Linux 4.9.74
[linux/fpc-iii.git] / drivers / hv / hv.c
blobe0a8216ecf2b8b646bb0dbbe5339d58efc09ee0e
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/hyperv.h>
29 #include <linux/version.h>
30 #include <linux/interrupt.h>
31 #include <linux/clockchips.h>
32 #include <asm/hyperv.h>
33 #include <asm/mshyperv.h>
34 #include "hyperv_vmbus.h"
36 /* The one and only */
37 struct hv_context hv_context = {
38 .synic_initialized = false,
39 .hypercall_page = NULL,
42 #define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
43 #define HV_MAX_MAX_DELTA_TICKS 0xffffffff
44 #define HV_MIN_DELTA_TICKS 1
47 * query_hypervisor_info - Get version info of the windows hypervisor
49 unsigned int host_info_eax;
50 unsigned int host_info_ebx;
51 unsigned int host_info_ecx;
52 unsigned int host_info_edx;
54 static int query_hypervisor_info(void)
56 unsigned int eax;
57 unsigned int ebx;
58 unsigned int ecx;
59 unsigned int edx;
60 unsigned int max_leaf;
61 unsigned int op;
64 * Its assumed that this is called after confirming that Viridian
65 * is present. Query id and revision.
67 eax = 0;
68 ebx = 0;
69 ecx = 0;
70 edx = 0;
71 op = HVCPUID_VENDOR_MAXFUNCTION;
72 cpuid(op, &eax, &ebx, &ecx, &edx);
74 max_leaf = eax;
76 if (max_leaf >= HVCPUID_VERSION) {
77 eax = 0;
78 ebx = 0;
79 ecx = 0;
80 edx = 0;
81 op = HVCPUID_VERSION;
82 cpuid(op, &eax, &ebx, &ecx, &edx);
83 host_info_eax = eax;
84 host_info_ebx = ebx;
85 host_info_ecx = ecx;
86 host_info_edx = edx;
88 return max_leaf;
92 * hv_do_hypercall- Invoke the specified hypercall
94 u64 hv_do_hypercall(u64 control, void *input, void *output)
96 u64 input_address = (input) ? virt_to_phys(input) : 0;
97 u64 output_address = (output) ? virt_to_phys(output) : 0;
98 void *hypercall_page = hv_context.hypercall_page;
99 #ifdef CONFIG_X86_64
100 u64 hv_status = 0;
102 if (!hypercall_page)
103 return (u64)ULLONG_MAX;
105 __asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
106 __asm__ __volatile__("call *%3" : "=a" (hv_status) :
107 "c" (control), "d" (input_address),
108 "m" (hypercall_page));
110 return hv_status;
112 #else
114 u32 control_hi = control >> 32;
115 u32 control_lo = control & 0xFFFFFFFF;
116 u32 hv_status_hi = 1;
117 u32 hv_status_lo = 1;
118 u32 input_address_hi = input_address >> 32;
119 u32 input_address_lo = input_address & 0xFFFFFFFF;
120 u32 output_address_hi = output_address >> 32;
121 u32 output_address_lo = output_address & 0xFFFFFFFF;
123 if (!hypercall_page)
124 return (u64)ULLONG_MAX;
126 __asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
127 "=a"(hv_status_lo) : "d" (control_hi),
128 "a" (control_lo), "b" (input_address_hi),
129 "c" (input_address_lo), "D"(output_address_hi),
130 "S"(output_address_lo), "m" (hypercall_page));
132 return hv_status_lo | ((u64)hv_status_hi << 32);
133 #endif /* !x86_64 */
135 EXPORT_SYMBOL_GPL(hv_do_hypercall);
137 #ifdef CONFIG_X86_64
138 static cycle_t read_hv_clock_tsc(struct clocksource *arg)
140 cycle_t current_tick;
141 struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page;
143 if (tsc_pg->tsc_sequence != 0) {
145 * Use the tsc page to compute the value.
