRFS_BLOCK_RSV_DELALLOC
);
2158 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2159 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2160 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2161 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2162 BTRFS_BLOCK_RSV_DELOPS
);
2163 atomic_set(&fs_info
->nr_async_submits
, 0);
2164 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2165 atomic_set(&fs_info
->async_submit_draining
, 0);
2166 atomic_set(&fs_info
->nr_async_bios
, 0);
2167 atomic_set(&fs_info
->defrag_running
, 0);
2168 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2170 fs_info
->max_inline
= 8192 * 1024;
2171 fs_info
->metadata_ratio
= 0;
2172 fs_info
->defrag_inodes
= RB_ROOT
;
2173 fs_info
->trans_no_join
= 0;
2174 fs_info
->free_chunk_space
= 0;
2175 fs_info
->tree_mod_log
= RB_ROOT
;
2177 /* readahead state */
2178 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
2179 spin_lock_init(&fs_info
->reada_lock
);
2181 fs_info
->thread_pool_size
= min_t(unsigned long,
2182 num_online_cpus() + 2, 8);
2184 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
2185 spin_lock_init(&fs_info
->ordered_extent_lock
);
2186 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2188 if (!fs_info
->delayed_root
) {
2192 btrfs_init_delayed_root(fs_info
->delayed_root
);
2194 mutex_init(&fs_info
->scrub_lock
);
2195 atomic_set(&fs_info
->scrubs_running
, 0);
2196 atomic_set(&fs_info
->scrub_pause_req
, 0);
2197 atomic_set(&fs_info
->scrubs_paused
, 0);
2198 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2199 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2200 init_rwsem(&fs_info
->scrub_super_lock
);
2201 fs_info
->scrub_workers_refcnt
= 0;
2202 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2203 fs_info
->check_integrity_print_mask
= 0;
2206 spin_lock_init(&fs_info
->balance_lock
);
2207 mutex_init(&fs_info
->balance_mutex
);
2208 atomic_set(&fs_info
->balance_running
, 0);
2209 atomic_set(&fs_info
->balance_pause_req
, 0);
2210 atomic_set(&fs_info
->balance_cancel_req
, 0);
2211 fs_info
->balance_ctl
= NULL
;
2212 init_waitqueue_head(&fs_info
->balance_wait_q
);
2214 sb
->s_blocksize
= 4096;
2215 sb
->s_blocksize_bits
= blksize_bits(4096);
2216 sb
->s_bdi
= &fs_info
->bdi
;
2218 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2219 set_nlink(fs_info
->btree_inode
, 1);
2221 * we set the i_size on the btree inode to the max possible int.
2222 * the real end of the address space is determined by all of
2223 * the devices in the system
2225 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2226 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2227 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2229 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2230 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2231 fs_info
->btree_inode
->i_mapping
);
2232 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2233 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2235 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2237 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2238 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2239 sizeof(struct btrfs_key
));
2240 set_bit(BTRFS_INODE_DUMMY
,
2241 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2242 insert_inode_hash(fs_info
->btree_inode
);
2244 spin_lock_init(&fs_info
->block_group_cache_lock
);
2245 fs_info
->block_group_cache_tree
= RB_ROOT
;
2246 fs_info
->first_logical_byte
= (u64
)-1;
2248 extent_io_tree_init(&fs_info
->freed_extents
[0],
2249 fs_info
->btree_inode
->i_mapping
);
2250 extent_io_tree_init(&fs_info
->freed_extents
[1],
2251 fs_info
->btree_inode
->i_mapping
);
2252 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2253 fs_info
->do_barriers
= 1;
2256 mutex_init(&fs_info
->ordered_operations_mutex
);
2257 mutex_init(&fs_info
->tree_log_mutex
);
2258 mutex_init(&fs_info
->chunk_mutex
);
2259 mutex_init(&fs_info
->transaction_kthread_mutex
);
2260 mutex_init(&fs_info
->cleaner_mutex
);
2261 mutex_init(&fs_info
->volume_mutex
);
2262 init_rwsem(&fs_info
->extent_commit_sem
);
2263 init_rwsem(&fs_info
->cleanup_work_sem
);
2264 init_rwsem(&fs_info
->subvol_sem
);
2265 fs_info
->dev_replace
.lock_owner
= 0;
2266 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2267 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2268 mutex_init(&fs_info
->dev_replace
.lock_management_lock
);
2269 mutex_init(&fs_info
->dev_replace
.lock
);
2271 spin_lock_init(&fs_info
->qgroup_lock
);
2272 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2273 fs_info
->qgroup_tree
= RB_ROOT
;
2274 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2275 fs_info
->qgroup_seq
= 1;
2276 fs_info
->quota_enabled
= 0;
2277 fs_info
->pending_quota_state
= 0;
2278 mutex_init(&fs_info
->qgroup_rescan_lock
);
2280 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2281 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2283 init_waitqueue_head(&fs_info
->transaction_throttle
);
2284 init_waitqueue_head(&fs_info
->transaction_wait
);
2285 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2286 init_waitqueue_head(&fs_info
->async_submit_wait
);
2288 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2294 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2295 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2297 invalidate_bdev(fs_devices
->latest_bdev
);
2300 * Read super block and check the signature bytes only
2302 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2309 * We want to check superblock checksum, the type is stored inside.
