Linux 4.9.74
[linux/fpc-iii.git] / drivers / dma / at_hdmac.c
bloba4c8f80db29d44daaa940690b73a84c21b970054
1 /*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 * Copyright (C) 2008 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
34 * Glossary
35 * --------
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
51 #define ATC_MAX_DSCR_TRIALS 10
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
68 /*----------------------------------------------------------------------*/
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
73 unsigned int width;
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
82 return width;
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
97 /**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 memset(desc, 0, sizeof(struct at_desc));
117 INIT_LIST_HEAD(&desc->tx_list);
118 dma_async_tx_descriptor_init(&desc->txd, chan);
119 /* txd.flags will be overwritten in prep functions */
120 desc->txd.flags = DMA_CTRL_ACK;
121 desc->txd.tx_submit = atc_tx_submit;
122 desc->txd.phys = phys;
125 return desc;
129 * atc_desc_get - get an unused descriptor from free_list
130 * @atchan: channel we want a new descriptor for
132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
134 struct at_desc *desc, *_desc;
135 struct at_desc *ret = NULL;
136 unsigned long flags;
137 unsigned int i = 0;
138 LIST_HEAD(tmp_list);
140 spin_lock_irqsave(&atchan->lock, flags);
141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 i++;
143 if (async_tx_test_ack(&desc->txd)) {
144 list_del(&desc->desc_node);
145 ret = desc;
146 break;
148 dev_dbg(chan2dev(&atchan->chan_common),
149 "desc %p not ACKed\n", desc);
151 spin_unlock_irqrestore(&atchan->lock, flags);
152 dev_vdbg(chan2dev(&atchan->chan_common),
153 "scanned %u descriptors on freelist\n", i);
155 /* no more descriptor available in initial pool: create one more */
156 if (!ret) {
157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 if (ret) {
159 spin_lock_irqsave(&atchan->lock, flags);
160 atchan->descs_allocated++;
161 spin_unlock_irqrestore(&atchan->lock, flags);
162 } else {
163 dev_err(chan2dev(&atchan->chan_common),
164 "not enough descriptors available\n");
168 return ret;
172 * atc_desc_put - move a descriptor, including any children, to the free list
173 * @atchan: channel we work on
174 * @desc: descriptor, at the head of a chain, to move to free list
176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
178 if (desc) {
179 struct at_desc *child;
180 unsigned long flags;
182 spin_lock_irqsave(&atchan->lock, flags);
183 list_for_each_entry(child, &desc->tx_list, desc_node)
184 dev_vdbg(chan2dev(&atchan->chan_common),
185 "moving child desc %p to freelist\n",
186 child);
187 list_splice_init(&desc->tx_list, &atchan->free_list);
188 dev_vdbg(chan2dev(&atchan->chan_common),
189 "moving desc %p to freelist\n", desc);
190 list_add(&desc->desc_node, &atchan->free_list);
191 spin_unlock_irqrestore(&atchan->lock, flags);
196 * atc_desc_chain - build chain adding a descriptor
197 * @first: address of first descriptor of the chain
198 * @prev: address of previous descriptor of the chain
199 * @desc: descriptor to queue
201 * Called from prep_* functions
203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 struct at_desc *desc)
206 if (!(*first)) {
207 *first = desc;
208 } else {
209 /* inform the HW lli about chaining */
210 (*prev)->lli.dscr = desc->txd.phys;
211 /* insert the link descriptor to the LD ring */
212 list_add_tail(&desc->desc_node,
213 &(*first)->tx_list);
215 *prev = desc;
219 * atc_dostart - starts the DMA engine for real
220 * @atchan: the channel we want to start
221 * @first: first descriptor in the list we want to begin with
223 * Called with atchan->lock held and bh disabled
225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
229 /* ASSERT: channel is idle */
230 if (atc_chan_is_enabled(atchan)) {
231 dev_err(chan2dev(&atchan->chan_common),
232 "BUG: Attempted to start non-idle channel\n");
233 dev_err(chan2dev(&atchan->chan_common),
234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 channel_readl(atchan, SADDR),
236 channel_readl(atchan, DADDR),
237 channel_readl(atchan, CTRLA),
238 channel_readl(atchan, CTRLB),
239 channel_readl(atchan, DSCR));
241 /* The tasklet will hopefully advance the queue... */
242 return;
245 vdbg_dump_regs(atchan);
247 channel_writel(atchan, SADDR, 0);
248 channel_writel(atchan, DADDR, 0);
249 channel_writel(atchan, CTRLA, 0);
250 channel_writel(atchan, CTRLB, 0);
251 channel_writel(atchan, DSCR, first->txd.phys);
252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 ATC_SPIP_BOUNDARY(first->boundary));
254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 ATC_DPIP_BOUNDARY(first->boundary));
256 dma_writel(atdma, CHER, atchan->mask);
258 vdbg_dump_regs(atchan);
262 * atc_get_desc_by_cookie - get the descriptor of a cookie
263 * @atchan: the DMA channel
264 * @cookie: the cookie to get the descriptor for
266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 dma_cookie_t cookie)
269 struct at_desc *desc, *_desc;
271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 if (desc->txd.cookie == cookie)
273 return desc;
276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 if (desc->txd.cookie == cookie)
278 return desc;
281 return NULL;
285 * atc_calc_bytes_left - calculates the number of bytes left according to the
286 * value read from CTRLA.
288 * @current_len: the number of bytes left before reading CTRLA
289 * @ctrla: the value of CTRLA
291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
293 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
297 * According to the datasheet, when reading the Control A Register
298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 * number of transfers completed on the Source Interface.
300 * So btsize is always a number of source width transfers.
302 return current_len - (btsize << src_width);
306 * atc_get_bytes_left - get the number of bytes residue for a cookie
307 * @chan: DMA channel
308 * @cookie: transaction identifier to check status of
310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
312 struct at_dma_chan *atchan = to_at_dma_chan(chan);
313 struct at_desc *desc_first = atc_first_active(atchan);
314 struct at_desc *desc;
315 int ret;
316 u32 ctrla, dscr, trials;
319 * If the cookie doesn't match to the currently running transfer then
320 * we can return the total length of the associated DMA transfer,
321 * because it is still queued.
323 desc = atc_get_desc_by_cookie(atchan, cookie);
324 if (desc == NULL)
325 return -EINVAL;
326 else if (desc != desc_first)
327 return desc->total_len;
329 /* cookie matches to the currently running transfer */
330 ret = desc_first->total_len;
332 if (desc_first->lli.dscr) {
333 /* hardware linked list transfer */
336 * Calculate the residue by removing the length of the child
337 * descriptors already transferred from the total length.
338 * To get the current child descriptor we can use the value of
339 * the channel's DSCR register and compare it against the value
340 * of the hardware linked list structure of each child
341 * descriptor.
343 * The CTRLA register provides us with the amount of data
344 * already read from the source for the current child
345 * descriptor. So we can compute a more accurate residue by also
346 * removing the number of bytes corresponding to this amount of
347 * data.
349 * However, the DSCR and CTRLA registers cannot be read both
350 * atomically. Hence a race condition may occur: the first read
351 * register may refer to one child descriptor whereas the second
352 * read may refer to a later child descriptor in the list
353 * because of the DMA transfer progression inbetween the two
354 * reads.
356 * One solution could have been to pause the DMA transfer, read
357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 * this approach presents some drawbacks:
359 * - If the DMA transfer is paused, RX overruns or TX underruns
360 * are more likey to occur depending on the system latency.
361 * Taking the USART driver as an example, it uses a cyclic DMA
362 * transfer to read data from the Receive Holding Register
363 * (RHR) to avoid RX overruns since the RHR is not protected
364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 * to compute the residue would break the USART driver design.
366 * - The atc_pause() function masks interrupts but we'd rather
367 * avoid to do so for system latency purpose.