148 while (1) {
149 cycle_t tmp;
150 u32 sequence = tsc_pg->tsc_sequence;
151 u64 cur_tsc;
152 u64 scale = tsc_pg->tsc_scale;
153 s64 offset = tsc_pg->tsc_offset;
155 rdtscll(cur_tsc);
156 /* current_tick = ((cur_tsc *scale) >> 64) + offset */
157 asm("mulq %3"
158 : "=d" (current_tick), "=a" (tmp)
159 : "a" (cur_tsc), "r" (scale));
161 current_tick += offset;
162 if (tsc_pg->tsc_sequence == sequence)
163 return current_tick;
165 if (tsc_pg->tsc_sequence != 0)
166 continue;
168 * Fallback using MSR method.
170 break;
173 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
174 return current_tick;
177 static struct clocksource hyperv_cs_tsc = {
178 .name = "hyperv_clocksource_tsc_page",
179 .rating = 425,
180 .read = read_hv_clock_tsc,
181 .mask = CLOCKSOURCE_MASK(64),
182 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
184 #endif
188 * hv_init - Main initialization routine.
190 * This routine must be called before any other routines in here are called
192 int hv_init(void)
194 int max_leaf;
195 union hv_x64_msr_hypercall_contents hypercall_msr;
196 void *virtaddr = NULL;
198 memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
199 memset(hv_context.synic_message_page, 0,
200 sizeof(void *) * NR_CPUS);
201 memset(hv_context.post_msg_page, 0,
202 sizeof(void *) * NR_CPUS);
203 memset(hv_context.vp_index, 0,
204 sizeof(int) * NR_CPUS);
205 memset(hv_context.event_dpc, 0,
206 sizeof(void *) * NR_CPUS);
207 memset(hv_context.msg_dpc, 0,
208 sizeof(void *) * NR_CPUS);
209 memset(hv_context.clk_evt, 0,
210 sizeof(void *) * NR_CPUS);
212 max_leaf = query_hypervisor_info();
215 * Write our OS ID.
217 hv_context.guestid = generate_guest_id(0, LINUX_VERSION_CODE, 0);
218 wrmsrl(HV_X64_MSR_GUEST_OS_ID, hv_context.guestid);
220 /* See if the hypercall page is already set */
221 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
223 virtaddr = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
225 if (!virtaddr)
226 goto cleanup;
228 hypercall_msr.enable = 1;
230 hypercall_msr.guest_physical_address = vmalloc_to_pfn(virtaddr);
231 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
233 /* Confirm that hypercall page did get setup. */
234 hypercall_msr.as_uint64 = 0;
235 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
237 if (!hypercall_msr.enable)
238 goto cleanup;
240 hv_context.hypercall_page = virtaddr;
242 #ifdef CONFIG_X86_64
243 if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
244 union hv_x64_msr_hypercall_contents tsc_msr;
245 void *va_tsc;
247 va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
248 if (!va_tsc)
249 goto cleanup;
250 hv_context.tsc_page = va_tsc;
252 rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
254 tsc_msr.enable = 1;
255 tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc);
257 wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
258 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
260 #endif
261 return 0;
263 cleanup:
264 if (virtaddr) {
265 if (hypercall_msr.enable) {
266 hypercall_msr.as_uint64 = 0;
267 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
270 vfree(virtaddr);
273 return -ENOTSUPP;
277 * hv_cleanup - Cleanup routine.
279 * This routine is called normally during driver unloading or exiting.
281 void hv_cleanup(bool crash)
283 union hv_x64_msr_hypercall_contents hypercall_msr;
285 /* Reset our OS id */
286 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
288 if (hv_context.hypercall_page) {
289 hypercall_msr.as_uint64 = 0;
290 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
291 if (!crash)
292 vfree(hv_context.hypercall_page);
293 hv_context.hypercall_page = NULL;
296 #ifdef CONFIG_X86_64
298 * Cleanup the TSC page based CS.
300 if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
302 * Crash can happen in an interrupt context and unregistering
303 * a clocksource is impossible and redundant in this case.
305 if (!oops_in_progress) {
306 clocksource_change_rating(&hyperv_cs_tsc, 10);
307 clocksource_unregister(&hyperv_cs_tsc);
310 hypercall_msr.as_uint64 = 0;
311 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
312 if (!crash) {
313 vfree(hv_context.tsc_page);
314 hv_context.tsc_page = NULL;
317 #endif
321 * hv_post_message - Post a message using the hypervisor message IPC.
