ideapad-laptop: Add Lenovo Yoga 3 14 to no_hw_rfkill dmi list
[linux/fpc-iii.git] / fs / ext4 / super.c
blobff89971e3ee0fdc1b27a75ce54c9ca1c5ce81234
1 /*
2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/parser.h>
28 #include <linux/buffer_head.h>
29 #include <linux/exportfs.h>
30 #include <linux/vfs.h>
31 #include <linux/random.h>
32 #include <linux/mount.h>
33 #include <linux/namei.h>
34 #include <linux/quotaops.h>
35 #include <linux/seq_file.h>
36 #include <linux/proc_fs.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61 static int ext4_mballoc_ready;
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136 return cpu_to_le32(csum);
139 static int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
142 if (!ext4_has_metadata_csum(sb))
143 return 1;
145 return es->s_checksum == ext4_superblock_csum(sb, es);
148 void ext4_superblock_csum_set(struct super_block *sb)
150 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152 if (!ext4_has_metadata_csum(sb))
153 return;
155 es->s_checksum = ext4_superblock_csum(sb, es);
158 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 void *ret;
162 ret = kmalloc(size, flags | __GFP_NOWARN);
163 if (!ret)
164 ret = __vmalloc(size, flags, PAGE_KERNEL);
165 return ret;
168 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 void *ret;
172 ret = kzalloc(size, flags | __GFP_NOWARN);
173 if (!ret)
174 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
175 return ret;
178 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
179 struct ext4_group_desc *bg)
181 return le32_to_cpu(bg->bg_block_bitmap_lo) |
182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
186 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
189 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
194 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
195 struct ext4_group_desc *bg)
197 return le32_to_cpu(bg->bg_inode_table_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
202 __u32 ext4_free_group_clusters(struct super_block *sb,
203 struct ext4_group_desc *bg)
205 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
210 __u32 ext4_free_inodes_count(struct super_block *sb,
211 struct ext4_group_desc *bg)
213 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
218 __u32 ext4_used_dirs_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
221 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
226 __u32 ext4_itable_unused_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
229 return le16_to_cpu(bg->bg_itable_unused_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
234 void ext4_block_bitmap_set(struct super_block *sb,
235 struct ext4_group_desc *bg, ext4_fsblk_t blk)
237 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
242 void ext4_inode_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
245 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
250 void ext4_inode_table_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
253 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
258 void ext4_free_group_clusters_set(struct super_block *sb,
259 struct ext4_group_desc *bg, __u32 count)
261 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
266 void ext4_free_inodes_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
269 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
274 void ext4_used_dirs_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
277 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
282 void ext4_itable_unused_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
285 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
291 static void __save_error_info(struct super_block *sb, const char *func,
292 unsigned int line)
294 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
296 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
297 if (bdev_read_only(sb->s_bdev))
298 return;
299 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
300 es->s_last_error_time = cpu_to_le32(get_seconds());
301 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
302 es->s_last_error_line = cpu_to_le32(line);
303 if (!es->s_first_error_time) {
304 es->s_first_error_time = es->s_last_error_time;
305 strncpy(es->s_first_error_func, func,
306 sizeof(es->s_first_error_func));
307 es->s_first_error_line = cpu_to_le32(line);
308 es->s_first_error_ino = es->s_last_error_ino;
309 es->s_first_error_block = es->s_last_error_block;
312 * Start the daily error reporting function if it hasn't been
313 * started already
315 if (!es->s_error_count)
316 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
317 le32_add_cpu(&es->s_error_count, 1);
320 static void save_error_info(struct super_block *sb, const char *func,
321 unsigned int line)
323 __save_error_info(sb, func, line);
324 ext4_commit_super(sb, 1);
328 * The del_gendisk() function uninitializes the disk-specific data
329 * structures, including the bdi structure, without telling anyone
330 * else. Once this happens, any attempt to call mark_buffer_dirty()
331 * (for example, by ext4_commit_super), will cause a kernel OOPS.
332 * This is a kludge to prevent these oops until we can put in a proper
333 * hook in del_gendisk() to inform the VFS and file system layers.
335 static int block_device_ejected(struct super_block *sb)
337 struct inode *bd_inode = sb->s_bdev->bd_inode;
338 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
340 return bdi->dev == NULL;
343 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
345 struct super_block *sb = journal->j_private;
346 struct ext4_sb_info *sbi = EXT4_SB(sb);
347 int error = is_journal_aborted(journal);
348 struct ext4_journal_cb_entry *jce;
350 BUG_ON(txn->t_state == T_FINISHED);
351 spin_lock(&sbi->s_md_lock);
352 while (!list_empty(&txn->t_private_list)) {
353 jce = list_entry(txn->t_private_list.next,
354 struct ext4_journal_cb_entry, jce_list);
355 list_del_init(&jce->jce_list);
356 spin_unlock(&sbi->s_md_lock);
357 jce->jce_func(sb, jce, error);
358 spin_lock(&sbi->s_md_lock);
360 spin_unlock(&sbi->s_md_lock);
363 /* Deal with the reporting of failure conditions on a filesystem such as
364 * inconsistencies detected or read IO failures.
366 * On ext2, we can store the error state of the filesystem in the
367 * superblock. That is not possible on ext4, because we may have other
368 * write ordering constraints on the superblock which prevent us from
369 * writing it out straight away; and given that the journal is about to
370 * be aborted, we can't rely on the current, or future, transactions to
371 * write out the superblock safely.
373 * We'll just use the jbd2_journal_abort() error code to record an error in
374 * the journal instead. On recovery, the journal will complain about
375 * that error until we've noted it down and cleared it.
378 static void ext4_handle_error(struct super_block *sb)
380 if (sb->s_flags & MS_RDONLY)
381 return;
383 if (!test_opt(sb, ERRORS_CONT)) {
384 journal_t *journal = EXT4_SB(sb)->s_journal;
386 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
387 if (journal)
388 jbd2_journal_abort(journal, -EIO);
390 if (test_opt(sb, ERRORS_RO)) {
391 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
393 * Make sure updated value of ->s_mount_flags will be visible
394 * before ->s_flags update
396 smp_wmb();
397 sb->s_flags |= MS_RDONLY;
399 if (test_opt(sb, ERRORS_PANIC))
400 panic("EXT4-fs (device %s): panic forced after error\n",
401 sb->s_id);
404 #define ext4_error_ratelimit(sb) \
405 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
406 "EXT4-fs error")
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
411 struct va_format vaf;
412 va_list args;
414 if (ext4_error_ratelimit(sb)) {
415 va_start(args, fmt);
416 vaf.fmt = fmt;
417 vaf.va = &args;
418 printk(KERN_CRIT
419 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
420 sb->s_id, function, line, current->comm, &vaf);
421 va_end(args);
423 save_error_info(sb, function, line);
424 ext4_handle_error(sb);
427 void __ext4_error_inode(struct inode *inode, const char *function,
428 unsigned int line, ext4_fsblk_t block,
429 const char *fmt, ...)
431 va_list args;
432 struct va_format vaf;
433 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
435 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
436 es->s_last_error_block = cpu_to_le64(block);
437 if (ext4_error_ratelimit(inode->i_sb)) {
438 va_start(args, fmt);
439 vaf.fmt = fmt;
440 vaf.va = &args;
441 if (block)
442 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
443 "inode #%lu: block %llu: comm %s: %pV\n",
444 inode->i_sb->s_id, function, line, inode->i_ino,
445 block, current->comm, &vaf);
446 else
447 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
448 "inode #%lu: comm %s: %pV\n",
449 inode->i_sb->s_id, function, line, inode->i_ino,
450 current->comm, &vaf);
451 va_end(args);
453 save_error_info(inode->i_sb, function, line);
454 ext4_handle_error(inode->i_sb);
457 void __ext4_error_file(struct file *file, const char *function,
458 unsigned int line, ext4_fsblk_t block,
459 const char *fmt, ...)
461 va_list args;
462 struct va_format vaf;
463 struct ext4_super_block *es;
464 struct inode *inode = file_inode(file);
465 char pathname[80], *path;
467 es = EXT4_SB(inode->i_sb)->s_es;
468 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
469 if (ext4_error_ratelimit(inode->i_sb)) {
470 path = d_path(&(file->f_path), pathname, sizeof(pathname));
471 if (IS_ERR(path))
472 path = "(unknown)";
473 va_start(args, fmt);
474 vaf.fmt = fmt;
475 vaf.va = &args;
476 if (block)
477 printk(KERN_CRIT
478 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
479 "block %llu: comm %s: path %s: %pV\n",
480 inode->i_sb->s_id, function, line, inode->i_ino,
481 block, current->comm, path, &vaf);
482 else
483 printk(KERN_CRIT
484 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
485 "comm %s: path %s: %pV\n",
486 inode->i_sb->s_id, function, line, inode->i_ino,
487 current->comm, path, &vaf);
488 va_end(args);
490 save_error_info(inode->i_sb, function, line);
491 ext4_handle_error(inode->i_sb);
494 const char *ext4_decode_error(struct super_block *sb, int errno,
495 char nbuf[16])
497 char *errstr = NULL;
499 switch (errno) {
500 case -EIO:
501 errstr = "IO failure";
502 break;
503 case -ENOMEM:
504 errstr = "Out of memory";
505 break;
506 case -EROFS:
507 if (!sb || (EXT4_SB(sb)->s_journal &&
508 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
509 errstr = "Journal has aborted";
510 else
511 errstr = "Readonly filesystem";
512 break;
513 default:
514 /* If the caller passed in an extra buffer for unknown
515 * errors, textualise them now. Else we just return
516 * NULL. */
517 if (nbuf) {
518 /* Check for truncated error codes... */
519 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
520 errstr = nbuf;
522 break;
525 return errstr;
528 /* __ext4_std_error decodes expected errors from journaling functions
529 * automatically and invokes the appropriate error response. */
531 void __ext4_std_error(struct super_block *sb, const char *function,
532 unsigned int line, int errno)
534 char nbuf[16];
535 const char *errstr;
537 /* Special case: if the error is EROFS, and we're not already
538 * inside a transaction, then there's really no point in logging
539 * an error. */
540 if (errno == -EROFS && journal_current_handle() == NULL &&
541 (sb->s_flags & MS_RDONLY))
542 return;
544 if (ext4_error_ratelimit(sb)) {
545 errstr = ext4_decode_error(sb, errno, nbuf);
546 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
547 sb->s_id, function, line, errstr);
550 save_error_info(sb, function, line);
551 ext4_handle_error(sb);
555 * ext4_abort is a much stronger failure handler than ext4_error. The
556 * abort function may be used to deal with unrecoverable failures such
557 * as journal IO errors or ENOMEM at a critical moment in log management.
559 * We unconditionally force the filesystem into an ABORT|READONLY state,
560 * unless the error response on the fs has been set to panic in which
561 * case we take the easy way out and panic immediately.
564 void __ext4_abort(struct super_block *sb, const char *function,
565 unsigned int line, const char *fmt, ...)
567 va_list args;
569 save_error_info(sb, function, line);
570 va_start(args, fmt);
571 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
572 function, line);
573 vprintk(fmt, args);
574 printk("\n");
575 va_end(args);
577 if ((sb->s_flags & MS_RDONLY) == 0) {
578 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
579 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
581 * Make sure updated value of ->s_mount_flags will be visible
582 * before ->s_flags update
584 smp_wmb();
585 sb->s_flags |= MS_RDONLY;
586 if (EXT4_SB(sb)->s_journal)
587 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
588 save_error_info(sb, function, line);
590 if (test_opt(sb, ERRORS_PANIC))
591 panic("EXT4-fs panic from previous error\n");
594 void __ext4_msg(struct super_block *sb,
595 const char *prefix, const char *fmt, ...)
597 struct va_format vaf;
598 va_list args;
600 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
601 return;
603 va_start(args, fmt);
604 vaf.fmt = fmt;
605 vaf.va = &args;
606 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
607 va_end(args);
610 void __ext4_warning(struct super_block *sb, const char *function,
611 unsigned int line, const char *fmt, ...)
613 struct va_format vaf;
614 va_list args;
616 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
617 "EXT4-fs warning"))
618 return;
620 va_start(args, fmt);
621 vaf.fmt = fmt;
622 vaf.va = &args;
623 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
624 sb->s_id, function, line, &vaf);
625 va_end(args);
628 void __ext4_grp_locked_error(const char *function, unsigned int line,
629 struct super_block *sb, ext4_group_t grp,
630 unsigned long ino, ext4_fsblk_t block,
631 const char *fmt, ...)
632 __releases(bitlock)
633 __acquires(bitlock)
635 struct va_format vaf;
636 va_list args;
637 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
639 es->s_last_error_ino = cpu_to_le32(ino);
640 es->s_last_error_block = cpu_to_le64(block);
641 __save_error_info(sb, function, line);
643 if (ext4_error_ratelimit(sb)) {
644 va_start(args, fmt);
645 vaf.fmt = fmt;
646 vaf.va = &args;
647 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
648 sb->s_id, function, line, grp);
649 if (ino)
650 printk(KERN_CONT "inode %lu: ", ino);
651 if (block)
652 printk(KERN_CONT "block %llu:",
653 (unsigned long long) block);
654 printk(KERN_CONT "%pV\n", &vaf);
655 va_end(args);
658 if (test_opt(sb, ERRORS_CONT)) {
659 ext4_commit_super(sb, 0);
660 return;
663 ext4_unlock_group(sb, grp);
664 ext4_handle_error(sb);
666 * We only get here in the ERRORS_RO case; relocking the group
667 * may be dangerous, but nothing bad will happen since the
668 * filesystem will have already been marked read/only and the
669 * journal has been aborted. We return 1 as a hint to callers
670 * who might what to use the return value from
671 * ext4_grp_locked_error() to distinguish between the
672 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
673 * aggressively from the ext4 function in question, with a
674 * more appropriate error code.
676 ext4_lock_group(sb, grp);
677 return;
680 void ext4_update_dynamic_rev(struct super_block *sb)
682 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
684 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
685 return;
687 ext4_warning(sb,
688 "updating to rev %d because of new feature flag, "
689 "running e2fsck is recommended",
690 EXT4_DYNAMIC_REV);
692 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
693 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
694 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
695 /* leave es->s_feature_*compat flags alone */
696 /* es->s_uuid will be set by e2fsck if empty */
699 * The rest of the superblock fields should be zero, and if not it
700 * means they are likely already in use, so leave them alone. We
701 * can leave it up to e2fsck to clean up any inconsistencies there.
706 * Open the external journal device
708 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
710 struct block_device *bdev;
711 char b[BDEVNAME_SIZE];
713 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
714 if (IS_ERR(bdev))
715 goto fail;
716 return bdev;
718 fail:
719 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
720 __bdevname(dev, b), PTR_ERR(bdev));
721 return NULL;
725 * Release the journal device
727 static void ext4_blkdev_put(struct block_device *bdev)
729 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
732 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
734 struct block_device *bdev;
735 bdev = sbi->journal_bdev;
736 if (bdev) {
737 ext4_blkdev_put(bdev);
738 sbi->journal_bdev = NULL;
742 static inline struct inode *orphan_list_entry(struct list_head *l)
744 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
747 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
749 struct list_head *l;
751 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
752 le32_to_cpu(sbi->s_es->s_last_orphan));
754 printk(KERN_ERR "sb_info orphan list:\n");
755 list_for_each(l, &sbi->s_orphan) {
756 struct inode *inode = orphan_list_entry(l);
757 printk(KERN_ERR " "
758 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
759 inode->i_sb->s_id, inode->i_ino, inode,
760 inode->i_mode, inode->i_nlink,
761 NEXT_ORPHAN(inode));
765 static void ext4_put_super(struct super_block *sb)
767 struct ext4_sb_info *sbi = EXT4_SB(sb);
768 struct ext4_super_block *es = sbi->s_es;
769 int i, err;
771 ext4_unregister_li_request(sb);
772 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
774 flush_workqueue(sbi->rsv_conversion_wq);
775 destroy_workqueue(sbi->rsv_conversion_wq);
777 if (sbi->s_journal) {
778 err = jbd2_journal_destroy(sbi->s_journal);
779 sbi->s_journal = NULL;
780 if (err < 0)
781 ext4_abort(sb, "Couldn't clean up the journal");
784 ext4_es_unregister_shrinker(sbi);
785 del_timer_sync(&sbi->s_err_report);
786 ext4_release_system_zone(sb);
787 ext4_mb_release(sb);
788 ext4_ext_release(sb);
789 ext4_xattr_put_super(sb);
791 if (!(sb->s_flags & MS_RDONLY)) {
792 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
793 es->s_state = cpu_to_le16(sbi->s_mount_state);
795 if (!(sb->s_flags & MS_RDONLY))
796 ext4_commit_super(sb, 1);
798 if (sbi->s_proc) {
799 remove_proc_entry("options", sbi->s_proc);
800 remove_proc_entry(sb->s_id, ext4_proc_root);
802 kobject_del(&sbi->s_kobj);
804 for (i = 0; i < sbi->s_gdb_count; i++)
805 brelse(sbi->s_group_desc[i]);
806 kvfree(sbi->s_group_desc);
807 kvfree(sbi->s_flex_groups);
808 percpu_counter_destroy(&sbi->s_freeclusters_counter);
809 percpu_counter_destroy(&sbi->s_freeinodes_counter);
810 percpu_counter_destroy(&sbi->s_dirs_counter);
811 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
812 brelse(sbi->s_sbh);
813 #ifdef CONFIG_QUOTA
814 for (i = 0; i < EXT4_MAXQUOTAS; i++)
815 kfree(sbi->s_qf_names[i]);
816 #endif
818 /* Debugging code just in case the in-memory inode orphan list
819 * isn't empty. The on-disk one can be non-empty if we've
820 * detected an error and taken the fs readonly, but the
821 * in-memory list had better be clean by this point. */
822 if (!list_empty(&sbi->s_orphan))
823 dump_orphan_list(sb, sbi);
824 J_ASSERT(list_empty(&sbi->s_orphan));
826 sync_blockdev(sb->s_bdev);
827 invalidate_bdev(sb->s_bdev);
828 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
830 * Invalidate the journal device's buffers. We don't want them
831 * floating about in memory - the physical journal device may
832 * hotswapped, and it breaks the `ro-after' testing code.
834 sync_blockdev(sbi->journal_bdev);
835 invalidate_bdev(sbi->journal_bdev);
836 ext4_blkdev_remove(sbi);
838 if (sbi->s_mb_cache) {
839 ext4_xattr_destroy_cache(sbi->s_mb_cache);
840 sbi->s_mb_cache = NULL;
842 if (sbi->s_mmp_tsk)
843 kthread_stop(sbi->s_mmp_tsk);
844 sb->s_fs_info = NULL;
846 * Now that we are completely done shutting down the
847 * superblock, we need to actually destroy the kobject.