369 * Then we'd rather use another solution: the DSCR is read a
370 * first time, the CTRLA is read in turn, next the DSCR is read
371 * a second time. If the two consecutive read values of the DSCR
372 * are the same then we assume both refers to the very same
373 * child descriptor as well as the CTRLA value read inbetween
374 * does. For cyclic tranfers, the assumption is that a full loop
375 * is "not so fast".
376 * If the two DSCR values are different, we read again the CTRLA
377 * then the DSCR till two consecutive read values from DSCR are
378 * equal or till the maxium trials is reach.
379 * This algorithm is very unlikely not to find a stable value for
380 * DSCR.
383 dscr = channel_readl(atchan, DSCR);
384 rmb(); /* ensure DSCR is read before CTRLA */
385 ctrla = channel_readl(atchan, CTRLA);
386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 u32 new_dscr;
389 rmb(); /* ensure DSCR is read after CTRLA */
390 new_dscr = channel_readl(atchan, DSCR);
393 * If the DSCR register value has not changed inside the
394 * DMA controller since the previous read, we assume
395 * that both the dscr and ctrla values refers to the
396 * very same descriptor.
398 if (likely(new_dscr == dscr))
399 break;
402 * DSCR has changed inside the DMA controller, so the
403 * previouly read value of CTRLA may refer to an already
404 * processed descriptor hence could be outdated.
405 * We need to update ctrla to match the current
406 * descriptor.
408 dscr = new_dscr;
409 rmb(); /* ensure DSCR is read before CTRLA */
410 ctrla = channel_readl(atchan, CTRLA);
412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 return -ETIMEDOUT;
415 /* for the first descriptor we can be more accurate */
416 if (desc_first->lli.dscr == dscr)
417 return atc_calc_bytes_left(ret, ctrla);
419 ret -= desc_first->len;
420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 if (desc->lli.dscr == dscr)
422 break;
424 ret -= desc->len;
428 * For the current descriptor in the chain we can calculate
429 * the remaining bytes using the channel's register.
431 ret = atc_calc_bytes_left(ret, ctrla);
432 } else {
433 /* single transfer */
434 ctrla = channel_readl(atchan, CTRLA);
435 ret = atc_calc_bytes_left(ret, ctrla);
438 return ret;
442 * atc_chain_complete - finish work for one transaction chain
443 * @atchan: channel we work on
444 * @desc: descriptor at the head of the chain we want do complete
446 * Called with atchan->lock held and bh disabled */
447 static void
448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
450 struct dma_async_tx_descriptor *txd = &desc->txd;
451 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
453 dev_vdbg(chan2dev(&atchan->chan_common),
454 "descriptor %u complete\n", txd->cookie);
456 /* mark the descriptor as complete for non cyclic cases only */
457 if (!atc_chan_is_cyclic(atchan))
458 dma_cookie_complete(txd);
460 /* If the transfer was a memset, free our temporary buffer */
461 if (desc->memset_buffer) {
462 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463 desc->memset_paddr);
464 desc->memset_buffer = false;
467 /* move children to free_list */
468 list_splice_init(&desc->tx_list, &atchan->free_list);
469 /* move myself to free_list */
470 list_move(&desc->desc_node, &atchan->free_list);
472 dma_descriptor_unmap(txd);
473 /* for cyclic transfers,
474 * no need to replay callback function while stopping */
475 if (!atc_chan_is_cyclic(atchan)) {
477 * The API requires that no submissions are done from a
478 * callback, so we don't need to drop the lock here
480 dmaengine_desc_get_callback_invoke(txd, NULL);
483 dma_run_dependencies(txd);
487 * atc_complete_all - finish work for all transactions
488 * @atchan: channel to complete transactions for
490 * Eventually submit queued descriptors if any
492 * Assume channel is idle while calling this function
493 * Called with atchan->lock held and bh disabled
495 static void atc_complete_all(struct at_dma_chan *atchan)
497 struct at_desc *desc, *_desc;
498 LIST_HEAD(list);
500 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
503 * Submit queued descriptors ASAP, i.e. before we go through
504 * the completed ones.
506 if (!list_empty(&atchan->queue))
507 atc_dostart(atchan, atc_first_queued(atchan));
508 /* empty active_list now it is completed */
509 list_splice_init(&atchan->active_list, &list);
510 /* empty queue list by moving descriptors (if any) to active_list */
511 list_splice_init(&atchan->queue, &atchan->active_list);
513 list_for_each_entry_safe(desc, _desc, &list, desc_node)
514 atc_chain_complete(atchan, desc);
518 * atc_advance_work - at the end of a transaction, move forward
519 * @atchan: channel where the transaction ended
521 * Called with atchan->lock held and bh disabled
523 static void atc_advance_work(struct at_dma_chan *atchan)
525 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
527 if (atc_chan_is_enabled(atchan))
528 return;
530 if (list_empty(&atchan->active_list) ||
531 list_is_singular(&atchan->active_list)) {
532 atc_complete_all(atchan);
533 } else {
534 atc_chain_complete(atchan, atc_first_active(atchan));
535 /* advance work */
536 atc_dostart(atchan, atc_first_active(atchan));
542 * atc_handle_error - handle errors reported by DMA controller
543 * @atchan: channel where error occurs
545 * Called with atchan->lock held and bh disabled
547 static void atc_handle_error(struct at_dma_chan *atchan)
549 struct at_desc *bad_desc;
550 struct at_desc *child;
553 * The descriptor currently at the head of the active list is
554 * broked. Since we don't have any way to report errors, we'll
555 * just have to scream loudly and try to carry on.
557 bad_desc = atc_first_active(atchan);
558 list_del_init(&bad_desc->desc_node);
560 /* As we are stopped, take advantage to push queued descriptors
561 * in active_list */
562 list_splice_init(&atchan->queue, atchan->active_list.prev);
564 /* Try to restart the controller */
565 if (!list_empty(&atchan->active_list))
566 atc_dostart(atchan, atc_first_active(atchan));
569 * KERN_CRITICAL may seem harsh, but since this only happens
570 * when someone submits a bad physical address in a
571 * descriptor, we should consider ourselves lucky that the
572 * controller flagged an error instead of scribbling over
573 * random memory locations.