323 * This involves a hypercall.
325 int hv_post_message(union hv_connection_id connection_id,
326 enum hv_message_type message_type,
327 void *payload, size_t payload_size)
330 struct hv_input_post_message *aligned_msg;
331 u64 status;
333 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
334 return -EMSGSIZE;
336 aligned_msg = (struct hv_input_post_message *)
337 hv_context.post_msg_page[get_cpu()];
339 aligned_msg->connectionid = connection_id;
340 aligned_msg->reserved = 0;
341 aligned_msg->message_type = message_type;
342 aligned_msg->payload_size = payload_size;
343 memcpy((void *)aligned_msg->payload, payload, payload_size);
345 status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
347 put_cpu();
348 return status & 0xFFFF;
351 static int hv_ce_set_next_event(unsigned long delta,
352 struct clock_event_device *evt)
354 cycle_t current_tick;
356 WARN_ON(!clockevent_state_oneshot(evt));
358 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
359 current_tick += delta;
360 wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick);
361 return 0;
364 static int hv_ce_shutdown(struct clock_event_device *evt)
366 wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0);
367 wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0);
369 return 0;
372 static int hv_ce_set_oneshot(struct clock_event_device *evt)
374 union hv_timer_config timer_cfg;
376 timer_cfg.enable = 1;
377 timer_cfg.auto_enable = 1;
378 timer_cfg.sintx = VMBUS_MESSAGE_SINT;
379 wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
381 return 0;
384 static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
386 dev->name = "Hyper-V clockevent";
387 dev->features = CLOCK_EVT_FEAT_ONESHOT;
388 dev->cpumask = cpumask_of(cpu);
389 dev->rating = 1000;
391 * Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
392 * result in clockevents_config_and_register() taking additional
393 * references to the hv_vmbus module making it impossible to unload.
396 dev->set_state_shutdown = hv_ce_shutdown;
397 dev->set_state_oneshot = hv_ce_set_oneshot;
398 dev->set_next_event = hv_ce_set_next_event;
402 int hv_synic_alloc(void)
404 size_t size = sizeof(struct tasklet_struct);
405 size_t ced_size = sizeof(struct clock_event_device);
406 int cpu;
408 hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids,
409 GFP_ATOMIC);
410 if (hv_context.hv_numa_map == NULL) {
411 pr_err("Unable to allocate NUMA map\n");
412 goto err;
415 for_each_present_cpu(cpu) {
416 hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
417 if (hv_context.event_dpc[cpu] == NULL) {
418 pr_err("Unable to allocate event dpc\n");
419 goto err;
421 tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu);
423 hv_context.msg_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
424 if (hv_context.msg_dpc[cpu] == NULL) {
425 pr_err("Unable to allocate event dpc\n");
426 goto err;
428 tasklet_init(hv_context.msg_dpc[cpu], vmbus_on_msg_dpc, cpu);
430 hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC);
431 if (hv_context.clk_evt[cpu] == NULL) {
432 pr_err("Unable to allocate clock event device\n");
433 goto err;
436 hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu);
438 hv_context.synic_message_page[cpu] =
439 (void *)get_zeroed_page(GFP_ATOMIC);
441 if (hv_context.synic_message_page[cpu] == NULL) {
442 pr_err("Unable to allocate SYNIC message page\n");
443 goto err;
446 hv_context.synic_event_page[cpu] =
447 (void *)get_zeroed_page(GFP_ATOMIC);
449 if (hv_context.synic_event_page[cpu] == NULL) {
450 pr_err("Unable to allocate SYNIC event page\n");
451 goto err;
454 hv_context.post_msg_page[cpu] =
455 (void *)get_zeroed_page(GFP_ATOMIC);
457 if (hv_context.post_msg_page[cpu] == NULL) {
458 pr_err("Unable to allocate post msg page\n");
459 goto err;
462 INIT_LIST_HEAD(&hv_context.percpu_list[cpu]);
465 return 0;
466 err:
467 return -ENOMEM;
470 static void hv_synic_free_cpu(int cpu)
472 kfree(hv_context.event_dpc[cpu]);
473 kfree(hv_context.msg_dpc[cpu]);
474 kfree(hv_context.clk_evt[cpu]);
475 if (hv_context.synic_event_page[cpu])
476 free_page((unsigned long)hv_context.synic_event_page[cpu]);
477 if (hv_context.synic_message_page[cpu])
478 free_page((unsigned long)hv_context.synic_message_page[cpu]);
479 if (hv_context.post_msg_page[cpu])
480 free_page((unsigned long)hv_context.post_msg_page[cpu]);
483 void hv_synic_free(void)
485 int cpu;
487 kfree(hv_context.hv_numa_map);
488 for_each_present_cpu(cpu)
489 hv_synic_free_cpu(cpu);
493 * hv_synic_init - Initialize the Synthethic Interrupt Controller.
