4 * Copyright (c) 1999 Al Smith
6 * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
20 static int efs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
);
21 static int efs_fill_super(struct super_block
*s
, void *d
, int silent
);
23 static struct dentry
*efs_mount(struct file_system_type
*fs_type
,
24 int flags
, const char *dev_name
, void *data
)
26 return mount_bdev(fs_type
, flags
, dev_name
, data
, efs_fill_super
);
29 static struct file_system_type efs_fs_type
= {
33 .kill_sb
= kill_block_super
,
34 .fs_flags
= FS_REQUIRES_DEV
,
36 MODULE_ALIAS_FS("efs");
38 static struct pt_types sgi_pt_types
[] = {
40 {0x01, "SGI trkrepl"},
41 {0x02, "SGI secrepl"},
44 {SGI_SYSV
, "SGI sysv"},
53 {0x83, "Linux native"},
58 static struct kmem_cache
* efs_inode_cachep
;
60 static struct inode
*efs_alloc_inode(struct super_block
*sb
)
62 struct efs_inode_info
*ei
;
63 ei
= (struct efs_inode_info
*)kmem_cache_alloc(efs_inode_cachep
, GFP_KERNEL
);
66 return &ei
->vfs_inode
;
69 static void efs_i_callback(struct rcu_head
*head
)
71 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
72 kmem_cache_free(efs_inode_cachep
, INODE_INFO(inode
));
75 static void efs_destroy_inode(struct inode
*inode
)
77 call_rcu(&inode
->i_rcu
, efs_i_callback
);
80 static void init_once(void *foo
)
82 struct efs_inode_info
*ei
= (struct efs_inode_info
*) foo
;
84 inode_init_once(&ei
->vfs_inode
);
87 static int init_inodecache(void)
89 efs_inode_cachep
= kmem_cache_create("efs_inode_cache",
90 sizeof(struct efs_inode_info
),
91 0, SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
,
93 if (efs_inode_cachep
== NULL
)
98 static void destroy_inodecache(void)
101 * Make sure all delayed rcu free inodes are flushed before we
105 kmem_cache_destroy(efs_inode_cachep
);
108 static void efs_put_super(struct super_block
*s
)
114 static int efs_remount(struct super_block
*sb
, int *flags
, char *data
)
120 static const struct super_operations efs_superblock_operations
= {
121 .alloc_inode
= efs_alloc_inode
,
122 .destroy_inode
= efs_destroy_inode
,
123 .put_super
= efs_put_super
,
124 .statfs
= efs_statfs
,
125 .remount_fs
= efs_remount
,
128 static const struct export_operations efs_export_ops
= {
129 .fh_to_dentry
= efs_fh_to_dentry
,
130 .fh_to_parent
= efs_fh_to_parent
,
131 .get_parent
= efs_get_parent
,
134 static int __init
init_efs_fs(void) {
136 printk("EFS: "EFS_VERSION
" - http://aeschi.ch.eu.org/efs/\n");
137 err
= init_inodecache();
140 err
= register_filesystem(&efs_fs_type
);
145 destroy_inodecache();
150 static void __exit
exit_efs_fs(void) {
151 unregister_filesystem(&efs_fs_type
);
152 destroy_inodecache();
155 module_init(init_efs_fs
)
156 module_exit(exit_efs_fs
)
158 static efs_block_t
efs_validate_vh(struct volume_header
*vh
) {
162 efs_block_t sblock
= 0; /* shuts up gcc */
163 struct pt_types
*pt_entry
;
164 int pt_type
, slice
= -1;
166 if (be32_to_cpu(vh
->vh_magic
) != VHMAGIC
) {
168 * assume that we're dealing with a partition and allow
169 * read_super() to try and detect a valid superblock
175 ui
= ((__be32
*) (vh
+ 1)) - 1;
176 for(csum
= 0; ui
>= ((__be32
*) vh
);) {
178 csum
+= be32_to_cpu(cs
);
181 printk(KERN_INFO
"EFS: SGI disklabel: checksum bad, label corrupted\n");
186 printk(KERN_DEBUG
"EFS: bf: \"%16s\"\n", vh
->vh_bootfile
);
188 for(i
= 0; i
< NVDIR
; i
++) {
190 char name
[VDNAMESIZE
+1];
192 for(j
= 0; j
< VDNAMESIZE
; j
++) {
193 name
[j
] = vh
->vh_vd
[i
].vd_name
[j
];
198 printk(KERN_DEBUG
"EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
200 (int) be32_to_cpu(vh
->vh_vd
[i
].vd_lbn
),
201 (int) be32_to_cpu(vh
->vh_vd
[i
].vd_nbytes
));
206 for(i
= 0; i
< NPARTAB
; i
++) {