849 kobject_put(&sbi->s_kobj);
850 wait_for_completion(&sbi->s_kobj_unregister);
851 if (sbi->s_chksum_driver)
852 crypto_free_shash(sbi->s_chksum_driver);
853 kfree(sbi->s_blockgroup_lock);
854 kfree(sbi);
857 static struct kmem_cache *ext4_inode_cachep;
860 * Called inside transaction, so use GFP_NOFS
862 static struct inode *ext4_alloc_inode(struct super_block *sb)
864 struct ext4_inode_info *ei;
866 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
867 if (!ei)
868 return NULL;
870 ei->vfs_inode.i_version = 1;
871 spin_lock_init(&ei->i_raw_lock);
872 INIT_LIST_HEAD(&ei->i_prealloc_list);
873 spin_lock_init(&ei->i_prealloc_lock);
874 ext4_es_init_tree(&ei->i_es_tree);
875 rwlock_init(&ei->i_es_lock);
876 INIT_LIST_HEAD(&ei->i_es_list);
877 ei->i_es_all_nr = 0;
878 ei->i_es_shk_nr = 0;
879 ei->i_es_shrink_lblk = 0;
880 ei->i_reserved_data_blocks = 0;
881 ei->i_reserved_meta_blocks = 0;
882 ei->i_allocated_meta_blocks = 0;
883 ei->i_da_metadata_calc_len = 0;
884 ei->i_da_metadata_calc_last_lblock = 0;
885 spin_lock_init(&(ei->i_block_reservation_lock));
886 #ifdef CONFIG_QUOTA
887 ei->i_reserved_quota = 0;
888 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
889 #endif
890 ei->jinode = NULL;
891 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
892 spin_lock_init(&ei->i_completed_io_lock);
893 ei->i_sync_tid = 0;
894 ei->i_datasync_tid = 0;
895 atomic_set(&ei->i_ioend_count, 0);
896 atomic_set(&ei->i_unwritten, 0);
897 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
898 #ifdef CONFIG_EXT4_FS_ENCRYPTION
899 ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
900 #endif
902 return &ei->vfs_inode;
905 static int ext4_drop_inode(struct inode *inode)
907 int drop = generic_drop_inode(inode);
909 trace_ext4_drop_inode(inode, drop);
910 return drop;
913 static void ext4_i_callback(struct rcu_head *head)
915 struct inode *inode = container_of(head, struct inode, i_rcu);
916 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
919 static void ext4_destroy_inode(struct inode *inode)
921 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
922 ext4_msg(inode->i_sb, KERN_ERR,
923 "Inode %lu (%p): orphan list check failed!",
924 inode->i_ino, EXT4_I(inode));
925 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
926 EXT4_I(inode), sizeof(struct ext4_inode_info),
927 true);
928 dump_stack();
930 call_rcu(&inode->i_rcu, ext4_i_callback);
933 static void init_once(void *foo)
935 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
937 INIT_LIST_HEAD(&ei->i_orphan);
938 init_rwsem(&ei->xattr_sem);
939 init_rwsem(&ei->i_data_sem);
940 inode_init_once(&ei->vfs_inode);
943 static int __init init_inodecache(void)
945 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
946 sizeof(struct ext4_inode_info),
947 0, (SLAB_RECLAIM_ACCOUNT|
948 SLAB_MEM_SPREAD),
949 init_once);
950 if (ext4_inode_cachep == NULL)
951 return -ENOMEM;
952 return 0;
955 static void destroy_inodecache(void)
958 * Make sure all delayed rcu free inodes are flushed before we
959 * destroy cache.
961 rcu_barrier();
962 kmem_cache_destroy(ext4_inode_cachep);
965 void ext4_clear_inode(struct inode *inode)
967 invalidate_inode_buffers(inode);
968 clear_inode(inode);
969 dquot_drop(inode);
970 ext4_discard_preallocations(inode);
971 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
972 if (EXT4_I(inode)->jinode) {
973 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
974 EXT4_I(inode)->jinode);
975 jbd2_free_inode(EXT4_I(inode)->jinode);
976 EXT4_I(inode)->jinode = NULL;
980 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
981 u64 ino, u32 generation)
983 struct inode *inode;
985 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
986 return ERR_PTR(-ESTALE);
987 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
988 return ERR_PTR(-ESTALE);
990 /* iget isn't really right if the inode is currently unallocated!!
992 * ext4_read_inode will return a bad_inode if the inode had been
993 * deleted, so we should be safe.
995 * Currently we don't know the generation for parent directory, so
996 * a generation of 0 means "accept any"
998 inode = ext4_iget_normal(sb, ino);
999 if (IS_ERR(inode))
1000 return ERR_CAST(inode);
1001 if (generation && inode->i_generation != generation) {
1002 iput(inode);
1003 return ERR_PTR(-ESTALE);
1006 return inode;
1009 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1010 int fh_len, int fh_type)
1012 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1013 ext4_nfs_get_inode);
1016 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1017 int fh_len, int fh_type)
1019 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1020 ext4_nfs_get_inode);
1024 * Try to release metadata pages (indirect blocks, directories) which are
1025 * mapped via the block device. Since these pages could have journal heads
1026 * which would prevent try_to_free_buffers() from freeing them, we must use
1027 * jbd2 layer's try_to_free_buffers() function to release them.
1029 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1030 gfp_t wait)
1032 journal_t *journal = EXT4_SB(sb)->s_journal;
1034 WARN_ON(PageChecked(page));
1035 if (!page_has_buffers(page))
1036 return 0;
1037 if (journal)
1038 return jbd2_journal_try_to_free_buffers(journal, page,
1039 wait & ~__GFP_WAIT);
1040 return try_to_free_buffers(page);
1043 #ifdef CONFIG_QUOTA
1044 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1045 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1047 static int ext4_write_dquot(struct dquot *dquot);
1048 static int ext4_acquire_dquot(struct dquot *dquot);
1049 static int ext4_release_dquot(struct dquot *dquot);
1050 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1051 static int ext4_write_info(struct super_block *sb, int type);
1052 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1053 struct path *path);
1054 static int ext4_quota_off(struct super_block *sb, int type);
1055 static int ext4_quota_on_mount(struct super_block *sb, int type);
1056 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1057 size_t len, loff_t off);
1058 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1059 const char *data, size_t len, loff_t off);
1060 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1061 unsigned int flags);
1062 static int ext4_enable_quotas(struct super_block *sb);
1064 static struct dquot **ext4_get_dquots(struct inode *inode)
1066 return EXT4_I(inode)->i_dquot;
1069 static const struct dquot_operations ext4_quota_operations = {
1070 .get_reserved_space = ext4_get_reserved_space,
1071 .write_dquot = ext4_write_dquot,
1072 .acquire_dquot = ext4_acquire_dquot,
1073 .release_dquot = ext4_release_dquot,
1074 .mark_dirty = ext4_mark_dquot_dirty,
1075 .write_info = ext4_write_info,
1076 .alloc_dquot = dquot_alloc,
1077 .destroy_dquot = dquot_destroy,
1080 static const struct quotactl_ops ext4_qctl_operations = {
1081 .quota_on = ext4_quota_on,
1082 .quota_off = ext4_quota_off,
1083 .quota_sync = dquot_quota_sync,
1084 .get_state = dquot_get_state,
1085 .set_info = dquot_set_dqinfo,
1086 .get_dqblk = dquot_get_dqblk,
1087 .set_dqblk = dquot_set_dqblk
1089 #endif
1091 static const struct super_operations ext4_sops = {
1092 .alloc_inode = ext4_alloc_inode,
1093 .destroy_inode = ext4_destroy_inode,
1094 .write_inode = ext4_write_inode,
1095 .dirty_inode = ext4_dirty_inode,
1096 .drop_inode = ext4_drop_inode,
1097 .evict_inode = ext4_evict_inode,
1098 .put_super = ext4_put_super,
1099 .sync_fs = ext4_sync_fs,
1100 .freeze_fs = ext4_freeze,
1101 .unfreeze_fs = ext4_unfreeze,
1102 .statfs = ext4_statfs,
1103 .remount_fs = ext4_remount,
1104 .show_options = ext4_show_options,
1105 #ifdef CONFIG_QUOTA
1106 .quota_read = ext4_quota_read,
1107 .quota_write = ext4_quota_write,
1108 .get_dquots = ext4_get_dquots,
1109 #endif
1110 .bdev_try_to_free_page = bdev_try_to_free_page,
1113 static const struct export_operations ext4_export_ops = {
1114 .fh_to_dentry = ext4_fh_to_dentry,
1115 .fh_to_parent = ext4_fh_to_parent,
1116 .get_parent = ext4_get_parent,
1119 enum {
1120 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1121 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1122 Opt_nouid32, Opt_debug, Opt_removed,
1123 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1124 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1125 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1126 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1127 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1128 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1129 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1130 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1131 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1132 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1133 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1134 Opt_lazytime, Opt_nolazytime,
1135 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1136 Opt_inode_readahead_blks, Opt_journal_ioprio,
1137 Opt_dioread_nolock, Opt_dioread_lock,
1138 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1139 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1142 static const match_table_t tokens = {
1143 {Opt_bsd_df, "bsddf"},
1144 {Opt_minix_df, "minixdf"},
1145 {Opt_grpid, "grpid"},
1146 {Opt_grpid, "bsdgroups"},
1147 {Opt_nogrpid, "nogrpid"},
1148 {Opt_nogrpid, "sysvgroups"},
1149 {Opt_resgid, "resgid=%u"},
1150 {Opt_resuid, "resuid=%u"},
1151 {Opt_sb, "sb=%u"},
1152 {Opt_err_cont, "errors=continue"},
1153 {Opt_err_panic, "errors=panic"},
1154 {Opt_err_ro, "errors=remount-ro"},
1155 {Opt_nouid32, "nouid32"},
1156 {Opt_debug, "debug"},
1157 {Opt_removed, "oldalloc"},
1158 {Opt_removed, "orlov"},
1159 {Opt_user_xattr, "user_xattr"},
1160 {Opt_nouser_xattr, "nouser_xattr"},
1161 {Opt_acl, "acl"},
1162 {Opt_noacl, "noacl"},
1163 {Opt_noload, "norecovery"},
1164 {Opt_noload, "noload"},
1165 {Opt_removed, "nobh"},
1166 {Opt_removed, "bh"},
1167 {Opt_commit, "commit=%u"},
1168 {Opt_min_batch_time, "min_batch_time=%u"},
1169 {Opt_max_batch_time, "max_batch_time=%u"},
1170 {Opt_journal_dev, "journal_dev=%u"},
1171 {Opt_journal_path, "journal_path=%s"},
1172 {Opt_journal_checksum, "journal_checksum"},
1173 {Opt_nojournal_checksum, "nojournal_checksum"},
1174 {Opt_journal_async_commit, "journal_async_commit"},
1175 {Opt_abort, "abort"},
1176 {Opt_data_journal, "data=journal"},
1177 {Opt_data_ordered, "data=ordered"},
1178 {Opt_data_writeback, "data=writeback"},
1179 {Opt_data_err_abort, "data_err=abort"},
1180 {Opt_data_err_ignore, "data_err=ignore"},
1181 {Opt_offusrjquota, "usrjquota="},
1182 {Opt_usrjquota, "usrjquota=%s"},
1183 {Opt_offgrpjquota, "grpjquota="},
1184 {Opt_grpjquota, "grpjquota=%s"},
1185 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1186 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1187 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1188 {Opt_grpquota, "grpquota"},
1189 {Opt_noquota, "noquota"},
1190 {Opt_quota, "quota"},
1191 {Opt_usrquota, "usrquota"},
1192 {Opt_barrier, "barrier=%u"},
1193 {Opt_barrier, "barrier"},
1194 {Opt_nobarrier, "nobarrier"},
1195 {Opt_i_version, "i_version"},
1196 {Opt_dax, "dax"},
1197 {Opt_stripe, "stripe=%u"},
1198 {Opt_delalloc, "delalloc"},
1199 {Opt_lazytime, "lazytime"},
1200 {Opt_nolazytime, "nolazytime"},
1201 {Opt_nodelalloc, "nodelalloc"},
1202 {Opt_removed, "mblk_io_submit"},
1203 {Opt_removed, "nomblk_io_submit"},
1204 {Opt_block_validity, "block_validity"},
1205 {Opt_noblock_validity, "noblock_validity"},
1206 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1207 {Opt_journal_ioprio, "journal_ioprio=%u"},
1208 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1209 {Opt_auto_da_alloc, "auto_da_alloc"},
1210 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1211 {Opt_dioread_nolock, "dioread_nolock"},
1212 {Opt_dioread_lock, "dioread_lock"},
1213 {Opt_discard, "discard"},
1214 {Opt_nodiscard, "nodiscard"},
1215 {Opt_init_itable, "init_itable=%u"},
1216 {Opt_init_itable, "init_itable"},
1217 {Opt_noinit_itable, "noinit_itable"},
1218 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1219 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1220 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1221 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1222 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1223 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1224 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1225 {Opt_err, NULL},
1228 static ext4_fsblk_t get_sb_block(void **data)
1230 ext4_fsblk_t sb_block;
1231 char *options = (char *) *data;
1233 if (!options || strncmp(options, "sb=", 3) != 0)
1234 return 1; /* Default location */
1236 options += 3;
1237 /* TODO: use simple_strtoll with >32bit ext4 */
1238 sb_block = simple_strtoul(options, &options, 0);
1239 if (*options && *options != ',') {
1240 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1241 (char *) *data);
1242 return 1;
1244 if (*options == ',')
1245 options++;
1246 *data = (void *) options;
1248 return sb_block;
1251 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1252 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1253 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1255 #ifdef CONFIG_QUOTA
1256 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1258 struct ext4_sb_info *sbi = EXT4_SB(sb);
1259 char *qname;
1260 int ret = -1;
1262 if (sb_any_quota_loaded(sb) &&
1263 !sbi->s_qf_names[qtype]) {
1264 ext4_msg(sb, KERN_ERR,
1265 "Cannot change journaled "
1266 "quota options when quota turned on");
1267 return -1;
1269 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1270 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1271 "when QUOTA feature is enabled");
1272 return -1;
1274 qname = match_strdup(args);
1275 if (!qname) {
1276 ext4_msg(sb, KERN_ERR,
1277 "Not enough memory for storing quotafile name");
1278 return -1;
1280 if (sbi->s_qf_names[qtype]) {
1281 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1282 ret = 1;
1283 else
1284 ext4_msg(sb, KERN_ERR,
1285 "%s quota file already specified",
1286 QTYPE2NAME(qtype));
1287 goto errout;
1289 if (strchr(qname, '/')) {
1290 ext4_msg(sb, KERN_ERR,
1291 "quotafile must be on filesystem root");
1292 goto errout;
1294 sbi->s_qf_names[qtype] = qname;
1295 set_opt(sb, QUOTA);
1296 return 1;
1297 errout:
1298 kfree(qname);
1299 return ret;
1302 static int clear_qf_name(struct super_block *sb, int qtype)
1305 struct ext4_sb_info *sbi = EXT4_SB(sb);
1307 if (sb_any_quota_loaded(sb) &&
1308 sbi->s_qf_names[qtype]) {
1309 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1310 " when quota turned on");
1311 return -1;
1313 kfree(sbi->s_qf_names[qtype]);
1314 sbi->s_qf_names[qtype] = NULL;
1315 return 1;
1317 #endif
1319 #define MOPT_SET 0x0001
1320 #define MOPT_CLEAR 0x0002
1321 #define MOPT_NOSUPPORT 0x0004
1322 #define MOPT_EXPLICIT 0x0008
1323 #define MOPT_CLEAR_ERR 0x0010
1324 #define MOPT_GTE0 0x0020
1325 #ifdef CONFIG_QUOTA
1326 #define MOPT_Q 0
1327 #define MOPT_QFMT 0x0040
1328 #else
1329 #define MOPT_Q MOPT_NOSUPPORT
1330 #define MOPT_QFMT MOPT_NOSUPPORT
1331 #endif
1332 #define MOPT_DATAJ 0x0080
1333 #define MOPT_NO_EXT2 0x0100
1334 #define MOPT_NO_EXT3 0x0200
1335 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1336 #define MOPT_STRING 0x0400
1338 static const struct mount_opts {
1339 int token;
1340 int mount_opt;
1341 int flags;
1342 } ext4_mount_opts[] = {
1343 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1344 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1345 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1346 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1347 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1348 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1349 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1350 MOPT_EXT4_ONLY | MOPT_SET},
1351 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1352 MOPT_EXT4_ONLY | MOPT_CLEAR},
1353 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1354 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1355 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1356 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1357 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1358 MOPT_EXT4_ONLY | MOPT_CLEAR},
1359 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1360 MOPT_EXT4_ONLY | MOPT_CLEAR},
1361 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1362 MOPT_EXT4_ONLY | MOPT_SET},
1363 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1364 EXT4_MOUNT_JOURNAL_CHECKSUM),
1365 MOPT_EXT4_ONLY | MOPT_SET},
1366 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1367 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1368 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1369 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1370 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1371 MOPT_NO_EXT2 | MOPT_SET},
1372 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1373 MOPT_NO_EXT2 | MOPT_CLEAR},
1374 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1375 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1376 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1377 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1378 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1379 {Opt_commit, 0, MOPT_GTE0},
1380 {Opt_max_batch_time, 0, MOPT_GTE0},
1381 {Opt_min_batch_time, 0, MOPT_GTE0},
1382 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1383 {Opt_init_itable, 0, MOPT_GTE0},
1384 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1385 {Opt_stripe, 0, MOPT_GTE0},
1386 {Opt_resuid, 0, MOPT_GTE0},
1387 {Opt_resgid, 0, MOPT_GTE0},
1388 {Opt_journal_dev, 0, MOPT_GTE0},
1389 {Opt_journal_path, 0, MOPT_STRING},
1390 {Opt_journal_ioprio, 0, MOPT_GTE0},
1391 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1392 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1393 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1394 MOPT_NO_EXT2 | MOPT_DATAJ},
1395 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1396 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1397 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1398 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1399 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1400 #else
1401 {Opt_acl, 0, MOPT_NOSUPPORT},
1402 {Opt_noacl, 0, MOPT_NOSUPPORT},
1403 #endif
1404 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1405 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1406 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1407 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1408 MOPT_SET | MOPT_Q},
1409 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1410 MOPT_SET | MOPT_Q},
1411 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1412 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1413 {Opt_usrjquota, 0, MOPT_Q},
1414 {Opt_grpjquota, 0, MOPT_Q},
1415 {Opt_offusrjquota, 0, MOPT_Q},
1416 {Opt_offgrpjquota, 0, MOPT_Q},
1417 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1418 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1419 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1420 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1421 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1422 {Opt_err, 0, 0}
1425 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1426 substring_t *args, unsigned long *journal_devnum,
1427 unsigned int *journal_ioprio, int is_remount)
1429 struct ext4_sb_info *sbi = EXT4_SB(sb);
1430 const struct mount_opts *m;
1431 kuid_t uid;
1432 kgid_t gid;
1433 int arg = 0;
1435 #ifdef CONFIG_QUOTA
1436 if (token == Opt_usrjquota)
1437 return set_qf_name(sb, USRQUOTA, &args[0]);
1438 else if (token == Opt_grpjquota)
1439 return set_qf_name(sb, GRPQUOTA, &args[0]);
1440 else if (token == Opt_offusrjquota)
1441 return clear_qf_name(sb, USRQUOTA);
1442 else if (token == Opt_offgrpjquota)
1443 return clear_qf_name(sb, GRPQUOTA);
1444 #endif
1445 switch (token) {
1446 case Opt_noacl:
1447 case Opt_nouser_xattr:
1448 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1449 break;
1450 case Opt_sb:
1451 return 1; /* handled by get_sb_block() */
1452 case Opt_removed:
1453 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1454 return 1;
1455 case Opt_abort:
1456 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1457 return 1;
1458 case Opt_i_version:
1459 sb->s_flags |= MS_I_VERSION;
1460 return 1;
1461 case Opt_lazytime:
1462 sb->s_flags |= MS_LAZYTIME;
1463 return 1;
1464 case Opt_nolazytime:
1465 sb->s_flags &= ~MS_LAZYTIME;
1466 return 1;
1469 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1470 if (token == m->token)
1471 break;
1473 if (m->token == Opt_err) {
1474 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1475 "or missing value", opt);