495 * If it is already initialized by another entity (ie x2v shim), we need to
496 * retrieve the initialized message and event pages. Otherwise, we create and
497 * initialize the message and event pages.
499 void hv_synic_init(void *arg)
501 u64 version;
502 union hv_synic_simp simp;
503 union hv_synic_siefp siefp;
504 union hv_synic_sint shared_sint;
505 union hv_synic_scontrol sctrl;
506 u64 vp_index;
508 int cpu = smp_processor_id();
510 if (!hv_context.hypercall_page)
511 return;
513 /* Check the version */
514 rdmsrl(HV_X64_MSR_SVERSION, version);
516 /* Setup the Synic's message page */
517 rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
518 simp.simp_enabled = 1;
519 simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
520 >> PAGE_SHIFT;
522 wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
524 /* Setup the Synic's event page */
525 rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
526 siefp.siefp_enabled = 1;
527 siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
528 >> PAGE_SHIFT;
530 wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
532 /* Setup the shared SINT. */
533 rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
535 shared_sint.as_uint64 = 0;
536 shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
537 shared_sint.masked = false;
538 shared_sint.auto_eoi = true;
540 wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
542 /* Enable the global synic bit */
543 rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
544 sctrl.enable = 1;
546 wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
548 hv_context.synic_initialized = true;
551 * Setup the mapping between Hyper-V's notion
552 * of cpuid and Linux' notion of cpuid.
553 * This array will be indexed using Linux cpuid.
555 rdmsrl(HV_X64_MSR_VP_INDEX, vp_index);
556 hv_context.vp_index[cpu] = (u32)vp_index;
559 * Register the per-cpu clockevent source.
561 if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
562 clockevents_config_and_register(hv_context.clk_evt[cpu],
563 HV_TIMER_FREQUENCY,
564 HV_MIN_DELTA_TICKS,
565 HV_MAX_MAX_DELTA_TICKS);
566 return;
570 * hv_synic_clockevents_cleanup - Cleanup clockevent devices
572 void hv_synic_clockevents_cleanup(void)
574 int cpu;
576 if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE))
577 return;
579 for_each_online_cpu(cpu)
580 clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
584 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
586 void hv_synic_cleanup(void *arg)
588 union hv_synic_sint shared_sint;
589 union hv_synic_simp simp;
590 union hv_synic_siefp siefp;
591 union hv_synic_scontrol sctrl;
592 int cpu = smp_processor_id();
594 if (!hv_context.synic_initialized)
595 return;
597 /* Turn off clockevent device */
598 if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
599 hv_ce_shutdown(hv_context.clk_evt[cpu]);
601 rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
603 shared_sint.masked = 1;
605 /* Need to correctly cleanup in the case of SMP!!! */
606 /* Disable the interrupt */
607 wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
609 rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
610 simp.simp_enabled = 0;
611 simp.base_simp_gpa = 0;
613 wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
615 rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
616 siefp.siefp_enabled = 0;
617 siefp.base_siefp_gpa = 0;
619 wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
621 /* Disable the global synic bit */
622 rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
623 sctrl.enable = 0;
624 wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);