575 dev_crit(chan2dev(&atchan->chan_common),
576 "Bad descriptor submitted for DMA!\n");
577 dev_crit(chan2dev(&atchan->chan_common),
578 " cookie: %d\n", bad_desc->txd.cookie);
579 atc_dump_lli(atchan, &bad_desc->lli);
580 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
581 atc_dump_lli(atchan, &child->lli);
583 /* Pretend the descriptor completed successfully */
584 atc_chain_complete(atchan, bad_desc);
588 * atc_handle_cyclic - at the end of a period, run callback function
589 * @atchan: channel used for cyclic operations
591 * Called with atchan->lock held and bh disabled
593 static void atc_handle_cyclic(struct at_dma_chan *atchan)
595 struct at_desc *first = atc_first_active(atchan);
596 struct dma_async_tx_descriptor *txd = &first->txd;
598 dev_vdbg(chan2dev(&atchan->chan_common),
599 "new cyclic period llp 0x%08x\n",
600 channel_readl(atchan, DSCR));
602 dmaengine_desc_get_callback_invoke(txd, NULL);
605 /*-- IRQ & Tasklet ---------------------------------------------------*/
607 static void atc_tasklet(unsigned long data)
609 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
610 unsigned long flags;
612 spin_lock_irqsave(&atchan->lock, flags);
613 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
614 atc_handle_error(atchan);
615 else if (atc_chan_is_cyclic(atchan))
616 atc_handle_cyclic(atchan);
617 else
618 atc_advance_work(atchan);
620 spin_unlock_irqrestore(&atchan->lock, flags);
623 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
625 struct at_dma *atdma = (struct at_dma *)dev_id;
626 struct at_dma_chan *atchan;
627 int i;
628 u32 status, pending, imr;
629 int ret = IRQ_NONE;
631 do {
632 imr = dma_readl(atdma, EBCIMR);
633 status = dma_readl(atdma, EBCISR);
634 pending = status & imr;
636 if (!pending)
637 break;
639 dev_vdbg(atdma->dma_common.dev,
640 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
641 status, imr, pending);
643 for (i = 0; i < atdma->dma_common.chancnt; i++) {
644 atchan = &atdma->chan[i];
645 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
646 if (pending & AT_DMA_ERR(i)) {
647 /* Disable channel on AHB error */
648 dma_writel(atdma, CHDR,
649 AT_DMA_RES(i) | atchan->mask);
650 /* Give information to tasklet */
651 set_bit(ATC_IS_ERROR, &atchan->status);
653 tasklet_schedule(&atchan->tasklet);
654 ret = IRQ_HANDLED;
658 } while (pending);
660 return ret;
664 /*-- DMA Engine API --------------------------------------------------*/
667 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
668 * @desc: descriptor at the head of the transaction chain
670 * Queue chain if DMA engine is working already
672 * Cookie increment and adding to active_list or queue must be atomic
674 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
676 struct at_desc *desc = txd_to_at_desc(tx);
677 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
678 dma_cookie_t cookie;
679 unsigned long flags;
681 spin_lock_irqsave(&atchan->lock, flags);
682 cookie = dma_cookie_assign(tx);
684 if (list_empty(&atchan->active_list)) {
685 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
686 desc->txd.cookie);
687 atc_dostart(atchan, desc);
688 list_add_tail(&desc->desc_node, &atchan->active_list);
689 } else {
690 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
691 desc->txd.cookie);
692 list_add_tail(&desc->desc_node, &atchan->queue);
695 spin_unlock_irqrestore(&atchan->lock, flags);
697 return cookie;
701 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
702 * @chan: the channel to prepare operation on
703 * @xt: Interleaved transfer template
704 * @flags: tx descriptor status flags
706 static struct dma_async_tx_descriptor *
707 atc_prep_dma_interleaved(struct dma_chan *chan,
708 struct dma_interleaved_template *xt,
709 unsigned long flags)
711 struct at_dma_chan *atchan = to_at_dma_chan(chan);
712 struct data_chunk *first = xt->sgl;
713 struct at_desc *desc = NULL;
714 size_t xfer_count;
715 unsigned int dwidth;
716 u32 ctrla;
717 u32 ctrlb;
718 size_t len = 0;
719 int i;
721 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
722 return NULL;
724 dev_info(chan2dev(chan),
725 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
726 __func__, &xt->src_start, &xt->dst_start, xt->numf,
727 xt->frame_size, flags);
730 * The controller can only "skip" X bytes every Y bytes, so we
731 * need to make sure we are given a template that fit that
732 * description, ie a template with chunks that always have the
733 * same size, with the same ICGs.
735 for (i = 0; i < xt->frame_size; i++) {
736 struct data_chunk *chunk = xt->sgl + i;
738 if ((chunk->size != xt->sgl->size) ||
739 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
740 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
741 dev_err(chan2dev(chan),
742 "%s: the controller can transfer only identical chunks\n",
743 __func__);
744 return NULL;
747 len += chunk->size;
750 dwidth = atc_get_xfer_width(xt->src_start,
751 xt->dst_start, len);
753 xfer_count = len >> dwidth;
754 if (xfer_count > ATC_BTSIZE_MAX) {
755 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
756 return NULL;
759 ctrla = ATC_SRC_WIDTH(dwidth) |
760 ATC_DST_WIDTH(dwidth);
762 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
763 | ATC_SRC_ADDR_MODE_INCR
764 | ATC_DST_ADDR_MODE_INCR
765 | ATC_SRC_PIP
766 | ATC_DST_PIP
767 | ATC_FC_MEM2MEM;
769 /* create the transfer */
770 desc = atc_desc_get(atchan);
771 if (!desc) {
772 dev_err(chan2dev(chan),
773 "%s: couldn't allocate our descriptor\n", __func__);
774 return NULL;
777 desc->lli.saddr = xt->src_start;
778 desc->lli.daddr = xt->dst_start;
779 desc->lli.ctrla = ctrla | xfer_count;
780 desc->lli.ctrlb = ctrlb;
782 desc->boundary = first->size >> dwidth;
783 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
784 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
786 desc->txd.cookie = -EBUSY;
787 desc->total_len = desc->len = len;
789 /* set end-of-link to the last link descriptor of list*/
790 set_desc_eol(desc);
792 desc->txd.flags = flags; /* client is in control of this ack */
794 return &desc->txd;
798 * atc_prep_dma_memcpy - prepare a memcpy operation
799 * @chan: the channel to prepare operation on
800 * @dest: operation virtual destination address
801 * @src: operation virtual source address
802 * @len: operation length
803 * @flags: tx descriptor status flags
805 static struct dma_async_tx_descriptor *
806 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
807 size_t len, unsigned long flags)
809 struct at_dma_chan *atchan = to_at_dma_chan(chan);
810 struct at_desc *desc = NULL;
811 struct at_desc *first = NULL;
812 struct at_desc *prev = NULL;
813 size_t xfer_count;
814 size_t offset;
815 unsigned int src_width;
816 unsigned int dst_width;
817 u32 ctrla;
818 u32 ctrlb;
820 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
821 &dest, &src, len, flags);
823 if (unlikely(!len)) {
824 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
825 return NULL;
828 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
829 | ATC_SRC_ADDR_MODE_INCR
830 | ATC_DST_ADDR_MODE_INCR
831 | ATC_FC_MEM2MEM;
834 * We can be a lot more clever here, but this should take care
835 * of the most common optimization.