1476 return -1;
1479 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1480 ext4_msg(sb, KERN_ERR,
1481 "Mount option \"%s\" incompatible with ext2", opt);
1482 return -1;
1484 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1485 ext4_msg(sb, KERN_ERR,
1486 "Mount option \"%s\" incompatible with ext3", opt);
1487 return -1;
1490 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1491 return -1;
1492 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1493 return -1;
1494 if (m->flags & MOPT_EXPLICIT)
1495 set_opt2(sb, EXPLICIT_DELALLOC);
1496 if (m->flags & MOPT_CLEAR_ERR)
1497 clear_opt(sb, ERRORS_MASK);
1498 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1499 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1500 "options when quota turned on");
1501 return -1;
1504 if (m->flags & MOPT_NOSUPPORT) {
1505 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1506 } else if (token == Opt_commit) {
1507 if (arg == 0)
1508 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1509 sbi->s_commit_interval = HZ * arg;
1510 } else if (token == Opt_max_batch_time) {
1511 sbi->s_max_batch_time = arg;
1512 } else if (token == Opt_min_batch_time) {
1513 sbi->s_min_batch_time = arg;
1514 } else if (token == Opt_inode_readahead_blks) {
1515 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1516 ext4_msg(sb, KERN_ERR,
1517 "EXT4-fs: inode_readahead_blks must be "
1518 "0 or a power of 2 smaller than 2^31");
1519 return -1;
1521 sbi->s_inode_readahead_blks = arg;
1522 } else if (token == Opt_init_itable) {
1523 set_opt(sb, INIT_INODE_TABLE);
1524 if (!args->from)
1525 arg = EXT4_DEF_LI_WAIT_MULT;
1526 sbi->s_li_wait_mult = arg;
1527 } else if (token == Opt_max_dir_size_kb) {
1528 sbi->s_max_dir_size_kb = arg;
1529 } else if (token == Opt_stripe) {
1530 sbi->s_stripe = arg;
1531 } else if (token == Opt_resuid) {
1532 uid = make_kuid(current_user_ns(), arg);
1533 if (!uid_valid(uid)) {
1534 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1535 return -1;
1537 sbi->s_resuid = uid;
1538 } else if (token == Opt_resgid) {
1539 gid = make_kgid(current_user_ns(), arg);
1540 if (!gid_valid(gid)) {
1541 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1542 return -1;
1544 sbi->s_resgid = gid;
1545 } else if (token == Opt_journal_dev) {
1546 if (is_remount) {
1547 ext4_msg(sb, KERN_ERR,
1548 "Cannot specify journal on remount");
1549 return -1;
1551 *journal_devnum = arg;
1552 } else if (token == Opt_journal_path) {
1553 char *journal_path;
1554 struct inode *journal_inode;
1555 struct path path;
1556 int error;
1558 if (is_remount) {
1559 ext4_msg(sb, KERN_ERR,
1560 "Cannot specify journal on remount");
1561 return -1;
1563 journal_path = match_strdup(&args[0]);
1564 if (!journal_path) {
1565 ext4_msg(sb, KERN_ERR, "error: could not dup "
1566 "journal device string");
1567 return -1;
1570 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1571 if (error) {
1572 ext4_msg(sb, KERN_ERR, "error: could not find "
1573 "journal device path: error %d", error);
1574 kfree(journal_path);
1575 return -1;
1578 journal_inode = d_inode(path.dentry);
1579 if (!S_ISBLK(journal_inode->i_mode)) {
1580 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1581 "is not a block device", journal_path);
1582 path_put(&path);
1583 kfree(journal_path);
1584 return -1;
1587 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1588 path_put(&path);
1589 kfree(journal_path);
1590 } else if (token == Opt_journal_ioprio) {
1591 if (arg > 7) {
1592 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1593 " (must be 0-7)");
1594 return -1;
1596 *journal_ioprio =
1597 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1598 } else if (token == Opt_test_dummy_encryption) {
1599 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1600 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1601 ext4_msg(sb, KERN_WARNING,
1602 "Test dummy encryption mode enabled");
1603 #else
1604 ext4_msg(sb, KERN_WARNING,
1605 "Test dummy encryption mount option ignored");
1606 #endif
1607 } else if (m->flags & MOPT_DATAJ) {
1608 if (is_remount) {
1609 if (!sbi->s_journal)
1610 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1611 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1612 ext4_msg(sb, KERN_ERR,
1613 "Cannot change data mode on remount");
1614 return -1;
1616 } else {
1617 clear_opt(sb, DATA_FLAGS);
1618 sbi->s_mount_opt |= m->mount_opt;
1620 #ifdef CONFIG_QUOTA
1621 } else if (m->flags & MOPT_QFMT) {
1622 if (sb_any_quota_loaded(sb) &&
1623 sbi->s_jquota_fmt != m->mount_opt) {
1624 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1625 "quota options when quota turned on");
1626 return -1;
1628 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1629 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1630 ext4_msg(sb, KERN_ERR,
1631 "Cannot set journaled quota options "
1632 "when QUOTA feature is enabled");
1633 return -1;
1635 sbi->s_jquota_fmt = m->mount_opt;
1636 #endif
1637 #ifndef CONFIG_FS_DAX
1638 } else if (token == Opt_dax) {
1639 ext4_msg(sb, KERN_INFO, "dax option not supported");
1640 return -1;
1641 #endif
1642 } else {
1643 if (!args->from)
1644 arg = 1;
1645 if (m->flags & MOPT_CLEAR)
1646 arg = !arg;
1647 else if (unlikely(!(m->flags & MOPT_SET))) {
1648 ext4_msg(sb, KERN_WARNING,
1649 "buggy handling of option %s", opt);
1650 WARN_ON(1);
1651 return -1;
1653 if (arg != 0)
1654 sbi->s_mount_opt |= m->mount_opt;
1655 else
1656 sbi->s_mount_opt &= ~m->mount_opt;
1658 return 1;
1661 static int parse_options(char *options, struct super_block *sb,
1662 unsigned long *journal_devnum,
1663 unsigned int *journal_ioprio,
1664 int is_remount)
1666 struct ext4_sb_info *sbi = EXT4_SB(sb);
1667 char *p;
1668 substring_t args[MAX_OPT_ARGS];
1669 int token;
1671 if (!options)
1672 return 1;
1674 while ((p = strsep(&options, ",")) != NULL) {
1675 if (!*p)
1676 continue;
1678 * Initialize args struct so we know whether arg was
1679 * found; some options take optional arguments.
1681 args[0].to = args[0].from = NULL;
1682 token = match_token(p, tokens, args);
1683 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1684 journal_ioprio, is_remount) < 0)
1685 return 0;
1687 #ifdef CONFIG_QUOTA
1688 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1689 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1690 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1691 "feature is enabled");
1692 return 0;
1694 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1695 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1696 clear_opt(sb, USRQUOTA);
1698 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1699 clear_opt(sb, GRPQUOTA);
1701 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1702 ext4_msg(sb, KERN_ERR, "old and new quota "
1703 "format mixing");
1704 return 0;
1707 if (!sbi->s_jquota_fmt) {
1708 ext4_msg(sb, KERN_ERR, "journaled quota format "
1709 "not specified");
1710 return 0;
1713 #endif
1714 if (test_opt(sb, DIOREAD_NOLOCK)) {
1715 int blocksize =
1716 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1718 if (blocksize < PAGE_CACHE_SIZE) {
1719 ext4_msg(sb, KERN_ERR, "can't mount with "
1720 "dioread_nolock if block size != PAGE_SIZE");
1721 return 0;
1724 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1725 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1726 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1727 "in data=ordered mode");
1728 return 0;
1730 return 1;
1733 static inline void ext4_show_quota_options(struct seq_file *seq,
1734 struct super_block *sb)
1736 #if defined(CONFIG_QUOTA)
1737 struct ext4_sb_info *sbi = EXT4_SB(sb);
1739 if (sbi->s_jquota_fmt) {
1740 char *fmtname = "";
1742 switch (sbi->s_jquota_fmt) {
1743 case QFMT_VFS_OLD:
1744 fmtname = "vfsold";
1745 break;
1746 case QFMT_VFS_V0:
1747 fmtname = "vfsv0";
1748 break;
1749 case QFMT_VFS_V1:
1750 fmtname = "vfsv1";
1751 break;
1753 seq_printf(seq, ",jqfmt=%s", fmtname);
1756 if (sbi->s_qf_names[USRQUOTA])
1757 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1759 if (sbi->s_qf_names[GRPQUOTA])
1760 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1761 #endif
1764 static const char *token2str(int token)
1766 const struct match_token *t;
1768 for (t = tokens; t->token != Opt_err; t++)
1769 if (t->token == token && !strchr(t->pattern, '='))
1770 break;
1771 return t->pattern;
1775 * Show an option if
1776 * - it's set to a non-default value OR
1777 * - if the per-sb default is different from the global default
1779 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1780 int nodefs)
1782 struct ext4_sb_info *sbi = EXT4_SB(sb);
1783 struct ext4_super_block *es = sbi->s_es;
1784 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1785 const struct mount_opts *m;
1786 char sep = nodefs ? '\n' : ',';
1788 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1789 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1791 if (sbi->s_sb_block != 1)
1792 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1794 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1795 int want_set = m->flags & MOPT_SET;
1796 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1797 (m->flags & MOPT_CLEAR_ERR))
1798 continue;
1799 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1800 continue; /* skip if same as the default */
1801 if ((want_set &&
1802 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1803 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1804 continue; /* select Opt_noFoo vs Opt_Foo */
1805 SEQ_OPTS_PRINT("%s", token2str(m->token));
1808 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1809 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1810 SEQ_OPTS_PRINT("resuid=%u",
1811 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1812 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1813 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1814 SEQ_OPTS_PRINT("resgid=%u",
1815 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1816 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1817 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1818 SEQ_OPTS_PUTS("errors=remount-ro");
1819 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1820 SEQ_OPTS_PUTS("errors=continue");
1821 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1822 SEQ_OPTS_PUTS("errors=panic");
1823 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1824 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1825 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1826 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1827 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1828 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1829 if (sb->s_flags & MS_I_VERSION)
1830 SEQ_OPTS_PUTS("i_version");
1831 if (nodefs || sbi->s_stripe)
1832 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1833 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1834 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1835 SEQ_OPTS_PUTS("data=journal");
1836 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1837 SEQ_OPTS_PUTS("data=ordered");
1838 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1839 SEQ_OPTS_PUTS("data=writeback");
1841 if (nodefs ||
1842 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1843 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1844 sbi->s_inode_readahead_blks);
1846 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1847 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1848 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1849 if (nodefs || sbi->s_max_dir_size_kb)
1850 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1852 ext4_show_quota_options(seq, sb);
1853 return 0;
1856 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1858 return _ext4_show_options(seq, root->d_sb, 0);
1861 static int options_seq_show(struct seq_file *seq, void *offset)
1863 struct super_block *sb = seq->private;
1864 int rc;
1866 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1867 rc = _ext4_show_options(seq, sb, 1);
1868 seq_puts(seq, "\n");
1869 return rc;
1872 static int options_open_fs(struct inode *inode, struct file *file)
1874 return single_open(file, options_seq_show, PDE_DATA(inode));
1877 static const struct file_operations ext4_seq_options_fops = {
1878 .owner = THIS_MODULE,
1879 .open = options_open_fs,
1880 .read = seq_read,
1881 .llseek = seq_lseek,
1882 .release = single_release,
1885 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1886 int read_only)
1888 struct ext4_sb_info *sbi = EXT4_SB(sb);
1889 int res = 0;
1891 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1892 ext4_msg(sb, KERN_ERR, "revision level too high, "
1893 "forcing read-only mode");
1894 res = MS_RDONLY;
1896 if (read_only)
1897 goto done;
1898 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1899 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1900 "running e2fsck is recommended");
1901 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1902 ext4_msg(sb, KERN_WARNING,
1903 "warning: mounting fs with errors, "
1904 "running e2fsck is recommended");
1905 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1906 le16_to_cpu(es->s_mnt_count) >=
1907 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1908 ext4_msg(sb, KERN_WARNING,
1909 "warning: maximal mount count reached, "
1910 "running e2fsck is recommended");
1911 else if (le32_to_cpu(es->s_checkinterval) &&
1912 (le32_to_cpu(es->s_lastcheck) +
1913 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1914 ext4_msg(sb, KERN_WARNING,
1915 "warning: checktime reached, "
1916 "running e2fsck is recommended");
1917 if (!sbi->s_journal)
1918 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1919 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1920 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1921 le16_add_cpu(&es->s_mnt_count, 1);
1922 es->s_mtime = cpu_to_le32(get_seconds());
1923 ext4_update_dynamic_rev(sb);
1924 if (sbi->s_journal)
1925 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1927 ext4_commit_super(sb, 1);
1928 done:
1929 if (test_opt(sb, DEBUG))
1930 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1931 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1932 sb->s_blocksize,
1933 sbi->s_groups_count,
1934 EXT4_BLOCKS_PER_GROUP(sb),
1935 EXT4_INODES_PER_GROUP(sb),
1936 sbi->s_mount_opt, sbi->s_mount_opt2);
1938 cleancache_init_fs(sb);
1939 return res;
1942 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1944 struct ext4_sb_info *sbi = EXT4_SB(sb);
1945 struct flex_groups *new_groups;
1946 int size;
1948 if (!sbi->s_log_groups_per_flex)
1949 return 0;
1951 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1952 if (size <= sbi->s_flex_groups_allocated)
1953 return 0;
1955 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1956 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1957 if (!new_groups) {
1958 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1959 size / (int) sizeof(struct flex_groups));
1960 return -ENOMEM;
1963 if (sbi->s_flex_groups) {
1964 memcpy(new_groups, sbi->s_flex_groups,
1965 (sbi->s_flex_groups_allocated *
1966 sizeof(struct flex_groups)));
1967 kvfree(sbi->s_flex_groups);
1969 sbi->s_flex_groups = new_groups;
1970 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1971 return 0;
1974 static int ext4_fill_flex_info(struct super_block *sb)
1976 struct ext4_sb_info *sbi = EXT4_SB(sb);
1977 struct ext4_group_desc *gdp = NULL;
1978 ext4_group_t flex_group;
1979 int i, err;
1981 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1982 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1983 sbi->s_log_groups_per_flex = 0;
1984 return 1;
1987 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1988 if (err)
1989 goto failed;
1991 for (i = 0; i < sbi->s_groups_count; i++) {
1992 gdp = ext4_get_group_desc(sb, i, NULL);
1994 flex_group = ext4_flex_group(sbi, i);
1995 atomic_add(ext4_free_inodes_count(sb, gdp),
1996 &sbi->s_flex_groups[flex_group].free_inodes);
1997 atomic64_add(ext4_free_group_clusters(sb, gdp),
1998 &sbi->s_flex_groups[flex_group].free_clusters);
1999 atomic_add(ext4_used_dirs_count(sb, gdp),
2000 &sbi->s_flex_groups[flex_group].used_dirs);
2003 return 1;
2004 failed:
2005 return 0;
2008 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2009 struct ext4_group_desc *gdp)
2011 int offset;
2012 __u16 crc = 0;
2013 __le32 le_group = cpu_to_le32(block_group);
2015 if (ext4_has_metadata_csum(sbi->s_sb)) {
2016 /* Use new metadata_csum algorithm */
2017 __le16 save_csum;
2018 __u32 csum32;
2020 save_csum = gdp->bg_checksum;
2021 gdp->bg_checksum = 0;
2022 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2023 sizeof(le_group));
2024 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2025 sbi->s_desc_size);
2026 gdp->bg_checksum = save_csum;
2028 crc = csum32 & 0xFFFF;
2029 goto out;
2032 /* old crc16 code */
2033 if (!(sbi->s_es->s_feature_ro_compat &
2034 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2035 return 0;
2037 offset = offsetof(struct ext4_group_desc, bg_checksum);
2039 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2040 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2041 crc = crc16(crc, (__u8 *)gdp, offset);
2042 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2043 /* for checksum of struct ext4_group_desc do the rest...*/
2044 if ((sbi->s_es->s_feature_incompat &
2045 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2046 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2047 crc = crc16(crc, (__u8 *)gdp + offset,
2048 le16_to_cpu(sbi->s_es->s_desc_size) -
2049 offset);
2051 out:
2052 return cpu_to_le16(crc);
2055 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2056 struct ext4_group_desc *gdp)
2058 if (ext4_has_group_desc_csum(sb) &&
2059 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2060 block_group, gdp)))
2061 return 0;
2063 return 1;
2066 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2067 struct ext4_group_desc *gdp)
2069 if (!ext4_has_group_desc_csum(sb))
2070 return;
2071 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2074 /* Called at mount-time, super-block is locked */
2075 static int ext4_check_descriptors(struct super_block *sb,
2076 ext4_group_t *first_not_zeroed)
2078 struct ext4_sb_info *sbi = EXT4_SB(sb);
2079 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2080 ext4_fsblk_t last_block;
2081 ext4_fsblk_t block_bitmap;
2082 ext4_fsblk_t inode_bitmap;
2083 ext4_fsblk_t inode_table;
2084 int flexbg_flag = 0;
2085 ext4_group_t i, grp = sbi->s_groups_count;
2087 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2088 flexbg_flag = 1;
2090 ext4_debug("Checking group descriptors");
2092 for (i = 0; i < sbi->s_groups_count; i++) {
2093 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2095 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2096 last_block = ext4_blocks_count(sbi->s_es) - 1;
2097 else
2098 last_block = first_block +
2099 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2101 if ((grp == sbi->s_groups_count) &&
2102 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2103 grp = i;
2105 block_bitmap = ext4_block_bitmap(sb, gdp);
2106 if (block_bitmap < first_block || block_bitmap > last_block) {
2107 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2108 "Block bitmap for group %u not in group "
2109 "(block %llu)!", i, block_bitmap);
2110 return 0;
2112 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2113 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2114 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2115 "Inode bitmap for group %u not in group "
2116 "(block %llu)!", i, inode_bitmap);
2117 return 0;
2119 inode_table = ext4_inode_table(sb, gdp);
2120 if (inode_table < first_block ||
2121 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2122 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2123 "Inode table for group %u not in group "
2124 "(block %llu)!", i, inode_table);
2125 return 0;
2127 ext4_lock_group(sb, i);
2128 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2129 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2130 "Checksum for group %u failed (%u!=%u)",
2131 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2132 gdp)), le16_to_cpu(gdp->bg_checksum));
2133 if (!(sb->s_flags & MS_RDONLY)) {
2134 ext4_unlock_group(sb, i);
2135 return 0;
2138 ext4_unlock_group(sb, i);
2139 if (!flexbg_flag)
2140 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2142 if (NULL != first_not_zeroed)
2143 *first_not_zeroed = grp;
2144 return 1;
2147 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2148 * the superblock) which were deleted from all directories, but held open by
2149 * a process at the time of a crash. We walk the list and try to delete these
2150 * inodes at recovery time (only with a read-write filesystem).