2310 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2312 if (btrfs_check_super_csum(bh
->b_data
)) {
2313 printk(KERN_ERR
"btrfs: superblock checksum mismatch\n");
2319 * super_copy is zeroed at allocation time and we never touch the
2320 * following bytes up to INFO_SIZE, the checksum is calculated from
2321 * the whole block of INFO_SIZE
2323 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2324 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2325 sizeof(*fs_info
->super_for_commit
));
2328 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2330 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2332 printk(KERN_ERR
"btrfs: superblock contains fatal errors\n");
2337 disk_super
= fs_info
->super_copy
;
2338 if (!btrfs_super_root(disk_super
))
2341 /* check FS state, whether FS is broken. */
2342 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2343 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2346 * run through our array of backup supers and setup
2347 * our ring pointer to the oldest one
2349 generation
= btrfs_super_generation(disk_super
);
2350 find_oldest_super_backup(fs_info
, generation
);
2353 * In the long term, we'll store the compression type in the super
2354 * block, and it'll be used for per file compression control.
2356 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2358 ret
= btrfs_parse_options(tree_root
, options
);
2364 features
= btrfs_super_incompat_flags(disk_super
) &
2365 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2367 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2368 "unsupported optional features (%Lx).\n",
2369 (unsigned long long)features
);
2374 if (btrfs_super_leafsize(disk_super
) !=
2375 btrfs_super_nodesize(disk_super
)) {
2376 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2377 "blocksizes don't match. node %d leaf %d\n",
2378 btrfs_super_nodesize(disk_super
),
2379 btrfs_super_leafsize(disk_super
));
2383 if (btrfs_super_leafsize(disk_super
) > BTRFS_MAX_METADATA_BLOCKSIZE
) {
2384 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2385 "blocksize (%d) was too large\n",
2386 btrfs_super_leafsize(disk_super
));
2391 features
= btrfs_super_incompat_flags(disk_super
);
2392 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2393 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2394 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2396 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2397 printk(KERN_ERR
"btrfs: has skinny extents\n");
2400 * flag our filesystem as having big metadata blocks if
2401 * they are bigger than the page size
2403 if (btrfs_super_leafsize(disk_super
) > PAGE_CACHE_SIZE
) {
2404 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2405 printk(KERN_INFO
"btrfs flagging fs with big metadata feature\n");
2406 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2409 nodesize
= btrfs_super_nodesize(disk_super
);
2410 leafsize
= btrfs_super_leafsize(disk_super
);
2411 sectorsize
= btrfs_super_sectorsize(disk_super
);
2412 stripesize
= btrfs_super_stripesize(disk_super
);
2413 fs_info
->dirty_metadata_batch
= leafsize
* (1 + ilog2(nr_cpu_ids
));
2414 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2417 * mixed block groups end up with duplicate but slightly offset
2418 * extent buffers for the same range. It leads to corruptions
2420 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2421 (sectorsize
!= leafsize
)) {
2422 printk(KERN_WARNING
"btrfs: unequal leaf/node/sector sizes "
2423 "are not allowed for mixed block groups on %s\n",
2429 * Needn't use the lock because there is no other task which will
2432 btrfs_set_super_incompat_flags(disk_super
, features
);
2434 features
= btrfs_super_compat_ro_flags(disk_super
) &
2435 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2436 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2437 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2438 "unsupported option features (%Lx).\n",
2439 (unsigned long long)features
);
2444 btrfs_init_workers(&fs_info
->generic_worker
,
2445 "genwork", 1, NULL
);
2447 btrfs_init_workers(&fs_info
->workers
, "worker",
2448 fs_info
->thread_pool_size
,
2449 &fs_info
->generic_worker
);
2451 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2452 fs_info
->thread_pool_size
,
2453 &fs_info
->generic_worker
);
2455 btrfs_init_workers(&fs_info
->flush_workers
, "flush_delalloc",
2456 fs_info
->thread_pool_size
,
2457 &fs_info
->generic_worker
);
2459 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2460 min_t(u64
, fs_devices
->num_devices
,
2461 fs_info
->thread_pool_size
),
2462 &fs_info
->generic_worker
);
2464 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2465 2, &fs_info
->generic_worker
);
2467 /* a higher idle thresh on the submit workers makes it much more
2468 * likely that bios will be send down in a sane order to the
2471 fs_info
->submit_workers
.idle_thresh
= 64;
2473 fs_info
->workers
.idle_thresh
= 16;
2474 fs_info
->workers
.ordered
= 1;
2476 fs_info
->delalloc_workers
.idle_thresh
= 2;
2477 fs_info
->delalloc_workers
.ordered
= 1;
2479 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2480 &fs_info
->generic_worker
);
2481 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2482 fs_info
->thread_pool_size
,
2483 &fs_info
->generic_worker
);
2484 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2485 fs_info
->thread_pool_size
,
2486 &fs_info
->generic_worker
);
2487 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2488 "endio-meta-write", fs_info
->thread_pool_size
,
2489 &fs_info
->generic_worker
);
2490 btrfs_init_workers(&fs_info
->endio_raid56_workers
,
2491 "endio-raid56", fs_info
->thread_pool_size
,
2492 &fs_info
->generic_worker
);
2493 btrfs_init_workers(&fs_info
->rmw_workers
,
2494 "rmw", fs_info
->thread_pool_size
,
2495 &fs_info
->generic_worker
);
2496 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2497 fs_info
->thread_pool_size
,
2498 &fs_info
->generic_worker
);
2499 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2500 1, &fs_info
->generic_worker
);
2501 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2502 fs_info
->thread_pool_size
,
2503 &fs_info
->generic_worker
);
2504 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2505 fs_info
->thread_pool_size
,
2506 &fs_info
->generic_worker
);
2507 btrfs_init_workers(&fs_info
->qgroup_rescan_workers
, "qgroup-rescan", 1,
2508 &fs_info
->generic_worker
);
2511 * endios are largely parallel and should have a very
2514 fs_info
->endio_workers
.idle_thresh
= 4;
2515 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2516 fs_info
->endio_raid56_workers
.idle_thresh
= 4;
2517 fs_info
->rmw_workers
.idle_thresh
= 2;
2519 fs_info
->endio_write_workers
.idle_thresh
= 2;
2520 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2521 fs_info
->readahead_workers
.idle_thresh
= 2;
2524 * btrfs_start_workers can really only fail because of ENOMEM so just
2525 * return -ENOMEM if any of these fail.