837 src_width = dst_width = atc_get_xfer_width(src, dest, len);
839 ctrla = ATC_SRC_WIDTH(src_width) |
840 ATC_DST_WIDTH(dst_width);
842 for (offset = 0; offset < len; offset += xfer_count << src_width) {
843 xfer_count = min_t(size_t, (len - offset) >> src_width,
844 ATC_BTSIZE_MAX);
846 desc = atc_desc_get(atchan);
847 if (!desc)
848 goto err_desc_get;
850 desc->lli.saddr = src + offset;
851 desc->lli.daddr = dest + offset;
852 desc->lli.ctrla = ctrla | xfer_count;
853 desc->lli.ctrlb = ctrlb;
855 desc->txd.cookie = 0;
856 desc->len = xfer_count << src_width;
858 atc_desc_chain(&first, &prev, desc);
861 /* First descriptor of the chain embedds additional information */
862 first->txd.cookie = -EBUSY;
863 first->total_len = len;
865 /* set end-of-link to the last link descriptor of list*/
866 set_desc_eol(desc);
868 first->txd.flags = flags; /* client is in control of this ack */
870 return &first->txd;
872 err_desc_get:
873 atc_desc_put(atchan, first);
874 return NULL;
877 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
878 dma_addr_t psrc,
879 dma_addr_t pdst,
880 size_t len)
882 struct at_dma_chan *atchan = to_at_dma_chan(chan);
883 struct at_desc *desc;
884 size_t xfer_count;
886 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
887 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
888 ATC_SRC_ADDR_MODE_FIXED |
889 ATC_DST_ADDR_MODE_INCR |
890 ATC_FC_MEM2MEM;
892 xfer_count = len >> 2;
893 if (xfer_count > ATC_BTSIZE_MAX) {
894 dev_err(chan2dev(chan), "%s: buffer is too big\n",
895 __func__);
896 return NULL;
899 desc = atc_desc_get(atchan);
900 if (!desc) {
901 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
902 __func__);
903 return NULL;
906 desc->lli.saddr = psrc;
907 desc->lli.daddr = pdst;
908 desc->lli.ctrla = ctrla | xfer_count;
909 desc->lli.ctrlb = ctrlb;
911 desc->txd.cookie = 0;
912 desc->len = len;
914 return desc;
918 * atc_prep_dma_memset - prepare a memcpy operation
919 * @chan: the channel to prepare operation on
920 * @dest: operation virtual destination address
921 * @value: value to set memory buffer to
922 * @len: operation length
923 * @flags: tx descriptor status flags
925 static struct dma_async_tx_descriptor *
926 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
927 size_t len, unsigned long flags)
929 struct at_dma *atdma = to_at_dma(chan->device);
930 struct at_desc *desc;
931 void __iomem *vaddr;
932 dma_addr_t paddr;
934 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
935 &dest, value, len, flags);
937 if (unlikely(!len)) {
938 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
939 return NULL;
942 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
943 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
944 __func__);
945 return NULL;
948 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
949 if (!vaddr) {
950 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
951 __func__);
952 return NULL;
954 *(u32*)vaddr = value;
956 desc = atc_create_memset_desc(chan, paddr, dest, len);
957 if (!desc) {
958 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
959 __func__);
960 goto err_free_buffer;
963 desc->memset_paddr = paddr;
964 desc->memset_vaddr = vaddr;
965 desc->memset_buffer = true;
967 desc->txd.cookie = -EBUSY;
968 desc->total_len = len;
970 /* set end-of-link on the descriptor */
971 set_desc_eol(desc);
973 desc->txd.flags = flags;
975 return &desc->txd;
977 err_free_buffer:
978 dma_pool_free(atdma->memset_pool, vaddr, paddr);
979 return NULL;
982 static struct dma_async_tx_descriptor *
983 atc_prep_dma_memset_sg(struct dma_chan *chan,
984 struct scatterlist *sgl,
985 unsigned int sg_len, int value,
986 unsigned long flags)
988 struct at_dma_chan *atchan = to_at_dma_chan(chan);
989 struct at_dma *atdma = to_at_dma(chan->device);
990 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
991 struct scatterlist *sg;
992 void __iomem *vaddr;
993 dma_addr_t paddr;
994 size_t total_len = 0;
995 int i;
997 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
998 value, sg_len, flags);
1000 if (unlikely(!sgl || !sg_len)) {
1001 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1002 __func__);
1003 return NULL;
1006 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1007 if (!vaddr) {
1008 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1009 __func__);
1010 return NULL;
1012 *(u32*)vaddr = value;
1014 for_each_sg(sgl, sg, sg_len, i) {
1015 dma_addr_t dest = sg_dma_address(sg);
1016 size_t len = sg_dma_len(sg);
1018 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1019 __func__, &dest, len);
1021 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1022 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1023 __func__);
1024 goto err_put_desc;
1027 desc = atc_create_memset_desc(chan, paddr, dest, len);
1028 if (!desc)
1029 goto err_put_desc;
1031 atc_desc_chain(&first, &prev, desc);
1033 total_len += len;
1037 * Only set the buffer pointers on the last descriptor to
1038 * avoid free'ing while we have our transfer still going
1040 desc->memset_paddr = paddr;
1041 desc->memset_vaddr = vaddr;
1042 desc->memset_buffer = true;
1044 first->txd.cookie = -EBUSY;
1045 first->total_len = total_len;
1047 /* set end-of-link on the descriptor */
1048 set_desc_eol(desc);
1050 first->txd.flags = flags;
1052 return &first->txd;
1054 err_put_desc:
1055 atc_desc_put(atchan, first);
1056 return NULL;
1060 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1061 * @chan: DMA channel
1062 * @sgl: scatterlist to transfer to/from
1063 * @sg_len: number of entries in @scatterlist
1064 * @direction: DMA direction
1065 * @flags: tx descriptor status flags
1066 * @context: transaction context (ignored)
1068 static struct dma_async_tx_descriptor *
1069 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1070 unsigned int sg_len, enum dma_transfer_direction direction,
1071 unsigned long flags, void *context)
1073 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1074 struct at_dma_slave *atslave = chan->private;
1075 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1076 struct at_desc *first = NULL;
1077 struct at_desc *prev = NULL;
1078 u32 ctrla;
1079 u32 ctrlb;
1080 dma_addr_t reg;
1081 unsigned int reg_width;
1082 unsigned int mem_width;
1083 unsigned int i;
1084 struct scatterlist *sg;
1085 size_t total_len = 0;
1087 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1088 sg_len,
1089 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1090 flags);
1092 if (unlikely(!atslave || !sg_len)) {
1093 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1094 return NULL;
1097 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1098 | ATC_DCSIZE(sconfig->dst_maxburst);
1099 ctrlb = ATC_IEN;
1101 switch (direction) {
1102 case DMA_MEM_TO_DEV:
1103 reg_width = convert_buswidth(sconfig->dst_addr_width);
1104 ctrla |= ATC_DST_WIDTH(reg_width);
1105 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1106 | ATC_SRC_ADDR_MODE_INCR
1107 | ATC_FC_MEM2PER
1108 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1109 reg = sconfig->dst_addr;
1110 for_each_sg(sgl, sg, sg_len, i) {
1111 struct at_desc *desc;
1112 u32 len;
1113 u32 mem;
1115 desc = atc_desc_get(atchan);
1116 if (!desc)
1117 goto err_desc_get;
1119 mem = sg_dma_address(sg);
1120 len = sg_dma_len(sg);
1121 if (unlikely(!len)) {
1122 dev_dbg(chan2dev(chan),
1123 "prep_slave_sg: sg(%d) data length is zero\n", i);
1124 goto err;
1126 mem_width = 2;
1127 if (unlikely(mem & 3 || len & 3))
1128 mem_width = 0;
1130 desc->lli.saddr = mem;
1131 desc->lli.daddr = reg;
1132 desc->lli.ctrla = ctrla
1133 | ATC_SRC_WIDTH(mem_width)
1134 | len >> mem_width;
1135 desc->lli.ctrlb = ctrlb;
1136 desc->len = len;
1138 atc_desc_chain(&first, &prev, desc);
1139 total_len += len;