2152 * In order to keep the orphan inode chain consistent during traversal (in
2153 * case of crash during recovery), we link each inode into the superblock
2154 * orphan list_head and handle it the same way as an inode deletion during
2155 * normal operation (which journals the operations for us).
2157 * We only do an iget() and an iput() on each inode, which is very safe if we
2158 * accidentally point at an in-use or already deleted inode. The worst that
2159 * can happen in this case is that we get a "bit already cleared" message from
2160 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2161 * e2fsck was run on this filesystem, and it must have already done the orphan
2162 * inode cleanup for us, so we can safely abort without any further action.
2164 static void ext4_orphan_cleanup(struct super_block *sb,
2165 struct ext4_super_block *es)
2167 unsigned int s_flags = sb->s_flags;
2168 int nr_orphans = 0, nr_truncates = 0;
2169 #ifdef CONFIG_QUOTA
2170 int i;
2171 #endif
2172 if (!es->s_last_orphan) {
2173 jbd_debug(4, "no orphan inodes to clean up\n");
2174 return;
2177 if (bdev_read_only(sb->s_bdev)) {
2178 ext4_msg(sb, KERN_ERR, "write access "
2179 "unavailable, skipping orphan cleanup");
2180 return;
2183 /* Check if feature set would not allow a r/w mount */
2184 if (!ext4_feature_set_ok(sb, 0)) {
2185 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2186 "unknown ROCOMPAT features");
2187 return;
2190 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2191 /* don't clear list on RO mount w/ errors */
2192 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2193 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2194 "clearing orphan list.\n");
2195 es->s_last_orphan = 0;
2197 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2198 return;
2201 if (s_flags & MS_RDONLY) {
2202 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2203 sb->s_flags &= ~MS_RDONLY;
2205 #ifdef CONFIG_QUOTA
2206 /* Needed for iput() to work correctly and not trash data */
2207 sb->s_flags |= MS_ACTIVE;
2208 /* Turn on quotas so that they are updated correctly */
2209 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2210 if (EXT4_SB(sb)->s_qf_names[i]) {
2211 int ret = ext4_quota_on_mount(sb, i);
2212 if (ret < 0)
2213 ext4_msg(sb, KERN_ERR,
2214 "Cannot turn on journaled "
2215 "quota: error %d", ret);
2218 #endif
2220 while (es->s_last_orphan) {
2221 struct inode *inode;
2223 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2224 if (IS_ERR(inode)) {
2225 es->s_last_orphan = 0;
2226 break;
2229 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2230 dquot_initialize(inode);
2231 if (inode->i_nlink) {
2232 if (test_opt(sb, DEBUG))
2233 ext4_msg(sb, KERN_DEBUG,
2234 "%s: truncating inode %lu to %lld bytes",
2235 __func__, inode->i_ino, inode->i_size);
2236 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2237 inode->i_ino, inode->i_size);
2238 mutex_lock(&inode->i_mutex);
2239 truncate_inode_pages(inode->i_mapping, inode->i_size);
2240 ext4_truncate(inode);
2241 mutex_unlock(&inode->i_mutex);
2242 nr_truncates++;
2243 } else {
2244 if (test_opt(sb, DEBUG))
2245 ext4_msg(sb, KERN_DEBUG,
2246 "%s: deleting unreferenced inode %lu",
2247 __func__, inode->i_ino);
2248 jbd_debug(2, "deleting unreferenced inode %lu\n",
2249 inode->i_ino);
2250 nr_orphans++;
2252 iput(inode); /* The delete magic happens here! */
2255 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2257 if (nr_orphans)
2258 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2259 PLURAL(nr_orphans));
2260 if (nr_truncates)
2261 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2262 PLURAL(nr_truncates));
2263 #ifdef CONFIG_QUOTA
2264 /* Turn quotas off */
2265 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2266 if (sb_dqopt(sb)->files[i])
2267 dquot_quota_off(sb, i);
2269 #endif
2270 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2274 * Maximal extent format file size.
2275 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2276 * extent format containers, within a sector_t, and within i_blocks
2277 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2278 * so that won't be a limiting factor.
2280 * However there is other limiting factor. We do store extents in the form
2281 * of starting block and length, hence the resulting length of the extent
2282 * covering maximum file size must fit into on-disk format containers as
2283 * well. Given that length is always by 1 unit bigger than max unit (because
2284 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2286 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2288 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2290 loff_t res;
2291 loff_t upper_limit = MAX_LFS_FILESIZE;
2293 /* small i_blocks in vfs inode? */
2294 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2296 * CONFIG_LBDAF is not enabled implies the inode
2297 * i_block represent total blocks in 512 bytes
2298 * 32 == size of vfs inode i_blocks * 8
2300 upper_limit = (1LL << 32) - 1;
2302 /* total blocks in file system block size */
2303 upper_limit >>= (blkbits - 9);
2304 upper_limit <<= blkbits;
2308 * 32-bit extent-start container, ee_block. We lower the maxbytes
2309 * by one fs block, so ee_len can cover the extent of maximum file
2310 * size
2312 res = (1LL << 32) - 1;
2313 res <<= blkbits;
2315 /* Sanity check against vm- & vfs- imposed limits */
2316 if (res > upper_limit)
2317 res = upper_limit;
2319 return res;
2323 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2324 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2325 * We need to be 1 filesystem block less than the 2^48 sector limit.
2327 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2329 loff_t res = EXT4_NDIR_BLOCKS;
2330 int meta_blocks;
2331 loff_t upper_limit;
2332 /* This is calculated to be the largest file size for a dense, block
2333 * mapped file such that the file's total number of 512-byte sectors,
2334 * including data and all indirect blocks, does not exceed (2^48 - 1).
2336 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2337 * number of 512-byte sectors of the file.
2340 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2342 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2343 * the inode i_block field represents total file blocks in
2344 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2346 upper_limit = (1LL << 32) - 1;
2348 /* total blocks in file system block size */
2349 upper_limit >>= (bits - 9);
2351 } else {
2353 * We use 48 bit ext4_inode i_blocks
2354 * With EXT4_HUGE_FILE_FL set the i_blocks
2355 * represent total number of blocks in
2356 * file system block size
2358 upper_limit = (1LL << 48) - 1;
2362 /* indirect blocks */
2363 meta_blocks = 1;
2364 /* double indirect blocks */
2365 meta_blocks += 1 + (1LL << (bits-2));
2366 /* tripple indirect blocks */
2367 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2369 upper_limit -= meta_blocks;
2370 upper_limit <<= bits;
2372 res += 1LL << (bits-2);
2373 res += 1LL << (2*(bits-2));
2374 res += 1LL << (3*(bits-2));
2375 res <<= bits;
2376 if (res > upper_limit)
2377 res = upper_limit;
2379 if (res > MAX_LFS_FILESIZE)
2380 res = MAX_LFS_FILESIZE;
2382 return res;
2385 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2386 ext4_fsblk_t logical_sb_block, int nr)
2388 struct ext4_sb_info *sbi = EXT4_SB(sb);
2389 ext4_group_t bg, first_meta_bg;
2390 int has_super = 0;
2392 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2394 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2395 nr < first_meta_bg)
2396 return logical_sb_block + nr + 1;
2397 bg = sbi->s_desc_per_block * nr;
2398 if (ext4_bg_has_super(sb, bg))
2399 has_super = 1;
2402 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2403 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2404 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2405 * compensate.
2407 if (sb->s_blocksize == 1024 && nr == 0 &&
2408 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2409 has_super++;
2411 return (has_super + ext4_group_first_block_no(sb, bg));
2415 * ext4_get_stripe_size: Get the stripe size.
2416 * @sbi: In memory super block info
2418 * If we have specified it via mount option, then
2419 * use the mount option value. If the value specified at mount time is
2420 * greater than the blocks per group use the super block value.
2421 * If the super block value is greater than blocks per group return 0.
2422 * Allocator needs it be less than blocks per group.
2425 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2427 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2428 unsigned long stripe_width =
2429 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2430 int ret;
2432 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2433 ret = sbi->s_stripe;
2434 else if (stripe_width <= sbi->s_blocks_per_group)
2435 ret = stripe_width;
2436 else if (stride <= sbi->s_blocks_per_group)
2437 ret = stride;
2438 else
2439 ret = 0;
2442 * If the stripe width is 1, this makes no sense and
2443 * we set it to 0 to turn off stripe handling code.
2445 if (ret <= 1)
2446 ret = 0;
2448 return ret;
2451 /* sysfs supprt */
2453 struct ext4_attr {
2454 struct attribute attr;
2455 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2456 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2457 const char *, size_t);
2458 union {
2459 int offset;
2460 int deprecated_val;
2461 } u;
2464 static int parse_strtoull(const char *buf,
2465 unsigned long long max, unsigned long long *value)
2467 int ret;
2469 ret = kstrtoull(skip_spaces(buf), 0, value);
2470 if (!ret && *value > max)
2471 ret = -EINVAL;
2472 return ret;
2475 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2476 struct ext4_sb_info *sbi,
2477 char *buf)
2479 return snprintf(buf, PAGE_SIZE, "%llu\n",
2480 (s64) EXT4_C2B(sbi,
2481 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2484 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2485 struct ext4_sb_info *sbi, char *buf)
2487 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2489 if (!sb->s_bdev->bd_part)
2490 return snprintf(buf, PAGE_SIZE, "0\n");
2491 return snprintf(buf, PAGE_SIZE, "%lu\n",
2492 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2493 sbi->s_sectors_written_start) >> 1);
2496 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2497 struct ext4_sb_info *sbi, char *buf)
2499 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2501 if (!sb->s_bdev->bd_part)
2502 return snprintf(buf, PAGE_SIZE, "0\n");
2503 return snprintf(buf, PAGE_SIZE, "%llu\n",
2504 (unsigned long long)(sbi->s_kbytes_written +
2505 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2506 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2509 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2510 struct ext4_sb_info *sbi,
2511 const char *buf, size_t count)
2513 unsigned long t;
2514 int ret;
2516 ret = kstrtoul(skip_spaces(buf), 0, &t);
2517 if (ret)
2518 return ret;
2520 if (t && (!is_power_of_2(t) || t > 0x40000000))
2521 return -EINVAL;
2523 sbi->s_inode_readahead_blks = t;
2524 return count;
2527 static ssize_t sbi_ui_show(struct ext4_attr *a,
2528 struct ext4_sb_info *sbi, char *buf)
2530 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2532 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2535 static ssize_t sbi_ui_store(struct ext4_attr *a,
2536 struct ext4_sb_info *sbi,
2537 const char *buf, size_t count)
2539 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2540 unsigned long t;
2541 int ret;
2543 ret = kstrtoul(skip_spaces(buf), 0, &t);
2544 if (ret)
2545 return ret;
2546 *ui = t;
2547 return count;
2550 static ssize_t es_ui_show(struct ext4_attr *a,
2551 struct ext4_sb_info *sbi, char *buf)
2554 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2555 a->u.offset);
2557 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2560 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2561 struct ext4_sb_info *sbi, char *buf)
2563 return snprintf(buf, PAGE_SIZE, "%llu\n",
2564 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2567 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2568 struct ext4_sb_info *sbi,
2569 const char *buf, size_t count)
2571 unsigned long long val;
2572 int ret;
2574 if (parse_strtoull(buf, -1ULL, &val))
2575 return -EINVAL;
2576 ret = ext4_reserve_clusters(sbi, val);
2578 return ret ? ret : count;
2581 static ssize_t trigger_test_error(struct ext4_attr *a,
2582 struct ext4_sb_info *sbi,
2583 const char *buf, size_t count)
2585 int len = count;
2587 if (!capable(CAP_SYS_ADMIN))
2588 return -EPERM;
2590 if (len && buf[len-1] == '\n')
2591 len--;
2593 if (len)
2594 ext4_error(sbi->s_sb, "%.*s", len, buf);
2595 return count;
2598 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2599 struct ext4_sb_info *sbi, char *buf)
2601 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2604 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2605 static struct ext4_attr ext4_attr_##_name = { \
2606 .attr = {.name = __stringify(_name), .mode = _mode }, \
2607 .show = _show, \
2608 .store = _store, \
2609 .u = { \
2610 .offset = offsetof(struct ext4_sb_info, _elname),\
2611 }, \
2614 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2615 static struct ext4_attr ext4_attr_##_name = { \
2616 .attr = {.name = __stringify(_name), .mode = _mode }, \
2617 .show = _show, \
2618 .store = _store, \
2619 .u = { \
2620 .offset = offsetof(struct ext4_super_block, _elname), \
2621 }, \
2624 #define EXT4_ATTR(name, mode, show, store) \
2625 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2627 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2628 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2629 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2631 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2632 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2633 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2634 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2636 #define ATTR_LIST(name) &ext4_attr_##name.attr
2637 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2638 static struct ext4_attr ext4_attr_##_name = { \
2639 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2640 .show = sbi_deprecated_show, \
2641 .u = { \
2642 .deprecated_val = _val, \
2643 }, \
2646 EXT4_RO_ATTR(delayed_allocation_blocks);
2647 EXT4_RO_ATTR(session_write_kbytes);
2648 EXT4_RO_ATTR(lifetime_write_kbytes);
2649 EXT4_RW_ATTR(reserved_clusters);
2650 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2651 inode_readahead_blks_store, s_inode_readahead_blks);
2652 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2653 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2654 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2655 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2656 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2657 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2658 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2659 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2660 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2661 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2662 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2663 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2664 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2665 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2666 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2667 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2668 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2669 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2670 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2672 static struct attribute *ext4_attrs[] = {
2673 ATTR_LIST(delayed_allocation_blocks),
2674 ATTR_LIST(session_write_kbytes),
2675 ATTR_LIST(lifetime_write_kbytes),
2676 ATTR_LIST(reserved_clusters),
2677 ATTR_LIST(inode_readahead_blks),
2678 ATTR_LIST(inode_goal),
2679 ATTR_LIST(mb_stats),
2680 ATTR_LIST(mb_max_to_scan),
2681 ATTR_LIST(mb_min_to_scan),
2682 ATTR_LIST(mb_order2_req),
2683 ATTR_LIST(mb_stream_req),
2684 ATTR_LIST(mb_group_prealloc),
2685 ATTR_LIST(max_writeback_mb_bump),
2686 ATTR_LIST(extent_max_zeroout_kb),
2687 ATTR_LIST(trigger_fs_error),
2688 ATTR_LIST(err_ratelimit_interval_ms),
2689 ATTR_LIST(err_ratelimit_burst),
2690 ATTR_LIST(warning_ratelimit_interval_ms),
2691 ATTR_LIST(warning_ratelimit_burst),
2692 ATTR_LIST(msg_ratelimit_interval_ms),
2693 ATTR_LIST(msg_ratelimit_burst),
2694 ATTR_LIST(errors_count),
2695 ATTR_LIST(first_error_time),
2696 ATTR_LIST(last_error_time),
2697 NULL,
2700 /* Features this copy of ext4 supports */
2701 EXT4_INFO_ATTR(lazy_itable_init);
2702 EXT4_INFO_ATTR(batched_discard);
2703 EXT4_INFO_ATTR(meta_bg_resize);
2704 EXT4_INFO_ATTR(encryption);
2706 static struct attribute *ext4_feat_attrs[] = {
2707 ATTR_LIST(lazy_itable_init),
2708 ATTR_LIST(batched_discard),
2709 ATTR_LIST(meta_bg_resize),
2710 ATTR_LIST(encryption),
2711 NULL,
2714 static ssize_t ext4_attr_show(struct kobject *kobj,
2715 struct attribute *attr, char *buf)
2717 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2718 s_kobj);
2719 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2721 return a->show ? a->show(a, sbi, buf) : 0;
2724 static ssize_t ext4_attr_store(struct kobject *kobj,
2725 struct attribute *attr,
2726 const char *buf, size_t len)
2728 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2729 s_kobj);
2730 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2732 return a->store ? a->store(a, sbi, buf, len) : 0;
2735 static void ext4_sb_release(struct kobject *kobj)
2737 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2738 s_kobj);
2739 complete(&sbi->s_kobj_unregister);
2742 static const struct sysfs_ops ext4_attr_ops = {
2743 .show = ext4_attr_show,
2744 .store = ext4_attr_store,
2747 static struct kobj_type ext4_ktype = {
2748 .default_attrs = ext4_attrs,
2749 .sysfs_ops = &ext4_attr_ops,
2750 .release = ext4_sb_release,
2753 static void ext4_feat_release(struct kobject *kobj)
2755 complete(&ext4_feat->f_kobj_unregister);
2758 static ssize_t ext4_feat_show(struct kobject *kobj,
2759 struct attribute *attr, char *buf)
2761 return snprintf(buf, PAGE_SIZE, "supported\n");
2765 * We can not use ext4_attr_show/store because it relies on the kobject
2766 * being embedded in the ext4_sb_info structure which is definitely not
2767 * true in this case.
2769 static const struct sysfs_ops ext4_feat_ops = {
2770 .show = ext4_feat_show,
2771 .store = NULL,
2774 static struct kobj_type ext4_feat_ktype = {
2775 .default_attrs = ext4_feat_attrs,
2776 .sysfs_ops = &ext4_feat_ops,
2777 .release = ext4_feat_release,
2781 * Check whether this filesystem can be mounted based on
2782 * the features present and the RDONLY/RDWR mount requested.
2783 * Returns 1 if this filesystem can be mounted as requested,
2784 * 0 if it cannot be.