2527 ret
= btrfs_start_workers(&fs_info
->workers
);
2528 ret
|= btrfs_start_workers(&fs_info
->generic_worker
);
2529 ret
|= btrfs_start_workers(&fs_info
->submit_workers
);
2530 ret
|= btrfs_start_workers(&fs_info
->delalloc_workers
);
2531 ret
|= btrfs_start_workers(&fs_info
->fixup_workers
);
2532 ret
|= btrfs_start_workers(&fs_info
->endio_workers
);
2533 ret
|= btrfs_start_workers(&fs_info
->endio_meta_workers
);
2534 ret
|= btrfs_start_workers(&fs_info
->rmw_workers
);
2535 ret
|= btrfs_start_workers(&fs_info
->endio_raid56_workers
);
2536 ret
|= btrfs_start_workers(&fs_info
->endio_meta_write_workers
);
2537 ret
|= btrfs_start_workers(&fs_info
->endio_write_workers
);
2538 ret
|= btrfs_start_workers(&fs_info
->endio_freespace_worker
);
2539 ret
|= btrfs_start_workers(&fs_info
->delayed_workers
);
2540 ret
|= btrfs_start_workers(&fs_info
->caching_workers
);
2541 ret
|= btrfs_start_workers(&fs_info
->readahead_workers
);
2542 ret
|= btrfs_start_workers(&fs_info
->flush_workers
);
2543 ret
|= btrfs_start_workers(&fs_info
->qgroup_rescan_workers
);
2546 goto fail_sb_buffer
;
2549 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2550 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2551 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2553 tree_root
->nodesize
= nodesize
;
2554 tree_root
->leafsize
= leafsize
;
2555 tree_root
->sectorsize
= sectorsize
;
2556 tree_root
->stripesize
= stripesize
;
2558 sb
->s_blocksize
= sectorsize
;
2559 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2561 if (disk_super
->magic
!= cpu_to_le64(BTRFS_MAGIC
)) {
2562 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
2563 goto fail_sb_buffer
;
2566 if (sectorsize
!= PAGE_SIZE
) {
2567 printk(KERN_WARNING
"btrfs: Incompatible sector size(%lu) "
2568 "found on %s\n", (unsigned long)sectorsize
, sb
->s_id
);
2569 goto fail_sb_buffer
;
2572 mutex_lock(&fs_info
->chunk_mutex
);
2573 ret
= btrfs_read_sys_array(tree_root
);
2574 mutex_unlock(&fs_info
->chunk_mutex
);
2576 printk(KERN_WARNING
"btrfs: failed to read the system "
2577 "array on %s\n", sb
->s_id
);
2578 goto fail_sb_buffer
;
2581 blocksize
= btrfs_level_size(tree_root
,
2582 btrfs_super_chunk_root_level(disk_super
));
2583 generation
= btrfs_super_chunk_root_generation(disk_super
);
2585 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2586 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2588 chunk_root
->node
= read_tree_block(chunk_root
,
2589 btrfs_super_chunk_root(disk_super
),
2590 blocksize
, generation
);
2591 if (!chunk_root
->node
||
2592 !test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2593 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2595 goto fail_tree_roots
;
2597 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2598 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2600 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2601 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
2604 ret
= btrfs_read_chunk_tree(chunk_root
);
2606 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2608 goto fail_tree_roots
;
2612 * keep the device that is marked to be the target device for the
2613 * dev_replace procedure
2615 btrfs_close_extra_devices(fs_info
, fs_devices
, 0);
2617 if (!fs_devices
->latest_bdev
) {
2618 printk(KERN_CRIT
"btrfs: failed to read devices on %s\n",
2620 goto fail_tree_roots
;
2624 blocksize
= btrfs_level_size(tree_root
,
2625 btrfs_super_root_level(disk_super
));
2626 generation
= btrfs_super_generation(disk_super
);
2628 tree_root
->node
= read_tree_block(tree_root
,
2629 btrfs_super_root(disk_super
),
2630 blocksize
, generation
);
2631 if (!tree_root
->node
||
2632 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2633 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2636 goto recovery_tree_root
;
2639 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2640 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2642 ret
= find_and_setup_root(tree_root
, fs_info
,
2643 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
2645 goto recovery_tree_root
;
2646 extent_root
->track_dirty
= 1;
2648 ret
= find_and_setup_root(tree_root
, fs_info
,
2649 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
2651 goto recovery_tree_root
;
2652 dev_root
->track_dirty
= 1;
2654 ret
= find_and_setup_root(tree_root
, fs_info
,
2655 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
2657 goto recovery_tree_root
;
2658 csum_root
->track_dirty
= 1;
2660 ret
= find_and_setup_root(tree_root
, fs_info
,
2661 BTRFS_QUOTA_TREE_OBJECTID
, quota_root
);
2664 quota_root
= fs_info
->quota_root
= NULL
;
2666 quota_root
->track_dirty
= 1;
2667 fs_info
->quota_enabled
= 1;
2668 fs_info
->pending_quota_state
= 1;
2671 fs_info
->generation
= generation
;
2672 fs_info
->last_trans_committed
= generation
;
2674 ret
= btrfs_recover_balance(fs_info
);
2676 printk(KERN_WARNING
"btrfs: failed to recover balance\n");
2677 goto fail_block_groups
;
2680 ret
= btrfs_init_dev_stats(fs_info
);
2682 printk(KERN_ERR
"btrfs: failed to init dev_stats: %d\n",
2684 goto fail_block_groups
;
2687 ret
= btrfs_init_dev_replace(fs_info
);
2689 pr_err("btrfs: failed to init dev_replace: %d\n", ret
);
2690 goto fail_block_groups
;
2693 btrfs_close_extra_devices(fs_info
, fs_devices
, 1);
2695 ret
= btrfs_init_space_info(fs_info
);
2697 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2698 goto fail_block_groups
;
2701 ret
= btrfs_read_block_groups(extent_root
);
2703 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2704 goto fail_block_groups
;
2706 fs_info
->num_tolerated_disk_barrier_failures
=
2707 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2708 if (fs_info
->fs_devices
->missing_devices
>
2709 fs_info
->num_tolerated_disk_barrier_failures
&&
2710 !(sb
->s_flags
& MS_RDONLY
)) {