1141 break;
1142 case DMA_DEV_TO_MEM:
1143 reg_width = convert_buswidth(sconfig->src_addr_width);
1144 ctrla |= ATC_SRC_WIDTH(reg_width);
1145 ctrlb |= ATC_DST_ADDR_MODE_INCR
1146 | ATC_SRC_ADDR_MODE_FIXED
1147 | ATC_FC_PER2MEM
1148 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1150 reg = sconfig->src_addr;
1151 for_each_sg(sgl, sg, sg_len, i) {
1152 struct at_desc *desc;
1153 u32 len;
1154 u32 mem;
1156 desc = atc_desc_get(atchan);
1157 if (!desc)
1158 goto err_desc_get;
1160 mem = sg_dma_address(sg);
1161 len = sg_dma_len(sg);
1162 if (unlikely(!len)) {
1163 dev_dbg(chan2dev(chan),
1164 "prep_slave_sg: sg(%d) data length is zero\n", i);
1165 goto err;
1167 mem_width = 2;
1168 if (unlikely(mem & 3 || len & 3))
1169 mem_width = 0;
1171 desc->lli.saddr = reg;
1172 desc->lli.daddr = mem;
1173 desc->lli.ctrla = ctrla
1174 | ATC_DST_WIDTH(mem_width)
1175 | len >> reg_width;
1176 desc->lli.ctrlb = ctrlb;
1177 desc->len = len;
1179 atc_desc_chain(&first, &prev, desc);
1180 total_len += len;
1182 break;
1183 default:
1184 return NULL;
1187 /* set end-of-link to the last link descriptor of list*/
1188 set_desc_eol(prev);
1190 /* First descriptor of the chain embedds additional information */
1191 first->txd.cookie = -EBUSY;
1192 first->total_len = total_len;
1194 /* first link descriptor of list is responsible of flags */
1195 first->txd.flags = flags; /* client is in control of this ack */
1197 return &first->txd;
1199 err_desc_get:
1200 dev_err(chan2dev(chan), "not enough descriptors available\n");
1201 err:
1202 atc_desc_put(atchan, first);
1203 return NULL;
1207 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1208 * @chan: the channel to prepare operation on
1209 * @dst_sg: destination scatterlist
1210 * @dst_nents: number of destination scatterlist entries
1211 * @src_sg: source scatterlist
1212 * @src_nents: number of source scatterlist entries
1213 * @flags: tx descriptor status flags
1215 static struct dma_async_tx_descriptor *
1216 atc_prep_dma_sg(struct dma_chan *chan,
1217 struct scatterlist *dst_sg, unsigned int dst_nents,
1218 struct scatterlist *src_sg, unsigned int src_nents,
1219 unsigned long flags)
1221 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1222 struct at_desc *desc = NULL;
1223 struct at_desc *first = NULL;
1224 struct at_desc *prev = NULL;
1225 unsigned int src_width;
1226 unsigned int dst_width;
1227 size_t xfer_count;
1228 u32 ctrla;
1229 u32 ctrlb;
1230 size_t dst_len = 0, src_len = 0;
1231 dma_addr_t dst = 0, src = 0;
1232 size_t len = 0, total_len = 0;
1234 if (unlikely(dst_nents == 0 || src_nents == 0))
1235 return NULL;
1237 if (unlikely(dst_sg == NULL || src_sg == NULL))
1238 return NULL;
1240 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
1241 | ATC_SRC_ADDR_MODE_INCR
1242 | ATC_DST_ADDR_MODE_INCR
1243 | ATC_FC_MEM2MEM;
1246 * loop until there is either no more source or no more destination
1247 * scatterlist entry
1249 while (true) {
1251 /* prepare the next transfer */
1252 if (dst_len == 0) {
1254 /* no more destination scatterlist entries */
1255 if (!dst_sg || !dst_nents)
1256 break;
1258 dst = sg_dma_address(dst_sg);
1259 dst_len = sg_dma_len(dst_sg);
1261 dst_sg = sg_next(dst_sg);
1262 dst_nents--;
1265 if (src_len == 0) {
1267 /* no more source scatterlist entries */
1268 if (!src_sg || !src_nents)
1269 break;
1271 src = sg_dma_address(src_sg);
1272 src_len = sg_dma_len(src_sg);
1274 src_sg = sg_next(src_sg);
1275 src_nents--;
1278 len = min_t(size_t, src_len, dst_len);
1279 if (len == 0)
1280 continue;
1282 /* take care for the alignment */
1283 src_width = dst_width = atc_get_xfer_width(src, dst, len);
1285 ctrla = ATC_SRC_WIDTH(src_width) |
1286 ATC_DST_WIDTH(dst_width);
1289 * The number of transfers to set up refer to the source width
1290 * that depends on the alignment.
1292 xfer_count = len >> src_width;
1293 if (xfer_count > ATC_BTSIZE_MAX) {
1294 xfer_count = ATC_BTSIZE_MAX;
1295 len = ATC_BTSIZE_MAX << src_width;
1298 /* create the transfer */
1299 desc = atc_desc_get(atchan);
1300 if (!desc)
1301 goto err_desc_get;
1303 desc->lli.saddr = src;
1304 desc->lli.daddr = dst;
1305 desc->lli.ctrla = ctrla | xfer_count;
1306 desc->lli.ctrlb = ctrlb;
1308 desc->txd.cookie = 0;
1309 desc->len = len;
1311 atc_desc_chain(&first, &prev, desc);
1313 /* update the lengths and addresses for the next loop cycle */
1314 dst_len -= len;
1315 src_len -= len;
1316 dst += len;
1317 src += len;
1319 total_len += len;
1322 /* First descriptor of the chain embedds additional information */
1323 first->txd.cookie = -EBUSY;
1324 first->total_len = total_len;
1326 /* set end-of-link to the last link descriptor of list*/
1327 set_desc_eol(desc);
1329 first->txd.flags = flags; /* client is in control of this ack */
1331 return &first->txd;
1333 err_desc_get:
1334 atc_desc_put(atchan, first);
1335 return NULL;
1339 * atc_dma_cyclic_check_values
1340 * Check for too big/unaligned periods and unaligned DMA buffer
1342 static int
1343 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1344 size_t period_len)
1346 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1347 goto err_out;
1348 if (unlikely(period_len & ((1 << reg_width) - 1)))
1349 goto err_out;
1350 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1351 goto err_out;
1353 return 0;
1355 err_out:
1356 return -EINVAL;
1360 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1362 static int
1363 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1364 unsigned int period_index, dma_addr_t buf_addr,
1365 unsigned int reg_width, size_t period_len,
1366 enum dma_transfer_direction direction)
1368 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1369 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1370 u32 ctrla;
1372 /* prepare common CRTLA value */
1373 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1374 | ATC_DCSIZE(sconfig->dst_maxburst)
1375 | ATC_DST_WIDTH(reg_width)
1376 | ATC_SRC_WIDTH(reg_width)
1377 | period_len >> reg_width;
1379 switch (direction) {
1380 case DMA_MEM_TO_DEV:
1381 desc->lli.saddr = buf_addr + (period_len * period_index);
1382 desc->lli.daddr = sconfig->dst_addr;
1383 desc->lli.ctrla = ctrla;
1384 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1385 | ATC_SRC_ADDR_MODE_INCR
1386 | ATC_FC_MEM2PER
1387 | ATC_SIF(atchan->mem_if)
1388 | ATC_DIF(atchan->per_if);
1389 desc->len = period_len;
1390 break;
1392 case DMA_DEV_TO_MEM:
1393 desc->lli.saddr = sconfig->src_addr;
1394 desc->lli.daddr = buf_addr + (period_len * period_index);
1395 desc->lli.ctrla = ctrla;
1396 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1397 | ATC_SRC_ADDR_MODE_FIXED
1398 | ATC_FC_PER2MEM
1399 | ATC_SIF(atchan->per_if)
1400 | ATC_DIF(atchan->mem_if);
1401 desc->len = period_len;
1402 break;
1404 default:
1405 return -EINVAL;
1408 return 0;
1412 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1413 * @chan: the DMA channel to prepare
1414 * @buf_addr: physical DMA address where the buffer starts
1415 * @buf_len: total number of bytes for the entire buffer
1416 * @period_len: number of bytes for each period
1417 * @direction: transfer direction, to or from device
1418 * @flags: tx descriptor status flags
1420 static struct dma_async_tx_descriptor *
1421 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1422 size_t period_len, enum dma_transfer_direction direction,
1423 unsigned long flags)
1425 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1426 struct at_dma_slave *atslave = chan->private;
1427 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1428 struct at_desc *first = NULL;
1429 struct at_desc *prev = NULL;
1430 unsigned long was_cyclic;
1431 unsigned int reg_width;
1432 unsigned int periods = buf_len / period_len;