2786 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2788 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2789 ext4_msg(sb, KERN_ERR,
2790 "Couldn't mount because of "
2791 "unsupported optional features (%x)",
2792 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2793 ~EXT4_FEATURE_INCOMPAT_SUPP));
2794 return 0;
2797 if (readonly)
2798 return 1;
2800 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2801 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2802 sb->s_flags |= MS_RDONLY;
2803 return 1;
2806 /* Check that feature set is OK for a read-write mount */
2807 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2808 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2809 "unsupported optional features (%x)",
2810 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2811 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2812 return 0;
2815 * Large file size enabled file system can only be mounted
2816 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2818 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2819 if (sizeof(blkcnt_t) < sizeof(u64)) {
2820 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2821 "cannot be mounted RDWR without "
2822 "CONFIG_LBDAF");
2823 return 0;
2826 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2827 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2828 ext4_msg(sb, KERN_ERR,
2829 "Can't support bigalloc feature without "
2830 "extents feature\n");
2831 return 0;
2834 #ifndef CONFIG_QUOTA
2835 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2836 !readonly) {
2837 ext4_msg(sb, KERN_ERR,
2838 "Filesystem with quota feature cannot be mounted RDWR "
2839 "without CONFIG_QUOTA");
2840 return 0;
2842 #endif /* CONFIG_QUOTA */
2843 return 1;
2847 * This function is called once a day if we have errors logged
2848 * on the file system
2850 static void print_daily_error_info(unsigned long arg)
2852 struct super_block *sb = (struct super_block *) arg;
2853 struct ext4_sb_info *sbi;
2854 struct ext4_super_block *es;
2856 sbi = EXT4_SB(sb);
2857 es = sbi->s_es;
2859 if (es->s_error_count)
2860 /* fsck newer than v1.41.13 is needed to clean this condition. */
2861 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2862 le32_to_cpu(es->s_error_count));
2863 if (es->s_first_error_time) {
2864 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2865 sb->s_id, le32_to_cpu(es->s_first_error_time),
2866 (int) sizeof(es->s_first_error_func),
2867 es->s_first_error_func,
2868 le32_to_cpu(es->s_first_error_line));
2869 if (es->s_first_error_ino)
2870 printk(": inode %u",
2871 le32_to_cpu(es->s_first_error_ino));
2872 if (es->s_first_error_block)
2873 printk(": block %llu", (unsigned long long)
2874 le64_to_cpu(es->s_first_error_block));
2875 printk("\n");
2877 if (es->s_last_error_time) {
2878 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2879 sb->s_id, le32_to_cpu(es->s_last_error_time),
2880 (int) sizeof(es->s_last_error_func),
2881 es->s_last_error_func,
2882 le32_to_cpu(es->s_last_error_line));
2883 if (es->s_last_error_ino)
2884 printk(": inode %u",
2885 le32_to_cpu(es->s_last_error_ino));
2886 if (es->s_last_error_block)
2887 printk(": block %llu", (unsigned long long)
2888 le64_to_cpu(es->s_last_error_block));
2889 printk("\n");
2891 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2894 /* Find next suitable group and run ext4_init_inode_table */
2895 static int ext4_run_li_request(struct ext4_li_request *elr)
2897 struct ext4_group_desc *gdp = NULL;
2898 ext4_group_t group, ngroups;
2899 struct super_block *sb;
2900 unsigned long timeout = 0;
2901 int ret = 0;
2903 sb = elr->lr_super;
2904 ngroups = EXT4_SB(sb)->s_groups_count;
2906 sb_start_write(sb);
2907 for (group = elr->lr_next_group; group < ngroups; group++) {
2908 gdp = ext4_get_group_desc(sb, group, NULL);
2909 if (!gdp) {
2910 ret = 1;
2911 break;
2914 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2915 break;
2918 if (group >= ngroups)
2919 ret = 1;
2921 if (!ret) {
2922 timeout = jiffies;
2923 ret = ext4_init_inode_table(sb, group,
2924 elr->lr_timeout ? 0 : 1);
2925 if (elr->lr_timeout == 0) {
2926 timeout = (jiffies - timeout) *
2927 elr->lr_sbi->s_li_wait_mult;
2928 elr->lr_timeout = timeout;
2930 elr->lr_next_sched = jiffies + elr->lr_timeout;
2931 elr->lr_next_group = group + 1;
2933 sb_end_write(sb);
2935 return ret;
2939 * Remove lr_request from the list_request and free the
2940 * request structure. Should be called with li_list_mtx held
2942 static void ext4_remove_li_request(struct ext4_li_request *elr)
2944 struct ext4_sb_info *sbi;
2946 if (!elr)
2947 return;
2949 sbi = elr->lr_sbi;
2951 list_del(&elr->lr_request);
2952 sbi->s_li_request = NULL;
2953 kfree(elr);
2956 static void ext4_unregister_li_request(struct super_block *sb)
2958 mutex_lock(&ext4_li_mtx);
2959 if (!ext4_li_info) {
2960 mutex_unlock(&ext4_li_mtx);
2961 return;
2964 mutex_lock(&ext4_li_info->li_list_mtx);
2965 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2966 mutex_unlock(&ext4_li_info->li_list_mtx);
2967 mutex_unlock(&ext4_li_mtx);
2970 static struct task_struct *ext4_lazyinit_task;
2973 * This is the function where ext4lazyinit thread lives. It walks
2974 * through the request list searching for next scheduled filesystem.
2975 * When such a fs is found, run the lazy initialization request
2976 * (ext4_rn_li_request) and keep track of the time spend in this
2977 * function. Based on that time we compute next schedule time of
2978 * the request. When walking through the list is complete, compute
2979 * next waking time and put itself into sleep.
2981 static int ext4_lazyinit_thread(void *arg)
2983 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2984 struct list_head *pos, *n;
2985 struct ext4_li_request *elr;
2986 unsigned long next_wakeup, cur;
2988 BUG_ON(NULL == eli);
2990 cont_thread:
2991 while (true) {
2992 next_wakeup = MAX_JIFFY_OFFSET;
2994 mutex_lock(&eli->li_list_mtx);
2995 if (list_empty(&eli->li_request_list)) {
2996 mutex_unlock(&eli->li_list_mtx);
2997 goto exit_thread;
3000 list_for_each_safe(pos, n, &eli->li_request_list) {
3001 elr = list_entry(pos, struct ext4_li_request,
3002 lr_request);
3004 if (time_after_eq(jiffies, elr->lr_next_sched)) {
3005 if (ext4_run_li_request(elr) != 0) {
3006 /* error, remove the lazy_init job */
3007 ext4_remove_li_request(elr);
3008 continue;
3012 if (time_before(elr->lr_next_sched, next_wakeup))
3013 next_wakeup = elr->lr_next_sched;
3015 mutex_unlock(&eli->li_list_mtx);
3017 try_to_freeze();
3019 cur = jiffies;
3020 if ((time_after_eq(cur, next_wakeup)) ||
3021 (MAX_JIFFY_OFFSET == next_wakeup)) {
3022 cond_resched();
3023 continue;
3026 schedule_timeout_interruptible(next_wakeup - cur);
3028 if (kthread_should_stop()) {
3029 ext4_clear_request_list();
3030 goto exit_thread;
3034 exit_thread:
3036 * It looks like the request list is empty, but we need
3037 * to check it under the li_list_mtx lock, to prevent any
3038 * additions into it, and of course we should lock ext4_li_mtx
3039 * to atomically free the list and ext4_li_info, because at
3040 * this point another ext4 filesystem could be registering
3041 * new one.
3043 mutex_lock(&ext4_li_mtx);
3044 mutex_lock(&eli->li_list_mtx);
3045 if (!list_empty(&eli->li_request_list)) {
3046 mutex_unlock(&eli->li_list_mtx);
3047 mutex_unlock(&ext4_li_mtx);
3048 goto cont_thread;
3050 mutex_unlock(&eli->li_list_mtx);
3051 kfree(ext4_li_info);
3052 ext4_li_info = NULL;
3053 mutex_unlock(&ext4_li_mtx);
3055 return 0;
3058 static void ext4_clear_request_list(void)
3060 struct list_head *pos, *n;
3061 struct ext4_li_request *elr;
3063 mutex_lock(&ext4_li_info->li_list_mtx);
3064 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3065 elr = list_entry(pos, struct ext4_li_request,
3066 lr_request);
3067 ext4_remove_li_request(elr);
3069 mutex_unlock(&ext4_li_info->li_list_mtx);
3072 static int ext4_run_lazyinit_thread(void)
3074 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3075 ext4_li_info, "ext4lazyinit");
3076 if (IS_ERR(ext4_lazyinit_task)) {
3077 int err = PTR_ERR(ext4_lazyinit_task);
3078 ext4_clear_request_list();
3079 kfree(ext4_li_info);
3080 ext4_li_info = NULL;
3081 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3082 "initialization thread\n",
3083 err);
3084 return err;
3086 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3087 return 0;
3091 * Check whether it make sense to run itable init. thread or not.
3092 * If there is at least one uninitialized inode table, return
3093 * corresponding group number, else the loop goes through all
3094 * groups and return total number of groups.
3096 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3098 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3099 struct ext4_group_desc *gdp = NULL;
3101 for (group = 0; group < ngroups; group++) {
3102 gdp = ext4_get_group_desc(sb, group, NULL);
3103 if (!gdp)
3104 continue;
3106 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3107 break;
3110 return group;
3113 static int ext4_li_info_new(void)
3115 struct ext4_lazy_init *eli = NULL;
3117 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3118 if (!eli)
3119 return -ENOMEM;
3121 INIT_LIST_HEAD(&eli->li_request_list);
3122 mutex_init(&eli->li_list_mtx);
3124 eli->li_state |= EXT4_LAZYINIT_QUIT;
3126 ext4_li_info = eli;
3128 return 0;
3131 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3132 ext4_group_t start)
3134 struct ext4_sb_info *sbi = EXT4_SB(sb);
3135 struct ext4_li_request *elr;
3137 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3138 if (!elr)
3139 return NULL;
3141 elr->lr_super = sb;
3142 elr->lr_sbi = sbi;
3143 elr->lr_next_group = start;
3146 * Randomize first schedule time of the request to
3147 * spread the inode table initialization requests
3148 * better.
3150 elr->lr_next_sched = jiffies + (prandom_u32() %
3151 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3152 return elr;
3155 int ext4_register_li_request(struct super_block *sb,
3156 ext4_group_t first_not_zeroed)
3158 struct ext4_sb_info *sbi = EXT4_SB(sb);
3159 struct ext4_li_request *elr = NULL;
3160 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3161 int ret = 0;
3163 mutex_lock(&ext4_li_mtx);
3164 if (sbi->s_li_request != NULL) {
3166 * Reset timeout so it can be computed again, because
3167 * s_li_wait_mult might have changed.
3169 sbi->s_li_request->lr_timeout = 0;
3170 goto out;
3173 if (first_not_zeroed == ngroups ||
3174 (sb->s_flags & MS_RDONLY) ||
3175 !test_opt(sb, INIT_INODE_TABLE))
3176 goto out;
3178 elr = ext4_li_request_new(sb, first_not_zeroed);
3179 if (!elr) {
3180 ret = -ENOMEM;
3181 goto out;
3184 if (NULL == ext4_li_info) {
3185 ret = ext4_li_info_new();
3186 if (ret)
3187 goto out;
3190 mutex_lock(&ext4_li_info->li_list_mtx);
3191 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3192 mutex_unlock(&ext4_li_info->li_list_mtx);
3194 sbi->s_li_request = elr;
3196 * set elr to NULL here since it has been inserted to
3197 * the request_list and the removal and free of it is
3198 * handled by ext4_clear_request_list from now on.
3200 elr = NULL;
3202 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3203 ret = ext4_run_lazyinit_thread();
3204 if (ret)
3205 goto out;
3207 out:
3208 mutex_unlock(&ext4_li_mtx);
3209 if (ret)
3210 kfree(elr);
3211 return ret;
3215 * We do not need to lock anything since this is called on
3216 * module unload.
3218 static void ext4_destroy_lazyinit_thread(void)
3221 * If thread exited earlier
3222 * there's nothing to be done.
3224 if (!ext4_li_info || !ext4_lazyinit_task)
3225 return;
3227 kthread_stop(ext4_lazyinit_task);
3230 static int set_journal_csum_feature_set(struct super_block *sb)
3232 int ret = 1;
3233 int compat, incompat;
3234 struct ext4_sb_info *sbi = EXT4_SB(sb);
3236 if (ext4_has_metadata_csum(sb)) {
3237 /* journal checksum v3 */
3238 compat = 0;
3239 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3240 } else {
3241 /* journal checksum v1 */
3242 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3243 incompat = 0;
3246 jbd2_journal_clear_features(sbi->s_journal,
3247 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3248 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3249 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3250 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3251 ret = jbd2_journal_set_features(sbi->s_journal,
3252 compat, 0,
3253 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3254 incompat);
3255 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3256 ret = jbd2_journal_set_features(sbi->s_journal,
3257 compat, 0,
3258 incompat);
3259 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3260 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3261 } else {
3262 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3263 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3266 return ret;
3270 * Note: calculating the overhead so we can be compatible with
3271 * historical BSD practice is quite difficult in the face of
3272 * clusters/bigalloc. This is because multiple metadata blocks from
3273 * different block group can end up in the same allocation cluster.
3274 * Calculating the exact overhead in the face of clustered allocation
3275 * requires either O(all block bitmaps) in memory or O(number of block
3276 * groups**2) in time. We will still calculate the superblock for
3277 * older file systems --- and if we come across with a bigalloc file
3278 * system with zero in s_overhead_clusters the estimate will be close to
3279 * correct especially for very large cluster sizes --- but for newer
3280 * file systems, it's better to calculate this figure once at mkfs
3281 * time, and store it in the superblock. If the superblock value is
3282 * present (even for non-bigalloc file systems), we will use it.
3284 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3285 char *buf)
3287 struct ext4_sb_info *sbi = EXT4_SB(sb);
3288 struct ext4_group_desc *gdp;
3289 ext4_fsblk_t first_block, last_block, b;
3290 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3291 int s, j, count = 0;
3293 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3294 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3295 sbi->s_itb_per_group + 2);
3297 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3298 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3299 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3300 for (i = 0; i < ngroups; i++) {
3301 gdp = ext4_get_group_desc(sb, i, NULL);
3302 b = ext4_block_bitmap(sb, gdp);
3303 if (b >= first_block && b <= last_block) {
3304 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3305 count++;
3307 b = ext4_inode_bitmap(sb, gdp);
3308 if (b >= first_block && b <= last_block) {
3309 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3310 count++;
3312 b = ext4_inode_table(sb, gdp);
3313 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3314 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3315 int c = EXT4_B2C(sbi, b - first_block);
3316 ext4_set_bit(c, buf);
3317 count++;
3319 if (i != grp)
3320 continue;
3321 s = 0;
3322 if (ext4_bg_has_super(sb, grp)) {
3323 ext4_set_bit(s++, buf);
3324 count++;
3326 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3327 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3328 count++;
3331 if (!count)
3332 return 0;
3333 return EXT4_CLUSTERS_PER_GROUP(sb) -
3334 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3338 * Compute the overhead and stash it in sbi->s_overhead
3340 int ext4_calculate_overhead(struct super_block *sb)
3342 struct ext4_sb_info *sbi = EXT4_SB(sb);
3343 struct ext4_super_block *es = sbi->s_es;
3344 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3345 ext4_fsblk_t overhead = 0;
3346 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3348 if (!buf)
3349 return -ENOMEM;
3352 * Compute the overhead (FS structures). This is constant
3353 * for a given filesystem unless the number of block groups
3354 * changes so we cache the previous value until it does.
3358 * All of the blocks before first_data_block are overhead
3360 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3363 * Add the overhead found in each block group
3365 for (i = 0; i < ngroups; i++) {
3366 int blks;
3368 blks = count_overhead(sb, i, buf);
3369 overhead += blks;
3370 if (blks)
3371 memset(buf, 0, PAGE_SIZE);
3372 cond_resched();
3374 /* Add the internal journal blocks as well */
3375 if (sbi->s_journal && !sbi->journal_bdev)
3376 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3378 sbi->s_overhead = overhead;
3379 smp_wmb();
3380 free_page((unsigned long) buf);
3381 return 0;
3385 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3387 ext4_fsblk_t resv_clusters;
3390 * There's no need to reserve anything when we aren't using extents.
3391 * The space estimates are exact, there are no unwritten extents,
3392 * hole punching doesn't need new metadata... This is needed especially
3393 * to keep ext2/3 backward compatibility.
3395 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3396 return 0;
3398 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3399 * This should cover the situations where we can not afford to run
3400 * out of space like for example punch hole, or converting
3401 * unwritten extents in delalloc path. In most cases such
3402 * allocation would require 1, or 2 blocks, higher numbers are
3403 * very rare.
3405 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3406 EXT4_SB(sb)->s_cluster_bits;
3408 do_div(resv_clusters, 50);
3409 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3411 return resv_clusters;
3415 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3417 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3418 sbi->s_cluster_bits;
3420 if (count >= clusters)
3421 return -EINVAL;
3423 atomic64_set(&sbi->s_resv_clusters, count);
3424 return 0;
3427 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3429 char *orig_data = kstrdup(data, GFP_KERNEL);
3430 struct buffer_head *bh;
3431 struct ext4_super_block *es = NULL;
3432 struct ext4_sb_info *sbi;
3433 ext4_fsblk_t block;
3434 ext4_fsblk_t sb_block = get_sb_block(&data);
3435 ext4_fsblk_t logical_sb_block;
3436 unsigned long offset = 0;
3437 unsigned long journal_devnum = 0;
3438 unsigned long def_mount_opts;
3439 struct inode *root;
3440 char *cp;
3441 const char *descr;
3442 int ret = -ENOMEM;
3443 int blocksize, clustersize;
3444 unsigned int db_count;
3445 unsigned int i;
3446 int needs_recovery, has_huge_files, has_bigalloc;
3447 __u64 blocks_count;
3448 int err = 0;
3449 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3450 ext4_group_t first_not_zeroed;
3452 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3453 if (!sbi)
3454 goto out_free_orig;
3456 sbi->s_blockgroup_lock =
3457 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3458 if (!sbi->s_blockgroup_lock) {
3459 kfree(sbi);
3460 goto out_free_orig;
3462 sb->s_fs_info = sbi;
3463 sbi->s_sb = sb;
3464 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3465 sbi->s_sb_block = sb_block;
3466 if (sb->s_bdev->bd_part)
3467 sbi->s_sectors_written_start =
3468 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3469 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3470 /* Modes of operations for file and directory encryption. */
3471 sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
3472 sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID;
3473 #endif
3475 /* Cleanup superblock name */
3476 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3477 *cp = '!';
3479 /* -EINVAL is default */
3480 ret = -EINVAL;
3481 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3482 if (!blocksize) {
3483 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3484 goto out_fail;
3488 * The ext4 superblock will not be buffer aligned for other than 1kB
3489 * block sizes. We need to calculate the offset from buffer start.
3491 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3492 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3493 offset = do_div(logical_sb_block, blocksize);
3494 } else {
3495 logical_sb_block = sb_block;
3498 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3499 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3500 goto out_fail;
3503 * Note: s_es must be initialized as soon as possible because
3504 * some ext4 macro-instructions depend on its value
3506 es = (struct ext4_super_block *) (bh->b_data + offset);
3507 sbi->s_es = es;
3508 sb->s_magic = le16_to_cpu(es->s_magic);
3509 if (sb->s_magic != EXT4_SUPER_MAGIC)
3510 goto cantfind_ext4;
3511 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3513 /* Warn if metadata_csum and gdt_csum are both set. */
3514 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3515 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3516 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3517 ext4_warning(sb, "metadata_csum and uninit_bg are "
3518 "redundant flags; please run fsck.");
3520 /* Check for a known checksum algorithm */
3521 if (!ext4_verify_csum_type(sb, es)) {
3522 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3523 "unknown checksum algorithm.");
3524 silent = 1;
3525 goto cantfind_ext4;
3528 /* Load the checksum driver */
3529 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3530 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3531 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3532 if (IS_ERR(sbi->s_chksum_driver)) {
3533 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3534 ret = PTR_ERR(sbi->s_chksum_driver);
3535 sbi->s_chksum_driver = NULL;
3536 goto failed_mount;
3540 /* Check superblock checksum */
3541 if (!ext4_superblock_csum_verify(sb, es)) {
3542 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3543 "invalid superblock checksum. Run e2fsck?");
3544 silent = 1;
3545 goto cantfind_ext4;
3548 /* Precompute checksum seed for all metadata */
3549 if (ext4_has_metadata_csum(sb))
3550 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3551 sizeof(es->s_uuid));
3553 /* Set defaults before we parse the mount options */
3554 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3555 set_opt(sb, INIT_INODE_TABLE);
3556 if (def_mount_opts & EXT4_DEFM_DEBUG)
3557 set_opt(sb, DEBUG);
3558 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3559 set_opt(sb, GRPID);
3560 if (def_mount_opts & EXT4_DEFM_UID16)
3561 set_opt(sb, NO_UID32);
3562 /* xattr user namespace & acls are now defaulted on */
3563 set_opt(sb, XATTR_USER);
3564 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3565 set_opt(sb, POSIX_ACL);
3566 #endif
3567 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3568 if (ext4_has_metadata_csum(sb))
3569 set_opt(sb, JOURNAL_CHECKSUM);
3571 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3572 set_opt(sb, JOURNAL_DATA);
3573 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3574 set_opt(sb, ORDERED_DATA);
3575 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3576 set_opt(sb, WRITEBACK_DATA);
3578 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3579 set_opt(sb, ERRORS_PANIC);
3580 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3581 set_opt(sb, ERRORS_CONT);
3582 else
3583 set_opt(sb, ERRORS_RO);
3584 /* block_validity enabled by default; disable with noblock_validity */
3585 set_opt(sb, BLOCK_VALIDITY);
3586 if (def_mount_opts & EXT4_DEFM_DISCARD)
3587 set_opt(sb, DISCARD);
3589 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3590 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3591 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3592 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3593 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3595 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3596 set_opt(sb, BARRIER);
3599 * enable delayed allocation by default
3600 * Use -o nodelalloc to turn it off
3602 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3603 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3604 set_opt(sb, DELALLOC);
3607 * set default s_li_wait_mult for lazyinit, for the case there is
3608 * no mount option specified.