2712 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2713 goto fail_block_groups
;
2716 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2718 if (IS_ERR(fs_info
->cleaner_kthread
))
2719 goto fail_block_groups
;
2721 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2723 "btrfs-transaction");
2724 if (IS_ERR(fs_info
->transaction_kthread
))
2727 if (!btrfs_test_opt(tree_root
, SSD
) &&
2728 !btrfs_test_opt(tree_root
, NOSSD
) &&
2729 !fs_info
->fs_devices
->rotating
) {
2730 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2732 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2735 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2736 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2737 ret
= btrfsic_mount(tree_root
, fs_devices
,
2738 btrfs_test_opt(tree_root
,
2739 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2741 fs_info
->check_integrity_print_mask
);
2743 printk(KERN_WARNING
"btrfs: failed to initialize"
2744 " integrity check module %s\n", sb
->s_id
);
2747 ret
= btrfs_read_qgroup_config(fs_info
);
2749 goto fail_trans_kthread
;
2751 /* do not make disk changes in broken FS */
2752 if (btrfs_super_log_root(disk_super
) != 0) {
2753 u64 bytenr
= btrfs_super_log_root(disk_super
);
2755 if (fs_devices
->rw_devices
== 0) {
2756 printk(KERN_WARNING
"Btrfs log replay required "
2762 btrfs_level_size(tree_root
,
2763 btrfs_super_log_root_level(disk_super
));
2765 log_tree_root
= btrfs_alloc_root(fs_info
);
2766 if (!log_tree_root
) {
2771 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2772 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2774 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2777 if (!log_tree_root
->node
||
2778 !extent_buffer_uptodate(log_tree_root
->node
)) {
2779 printk(KERN_ERR
"btrfs: failed to read log tree\n");
2780 free_extent_buffer(log_tree_root
->node
);
2781 kfree(log_tree_root
);
2782 goto fail_trans_kthread
;
2784 /* returns with log_tree_root freed on success */
2785 ret
= btrfs_recover_log_trees(log_tree_root
);
2787 btrfs_error(tree_root
->fs_info
, ret
,
2788 "Failed to recover log tree");
2789 free_extent_buffer(log_tree_root
->node
);
2790 kfree(log_tree_root
);
2791 goto fail_trans_kthread
;
2794 if (sb
->s_flags
& MS_RDONLY
) {
2795 ret
= btrfs_commit_super(tree_root
);
2797 goto fail_trans_kthread
;
2801 ret
= btrfs_find_orphan_roots(tree_root
);
2803 goto fail_trans_kthread
;
2805 if (!(sb
->s_flags
& MS_RDONLY
)) {
2806 ret
= btrfs_cleanup_fs_roots(fs_info
);
2808 goto fail_trans_kthread
;
2810 ret
= btrfs_recover_relocation(tree_root
);
2813 "btrfs: failed to recover relocation\n");
2819 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2820 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2821 location
.offset
= (u64
)-1;
2823 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2824 if (!fs_info
->fs_root
)
2826 if (IS_ERR(fs_info
->fs_root
)) {
2827 err
= PTR_ERR(fs_info
->fs_root
);
2831 if (sb
->s_flags
& MS_RDONLY
)
2834 down_read(&fs_info
->cleanup_work_sem
);
2835 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
2836 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
2837 up_read(&fs_info
->cleanup_work_sem
);
2838 close_ctree(tree_root
);
2841 up_read(&fs_info
->cleanup_work_sem
);
2843 ret
= btrfs_resume_balance_async(fs_info
);
2845 printk(KERN_WARNING
"btrfs: failed to resume balance\n");
2846 close_ctree(tree_root
);
2850 ret
= btrfs_resume_dev_replace_async(fs_info
);
2852 pr_warn("btrfs: failed to resume dev_replace\n");
2853 close_ctree(tree_root
);
2860 btrfs_free_qgroup_config(fs_info
);
2862 kthread_stop(fs_info
->transaction_kthread
);
2863 btrfs_cleanup_transaction(fs_info
->tree_root
);
2864 del_fs_roots(fs_info
);
2866 kthread_stop(fs_info
->cleaner_kthread
);
2869 * make sure we're done with the btree inode before we stop our
2872 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2875 btrfs_put_block_group_cache(fs_info
);
2876 btrfs_free_block_groups(fs_info
);
2879 free_root_pointers(fs_info
, 1);
2880 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2883 btrfs_stop_all_workers(fs_info
);
2886 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2888 iput(fs_info
->btree_inode
);
2889 fail_delalloc_bytes
:
2890 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
2891 fail_dirty_metadata_bytes
:
2892 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
2894 bdi_destroy(&fs_info
->bdi
);
2896 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2898 btrfs_free_stripe_hash_table(fs_info
);
2899 btrfs_close_devices(fs_info
->fs_devices
);
2903 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2904 goto fail_tree_roots
;
2906 free_root_pointers(fs_info
, 0);
2908 /* don't use the log in recovery mode, it won't be valid */
2909 btrfs_set_super_log_root(disk_super
, 0);
2911 /* we can't trust the free space cache either */
2912 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2914 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2915 &num_backups_tried
, &backup_index
);
2917 goto fail_block_groups
;
2918 goto retry_root_backup
;
2921 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2924 set_buffer_uptodate(bh
);
2926 struct btrfs_device
*device
= (struct btrfs_device
*)
2929 printk_ratelimited_in_rcu(KERN_WARNING
"lost page write due to "
2930 "I/O error on %s\n",
2931 rcu_str_deref(device
->name
));
2932 /* note, we dont' set_buffer_write_io_error because we have
2933 * our own ways of dealing with the IO errors
2935 clear_buffer_uptodate(bh
);
2936 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
2942 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2944 struct buffer_head
*bh
;
2945 struct buffer_head
*latest
= NULL
;
2946 struct btrfs_super_block
*super
;
2951 /* we would like to check all the supers, but that would make
2952 * a btrfs mount succeed after a mkfs from a different FS.