1433 unsigned int i;
1435 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1436 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1437 &buf_addr,
1438 periods, buf_len, period_len);
1440 if (unlikely(!atslave || !buf_len || !period_len)) {
1441 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1442 return NULL;
1445 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1446 if (was_cyclic) {
1447 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1448 return NULL;
1451 if (unlikely(!is_slave_direction(direction)))
1452 goto err_out;
1454 if (sconfig->direction == DMA_MEM_TO_DEV)
1455 reg_width = convert_buswidth(sconfig->dst_addr_width);
1456 else
1457 reg_width = convert_buswidth(sconfig->src_addr_width);
1459 /* Check for too big/unaligned periods and unaligned DMA buffer */
1460 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1461 goto err_out;
1463 /* build cyclic linked list */
1464 for (i = 0; i < periods; i++) {
1465 struct at_desc *desc;
1467 desc = atc_desc_get(atchan);
1468 if (!desc)
1469 goto err_desc_get;
1471 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1472 reg_width, period_len, direction))
1473 goto err_desc_get;
1475 atc_desc_chain(&first, &prev, desc);
1478 /* lets make a cyclic list */
1479 prev->lli.dscr = first->txd.phys;
1481 /* First descriptor of the chain embedds additional information */
1482 first->txd.cookie = -EBUSY;
1483 first->total_len = buf_len;
1485 return &first->txd;
1487 err_desc_get:
1488 dev_err(chan2dev(chan), "not enough descriptors available\n");
1489 atc_desc_put(atchan, first);
1490 err_out:
1491 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1492 return NULL;
1495 static int atc_config(struct dma_chan *chan,
1496 struct dma_slave_config *sconfig)
1498 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1500 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1502 /* Check if it is chan is configured for slave transfers */
1503 if (!chan->private)
1504 return -EINVAL;
1506 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1508 convert_burst(&atchan->dma_sconfig.src_maxburst);
1509 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1511 return 0;
1514 static int atc_pause(struct dma_chan *chan)
1516 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1517 struct at_dma *atdma = to_at_dma(chan->device);
1518 int chan_id = atchan->chan_common.chan_id;
1519 unsigned long flags;
1521 LIST_HEAD(list);
1523 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1525 spin_lock_irqsave(&atchan->lock, flags);
1527 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1528 set_bit(ATC_IS_PAUSED, &atchan->status);
1530 spin_unlock_irqrestore(&atchan->lock, flags);
1532 return 0;
1535 static int atc_resume(struct dma_chan *chan)
1537 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1538 struct at_dma *atdma = to_at_dma(chan->device);
1539 int chan_id = atchan->chan_common.chan_id;
1540 unsigned long flags;
1542 LIST_HEAD(list);
1544 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1546 if (!atc_chan_is_paused(atchan))
1547 return 0;
1549 spin_lock_irqsave(&atchan->lock, flags);
1551 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1552 clear_bit(ATC_IS_PAUSED, &atchan->status);
1554 spin_unlock_irqrestore(&atchan->lock, flags);
1556 return 0;
1559 static int atc_terminate_all(struct dma_chan *chan)
1561 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1562 struct at_dma *atdma = to_at_dma(chan->device);
1563 int chan_id = atchan->chan_common.chan_id;
1564 struct at_desc *desc, *_desc;
1565 unsigned long flags;
1567 LIST_HEAD(list);
1569 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1572 * This is only called when something went wrong elsewhere, so
1573 * we don't really care about the data. Just disable the
1574 * channel. We still have to poll the channel enable bit due
1575 * to AHB/HSB limitations.
1577 spin_lock_irqsave(&atchan->lock, flags);
1579 /* disabling channel: must also remove suspend state */
1580 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1582 /* confirm that this channel is disabled */
1583 while (dma_readl(atdma, CHSR) & atchan->mask)
1584 cpu_relax();
1586 /* active_list entries will end up before queued entries */
1587 list_splice_init(&atchan->queue, &list);
1588 list_splice_init(&atchan->active_list, &list);
1590 /* Flush all pending and queued descriptors */
1591 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1592 atc_chain_complete(atchan, desc);
1594 clear_bit(ATC_IS_PAUSED, &atchan->status);
1595 /* if channel dedicated to cyclic operations, free it */
1596 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1598 spin_unlock_irqrestore(&atchan->lock, flags);
1600 return 0;
1604 * atc_tx_status - poll for transaction completion
1605 * @chan: DMA channel
1606 * @cookie: transaction identifier to check status of
1607 * @txstate: if not %NULL updated with transaction state
1609 * If @txstate is passed in, upon return it reflect the driver
1610 * internal state and can be used with dma_async_is_complete() to check
1611 * the status of multiple cookies without re-checking hardware state.
1613 static enum dma_status
1614 atc_tx_status(struct dma_chan *chan,
1615 dma_cookie_t cookie,
1616 struct dma_tx_state *txstate)
1618 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1619 unsigned long flags;
1620 enum dma_status ret;
1621 int bytes = 0;
1623 ret = dma_cookie_status(chan, cookie, txstate);
1624 if (ret == DMA_COMPLETE)
1625 return ret;
1627 * There's no point calculating the residue if there's
1628 * no txstate to store the value.
1630 if (!txstate)
1631 return DMA_ERROR;
1633 spin_lock_irqsave(&atchan->lock, flags);
1635 /* Get number of bytes left in the active transactions */
1636 bytes = atc_get_bytes_left(chan, cookie);
1638 spin_unlock_irqrestore(&atchan->lock, flags);
1640 if (unlikely(bytes < 0)) {
1641 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1642 return DMA_ERROR;
1643 } else {
1644 dma_set_residue(txstate, bytes);
1647 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1648 ret, cookie, bytes);
1650 return ret;
1654 * atc_issue_pending - try to finish work
1655 * @chan: target DMA channel
1657 static void atc_issue_pending(struct dma_chan *chan)
1659 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1660 unsigned long flags;
1662 dev_vdbg(chan2dev(chan), "issue_pending\n");
1664 /* Not needed for cyclic transfers */
1665 if (atc_chan_is_cyclic(atchan))
1666 return;
1668 spin_lock_irqsave(&atchan->lock, flags);
1669 atc_advance_work(atchan);
1670 spin_unlock_irqrestore(&atchan->lock, flags);
1674 * atc_alloc_chan_resources - allocate resources for DMA channel
1675 * @chan: allocate descriptor resources for this channel
1676 * @client: current client requesting the channel be ready for requests
1678 * return - the number of allocated descriptors
1680 static int atc_alloc_chan_resources(struct dma_chan *chan)
1682 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1683 struct at_dma *atdma = to_at_dma(chan->device);
1684 struct at_desc *desc;
1685 struct at_dma_slave *atslave;
1686 unsigned long flags;
1687 int i;
1688 u32 cfg;
1689 LIST_HEAD(tmp_list);
1691 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1693 /* ASSERT: channel is idle */
1694 if (atc_chan_is_enabled(atchan)) {
1695 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1696 return -EIO;
1699 cfg = ATC_DEFAULT_CFG;
1701 atslave = chan->private;
1702 if (atslave) {
1704 * We need controller-specific data to set up slave
1705 * transfers.
1707 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1709 /* if cfg configuration specified take it instead of default */
1710 if (atslave->cfg)
1711 cfg = atslave->cfg;
1714 /* have we already been set up?