3610 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3612 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3613 &journal_devnum, &journal_ioprio, 0)) {
3614 ext4_msg(sb, KERN_WARNING,
3615 "failed to parse options in superblock: %s",
3616 sbi->s_es->s_mount_opts);
3618 sbi->s_def_mount_opt = sbi->s_mount_opt;
3619 if (!parse_options((char *) data, sb, &journal_devnum,
3620 &journal_ioprio, 0))
3621 goto failed_mount;
3623 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3624 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3625 "with data=journal disables delayed "
3626 "allocation and O_DIRECT support!\n");
3627 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3628 ext4_msg(sb, KERN_ERR, "can't mount with "
3629 "both data=journal and delalloc");
3630 goto failed_mount;
3632 if (test_opt(sb, DIOREAD_NOLOCK)) {
3633 ext4_msg(sb, KERN_ERR, "can't mount with "
3634 "both data=journal and dioread_nolock");
3635 goto failed_mount;
3637 if (test_opt(sb, DAX)) {
3638 ext4_msg(sb, KERN_ERR, "can't mount with "
3639 "both data=journal and dax");
3640 goto failed_mount;
3642 if (test_opt(sb, DELALLOC))
3643 clear_opt(sb, DELALLOC);
3646 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3647 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3649 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3650 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3651 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3652 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3653 ext4_msg(sb, KERN_WARNING,
3654 "feature flags set on rev 0 fs, "
3655 "running e2fsck is recommended");
3657 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3658 set_opt2(sb, HURD_COMPAT);
3659 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3660 EXT4_FEATURE_INCOMPAT_64BIT)) {
3661 ext4_msg(sb, KERN_ERR,
3662 "The Hurd can't support 64-bit file systems");
3663 goto failed_mount;
3667 if (IS_EXT2_SB(sb)) {
3668 if (ext2_feature_set_ok(sb))
3669 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3670 "using the ext4 subsystem");
3671 else {
3672 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3673 "to feature incompatibilities");
3674 goto failed_mount;
3678 if (IS_EXT3_SB(sb)) {
3679 if (ext3_feature_set_ok(sb))
3680 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3681 "using the ext4 subsystem");
3682 else {
3683 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3684 "to feature incompatibilities");
3685 goto failed_mount;
3690 * Check feature flags regardless of the revision level, since we
3691 * previously didn't change the revision level when setting the flags,
3692 * so there is a chance incompat flags are set on a rev 0 filesystem.
3694 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3695 goto failed_mount;
3697 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3698 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3699 blocksize > EXT4_MAX_BLOCK_SIZE) {
3700 ext4_msg(sb, KERN_ERR,
3701 "Unsupported filesystem blocksize %d", blocksize);
3702 goto failed_mount;
3705 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3706 if (blocksize != PAGE_SIZE) {
3707 ext4_msg(sb, KERN_ERR,
3708 "error: unsupported blocksize for dax");
3709 goto failed_mount;
3711 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3712 ext4_msg(sb, KERN_ERR,
3713 "error: device does not support dax");
3714 goto failed_mount;
3718 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3719 es->s_encryption_level) {
3720 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3721 es->s_encryption_level);
3722 goto failed_mount;
3725 if (sb->s_blocksize != blocksize) {
3726 /* Validate the filesystem blocksize */
3727 if (!sb_set_blocksize(sb, blocksize)) {
3728 ext4_msg(sb, KERN_ERR, "bad block size %d",
3729 blocksize);
3730 goto failed_mount;
3733 brelse(bh);
3734 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3735 offset = do_div(logical_sb_block, blocksize);
3736 bh = sb_bread_unmovable(sb, logical_sb_block);
3737 if (!bh) {
3738 ext4_msg(sb, KERN_ERR,
3739 "Can't read superblock on 2nd try");
3740 goto failed_mount;
3742 es = (struct ext4_super_block *)(bh->b_data + offset);
3743 sbi->s_es = es;
3744 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3745 ext4_msg(sb, KERN_ERR,
3746 "Magic mismatch, very weird!");
3747 goto failed_mount;
3751 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3752 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3753 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3754 has_huge_files);
3755 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3757 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3758 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3759 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3760 } else {
3761 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3762 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3763 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3764 (!is_power_of_2(sbi->s_inode_size)) ||
3765 (sbi->s_inode_size > blocksize)) {
3766 ext4_msg(sb, KERN_ERR,
3767 "unsupported inode size: %d",
3768 sbi->s_inode_size);
3769 goto failed_mount;
3771 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3772 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3775 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3776 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3777 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3778 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3779 !is_power_of_2(sbi->s_desc_size)) {
3780 ext4_msg(sb, KERN_ERR,
3781 "unsupported descriptor size %lu",
3782 sbi->s_desc_size);
3783 goto failed_mount;
3785 } else
3786 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3788 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3789 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3790 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3791 goto cantfind_ext4;
3793 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3794 if (sbi->s_inodes_per_block == 0)
3795 goto cantfind_ext4;
3796 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3797 sbi->s_inodes_per_block;
3798 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3799 sbi->s_sbh = bh;
3800 sbi->s_mount_state = le16_to_cpu(es->s_state);
3801 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3802 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3804 for (i = 0; i < 4; i++)
3805 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3806 sbi->s_def_hash_version = es->s_def_hash_version;
3807 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3808 i = le32_to_cpu(es->s_flags);
3809 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3810 sbi->s_hash_unsigned = 3;
3811 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3812 #ifdef __CHAR_UNSIGNED__
3813 if (!(sb->s_flags & MS_RDONLY))
3814 es->s_flags |=
3815 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3816 sbi->s_hash_unsigned = 3;
3817 #else
3818 if (!(sb->s_flags & MS_RDONLY))
3819 es->s_flags |=
3820 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3821 #endif
3825 /* Handle clustersize */
3826 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3827 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3828 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3829 if (has_bigalloc) {
3830 if (clustersize < blocksize) {
3831 ext4_msg(sb, KERN_ERR,
3832 "cluster size (%d) smaller than "
3833 "block size (%d)", clustersize, blocksize);
3834 goto failed_mount;
3836 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3837 le32_to_cpu(es->s_log_block_size);
3838 sbi->s_clusters_per_group =
3839 le32_to_cpu(es->s_clusters_per_group);
3840 if (sbi->s_clusters_per_group > blocksize * 8) {
3841 ext4_msg(sb, KERN_ERR,
3842 "#clusters per group too big: %lu",
3843 sbi->s_clusters_per_group);
3844 goto failed_mount;
3846 if (sbi->s_blocks_per_group !=
3847 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3848 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3849 "clusters per group (%lu) inconsistent",
3850 sbi->s_blocks_per_group,
3851 sbi->s_clusters_per_group);
3852 goto failed_mount;
3854 } else {
3855 if (clustersize != blocksize) {
3856 ext4_warning(sb, "fragment/cluster size (%d) != "
3857 "block size (%d)", clustersize,
3858 blocksize);
3859 clustersize = blocksize;
3861 if (sbi->s_blocks_per_group > blocksize * 8) {
3862 ext4_msg(sb, KERN_ERR,
3863 "#blocks per group too big: %lu",
3864 sbi->s_blocks_per_group);
3865 goto failed_mount;
3867 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3868 sbi->s_cluster_bits = 0;
3870 sbi->s_cluster_ratio = clustersize / blocksize;
3872 if (sbi->s_inodes_per_group > blocksize * 8) {
3873 ext4_msg(sb, KERN_ERR,
3874 "#inodes per group too big: %lu",
3875 sbi->s_inodes_per_group);
3876 goto failed_mount;
3879 /* Do we have standard group size of clustersize * 8 blocks ? */
3880 if (sbi->s_blocks_per_group == clustersize << 3)
3881 set_opt2(sb, STD_GROUP_SIZE);
3884 * Test whether we have more sectors than will fit in sector_t,
3885 * and whether the max offset is addressable by the page cache.
3887 err = generic_check_addressable(sb->s_blocksize_bits,
3888 ext4_blocks_count(es));
3889 if (err) {
3890 ext4_msg(sb, KERN_ERR, "filesystem"
3891 " too large to mount safely on this system");
3892 if (sizeof(sector_t) < 8)
3893 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3894 goto failed_mount;
3897 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3898 goto cantfind_ext4;
3900 /* check blocks count against device size */
3901 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3902 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3903 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3904 "exceeds size of device (%llu blocks)",
3905 ext4_blocks_count(es), blocks_count);
3906 goto failed_mount;
3910 * It makes no sense for the first data block to be beyond the end
3911 * of the filesystem.
3913 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3914 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3915 "block %u is beyond end of filesystem (%llu)",
3916 le32_to_cpu(es->s_first_data_block),
3917 ext4_blocks_count(es));
3918 goto failed_mount;
3920 blocks_count = (ext4_blocks_count(es) -
3921 le32_to_cpu(es->s_first_data_block) +
3922 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3923 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3924 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3925 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3926 "(block count %llu, first data block %u, "
3927 "blocks per group %lu)", sbi->s_groups_count,
3928 ext4_blocks_count(es),
3929 le32_to_cpu(es->s_first_data_block),
3930 EXT4_BLOCKS_PER_GROUP(sb));
3931 goto failed_mount;
3933 sbi->s_groups_count = blocks_count;
3934 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3935 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3936 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3937 EXT4_DESC_PER_BLOCK(sb);
3938 sbi->s_group_desc = ext4_kvmalloc(db_count *
3939 sizeof(struct buffer_head *),
3940 GFP_KERNEL);
3941 if (sbi->s_group_desc == NULL) {
3942 ext4_msg(sb, KERN_ERR, "not enough memory");
3943 ret = -ENOMEM;
3944 goto failed_mount;
3947 if (ext4_proc_root)
3948 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3950 if (sbi->s_proc)
3951 proc_create_data("options", S_IRUGO, sbi->s_proc,
3952 &ext4_seq_options_fops, sb);
3954 bgl_lock_init(sbi->s_blockgroup_lock);
3956 for (i = 0; i < db_count; i++) {
3957 block = descriptor_loc(sb, logical_sb_block, i);
3958 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3959 if (!sbi->s_group_desc[i]) {
3960 ext4_msg(sb, KERN_ERR,
3961 "can't read group descriptor %d", i);
3962 db_count = i;
3963 goto failed_mount2;
3966 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3967 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3968 goto failed_mount2;
3971 sbi->s_gdb_count = db_count;
3972 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3973 spin_lock_init(&sbi->s_next_gen_lock);
3975 setup_timer(&sbi->s_err_report, print_daily_error_info,
3976 (unsigned long) sb);
3978 /* Register extent status tree shrinker */
3979 if (ext4_es_register_shrinker(sbi))
3980 goto failed_mount3;
3982 sbi->s_stripe = ext4_get_stripe_size(sbi);
3983 sbi->s_extent_max_zeroout_kb = 32;
3986 * set up enough so that it can read an inode
3988 sb->s_op = &ext4_sops;
3989 sb->s_export_op = &ext4_export_ops;
3990 sb->s_xattr = ext4_xattr_handlers;
3991 #ifdef CONFIG_QUOTA
3992 sb->dq_op = &ext4_quota_operations;
3993 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3994 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3995 else
3996 sb->s_qcop = &ext4_qctl_operations;
3997 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3998 #endif
3999 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4001 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4002 mutex_init(&sbi->s_orphan_lock);
4004 sb->s_root = NULL;
4006 needs_recovery = (es->s_last_orphan != 0 ||
4007 EXT4_HAS_INCOMPAT_FEATURE(sb,
4008 EXT4_FEATURE_INCOMPAT_RECOVER));
4010 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
4011 !(sb->s_flags & MS_RDONLY))
4012 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4013 goto failed_mount3a;
4016 * The first inode we look at is the journal inode. Don't try
4017 * root first: it may be modified in the journal!
4019 if (!test_opt(sb, NOLOAD) &&
4020 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4021 if (ext4_load_journal(sb, es, journal_devnum))
4022 goto failed_mount3a;
4023 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4024 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4025 ext4_msg(sb, KERN_ERR, "required journal recovery "
4026 "suppressed and not mounted read-only");
4027 goto failed_mount_wq;
4028 } else {
4029 clear_opt(sb, DATA_FLAGS);
4030 sbi->s_journal = NULL;
4031 needs_recovery = 0;
4032 goto no_journal;
4035 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4036 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4037 JBD2_FEATURE_INCOMPAT_64BIT)) {
4038 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4039 goto failed_mount_wq;
4042 if (!set_journal_csum_feature_set(sb)) {
4043 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4044 "feature set");
4045 goto failed_mount_wq;
4048 /* We have now updated the journal if required, so we can
4049 * validate the data journaling mode. */
4050 switch (test_opt(sb, DATA_FLAGS)) {
4051 case 0:
4052 /* No mode set, assume a default based on the journal
4053 * capabilities: ORDERED_DATA if the journal can
4054 * cope, else JOURNAL_DATA
4056 if (jbd2_journal_check_available_features
4057 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4058 set_opt(sb, ORDERED_DATA);
4059 else
4060 set_opt(sb, JOURNAL_DATA);
4061 break;
4063 case EXT4_MOUNT_ORDERED_DATA:
4064 case EXT4_MOUNT_WRITEBACK_DATA:
4065 if (!jbd2_journal_check_available_features
4066 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4067 ext4_msg(sb, KERN_ERR, "Journal does not support "
4068 "requested data journaling mode");
4069 goto failed_mount_wq;
4071 default:
4072 break;
4074 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4076 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4078 no_journal:
4079 if (ext4_mballoc_ready) {
4080 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4081 if (!sbi->s_mb_cache) {
4082 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4083 goto failed_mount_wq;
4087 if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) &&
4088 !(sb->s_flags & MS_RDONLY) &&
4089 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4090 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4091 ext4_commit_super(sb, 1);
4095 * Get the # of file system overhead blocks from the
4096 * superblock if present.
4098 if (es->s_overhead_clusters)
4099 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4100 else {
4101 err = ext4_calculate_overhead(sb);
4102 if (err)
4103 goto failed_mount_wq;
4107 * The maximum number of concurrent works can be high and
4108 * concurrency isn't really necessary. Limit it to 1.
4110 EXT4_SB(sb)->rsv_conversion_wq =
4111 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4112 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4113 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4114 ret = -ENOMEM;
4115 goto failed_mount4;
4119 * The jbd2_journal_load will have done any necessary log recovery,
4120 * so we can safely mount the rest of the filesystem now.
4123 root = ext4_iget(sb, EXT4_ROOT_INO);
4124 if (IS_ERR(root)) {
4125 ext4_msg(sb, KERN_ERR, "get root inode failed");
4126 ret = PTR_ERR(root);
4127 root = NULL;
4128 goto failed_mount4;
4130 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4131 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4132 iput(root);
4133 goto failed_mount4;
4135 sb->s_root = d_make_root(root);
4136 if (!sb->s_root) {
4137 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4138 ret = -ENOMEM;
4139 goto failed_mount4;
4142 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4143 sb->s_flags |= MS_RDONLY;
4145 /* determine the minimum size of new large inodes, if present */
4146 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4147 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4148 EXT4_GOOD_OLD_INODE_SIZE;
4149 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4150 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4151 if (sbi->s_want_extra_isize <
4152 le16_to_cpu(es->s_want_extra_isize))
4153 sbi->s_want_extra_isize =
4154 le16_to_cpu(es->s_want_extra_isize);
4155 if (sbi->s_want_extra_isize <
4156 le16_to_cpu(es->s_min_extra_isize))
4157 sbi->s_want_extra_isize =
4158 le16_to_cpu(es->s_min_extra_isize);
4161 /* Check if enough inode space is available */
4162 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4163 sbi->s_inode_size) {
4164 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4165 EXT4_GOOD_OLD_INODE_SIZE;
4166 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4167 "available");
4170 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4171 if (err) {
4172 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4173 "reserved pool", ext4_calculate_resv_clusters(sb));
4174 goto failed_mount4a;
4177 err = ext4_setup_system_zone(sb);
4178 if (err) {
4179 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4180 "zone (%d)", err);
4181 goto failed_mount4a;
4184 ext4_ext_init(sb);
4185 err = ext4_mb_init(sb);
4186 if (err) {
4187 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4188 err);
4189 goto failed_mount5;
4192 block = ext4_count_free_clusters(sb);
4193 ext4_free_blocks_count_set(sbi->s_es,
4194 EXT4_C2B(sbi, block));
4195 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4196 GFP_KERNEL);
4197 if (!err) {
4198 unsigned long freei = ext4_count_free_inodes(sb);
4199 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4200 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4201 GFP_KERNEL);
4203 if (!err)
4204 err = percpu_counter_init(&sbi->s_dirs_counter,
4205 ext4_count_dirs(sb), GFP_KERNEL);
4206 if (!err)
4207 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4208 GFP_KERNEL);
4209 if (err) {
4210 ext4_msg(sb, KERN_ERR, "insufficient memory");
4211 goto failed_mount6;
4214 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4215 if (!ext4_fill_flex_info(sb)) {
4216 ext4_msg(sb, KERN_ERR,
4217 "unable to initialize "
4218 "flex_bg meta info!");
4219 goto failed_mount6;
4222 err = ext4_register_li_request(sb, first_not_zeroed);
4223 if (err)
4224 goto failed_mount6;
4226 sbi->s_kobj.kset = ext4_kset;
4227 init_completion(&sbi->s_kobj_unregister);
4228 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4229 "%s", sb->s_id);
4230 if (err)
4231 goto failed_mount7;
4233 #ifdef CONFIG_QUOTA
4234 /* Enable quota usage during mount. */
4235 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4236 !(sb->s_flags & MS_RDONLY)) {
4237 err = ext4_enable_quotas(sb);
4238 if (err)
4239 goto failed_mount8;
4241 #endif /* CONFIG_QUOTA */
4243 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4244 ext4_orphan_cleanup(sb, es);
4245 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4246 if (needs_recovery) {
4247 ext4_msg(sb, KERN_INFO, "recovery complete");
4248 ext4_mark_recovery_complete(sb, es);
4250 if (EXT4_SB(sb)->s_journal) {
4251 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4252 descr = " journalled data mode";
4253 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4254 descr = " ordered data mode";
4255 else
4256 descr = " writeback data mode";
4257 } else
4258 descr = "out journal";
4260 if (test_opt(sb, DISCARD)) {
4261 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4262 if (!blk_queue_discard(q))
4263 ext4_msg(sb, KERN_WARNING,
4264 "mounting with \"discard\" option, but "
4265 "the device does not support discard");
4268 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4269 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4270 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4272 if (es->s_error_count)
4273 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4275 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4276 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4277 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4278 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4280 kfree(orig_data);
4281 return 0;
4283 cantfind_ext4:
4284 if (!silent)
4285 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4286 goto failed_mount;
4288 #ifdef CONFIG_QUOTA
4289 failed_mount8:
4290 kobject_del(&sbi->s_kobj);
4291 #endif
4292 failed_mount7:
4293 ext4_unregister_li_request(sb);
4294 failed_mount6:
4295 ext4_mb_release(sb);
4296 if (sbi->s_flex_groups)
4297 kvfree(sbi->s_flex_groups);
4298 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4299 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4300 percpu_counter_destroy(&sbi->s_dirs_counter);
4301 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4302 failed_mount5:
4303 ext4_ext_release(sb);
4304 ext4_release_system_zone(sb);
4305 failed_mount4a:
4306 dput(sb->s_root);
4307 sb->s_root = NULL;
4308 failed_mount4:
4309 ext4_msg(sb, KERN_ERR, "mount failed");
4310 if (EXT4_SB(sb)->rsv_conversion_wq)
4311 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4312 failed_mount_wq:
4313 if (sbi->s_journal) {
4314 jbd2_journal_destroy(sbi->s_journal);
4315 sbi->s_journal = NULL;
4317 failed_mount3a:
4318 ext4_es_unregister_shrinker(sbi);
4319 failed_mount3:
4320 del_timer_sync(&sbi->s_err_report);
4321 if (sbi->s_mmp_tsk)
4322 kthread_stop(sbi->s_mmp_tsk);
4323 failed_mount2:
4324 for (i = 0; i < db_count; i++)
4325 brelse(sbi->s_group_desc[i]);
4326 kvfree(sbi->s_group_desc);
4327 failed_mount:
4328 if (sbi->s_chksum_driver)
4329 crypto_free_shash(sbi->s_chksum_driver);
4330 if (sbi->s_proc) {
4331 remove_proc_entry("options", sbi->s_proc);
4332 remove_proc_entry(sb->s_id, ext4_proc_root);
4334 #ifdef CONFIG_QUOTA
4335 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4336 kfree(sbi->s_qf_names[i]);
4337 #endif
4338 ext4_blkdev_remove(sbi);
4339 brelse(bh);
4340 out_fail:
4341 sb->s_fs_info = NULL;
4342 kfree(sbi->s_blockgroup_lock);
4343 kfree(sbi);
4344 out_free_orig:
4345 kfree(orig_data);
4346 return err ? err : ret;
4350 * Setup any per-fs journal parameters now. We'll do this both on
4351 * initial mount, once the journal has been initialised but before we've
4352 * done any recovery; and again on any subsequent remount.