207 pt_type
= (int) be32_to_cpu(vh
->vh_pt
[i
].pt_type
);
208 for(pt_entry
= sgi_pt_types
; pt_entry
->pt_name
; pt_entry
++) {
209 if (pt_type
== pt_entry
->pt_type
) break;
212 if (be32_to_cpu(vh
->vh_pt
[i
].pt_nblks
)) {
213 printk(KERN_DEBUG
"EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
215 (int) be32_to_cpu(vh
->vh_pt
[i
].pt_firstlbn
),
216 (int) be32_to_cpu(vh
->vh_pt
[i
].pt_nblks
),
218 (pt_entry
->pt_name
) ? pt_entry
->pt_name
: "unknown");
221 if (IS_EFS(pt_type
)) {
222 sblock
= be32_to_cpu(vh
->vh_pt
[i
].pt_firstlbn
);
228 printk(KERN_NOTICE
"EFS: partition table contained no EFS partitions\n");
231 printk(KERN_INFO
"EFS: using slice %d (type %s, offset 0x%x)\n",
233 (pt_entry
->pt_name
) ? pt_entry
->pt_name
: "unknown",
240 static int efs_validate_super(struct efs_sb_info
*sb
, struct efs_super
*super
) {
242 if (!IS_EFS_MAGIC(be32_to_cpu(super
->fs_magic
)))
245 sb
->fs_magic
= be32_to_cpu(super
->fs_magic
);
246 sb
->total_blocks
= be32_to_cpu(super
->fs_size
);
247 sb
->first_block
= be32_to_cpu(super
->fs_firstcg
);
248 sb
->group_size
= be32_to_cpu(super
->fs_cgfsize
);
249 sb
->data_free
= be32_to_cpu(super
->fs_tfree
);
250 sb
->inode_free
= be32_to_cpu(super
->fs_tinode
);
251 sb
->inode_blocks
= be16_to_cpu(super
->fs_cgisize
);
252 sb
->total_groups
= be16_to_cpu(super
->fs_ncg
);
257 static int efs_fill_super(struct super_block
*s
, void *d
, int silent
)
259 struct efs_sb_info
*sb
;
260 struct buffer_head
*bh
;
264 sb
= kzalloc(sizeof(struct efs_sb_info
), GFP_KERNEL
);
269 s
->s_magic
= EFS_SUPER_MAGIC
;
270 if (!sb_set_blocksize(s
, EFS_BLOCKSIZE
)) {
271 printk(KERN_ERR
"EFS: device does not support %d byte blocks\n",
276 /* read the vh (volume header) block */
280 printk(KERN_ERR
"EFS: cannot read volume header\n");
285 * if this returns zero then we didn't find any partition table.
286 * this isn't (yet) an error - just assume for the moment that
287 * the device is valid and go on to search for a superblock.
289 sb
->fs_start
= efs_validate_vh((struct volume_header
*) bh
->b_data
);
292 if (sb
->fs_start
== -1) {
296 bh
= sb_bread(s
, sb
->fs_start
+ EFS_SUPER
);
298 printk(KERN_ERR
"EFS: cannot read superblock\n");
302 if (efs_validate_super(sb
, (struct efs_super
*) bh
->b_data
)) {
304 printk(KERN_WARNING
"EFS: invalid superblock at block %u\n", sb
->fs_start
+ EFS_SUPER
);
311 if (!(s
->s_flags
& MS_RDONLY
)) {
313 printk(KERN_INFO
"EFS: forcing read-only mode\n");
315 s
->s_flags
|= MS_RDONLY
;
317 s
->s_op
= &efs_superblock_operations
;
318 s
->s_export_op
= &efs_export_ops
;
319 root
= efs_iget(s
, EFS_ROOTINODE
);
321 printk(KERN_ERR
"EFS: get root inode failed\n");
326 s
->s_root
= d_make_root(root
);
328 printk(KERN_ERR
"EFS: get root dentry failed\n");
342 static int efs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
) {
343 struct super_block
*sb
= dentry
->d_sb
;
344 struct efs_sb_info
*sbi
= SUPER_INFO(sb
);
345 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
347 buf
->f_type
= EFS_SUPER_MAGIC
; /* efs magic number */
348 buf
->f_bsize
= EFS_BLOCKSIZE
; /* blocksize */
349 buf
->f_blocks
= sbi
->total_groups
* /* total data blocks */
350 (sbi
->group_size
- sbi
->inode_blocks
);
351 buf
->f_bfree
= sbi
->data_free
; /* free data blocks */
352 buf
->f_bavail
= sbi
->data_free
; /* free blocks for non-root */
353 buf
->f_files
= sbi
->total_groups
* /* total inodes */
355 (EFS_BLOCKSIZE
/ sizeof(struct efs_dinode
));
356 buf
->f_ffree
= sbi
->inode_free
; /* free inodes */
357 buf
->f_fsid
.val
[0] = (u32
)id
;
358 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
359 buf
->f_namelen
= EFS_MAXNAMELEN
; /* max filename length */