1715 * reconfigure channel but no need to reallocate descriptors */
1716 if (!list_empty(&atchan->free_list))
1717 return atchan->descs_allocated;
1719 /* Allocate initial pool of descriptors */
1720 for (i = 0; i < init_nr_desc_per_channel; i++) {
1721 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1722 if (!desc) {
1723 dev_err(atdma->dma_common.dev,
1724 "Only %d initial descriptors\n", i);
1725 break;
1727 list_add_tail(&desc->desc_node, &tmp_list);
1730 spin_lock_irqsave(&atchan->lock, flags);
1731 atchan->descs_allocated = i;
1732 list_splice(&tmp_list, &atchan->free_list);
1733 dma_cookie_init(chan);
1734 spin_unlock_irqrestore(&atchan->lock, flags);
1736 /* channel parameters */
1737 channel_writel(atchan, CFG, cfg);
1739 dev_dbg(chan2dev(chan),
1740 "alloc_chan_resources: allocated %d descriptors\n",
1741 atchan->descs_allocated);
1743 return atchan->descs_allocated;
1747 * atc_free_chan_resources - free all channel resources
1748 * @chan: DMA channel
1750 static void atc_free_chan_resources(struct dma_chan *chan)
1752 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1753 struct at_dma *atdma = to_at_dma(chan->device);
1754 struct at_desc *desc, *_desc;
1755 LIST_HEAD(list);
1757 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1758 atchan->descs_allocated);
1760 /* ASSERT: channel is idle */
1761 BUG_ON(!list_empty(&atchan->active_list));
1762 BUG_ON(!list_empty(&atchan->queue));
1763 BUG_ON(atc_chan_is_enabled(atchan));
1765 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1766 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1767 list_del(&desc->desc_node);
1768 /* free link descriptor */
1769 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1771 list_splice_init(&atchan->free_list, &list);
1772 atchan->descs_allocated = 0;
1773 atchan->status = 0;
1775 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1778 #ifdef CONFIG_OF
1779 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1781 struct at_dma_slave *atslave = slave;
1783 if (atslave->dma_dev == chan->device->dev) {
1784 chan->private = atslave;
1785 return true;
1786 } else {
1787 return false;
1791 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1792 struct of_dma *of_dma)
1794 struct dma_chan *chan;
1795 struct at_dma_chan *atchan;
1796 struct at_dma_slave *atslave;
1797 dma_cap_mask_t mask;
1798 unsigned int per_id;
1799 struct platform_device *dmac_pdev;
1801 if (dma_spec->args_count != 2)
1802 return NULL;
1804 dmac_pdev = of_find_device_by_node(dma_spec->np);
1806 dma_cap_zero(mask);
1807 dma_cap_set(DMA_SLAVE, mask);
1809 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1810 if (!atslave)
1811 return NULL;
1813 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1815 * We can fill both SRC_PER and DST_PER, one of these fields will be
1816 * ignored depending on DMA transfer direction.
1818 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1819 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1820 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1822 * We have to translate the value we get from the device tree since
1823 * the half FIFO configuration value had to be 0 to keep backward
1824 * compatibility.
1826 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1827 case AT91_DMA_CFG_FIFOCFG_ALAP:
1828 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1829 break;
1830 case AT91_DMA_CFG_FIFOCFG_ASAP:
1831 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1832 break;
1833 case AT91_DMA_CFG_FIFOCFG_HALF:
1834 default:
1835 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1837 atslave->dma_dev = &dmac_pdev->dev;
1839 chan = dma_request_channel(mask, at_dma_filter, atslave);
1840 if (!chan)
1841 return NULL;
1843 atchan = to_at_dma_chan(chan);
1844 atchan->per_if = dma_spec->args[0] & 0xff;
1845 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1847 return chan;
1849 #else
1850 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1851 struct of_dma *of_dma)
1853 return NULL;
1855 #endif
1857 /*-- Module Management -----------------------------------------------*/
1859 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1860 static struct at_dma_platform_data at91sam9rl_config = {
1861 .nr_channels = 2,
1863 static struct at_dma_platform_data at91sam9g45_config = {
1864 .nr_channels = 8,
1867 #if defined(CONFIG_OF)
1868 static const struct of_device_id atmel_dma_dt_ids[] = {
1870 .compatible = "atmel,at91sam9rl-dma",
1871 .data = &at91sam9rl_config,
1872 }, {
1873 .compatible = "atmel,at91sam9g45-dma",
1874 .data = &at91sam9g45_config,
1875 }, {
1876 /* sentinel */
1880 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1881 #endif
1883 static const struct platform_device_id atdma_devtypes[] = {
1885 .name = "at91sam9rl_dma",
1886 .driver_data = (unsigned long) &at91sam9rl_config,
1887 }, {
1888 .name = "at91sam9g45_dma",
1889 .driver_data = (unsigned long) &at91sam9g45_config,
1890 }, {
1891 /* sentinel */
1895 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1896 struct platform_device *pdev)
1898 if (pdev->dev.of_node) {
1899 const struct of_device_id *match;
1900 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1901 if (match == NULL)
1902 return NULL;
1903 return match->data;
1905 return (struct at_dma_platform_data *)
1906 platform_get_device_id(pdev)->driver_data;
1910 * at_dma_off - disable DMA controller
1911 * @atdma: the Atmel HDAMC device
1913 static void at_dma_off(struct at_dma *atdma)
1915 dma_writel(atdma, EN, 0);
1917 /* disable all interrupts */
1918 dma_writel(atdma, EBCIDR, -1L);
1920 /* confirm that all channels are disabled */
1921 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1922 cpu_relax();
1925 static int __init at_dma_probe(struct platform_device *pdev)
1927 struct resource *io;
1928 struct at_dma *atdma;
1929 size_t size;
1930 int irq;
1931 int err;
1932 int i;
1933 const struct at_dma_platform_data *plat_dat;
1935 /* setup platform data for each SoC */
1936 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1937 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1938 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1939 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1940 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1941 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1942 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1943 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1944 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1946 /* get DMA parameters from controller type */
1947 plat_dat = at_dma_get_driver_data(pdev);
1948 if (!plat_dat)
1949 return -ENODEV;
1951 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1952 if (!io)
1953 return -EINVAL;
1955 irq = platform_get_irq(pdev, 0);
1956 if (irq < 0)
1957 return irq;
1959 size = sizeof(struct at_dma);
1960 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1961 atdma = kzalloc(size, GFP_KERNEL);
1962 if (!atdma)
1963 return -ENOMEM;
1965 /* discover transaction capabilities */
1966 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1967 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1969 size = resource_size(io);
1970 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1971 err = -EBUSY;
1972 goto err_kfree;
1975 atdma->regs = ioremap(io->start, size);
1976 if (!atdma->regs) {
1977 err = -ENOMEM;
1978 goto err_release_r;
1981 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1982 if (IS_ERR(atdma->clk)) {
1983 err = PTR_ERR(atdma->clk);
1984 goto err_clk;
1986 err = clk_prepare_enable(atdma->clk);
1987 if (err)
1988 goto err_clk_prepare;
1990 /* force dma off, just in case */
1991 at_dma_off(atdma);
1993 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1994 if (err)
1995 goto err_irq;
1997 platform_set_drvdata(pdev, atdma);
1999 /* create a pool of consistent memory blocks for hardware descriptors */
2000 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2001 &pdev->dev, sizeof(struct at_desc),
2002 4 /* word alignment */, 0);
2003 if (!atdma->dma_desc_pool) {
2004 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2005 err = -ENOMEM;
2006 goto err_desc_pool_create;
2009 /* create a pool of consistent memory blocks for memset blocks */
2010 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2011 &pdev->dev, sizeof(int), 4, 0);
2012 if (!atdma->memset_pool) {
2013 dev_err(&pdev->dev, "No memory for memset dma pool\n");
2014 err = -ENOMEM;
2015 goto err_memset_pool_create;
2018 /* clear any pending interrupt */
2019 while (dma_readl(atdma, EBCISR))
2020 cpu_relax();
2022 /* initialize channels related values */
2023 INIT_LIST_HEAD(&atdma->dma_common.channels);
2024 for (i = 0; i < plat_dat->nr_channels; i++) {
2025 struct at_dma_chan *atchan = &atdma->chan[i];
2027 atchan->mem_if = AT_DMA_MEM_IF;
2028 atchan->per_if = AT_DMA_PER_IF;
2029 atchan->chan_common.device = &atdma->dma_common;
2030 dma_cookie_init(&atchan->chan_common);
2031 list_add_tail(&atchan->chan_common.device_node,
2032 &atdma->dma_common.channels);
2034 atchan->ch_regs = atdma->regs + ch_regs(i);
2035 spin_lock_init(&atchan->lock);
2036 atchan->mask = 1 << i;
2038 INIT_LIST_HEAD(&atchan->active_list);
2039 INIT_LIST_HEAD(&atchan->queue);
2040 INIT_LIST_HEAD(&atchan->free_list);
2042 tasklet_init(&atchan->tasklet, atc_tasklet,
2043 (unsigned long)atchan);
2044 atc_enable_chan_irq(atdma, i);
2047 /* set base routines */
2048 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2049 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2050 atdma->dma_common.device_tx_status = atc_tx_status;
2051 atdma->dma_common.device_issue_pending = atc_issue_pending;
2052 atdma->dma_common.dev = &pdev->dev;
2054 /* set prep routines based on capability */
2055 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2056 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2058 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2059 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2061 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2062 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2063 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2064 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2067 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2068 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2069 /* controller can do slave DMA: can trigger cyclic transfers */
2070 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2071 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2072 atdma->dma_common.device_config = atc_config;
2073 atdma->dma_common.device_pause = atc_pause;
2074 atdma->dma_common.device_resume = atc_resume;
2075 atdma->dma_common.device_terminate_all = atc_terminate_all;
2076 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2077 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2078 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2079 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2082 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2083 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2085 dma_writel(atdma, EN, AT_DMA_ENABLE);
2087 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2088 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2089 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2090 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
2091 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "",
2092 plat_dat->nr_channels);
2094 dma_async_device_register(&atdma->dma_common);
2097 * Do not return an error if the dmac node is not present in order to
2098 * not break the existing way of requesting channel with
2099 * dma_request_channel().