2953 * So, we need to add a special mount option to scan for
2954 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2956 for (i
= 0; i
< 1; i
++) {
2957 bytenr
= btrfs_sb_offset(i
);
2958 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2960 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2964 super
= (struct btrfs_super_block
*)bh
->b_data
;
2965 if (btrfs_super_bytenr(super
) != bytenr
||
2966 super
->magic
!= cpu_to_le64(BTRFS_MAGIC
)) {
2971 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2974 transid
= btrfs_super_generation(super
);
2983 * this should be called twice, once with wait == 0 and
2984 * once with wait == 1. When wait == 0 is done, all the buffer heads
2985 * we write are pinned.
2987 * They are released when wait == 1 is done.
2988 * max_mirrors must be the same for both runs, and it indicates how
2989 * many supers on this one device should be written.
2991 * max_mirrors == 0 means to write them all.
2993 static int write_dev_supers(struct btrfs_device
*device
,
2994 struct btrfs_super_block
*sb
,
2995 int do_barriers
, int wait
, int max_mirrors
)
2997 struct buffer_head
*bh
;
3004 if (max_mirrors
== 0)
3005 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3007 for (i
= 0; i
< max_mirrors
; i
++) {
3008 bytenr
= btrfs_sb_offset(i
);
3009 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
3013 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3014 BTRFS_SUPER_INFO_SIZE
);
3020 if (!buffer_uptodate(bh
))
3023 /* drop our reference */
3026 /* drop the reference from the wait == 0 run */
3030 btrfs_set_super_bytenr(sb
, bytenr
);
3033 crc
= btrfs_csum_data((char *)sb
+
3034 BTRFS_CSUM_SIZE
, crc
,
3035 BTRFS_SUPER_INFO_SIZE
-
3037 btrfs_csum_final(crc
, sb
->csum
);
3040 * one reference for us, and we leave it for the
3043 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3044 BTRFS_SUPER_INFO_SIZE
);
3046 printk(KERN_ERR
"btrfs: couldn't get super "
3047 "buffer head for bytenr %Lu\n", bytenr
);
3052 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3054 /* one reference for submit_bh */
3057 set_buffer_uptodate(bh
);
3059 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3060 bh
->b_private
= device
;
3064 * we fua the first super. The others we allow
3067 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
3071 return errors
< i
? 0 : -1;
3075 * endio for the write_dev_flush, this will wake anyone waiting
3076 * for the barrier when it is done
3078 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
3081 if (err
== -EOPNOTSUPP
)
3082 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
3083 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3085 if (bio
->bi_private
)
3086 complete(bio
->bi_private
);
3091 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3092 * sent down. With wait == 1, it waits for the previous flush.
3094 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3097 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3102 if (device
->nobarriers
)
3106 bio
= device
->flush_bio
;
3110 wait_for_completion(&device
->flush_wait
);
3112 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
3113 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3114 rcu_str_deref(device
->name
));
3115 device
->nobarriers
= 1;
3116 } else if (!bio_flagged(bio
, BIO_UPTODATE
)) {
3118 btrfs_dev_stat_inc_and_print(device
,
3119 BTRFS_DEV_STAT_FLUSH_ERRS
);
3122 /* drop the reference from the wait == 0 run */
3124 device
->flush_bio
= NULL
;
3130 * one reference for us, and we leave it for the
3133 device
->flush_bio
= NULL
;
3134 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3138 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3139 bio
->bi_bdev
= device
->bdev
;
3140 init_completion(&device
->flush_wait
);
3141 bio
->bi_private
= &device
->flush_wait
;
3142 device
->flush_bio
= bio
;
3145 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
3151 * send an empty flush down to each device in parallel,
3152 * then wait for them
3154 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3156 struct list_head
*head
;
3157 struct btrfs_device
*dev
;
3158 int errors_send
= 0;
3159 int errors_wait
= 0;
3162 /* send down all the barriers */
3163 head
= &info
->fs_devices
->devices
;
3164 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3169 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3172 ret
= write_dev_flush(dev
, 0);
3177 /* wait for all the barriers */
3178 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3183 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3186 ret
= write_dev_flush(dev
, 1);
3190 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3191 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3196 int btrfs_calc_num_tolerated_disk_barrier_failures(
3197 struct btrfs_fs_info
*fs_info
)
3199 struct btrfs_ioctl_space_info space
;
3200 struct btrfs_space_info
*sinfo
;
3201 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3202 BTRFS_BLOCK_GROUP_SYSTEM
,
3203 BTRFS_BLOCK_GROUP_METADATA
,
3204 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3208 int num_tolerated_disk_barrier_failures
=
3209 (int)fs_info
->fs_devices
->num_devices
;
3211 for (i
= 0; i
< num_types
; i
++) {
3212 struct btrfs_space_info
*tmp
;
3216 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3217 if (tmp
->flags
== types
[i
]) {
3227 down_read(&sinfo
->groups_sem
);
3228 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3229 if (!list_empty(&sinfo
->block_groups
[c
])) {
3232 btrfs_get_block_group_info(
3233 &sinfo
->block_groups
[c
], &space
);
3234 if (space
.total_bytes
== 0 ||
3235 space
.used_bytes
== 0)
3237 flags
= space
.flags
;
3240 * 0: if dup, single or RAID0 is configured for
3241 * any of metadata, system or data, else
3242 * 1: if RAID5 is configured, or if RAID1 or
3243 * RAID10 is configured and only two mirrors
3245 * 2: if RAID6 is configured, else
3246 * num_mirrors - 1: if RAID1 or RAID10 is
3247 * configured and more than
3248 * 2 mirrors are used.