4354 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4356 struct ext4_sb_info *sbi = EXT4_SB(sb);
4358 journal->j_commit_interval = sbi->s_commit_interval;
4359 journal->j_min_batch_time = sbi->s_min_batch_time;
4360 journal->j_max_batch_time = sbi->s_max_batch_time;
4362 write_lock(&journal->j_state_lock);
4363 if (test_opt(sb, BARRIER))
4364 journal->j_flags |= JBD2_BARRIER;
4365 else
4366 journal->j_flags &= ~JBD2_BARRIER;
4367 if (test_opt(sb, DATA_ERR_ABORT))
4368 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4369 else
4370 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4371 write_unlock(&journal->j_state_lock);
4374 static journal_t *ext4_get_journal(struct super_block *sb,
4375 unsigned int journal_inum)
4377 struct inode *journal_inode;
4378 journal_t *journal;
4380 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4382 /* First, test for the existence of a valid inode on disk. Bad
4383 * things happen if we iget() an unused inode, as the subsequent
4384 * iput() will try to delete it. */
4386 journal_inode = ext4_iget(sb, journal_inum);
4387 if (IS_ERR(journal_inode)) {
4388 ext4_msg(sb, KERN_ERR, "no journal found");
4389 return NULL;
4391 if (!journal_inode->i_nlink) {
4392 make_bad_inode(journal_inode);
4393 iput(journal_inode);
4394 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4395 return NULL;
4398 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4399 journal_inode, journal_inode->i_size);
4400 if (!S_ISREG(journal_inode->i_mode)) {
4401 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4402 iput(journal_inode);
4403 return NULL;
4406 journal = jbd2_journal_init_inode(journal_inode);
4407 if (!journal) {
4408 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4409 iput(journal_inode);
4410 return NULL;
4412 journal->j_private = sb;
4413 ext4_init_journal_params(sb, journal);
4414 return journal;
4417 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4418 dev_t j_dev)
4420 struct buffer_head *bh;
4421 journal_t *journal;
4422 ext4_fsblk_t start;
4423 ext4_fsblk_t len;
4424 int hblock, blocksize;
4425 ext4_fsblk_t sb_block;
4426 unsigned long offset;
4427 struct ext4_super_block *es;
4428 struct block_device *bdev;
4430 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4432 bdev = ext4_blkdev_get(j_dev, sb);
4433 if (bdev == NULL)
4434 return NULL;
4436 blocksize = sb->s_blocksize;
4437 hblock = bdev_logical_block_size(bdev);
4438 if (blocksize < hblock) {
4439 ext4_msg(sb, KERN_ERR,
4440 "blocksize too small for journal device");
4441 goto out_bdev;
4444 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4445 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4446 set_blocksize(bdev, blocksize);
4447 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4448 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4449 "external journal");
4450 goto out_bdev;
4453 es = (struct ext4_super_block *) (bh->b_data + offset);
4454 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4455 !(le32_to_cpu(es->s_feature_incompat) &
4456 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4457 ext4_msg(sb, KERN_ERR, "external journal has "
4458 "bad superblock");
4459 brelse(bh);
4460 goto out_bdev;
4463 if ((le32_to_cpu(es->s_feature_ro_compat) &
4464 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4465 es->s_checksum != ext4_superblock_csum(sb, es)) {
4466 ext4_msg(sb, KERN_ERR, "external journal has "
4467 "corrupt superblock");
4468 brelse(bh);
4469 goto out_bdev;
4472 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4473 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4474 brelse(bh);
4475 goto out_bdev;
4478 len = ext4_blocks_count(es);
4479 start = sb_block + 1;
4480 brelse(bh); /* we're done with the superblock */
4482 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4483 start, len, blocksize);
4484 if (!journal) {
4485 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4486 goto out_bdev;
4488 journal->j_private = sb;
4489 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4490 wait_on_buffer(journal->j_sb_buffer);
4491 if (!buffer_uptodate(journal->j_sb_buffer)) {
4492 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4493 goto out_journal;
4495 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4496 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4497 "user (unsupported) - %d",
4498 be32_to_cpu(journal->j_superblock->s_nr_users));
4499 goto out_journal;
4501 EXT4_SB(sb)->journal_bdev = bdev;
4502 ext4_init_journal_params(sb, journal);
4503 return journal;
4505 out_journal:
4506 jbd2_journal_destroy(journal);
4507 out_bdev:
4508 ext4_blkdev_put(bdev);
4509 return NULL;
4512 static int ext4_load_journal(struct super_block *sb,
4513 struct ext4_super_block *es,
4514 unsigned long journal_devnum)
4516 journal_t *journal;
4517 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4518 dev_t journal_dev;
4519 int err = 0;
4520 int really_read_only;
4522 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4524 if (journal_devnum &&
4525 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4526 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4527 "numbers have changed");
4528 journal_dev = new_decode_dev(journal_devnum);
4529 } else
4530 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4532 really_read_only = bdev_read_only(sb->s_bdev);
4535 * Are we loading a blank journal or performing recovery after a
4536 * crash? For recovery, we need to check in advance whether we
4537 * can get read-write access to the device.
4539 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4540 if (sb->s_flags & MS_RDONLY) {
4541 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4542 "required on readonly filesystem");
4543 if (really_read_only) {
4544 ext4_msg(sb, KERN_ERR, "write access "
4545 "unavailable, cannot proceed");
4546 return -EROFS;
4548 ext4_msg(sb, KERN_INFO, "write access will "
4549 "be enabled during recovery");
4553 if (journal_inum && journal_dev) {
4554 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4555 "and inode journals!");
4556 return -EINVAL;
4559 if (journal_inum) {
4560 if (!(journal = ext4_get_journal(sb, journal_inum)))
4561 return -EINVAL;
4562 } else {
4563 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4564 return -EINVAL;
4567 if (!(journal->j_flags & JBD2_BARRIER))
4568 ext4_msg(sb, KERN_INFO, "barriers disabled");
4570 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4571 err = jbd2_journal_wipe(journal, !really_read_only);
4572 if (!err) {
4573 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4574 if (save)
4575 memcpy(save, ((char *) es) +
4576 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4577 err = jbd2_journal_load(journal);
4578 if (save)
4579 memcpy(((char *) es) + EXT4_S_ERR_START,
4580 save, EXT4_S_ERR_LEN);
4581 kfree(save);
4584 if (err) {
4585 ext4_msg(sb, KERN_ERR, "error loading journal");
4586 jbd2_journal_destroy(journal);
4587 return err;
4590 EXT4_SB(sb)->s_journal = journal;
4591 ext4_clear_journal_err(sb, es);
4593 if (!really_read_only && journal_devnum &&
4594 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4595 es->s_journal_dev = cpu_to_le32(journal_devnum);
4597 /* Make sure we flush the recovery flag to disk. */
4598 ext4_commit_super(sb, 1);
4601 return 0;
4604 static int ext4_commit_super(struct super_block *sb, int sync)
4606 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4607 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4608 int error = 0;
4610 if (!sbh || block_device_ejected(sb))
4611 return error;
4612 if (buffer_write_io_error(sbh)) {
4614 * Oh, dear. A previous attempt to write the
4615 * superblock failed. This could happen because the
4616 * USB device was yanked out. Or it could happen to
4617 * be a transient write error and maybe the block will
4618 * be remapped. Nothing we can do but to retry the
4619 * write and hope for the best.
4621 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4622 "superblock detected");
4623 clear_buffer_write_io_error(sbh);
4624 set_buffer_uptodate(sbh);
4627 * If the file system is mounted read-only, don't update the
4628 * superblock write time. This avoids updating the superblock
4629 * write time when we are mounting the root file system
4630 * read/only but we need to replay the journal; at that point,
4631 * for people who are east of GMT and who make their clock
4632 * tick in localtime for Windows bug-for-bug compatibility,
4633 * the clock is set in the future, and this will cause e2fsck
4634 * to complain and force a full file system check.
4636 if (!(sb->s_flags & MS_RDONLY))
4637 es->s_wtime = cpu_to_le32(get_seconds());
4638 if (sb->s_bdev->bd_part)
4639 es->s_kbytes_written =
4640 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4641 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4642 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4643 else
4644 es->s_kbytes_written =
4645 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4646 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4647 ext4_free_blocks_count_set(es,
4648 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4649 &EXT4_SB(sb)->s_freeclusters_counter)));
4650 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4651 es->s_free_inodes_count =
4652 cpu_to_le32(percpu_counter_sum_positive(
4653 &EXT4_SB(sb)->s_freeinodes_counter));
4654 BUFFER_TRACE(sbh, "marking dirty");
4655 ext4_superblock_csum_set(sb);
4656 mark_buffer_dirty(sbh);
4657 if (sync) {
4658 error = sync_dirty_buffer(sbh);
4659 if (error)
4660 return error;
4662 error = buffer_write_io_error(sbh);
4663 if (error) {
4664 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4665 "superblock");
4666 clear_buffer_write_io_error(sbh);
4667 set_buffer_uptodate(sbh);
4670 return error;
4674 * Have we just finished recovery? If so, and if we are mounting (or
4675 * remounting) the filesystem readonly, then we will end up with a
4676 * consistent fs on disk. Record that fact.
4678 static void ext4_mark_recovery_complete(struct super_block *sb,
4679 struct ext4_super_block *es)
4681 journal_t *journal = EXT4_SB(sb)->s_journal;
4683 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4684 BUG_ON(journal != NULL);
4685 return;
4687 jbd2_journal_lock_updates(journal);
4688 if (jbd2_journal_flush(journal) < 0)
4689 goto out;
4691 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4692 sb->s_flags & MS_RDONLY) {
4693 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4694 ext4_commit_super(sb, 1);
4697 out:
4698 jbd2_journal_unlock_updates(journal);
4702 * If we are mounting (or read-write remounting) a filesystem whose journal
4703 * has recorded an error from a previous lifetime, move that error to the
4704 * main filesystem now.
4706 static void ext4_clear_journal_err(struct super_block *sb,
4707 struct ext4_super_block *es)
4709 journal_t *journal;
4710 int j_errno;
4711 const char *errstr;
4713 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4715 journal = EXT4_SB(sb)->s_journal;
4718 * Now check for any error status which may have been recorded in the
4719 * journal by a prior ext4_error() or ext4_abort()
4722 j_errno = jbd2_journal_errno(journal);
4723 if (j_errno) {
4724 char nbuf[16];
4726 errstr = ext4_decode_error(sb, j_errno, nbuf);
4727 ext4_warning(sb, "Filesystem error recorded "
4728 "from previous mount: %s", errstr);
4729 ext4_warning(sb, "Marking fs in need of filesystem check.");
4731 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4732 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4733 ext4_commit_super(sb, 1);
4735 jbd2_journal_clear_err(journal);
4736 jbd2_journal_update_sb_errno(journal);
4741 * Force the running and committing transactions to commit,
4742 * and wait on the commit.
4744 int ext4_force_commit(struct super_block *sb)
4746 journal_t *journal;
4748 if (sb->s_flags & MS_RDONLY)
4749 return 0;
4751 journal = EXT4_SB(sb)->s_journal;
4752 return ext4_journal_force_commit(journal);
4755 static int ext4_sync_fs(struct super_block *sb, int wait)
4757 int ret = 0;
4758 tid_t target;
4759 bool needs_barrier = false;
4760 struct ext4_sb_info *sbi = EXT4_SB(sb);
4762 trace_ext4_sync_fs(sb, wait);
4763 flush_workqueue(sbi->rsv_conversion_wq);
4765 * Writeback quota in non-journalled quota case - journalled quota has
4766 * no dirty dquots
4768 dquot_writeback_dquots(sb, -1);
4770 * Data writeback is possible w/o journal transaction, so barrier must
4771 * being sent at the end of the function. But we can skip it if
4772 * transaction_commit will do it for us.
4774 if (sbi->s_journal) {
4775 target = jbd2_get_latest_transaction(sbi->s_journal);
4776 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4777 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4778 needs_barrier = true;
4780 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4781 if (wait)
4782 ret = jbd2_log_wait_commit(sbi->s_journal,
4783 target);
4785 } else if (wait && test_opt(sb, BARRIER))
4786 needs_barrier = true;
4787 if (needs_barrier) {
4788 int err;
4789 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4790 if (!ret)
4791 ret = err;
4794 return ret;
4798 * LVM calls this function before a (read-only) snapshot is created. This
4799 * gives us a chance to flush the journal completely and mark the fs clean.
4801 * Note that only this function cannot bring a filesystem to be in a clean
4802 * state independently. It relies on upper layer to stop all data & metadata
4803 * modifications.
4805 static int ext4_freeze(struct super_block *sb)
4807 int error = 0;
4808 journal_t *journal;
4810 if (sb->s_flags & MS_RDONLY)
4811 return 0;
4813 journal = EXT4_SB(sb)->s_journal;
4815 if (journal) {
4816 /* Now we set up the journal barrier. */
4817 jbd2_journal_lock_updates(journal);
4820 * Don't clear the needs_recovery flag if we failed to
4821 * flush the journal.
4823 error = jbd2_journal_flush(journal);
4824 if (error < 0)
4825 goto out;
4827 /* Journal blocked and flushed, clear needs_recovery flag. */
4828 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4831 error = ext4_commit_super(sb, 1);
4832 out:
4833 if (journal)
4834 /* we rely on upper layer to stop further updates */
4835 jbd2_journal_unlock_updates(journal);
4836 return error;
4840 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4841 * flag here, even though the filesystem is not technically dirty yet.
4843 static int ext4_unfreeze(struct super_block *sb)
4845 if (sb->s_flags & MS_RDONLY)
4846 return 0;
4848 if (EXT4_SB(sb)->s_journal) {
4849 /* Reset the needs_recovery flag before the fs is unlocked. */
4850 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4853 ext4_commit_super(sb, 1);
4854 return 0;
4858 * Structure to save mount options for ext4_remount's benefit
4860 struct ext4_mount_options {
4861 unsigned long s_mount_opt;
4862 unsigned long s_mount_opt2;
4863 kuid_t s_resuid;
4864 kgid_t s_resgid;
4865 unsigned long s_commit_interval;
4866 u32 s_min_batch_time, s_max_batch_time;
4867 #ifdef CONFIG_QUOTA
4868 int s_jquota_fmt;
4869 char *s_qf_names[EXT4_MAXQUOTAS];
4870 #endif
4873 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4875 struct ext4_super_block *es;
4876 struct ext4_sb_info *sbi = EXT4_SB(sb);
4877 unsigned long old_sb_flags;
4878 struct ext4_mount_options old_opts;
4879 int enable_quota = 0;
4880 ext4_group_t g;
4881 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4882 int err = 0;
4883 #ifdef CONFIG_QUOTA
4884 int i, j;
4885 #endif
4886 char *orig_data = kstrdup(data, GFP_KERNEL);
4888 /* Store the original options */
4889 old_sb_flags = sb->s_flags;
4890 old_opts.s_mount_opt = sbi->s_mount_opt;
4891 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4892 old_opts.s_resuid = sbi->s_resuid;
4893 old_opts.s_resgid = sbi->s_resgid;
4894 old_opts.s_commit_interval = sbi->s_commit_interval;
4895 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4896 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4897 #ifdef CONFIG_QUOTA
4898 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4899 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4900 if (sbi->s_qf_names[i]) {
4901 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4902 GFP_KERNEL);
4903 if (!old_opts.s_qf_names[i]) {
4904 for (j = 0; j < i; j++)
4905 kfree(old_opts.s_qf_names[j]);
4906 kfree(orig_data);
4907 return -ENOMEM;
4909 } else
4910 old_opts.s_qf_names[i] = NULL;
4911 #endif
4912 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4913 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4915 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4916 err = -EINVAL;
4917 goto restore_opts;
4920 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4921 test_opt(sb, JOURNAL_CHECKSUM)) {
4922 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4923 "during remount not supported; ignoring");
4924 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4927 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4928 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4929 ext4_msg(sb, KERN_ERR, "can't mount with "
4930 "both data=journal and delalloc");
4931 err = -EINVAL;
4932 goto restore_opts;
4934 if (test_opt(sb, DIOREAD_NOLOCK)) {
4935 ext4_msg(sb, KERN_ERR, "can't mount with "
4936 "both data=journal and dioread_nolock");
4937 err = -EINVAL;
4938 goto restore_opts;
4940 if (test_opt(sb, DAX)) {
4941 ext4_msg(sb, KERN_ERR, "can't mount with "
4942 "both data=journal and dax");
4943 err = -EINVAL;
4944 goto restore_opts;
4948 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4949 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4950 "dax flag with busy inodes while remounting");
4951 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4954 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4955 ext4_abort(sb, "Abort forced by user");
4957 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4958 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4960 es = sbi->s_es;
4962 if (sbi->s_journal) {
4963 ext4_init_journal_params(sb, sbi->s_journal);
4964 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4967 if (*flags & MS_LAZYTIME)
4968 sb->s_flags |= MS_LAZYTIME;
4970 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4971 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4972 err = -EROFS;
4973 goto restore_opts;
4976 if (*flags & MS_RDONLY) {
4977 err = sync_filesystem(sb);
4978 if (err < 0)
4979 goto restore_opts;
4980 err = dquot_suspend(sb, -1);
4981 if (err < 0)
4982 goto restore_opts;
4985 * First of all, the unconditional stuff we have to do
4986 * to disable replay of the journal when we next remount
4988 sb->s_flags |= MS_RDONLY;
4991 * OK, test if we are remounting a valid rw partition
4992 * readonly, and if so set the rdonly flag and then
4993 * mark the partition as valid again.