2101 if (pdev->dev.of_node) {
2102 err = of_dma_controller_register(pdev->dev.of_node,
2103 at_dma_xlate, atdma);
2104 if (err) {
2105 dev_err(&pdev->dev, "could not register of_dma_controller\n");
2106 goto err_of_dma_controller_register;
2110 return 0;
2112 err_of_dma_controller_register:
2113 dma_async_device_unregister(&atdma->dma_common);
2114 dma_pool_destroy(atdma->memset_pool);
2115 err_memset_pool_create:
2116 dma_pool_destroy(atdma->dma_desc_pool);
2117 err_desc_pool_create:
2118 free_irq(platform_get_irq(pdev, 0), atdma);
2119 err_irq:
2120 clk_disable_unprepare(atdma->clk);
2121 err_clk_prepare:
2122 clk_put(atdma->clk);
2123 err_clk:
2124 iounmap(atdma->regs);
2125 atdma->regs = NULL;
2126 err_release_r:
2127 release_mem_region(io->start, size);
2128 err_kfree:
2129 kfree(atdma);
2130 return err;
2133 static int at_dma_remove(struct platform_device *pdev)
2135 struct at_dma *atdma = platform_get_drvdata(pdev);
2136 struct dma_chan *chan, *_chan;
2137 struct resource *io;
2139 at_dma_off(atdma);
2140 dma_async_device_unregister(&atdma->dma_common);
2142 dma_pool_destroy(atdma->memset_pool);
2143 dma_pool_destroy(atdma->dma_desc_pool);
2144 free_irq(platform_get_irq(pdev, 0), atdma);
2146 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2147 device_node) {
2148 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2150 /* Disable interrupts */
2151 atc_disable_chan_irq(atdma, chan->chan_id);
2153 tasklet_kill(&atchan->tasklet);
2154 list_del(&chan->device_node);
2157 clk_disable_unprepare(atdma->clk);
2158 clk_put(atdma->clk);
2160 iounmap(atdma->regs);
2161 atdma->regs = NULL;
2163 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2164 release_mem_region(io->start, resource_size(io));
2166 kfree(atdma);
2168 return 0;
2171 static void at_dma_shutdown(struct platform_device *pdev)
2173 struct at_dma *atdma = platform_get_drvdata(pdev);
2175 at_dma_off(platform_get_drvdata(pdev));
2176 clk_disable_unprepare(atdma->clk);
2179 static int at_dma_prepare(struct device *dev)
2181 struct platform_device *pdev = to_platform_device(dev);
2182 struct at_dma *atdma = platform_get_drvdata(pdev);
2183 struct dma_chan *chan, *_chan;
2185 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2186 device_node) {
2187 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2188 /* wait for transaction completion (except in cyclic case) */
2189 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2190 return -EAGAIN;
2192 return 0;
2195 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2197 struct dma_chan *chan = &atchan->chan_common;
2199 /* Channel should be paused by user
2200 * do it anyway even if it is not done already */
2201 if (!atc_chan_is_paused(atchan)) {
2202 dev_warn(chan2dev(chan),
2203 "cyclic channel not paused, should be done by channel user\n");
2204 atc_pause(chan);
2207 /* now preserve additional data for cyclic operations */
2208 /* next descriptor address in the cyclic list */
2209 atchan->save_dscr = channel_readl(atchan, DSCR);
2211 vdbg_dump_regs(atchan);
2214 static int at_dma_suspend_noirq(struct device *dev)
2216 struct platform_device *pdev = to_platform_device(dev);
2217 struct at_dma *atdma = platform_get_drvdata(pdev);
2218 struct dma_chan *chan, *_chan;
2220 /* preserve data */
2221 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2222 device_node) {
2223 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2225 if (atc_chan_is_cyclic(atchan))
2226 atc_suspend_cyclic(atchan);
2227 atchan->save_cfg = channel_readl(atchan, CFG);
2229 atdma->save_imr = dma_readl(atdma, EBCIMR);
2231 /* disable DMA controller */
2232 at_dma_off(atdma);
2233 clk_disable_unprepare(atdma->clk);
2234 return 0;
2237 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2239 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2241 /* restore channel status for cyclic descriptors list:
2242 * next descriptor in the cyclic list at the time of suspend */
2243 channel_writel(atchan, SADDR, 0);
2244 channel_writel(atchan, DADDR, 0);
2245 channel_writel(atchan, CTRLA, 0);
2246 channel_writel(atchan, CTRLB, 0);
2247 channel_writel(atchan, DSCR, atchan->save_dscr);
2248 dma_writel(atdma, CHER, atchan->mask);
2250 /* channel pause status should be removed by channel user
2251 * We cannot take the initiative to do it here */
2253 vdbg_dump_regs(atchan);
2256 static int at_dma_resume_noirq(struct device *dev)
2258 struct platform_device *pdev = to_platform_device(dev);
2259 struct at_dma *atdma = platform_get_drvdata(pdev);
2260 struct dma_chan *chan, *_chan;
2262 /* bring back DMA controller */
2263 clk_prepare_enable(atdma->clk);
2264 dma_writel(atdma, EN, AT_DMA_ENABLE);
2266 /* clear any pending interrupt */
2267 while (dma_readl(atdma, EBCISR))
2268 cpu_relax();
2270 /* restore saved data */
2271 dma_writel(atdma, EBCIER, atdma->save_imr);
2272 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2273 device_node) {
2274 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2276 channel_writel(atchan, CFG, atchan->save_cfg);
2277 if (atc_chan_is_cyclic(atchan))
2278 atc_resume_cyclic(atchan);
2280 return 0;
2283 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2284 .prepare = at_dma_prepare,
2285 .suspend_noirq = at_dma_suspend_noirq,
2286 .resume_noirq = at_dma_resume_noirq,
2289 static struct platform_driver at_dma_driver = {
2290 .remove = at_dma_remove,
2291 .shutdown = at_dma_shutdown,
2292 .id_table = atdma_devtypes,
2293 .driver = {
2294 .name = "at_hdmac",
2295 .pm = &at_dma_dev_pm_ops,
2296 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2300 static int __init at_dma_init(void)
2302 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2304 subsys_initcall(at_dma_init);
2306 static void __exit at_dma_exit(void)
2308 platform_driver_unregister(&at_dma_driver);
2310 module_exit(at_dma_exit);
2312 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2313 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2314 MODULE_LICENSE("GPL");
2315 MODULE_ALIAS("platform:at_hdmac");