3250 if (num_tolerated_disk_barrier_failures
> 0 &&
3251 ((flags
& (BTRFS_BLOCK_GROUP_DUP
|
3252 BTRFS_BLOCK_GROUP_RAID0
)) ||
3253 ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
)
3255 num_tolerated_disk_barrier_failures
= 0;
3256 else if (num_tolerated_disk_barrier_failures
> 1) {
3257 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3258 BTRFS_BLOCK_GROUP_RAID5
|
3259 BTRFS_BLOCK_GROUP_RAID10
)) {
3260 num_tolerated_disk_barrier_failures
= 1;
3262 BTRFS_BLOCK_GROUP_RAID5
) {
3263 num_tolerated_disk_barrier_failures
= 2;
3268 up_read(&sinfo
->groups_sem
);
3271 return num_tolerated_disk_barrier_failures
;
3274 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3276 struct list_head
*head
;
3277 struct btrfs_device
*dev
;
3278 struct btrfs_super_block
*sb
;
3279 struct btrfs_dev_item
*dev_item
;
3283 int total_errors
= 0;
3286 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3287 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
3288 backup_super_roots(root
->fs_info
);
3290 sb
= root
->fs_info
->super_for_commit
;
3291 dev_item
= &sb
->dev_item
;
3293 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3294 head
= &root
->fs_info
->fs_devices
->devices
;
3297 ret
= barrier_all_devices(root
->fs_info
);
3300 &root
->fs_info
->fs_devices
->device_list_mutex
);
3301 btrfs_error(root
->fs_info
, ret
,
3302 "errors while submitting device barriers.");
3307 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3312 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3315 btrfs_set_stack_device_generation(dev_item
, 0);
3316 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3317 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3318 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
3319 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
3320 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3321 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3322 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3323 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3324 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3326 flags
= btrfs_super_flags(sb
);
3327 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3329 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3333 if (total_errors
> max_errors
) {
3334 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
3337 /* This shouldn't happen. FUA is masked off if unsupported */
3342 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3345 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3348 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3352 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3353 if (total_errors
> max_errors
) {
3354 btrfs_error(root
->fs_info
, -EIO
,
3355 "%d errors while writing supers", total_errors
);
3361 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3362 struct btrfs_root
*root
, int max_mirrors
)
3366 ret
= write_all_supers(root
, max_mirrors
);
3370 void btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3372 spin_lock(&fs_info
->fs_roots_radix_lock
);
3373 radix_tree_delete(&fs_info
->fs_roots_radix
,
3374 (unsigned long)root
->root_key
.objectid
);
3375 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3377 if (btrfs_root_refs(&root
->root_item
) == 0)
3378 synchronize_srcu(&fs_info
->subvol_srcu
);
3380 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3381 btrfs_free_log(NULL
, root
);
3382 btrfs_free_log_root_tree(NULL
, fs_info
);
3385 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3386 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3390 static void free_fs_root(struct btrfs_root
*root
)
3392 iput(root
->cache_inode
);
3393 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3395 free_anon_bdev(root
->anon_dev
);
3396 free_extent_buffer(root
->node
);
3397 free_extent_buffer(root
->commit_root
);
3398 kfree(root
->free_ino_ctl
);
3399 kfree(root
->free_ino_pinned
);
3404 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3406 u64 root_objectid
= 0;
3407 struct btrfs_root
*gang
[8];
3412 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3413 (void **)gang
, root_objectid
,
3418 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3419 for (i
= 0; i
< ret
; i
++) {
3422 root_objectid
= gang
[i
]->root_key
.objectid
;
3423 err
= btrfs_orphan_cleanup(gang
[i
]);
3432 int btrfs_commit_super(struct btrfs_root
*root
)
3434 struct btrfs_trans_handle
*trans
;
3437 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3438 btrfs_run_delayed_iputs(root
);
3439 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3440 wake_up_process(root
->fs_info
->cleaner_kthread
);
3442 /* wait until ongoing cleanup work done */
3443 down_write(&root
->fs_info
->cleanup_work_sem
);
3444 up_write(&root
->fs_info
->cleanup_work_sem
);
3446 trans
= btrfs_join_transaction(root
);
3448 return PTR_ERR(trans
);
3449 ret
= btrfs_commit_transaction(trans
, root
);
3452 /* run commit again to drop the original snapshot */
3453 trans
= btrfs_join_transaction(root
);
3455 return PTR_ERR(trans
);
3456 ret
= btrfs_commit_transaction(trans
, root
);
3459 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
3461 btrfs_error(root
->fs_info
, ret
,
3462 "Failed to sync btree inode to disk.");
3466 ret
= write_ctree_super(NULL
, root
, 0);
3470 int close_ctree(struct btrfs_root
*root
)
3472 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3475 fs_info
->closing
= 1;
3478 /* pause restriper - we want to resume on mount */
3479 btrfs_pause_balance(fs_info
);
3481 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3483 btrfs_scrub_cancel(fs_info
);
3485 /* wait for any defraggers to finish */
3486 wait_event(fs_info
->transaction_wait
,
3487 (atomic_read(&fs_info
->defrag_running
) == 0));
3489 /* clear out the rbtree of defraggable inodes */
3490 btrfs_cleanup_defrag_inodes(fs_info
);
3492 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3493 ret
= btrfs_commit_super(root