4995 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4996 (sbi->s_mount_state & EXT4_VALID_FS))
4997 es->s_state = cpu_to_le16(sbi->s_mount_state);
4999 if (sbi->s_journal)
5000 ext4_mark_recovery_complete(sb, es);
5001 } else {
5002 /* Make sure we can mount this feature set readwrite */
5003 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5004 EXT4_FEATURE_RO_COMPAT_READONLY) ||
5005 !ext4_feature_set_ok(sb, 0)) {
5006 err = -EROFS;
5007 goto restore_opts;
5010 * Make sure the group descriptor checksums
5011 * are sane. If they aren't, refuse to remount r/w.
5013 for (g = 0; g < sbi->s_groups_count; g++) {
5014 struct ext4_group_desc *gdp =
5015 ext4_get_group_desc(sb, g, NULL);
5017 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5018 ext4_msg(sb, KERN_ERR,
5019 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5020 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
5021 le16_to_cpu(gdp->bg_checksum));
5022 err = -EINVAL;
5023 goto restore_opts;
5028 * If we have an unprocessed orphan list hanging
5029 * around from a previously readonly bdev mount,
5030 * require a full umount/remount for now.
5032 if (es->s_last_orphan) {
5033 ext4_msg(sb, KERN_WARNING, "Couldn't "
5034 "remount RDWR because of unprocessed "
5035 "orphan inode list. Please "
5036 "umount/remount instead");
5037 err = -EINVAL;
5038 goto restore_opts;
5042 * Mounting a RDONLY partition read-write, so reread
5043 * and store the current valid flag. (It may have
5044 * been changed by e2fsck since we originally mounted
5045 * the partition.)
5047 if (sbi->s_journal)
5048 ext4_clear_journal_err(sb, es);
5049 sbi->s_mount_state = le16_to_cpu(es->s_state);
5050 if (!ext4_setup_super(sb, es, 0))
5051 sb->s_flags &= ~MS_RDONLY;
5052 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5053 EXT4_FEATURE_INCOMPAT_MMP))
5054 if (ext4_multi_mount_protect(sb,
5055 le64_to_cpu(es->s_mmp_block))) {
5056 err = -EROFS;
5057 goto restore_opts;
5059 enable_quota = 1;
5064 * Reinitialize lazy itable initialization thread based on
5065 * current settings
5067 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5068 ext4_unregister_li_request(sb);
5069 else {
5070 ext4_group_t first_not_zeroed;
5071 first_not_zeroed = ext4_has_uninit_itable(sb);
5072 ext4_register_li_request(sb, first_not_zeroed);
5075 ext4_setup_system_zone(sb);
5076 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5077 ext4_commit_super(sb, 1);
5079 #ifdef CONFIG_QUOTA
5080 /* Release old quota file names */
5081 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5082 kfree(old_opts.s_qf_names[i]);
5083 if (enable_quota) {
5084 if (sb_any_quota_suspended(sb))
5085 dquot_resume(sb, -1);
5086 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5087 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5088 err = ext4_enable_quotas(sb);
5089 if (err)
5090 goto restore_opts;
5093 #endif
5095 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5096 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5097 kfree(orig_data);
5098 return 0;
5100 restore_opts:
5101 sb->s_flags = old_sb_flags;
5102 sbi->s_mount_opt = old_opts.s_mount_opt;
5103 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5104 sbi->s_resuid = old_opts.s_resuid;
5105 sbi->s_resgid = old_opts.s_resgid;
5106 sbi->s_commit_interval = old_opts.s_commit_interval;
5107 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5108 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5109 #ifdef CONFIG_QUOTA
5110 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5111 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5112 kfree(sbi->s_qf_names[i]);
5113 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5115 #endif
5116 kfree(orig_data);
5117 return err;
5120 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5122 struct super_block *sb = dentry->d_sb;
5123 struct ext4_sb_info *sbi = EXT4_SB(sb);
5124 struct ext4_super_block *es = sbi->s_es;
5125 ext4_fsblk_t overhead = 0, resv_blocks;
5126 u64 fsid;
5127 s64 bfree;
5128 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5130 if (!test_opt(sb, MINIX_DF))
5131 overhead = sbi->s_overhead;
5133 buf->f_type = EXT4_SUPER_MAGIC;
5134 buf->f_bsize = sb->s_blocksize;
5135 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5136 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5137 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5138 /* prevent underflow in case that few free space is available */
5139 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5140 buf->f_bavail = buf->f_bfree -
5141 (ext4_r_blocks_count(es) + resv_blocks);
5142 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5143 buf->f_bavail = 0;
5144 buf->f_files = le32_to_cpu(es->s_inodes_count);
5145 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5146 buf->f_namelen = EXT4_NAME_LEN;
5147 fsid = le64_to_cpup((void *)es->s_uuid) ^
5148 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5149 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5150 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5152 return 0;
5155 /* Helper function for writing quotas on sync - we need to start transaction
5156 * before quota file is locked for write. Otherwise the are possible deadlocks:
5157 * Process 1 Process 2
5158 * ext4_create() quota_sync()
5159 * jbd2_journal_start() write_dquot()
5160 * dquot_initialize() down(dqio_mutex)
5161 * down(dqio_mutex) jbd2_journal_start()
5165 #ifdef CONFIG_QUOTA
5167 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5169 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5172 static int ext4_write_dquot(struct dquot *dquot)
5174 int ret, err;
5175 handle_t *handle;
5176 struct inode *inode;
5178 inode = dquot_to_inode(dquot);
5179 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5180 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5181 if (IS_ERR(handle))
5182 return PTR_ERR(handle);
5183 ret = dquot_commit(dquot);
5184 err = ext4_journal_stop(handle);
5185 if (!ret)
5186 ret = err;
5187 return ret;
5190 static int ext4_acquire_dquot(struct dquot *dquot)
5192 int ret, err;
5193 handle_t *handle;
5195 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5196 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5197 if (IS_ERR(handle))
5198 return PTR_ERR(handle);
5199 ret = dquot_acquire(dquot);
5200 err = ext4_journal_stop(handle);
5201 if (!ret)
5202 ret = err;
5203 return ret;
5206 static int ext4_release_dquot(struct dquot *dquot)
5208 int ret, err;
5209 handle_t *handle;
5211 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5212 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5213 if (IS_ERR(handle)) {
5214 /* Release dquot anyway to avoid endless cycle in dqput() */
5215 dquot_release(dquot);
5216 return PTR_ERR(handle);
5218 ret = dquot_release(dquot);
5219 err = ext4_journal_stop(handle);
5220 if (!ret)
5221 ret = err;
5222 return ret;
5225 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5227 struct super_block *sb = dquot->dq_sb;
5228 struct ext4_sb_info *sbi = EXT4_SB(sb);
5230 /* Are we journaling quotas? */
5231 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5232 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5233 dquot_mark_dquot_dirty(dquot);
5234 return ext4_write_dquot(dquot);
5235 } else {
5236 return dquot_mark_dquot_dirty(dquot);
5240 static int ext4_write_info(struct super_block *sb, int type)
5242 int ret, err;
5243 handle_t *handle;
5245 /* Data block + inode block */
5246 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5247 if (IS_ERR(handle))
5248 return PTR_ERR(handle);
5249 ret = dquot_commit_info(sb, type);
5250 err = ext4_journal_stop(handle);
5251 if (!ret)
5252 ret = err;
5253 return ret;
5257 * Turn on quotas during mount time - we need to find
5258 * the quota file and such...
5260 static int ext4_quota_on_mount(struct super_block *sb, int type)
5262 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5263 EXT4_SB(sb)->s_jquota_fmt, type);
5267 * Standard function to be called on quota_on
5269 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5270 struct path *path)
5272 int err;
5274 if (!test_opt(sb, QUOTA))
5275 return -EINVAL;
5277 /* Quotafile not on the same filesystem? */
5278 if (path->dentry->d_sb != sb)
5279 return -EXDEV;
5280 /* Journaling quota? */
5281 if (EXT4_SB(sb)->s_qf_names[type]) {
5282 /* Quotafile not in fs root? */
5283 if (path->dentry->d_parent != sb->s_root)
5284 ext4_msg(sb, KERN_WARNING,
5285 "Quota file not on filesystem root. "
5286 "Journaled quota will not work");
5290 * When we journal data on quota file, we have to flush journal to see
5291 * all updates to the file when we bypass pagecache...
5293 if (EXT4_SB(sb)->s_journal &&
5294 ext4_should_journal_data(d_inode(path->dentry))) {
5296 * We don't need to lock updates but journal_flush() could
5297 * otherwise be livelocked...
5299 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5300 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5301 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5302 if (err)
5303 return err;
5306 return dquot_quota_on(sb, type, format_id, path);
5309 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5310 unsigned int flags)
5312 int err;
5313 struct inode *qf_inode;
5314 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5315 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5316 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5319 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5321 if (!qf_inums[type])
5322 return -EPERM;
5324 qf_inode = ext4_iget(sb, qf_inums[type]);
5325 if (IS_ERR(qf_inode)) {
5326 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5327 return PTR_ERR(qf_inode);
5330 /* Don't account quota for quota files to avoid recursion */
5331 qf_inode->i_flags |= S_NOQUOTA;
5332 err = dquot_enable(qf_inode, type, format_id, flags);
5333 iput(qf_inode);
5335 return err;
5338 /* Enable usage tracking for all quota types. */
5339 static int ext4_enable_quotas(struct super_block *sb)
5341 int type, err = 0;
5342 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5343 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5344 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5347 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5348 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5349 if (qf_inums[type]) {
5350 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5351 DQUOT_USAGE_ENABLED);
5352 if (err) {
5353 ext4_warning(sb,
5354 "Failed to enable quota tracking "
5355 "(type=%d, err=%d). Please run "
5356 "e2fsck to fix.", type, err);
5357 return err;
5361 return 0;
5364 static int ext4_quota_off(struct super_block *sb, int type)
5366 struct inode *inode = sb_dqopt(sb)->files[type];
5367 handle_t *handle;
5369 /* Force all delayed allocation blocks to be allocated.
5370 * Caller already holds s_umount sem */
5371 if (test_opt(sb, DELALLOC))
5372 sync_filesystem(sb);
5374 if (!inode)
5375 goto out;
5377 /* Update modification times of quota files when userspace can
5378 * start looking at them */
5379 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5380 if (IS_ERR(handle))
5381 goto out;
5382 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5383 ext4_mark_inode_dirty(handle, inode);
5384 ext4_journal_stop(handle);
5386 out:
5387 return dquot_quota_off(sb, type);
5390 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5391 * acquiring the locks... As quota files are never truncated and quota code
5392 * itself serializes the operations (and no one else should touch the files)
5393 * we don't have to be afraid of races */
5394 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5395 size_t len, loff_t off)
5397 struct inode *inode = sb_dqopt(sb)->files[type];
5398 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5399 int offset = off & (sb->s_blocksize - 1);
5400 int tocopy;
5401 size_t toread;
5402 struct buffer_head *bh;
5403 loff_t i_size = i_size_read(inode);
5405 if (off > i_size)
5406 return 0;
5407 if (off+len > i_size)
5408 len = i_size-off;
5409 toread = len;
5410 while (toread > 0) {
5411 tocopy = sb->s_blocksize - offset < toread ?
5412 sb->s_blocksize - offset : toread;
5413 bh = ext4_bread(NULL, inode, blk, 0);
5414 if (IS_ERR(bh))
5415 return PTR_ERR(bh);
5416 if (!bh) /* A hole? */
5417 memset(data, 0, tocopy);
5418 else
5419 memcpy(data, bh->b_data+offset, tocopy);
5420 brelse(bh);
5421 offset = 0;
5422 toread -= tocopy;
5423 data += tocopy;
5424 blk++;
5426 return len;
5429 /* Write to quotafile (we know the transaction is already started and has
5430 * enough credits) */
5431 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5432 const char *data, size_t len, loff_t off)
5434 struct inode *inode = sb_dqopt(sb)->files[type];
5435 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5436 int err, offset = off & (sb->s_blocksize - 1);
5437 struct buffer_head *bh;
5438 handle_t *handle = journal_current_handle();
5440 if (EXT4_SB(sb)->s_journal && !handle) {
5441 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5442 " cancelled because transaction is not started",
5443 (unsigned long long)off, (unsigned long long)len);
5444 return -EIO;
5447 * Since we account only one data block in transaction credits,
5448 * then it is impossible to cross a block boundary.
5450 if (sb->s_blocksize - offset < len) {
5451 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5452 " cancelled because not block aligned",
5453 (unsigned long long)off, (unsigned long long)len);
5454 return -EIO;
5457 bh = ext4_bread(handle, inode, blk, 1);
5458 if (IS_ERR(bh))
5459 return PTR_ERR(bh);
5460 if (!bh)
5461 goto out;
5462 BUFFER_TRACE(bh, "get write access");
5463 err = ext4_journal_get_write_access(handle, bh);
5464 if (err) {
5465 brelse(bh);
5466 return err;
5468 lock_buffer(bh);
5469 memcpy(bh->b_data+offset, data, len);
5470 flush_dcache_page(bh->b_page);
5471 unlock_buffer(bh);
5472 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5473 brelse(bh);
5474 out:
5475 if (inode->i_size < off + len) {
5476 i_size_write(inode, off + len);
5477 EXT4_I(inode)->i_disksize = inode->i_size;
5478 ext4_mark_inode_dirty(handle, inode);
5480 return len;
5483 #endif
5485 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5486 const char *dev_name, void *data)
5488 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5491 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5492 static inline void register_as_ext2(void)
5494 int err = register_filesystem(&ext2_fs_type);
5495 if (err)
5496 printk(KERN_WARNING
5497 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5500 static inline void unregister_as_ext2(void)
5502 unregister_filesystem(&ext2_fs_type);
5505 static inline int ext2_feature_set_ok(struct super_block *sb)
5507 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5508 return 0;
5509 if (sb->s_flags & MS_RDONLY)
5510 return 1;
5511 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5512 return 0;
5513 return 1;
5515 #else
5516 static inline void register_as_ext2(void) { }
5517 static inline void unregister_as_ext2(void) { }
5518 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5519 #endif
5521 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5522 static inline void register_as_ext3(void)
5524 int err = register_filesystem(&ext3_fs_type);
5525 if (err)
5526 printk(KERN_WARNING
5527 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5530 static inline void unregister_as_ext3(void)
5532 unregister_filesystem(&ext3_fs_type);
5535 static inline int ext3_feature_set_ok(struct super_block *sb)
5537 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5538 return 0;
5539 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5540 return 0;
5541 if (sb->s_flags & MS_RDONLY)
5542 return 1;
5543 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5544 return 0;
5545 return 1;
5547 #else
5548 static inline void register_as_ext3(void) { }
5549 static inline void unregister_as_ext3(void) { }
5550 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5551 #endif
5553 static struct file_system_type ext4_fs_type = {
5554 .owner = THIS_MODULE,
5555 .name = "ext4",
5556 .mount = ext4_mount,
5557 .kill_sb = kill_block_super,
5558 .fs_flags = FS_REQUIRES_DEV,
5560 MODULE_ALIAS_FS("ext4");
5562 static int __init ext4_init_feat_adverts(void)
5564 struct ext4_features *ef;
5565 int ret = -ENOMEM;
5567 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5568 if (!ef)
5569 goto out;
5571 ef->f_kobj.kset = ext4_kset;
5572 init_completion(&ef->f_kobj_unregister);
5573 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5574 "features");
5575 if (ret) {
5576 kfree(ef);
5577 goto out;
5580 ext4_feat = ef;
5581 ret = 0;
5582 out:
5583 return ret;
5586 static void ext4_exit_feat_adverts(void)
5588 kobject_put(&ext4_feat->f_kobj);
5589 wait_for_completion(&ext4_feat->f_kobj_unregister);
5590 kfree(ext4_feat);
5593 /* Shared across all ext4 file systems */
5594 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5595 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5597 static int __init ext4_init_fs(void)
5599 int i, err;
5601 ext4_li_info = NULL;
5602 mutex_init(&ext4_li_mtx);
5604 /* Build-time check for flags consistency */
5605 ext4_check_flag_values();
5607 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5608 mutex_init(&ext4__aio_mutex[i]);
5609 init_waitqueue_head(&ext4__ioend_wq[i]);
5612 err = ext4_init_es();
5613 if (err)
5614 return err;
5616 err = ext4_init_pageio();
5617 if (err)
5618 goto out7;
5620 err = ext4_init_system_zone();
5621 if (err)
5622 goto out6;
5623 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5624 if (!ext4_kset) {
5625 err = -ENOMEM;
5626 goto out5;
5628 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5630 err = ext4_init_feat_adverts();
5631 if (err)
5632 goto out4;
5634 err = ext4_init_mballoc();
5635 if (err)
5636 goto out2;
5637 else
5638 ext4_mballoc_ready = 1;
5639 err = init_inodecache();
5640 if (err)
5641 goto out1;
5642 register_as_ext3();
5643 register_as_ext2();
5644 err = register_filesystem(&ext4_fs_type);
5645 if (err)
5646 goto out;
5648 return 0;
5649 out:
5650 unregister_as_ext2();
5651 unregister_as_ext3();
5652 destroy_inodecache();
5653 out1:
5654 ext4_mballoc_ready = 0;
5655 ext4_exit_mballoc();
5656 out2:
5657 ext4_exit_feat_adverts();
5658 out4:
5659 if (ext4_proc_root)
5660 remove_proc_entry("fs/ext4", NULL);
5661 kset_unregister(ext4_kset);
5662 out5:
5663 ext4_exit_system_zone();
5664 out6:
5665 ext4_exit_pageio();
5666 out7:
5667 ext4_exit_es();
5669 return err;
5672 static void __exit ext4_exit_fs(void)
5674 ext4_destroy_lazyinit_thread();
5675 unregister_as_ext2();
5676 unregister_as_ext3();
5677 unregister_filesystem(&ext4_fs_type);
5678 destroy_inodecache();
5679 ext4_exit_mballoc();
5680 ext4_exit_feat_adverts();
5681 remove_proc_entry("fs/ext4", NULL);
5682 kset_unregister(ext4_kset);
5683 ext4_exit_system_zone();
5684 ext4_exit_pageio();
5685 ext4_exit_es();
5688 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5689 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5690 MODULE_LICENSE("GPL");
5691 module_init(ext4_init_fs)
5692 module_exit(ext4_exit_fs)