);
3495 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3498 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3499 btrfs_error_commit_super(root
);
3501 btrfs_put_block_group_cache(fs_info
);
3503 kthread_stop(fs_info
->transaction_kthread
);
3504 kthread_stop(fs_info
->cleaner_kthread
);
3506 fs_info
->closing
= 2;
3509 btrfs_free_qgroup_config(root
->fs_info
);
3511 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3512 printk(KERN_INFO
"btrfs: at unmount delalloc count %lld\n",
3513 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3516 btrfs_free_block_groups(fs_info
);
3518 btrfs_stop_all_workers(fs_info
);
3520 del_fs_roots(fs_info
);
3522 free_root_pointers(fs_info
, 1);
3524 iput(fs_info
->btree_inode
);
3526 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3527 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3528 btrfsic_unmount(root
, fs_info
->fs_devices
);
3531 btrfs_close_devices(fs_info
->fs_devices
);
3532 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3534 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3535 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3536 bdi_destroy(&fs_info
->bdi
);
3537 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3539 btrfs_free_stripe_hash_table(fs_info
);
3544 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3548 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3550 ret
= extent_buffer_uptodate(buf
);
3554 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3555 parent_transid
, atomic
);
3561 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3563 return set_extent_buffer_uptodate(buf
);
3566 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3568 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3569 u64 transid
= btrfs_header_generation(buf
);
3572 btrfs_assert_tree_locked(buf
);
3573 if (transid
!= root
->fs_info
->generation
)
3574 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3575 "found %llu running %llu\n",
3576 (unsigned long long)buf
->start
,
3577 (unsigned long long)transid
,
3578 (unsigned long long)root
->fs_info
->generation
);
3579 was_dirty
= set_extent_buffer_dirty(buf
);
3581 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
3583 root
->fs_info
->dirty_metadata_batch
);
3586 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3590 * looks as though older kernels can get into trouble with
3591 * this code, they end up stuck in balance_dirty_pages forever
3595 if (current
->flags
& PF_MEMALLOC
)
3599 btrfs_balance_delayed_items(root
);
3601 ret
= percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
3602 BTRFS_DIRTY_METADATA_THRESH
);
3604 balance_dirty_pages_ratelimited(
3605 root
->fs_info
->btree_inode
->i_mapping
);
3610 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3612 __btrfs_btree_balance_dirty(root
, 1);
3615 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3617 __btrfs_btree_balance_dirty(root
, 0);
3620 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3622 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3623 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3626 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3630 * Placeholder for checks
3635 static void btrfs_error_commit_super(struct btrfs_root
*root
)
3637 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3638 btrfs_run_delayed_iputs(root
);
3639 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3641 down_write(&root
->fs_info
->cleanup_work_sem
);
3642 up_write(&root
->fs_info
->cleanup_work_sem
);
3644 /* cleanup FS via transaction */
3645 btrfs_cleanup_transaction(root
);
3648 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
3649 struct btrfs_root
*root
)
3651 struct btrfs_inode
*btrfs_inode
;
3652 struct list_head splice
;
3654 INIT_LIST_HEAD(&splice
);
3656 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3657 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3659 list_splice_init(&t
->ordered_operations
, &splice
);
3660 while (!list_empty(&splice
)) {
3661 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3662 ordered_operations
);
3664 list_del_init(&btrfs_inode
->ordered_operations
);
3665 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3667 btrfs_invalidate_inodes(btrfs_inode
->root
);
3669 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3672 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3673 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3676 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3678 struct btrfs_ordered_extent
*ordered
;
3680 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3682 * This will just short circuit the ordered completion stuff which will
3683 * make sure the ordered extent gets properly cleaned up.
3685 list_for_each_entry(ordered
, &root
->fs_info
->ordered_extents
,
3687 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
3688 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3691 int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3692 struct btrfs_root
*root
)
3694 struct rb_node
*node
;
3695 struct btrfs_delayed_ref_root
*delayed_refs
;
3696 struct btrfs_delayed_ref_node
*ref
;
3699 delayed_refs
= &trans
->delayed_refs
;
3701 spin_lock(&delayed_refs
->lock
);
3702 if (delayed_refs
->num_entries
== 0) {
3703 spin_unlock(&delayed_refs
->lock
);
3704 printk(KERN_INFO
"delayed_refs has NO entry\n");
3708 while ((node
= rb_first(&delayed_refs
->root
)) != NULL
) {
3709 struct btrfs_delayed_ref_head
*head
= NULL
;
3711 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3712 atomic_set(&ref
->refs
, 1);
3713 if (btrfs_delayed_ref_is_head(ref
)) {
3715 head
= btrfs_delayed_node_to_head(ref
);
3716 if (!mutex_trylock(&head
->mutex
)) {
3717 atomic_inc(&ref
->refs
);
3718 spin_unlock(&delayed_refs
->lock
);
3720 /* Need to wait for the delayed ref to run */
3721 mutex_lock(&head
->mutex
);
3722 mutex_unlock(&head
->mutex
);
3723 btrfs_put_delayed_ref(ref
);
3725 spin_lock(&delayed_refs
->lock
);
3729 if (head
->must_insert_reserved
)
3730 btrfs_pin_extent(root
, ref
->bytenr
,
3732 btrfs_free_delayed_extent_op(head
->extent_op
);
3733 delayed_refs
->num_heads
--;
3734 if (list_empty(&head
->cluster
))
3735 delayed_refs
->num_heads_ready
--;
3736 list_del_init(&head
->cluster
);
3740 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
3741 delayed_refs
->num_entries
--;
3743 mutex_unlock(&head
->mutex
);
3744 spin_unlock(&delayed_refs
->lock
);
3745 btrfs_put_delayed_ref(ref
);
3748 spin_lock(&delayed_refs
->lock
);
3751 spin_unlock(&delayed_refs
->lock
);
3756 static void btrfs_evict_pending_snapshots(struct btrfs_transaction
*t
)
3758 struct btrfs_pending_snapshot
*snapshot
;
3759 struct list_head splice
;
3761 INIT_LIST_HEAD(&splice
);
3763 list_splice_init(&t
->pending_snapshots
, &splice
);
3765 while (!list_empty(&splice
)) {
3766 snapshot
= list_entry(splice
.next
,
3767 struct btrfs_pending_snapshot
,
3769 snapshot
->error
= -ECANCELED
;
3770 list_del_init(&snapshot
->list
);
3774 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3776 struct btrfs_inode
*btrfs_inode
;
3777 struct list_head splice
;
3779 INIT_LIST_HEAD(&splice
);
3781 spin_lock(&root
->fs_info
->delalloc_lock
);
3782 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
3784 while (!list_empty(&splice
)) {
3785 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3788 list_del_init(&btrfs_inode
->delalloc_inodes
);
3789 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
3790 &btrfs_inode
->runtime_flags
);
3791 spin_unlock(&root
->fs_info
->delalloc_lock
);
3793 btrfs_invalidate_inodes(btrfs_inode
->root
);
3795 spin_lock(&root
->fs_info
->delalloc_lock
);
3798 spin_unlock(&root
->fs_info
->delalloc_lock
);
3801 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3802 struct extent_io_tree
*dirty_pages
,
3806 struct extent_buffer
*eb
;
3811 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3816 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3817 while (start
<= end
) {
3818 eb
= btrfs_find_tree_block(root
, start
,
3820 start
+= root
->leafsize
;
3823 wait_on_extent_buffer_writeback(eb
);
3825 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3827 clear_extent_buffer_dirty(eb
);
3828 free_extent_buffer_stale(eb
);
3835 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3836 struct extent_io_tree
*pinned_extents
)
3838 struct extent_io_tree
*unpin
;
3844 unpin
= pinned_extents
;
3847 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3848 EXTENT_DIRTY
, NULL
);
3853 if (btrfs_test_opt(root
, DISCARD
))
3854 ret
= btrfs_error_discard_extent(root
, start
,
3858 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3859 btrfs_error_unpin_extent_range(root
, start
, end
);
3864 if (unpin
== &root
->fs_info
->freed_extents
[0])
3865 unpin
= &root
->fs_info
->freed_extents
[1];
3867 unpin
= &root
->fs_info
->freed_extents
[0];
3875 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
3876 struct btrfs_root
*root
)
3878 btrfs_destroy_delayed_refs(cur_trans
, root
);
3879 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
3880 cur_trans
->dirty_pages
.dirty_bytes
);
3882 /* FIXME: cleanup wait for commit */
3883 cur_trans
->in_commit
= 1;
3884 cur_trans
->blocked
= 1;
3885 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3887 btrfs_evict_pending_snapshots(cur_trans
);
3889 cur_trans
->blocked
= 0;
3890 wake_up(&root
->fs_info
->transaction_wait
);
3892 cur_trans
->commit_done
= 1;
3893 wake_up(&cur_trans
->commit_wait
);
3895 btrfs_destroy_delayed_inodes(root
);
3896 btrfs_assert_delayed_root_empty(root
);
3898 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
3900 btrfs_destroy_pinned_extent(root
,
3901 root
->fs_info
->pinned_extents
);
3904 memset(cur_trans, 0, sizeof(*cur_trans));
3905 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3909 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3911 struct btrfs_transaction
*t
;
3914 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3916 spin_lock(&root
->fs_info
->trans_lock
);
3917 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3918 root
->fs_info
->trans_no_join
= 1;
3919 spin_unlock(&root
->fs_info
->trans_lock
);
3921 while (!list_empty(&list
)) {
3922 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3924 btrfs_destroy_ordered_operations(t
, root
);
3926 btrfs_destroy_ordered_extents(root
);
3928 btrfs_destroy_delayed_refs(t
, root
);
3930 /* FIXME: cleanup wait for commit */
3934 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3935 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3937 btrfs_evict_pending_snapshots(t
);
3941 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3942 wake_up(&root
->fs_info
->transaction_wait
);
3946 if (waitqueue_active(&t
->commit_wait
))
3947 wake_up(&t
->commit_wait
);
3949 btrfs_destroy_delayed_inodes(root
);
3950 btrfs_assert_delayed_root_empty(root
);
3952 btrfs_destroy_delalloc_inodes(root
);
3954 spin_lock(&root
->fs_info
->trans_lock
);
3955 root
->fs_info
->running_transaction
= NULL
;
3956 spin_unlock(&root
->fs_info
->trans_lock
);
3958 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3961 btrfs_destroy_pinned_extent(root
,
3962 root
->fs_info
->pinned_extents
);
3964 atomic_set(&t
->use_count
, 0);
3965 list_del_init(&t
->list
);
3966 memset(t
, 0, sizeof(*t
));
3967 kmem_cache_free(btrfs_transaction_cachep
, t
);
3970 spin_lock(&root
->fs_info
->trans_lock
);
3971 root
->fs_info
->trans_no_join
= 0;
3972 spin_unlock(&root
->fs_info
->trans_lock
);
3973 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3978 static struct extent_io_ops btree_extent_io_ops
= {
3979 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3980 .readpage_io_failed_hook
= btree_io_failed_hook
,
3981 .submit_bio_hook
= btree_submit_bio_hook
,
3982 /* note we're sharing with inode.c for the merge bio hook */
3983 .merge_bio_hook
= btrfs_merge_bio_hook
,