alx: fix alx_poll()
[linux/fpc-iii.git] / block / cfq-iosched.c
blob91c25f261c912e546f46862512dc650adbc2acdb
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
21 * tunables
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache *cfq_pool;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70 struct cfq_ttime {
71 unsigned long last_end_request;
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 u64 min_vdisktime;
89 struct cfq_ttime ttime;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
95 * Per process-grouping structure
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
132 /* pending priority requests */
133 int prio_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class;
141 pid_t pid;
143 u32 seek_history;
144 sector_t last_request_pos;
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
157 enum wl_class_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
165 * Second index in the service_trees.
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced;
179 /* number of ios merged */
180 struct blkg_rwstat merged;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued;
187 /* total sectors transferred */
188 struct blkg_stat sectors;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 /* must be the first member */
218 struct blkg_policy_data pd;
220 /* group service_tree member */
221 struct rb_node rb_node;
223 /* group service_tree key */
224 u64 vdisktime;
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
233 * of the parent.
235 int nr_active;
236 unsigned int children_weight;
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
248 unsigned int vfraction;
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
256 unsigned int weight;
257 unsigned int new_weight;
258 unsigned int dev_weight;
260 unsigned int leaf_weight;
261 unsigned int new_leaf_weight;
262 unsigned int dev_leaf_weight;
264 /* number of cfqq currently on this group */
265 int nr_cfqq;
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
273 unsigned int busy_queues_avg[CFQ_PRIO_NR];
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
282 struct cfq_rb_root service_trees[2][3];
283 struct cfq_rb_root service_tree_idle;
285 unsigned long saved_wl_slice;
286 enum wl_type_t saved_wl_type;
287 enum wl_class_t saved_wl_class;
289 /* number of requests that are on the dispatch list or inside driver */
290 int dispatched;
291 struct cfq_ttime ttime;
292 struct cfqg_stats stats; /* stats for this cfqg */
293 struct cfqg_stats dead_stats; /* stats pushed from dead children */
296 struct cfq_io_cq {
297 struct io_cq icq; /* must be the first member */
298 struct cfq_queue *cfqq[2];
299 struct cfq_ttime ttime;
300 int ioprio; /* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_id; /* the current blkcg ID */
303 #endif
307 * Per block device queue structure
309 struct cfq_data {
310 struct request_queue *queue;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree;
313 struct cfq_group *root_group;
316 * The priority currently being served
318 enum wl_class_t serving_wl_class;
319 enum wl_type_t serving_wl_type;
320 unsigned long workload_expires;
321 struct cfq_group *serving_group;
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
328 struct rb_root prio_trees[CFQ_PRIO_LISTS];
330 unsigned int busy_queues;
331 unsigned int busy_sync_queues;
333 int rq_in_driver;
334 int rq_in_flight[2];
337 * queue-depth detection
339 int rq_queued;
340 int hw_tag;
342 * hw_tag can be
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 * 0 => no NCQ
347 int hw_tag_est_depth;
348 unsigned int hw_tag_samples;
351 * idle window management
353 struct timer_list idle_slice_timer;
354 struct work_struct unplug_work;
356 struct cfq_queue *active_queue;
357 struct cfq_io_cq *active_cic;
360 * async queue for each priority case
362 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 struct cfq_queue *async_idle_cfqq;
365 sector_t last_position;
368 * tunables, see top of file
370 unsigned int cfq_quantum;
371 unsigned int cfq_fifo_expire[2];
372 unsigned int cfq_back_penalty;
373 unsigned int cfq_back_max;
374 unsigned int cfq_slice[2];
375 unsigned int cfq_slice_async_rq;
376 unsigned int cfq_slice_idle;
377 unsigned int cfq_group_idle;
378 unsigned int cfq_latency;
379 unsigned int cfq_target_latency;
382 * Fallback dummy cfqq for extreme OOM conditions
384 struct cfq_queue oom_cfqq;
386 unsigned long last_delayed_sync;
389 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
391 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 enum wl_class_t class,
393 enum wl_type_t type)
395 if (!cfqg)
396 return NULL;
398 if (class == IDLE_WORKLOAD)
399 return &cfqg->service_tree_idle;
401 return &cfqg->service_trees[class][type];
404 enum cfqq_state_flags {
405 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
420 #define CFQ_CFQQ_FNS(name) \
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
434 CFQ_CFQQ_FNS(on_rr);
435 CFQ_CFQQ_FNS(wait_request);
436 CFQ_CFQQ_FNS(must_dispatch);
437 CFQ_CFQQ_FNS(must_alloc_slice);
438 CFQ_CFQQ_FNS(fifo_expire);
439 CFQ_CFQQ_FNS(idle_window);
440 CFQ_CFQQ_FNS(prio_changed);
441 CFQ_CFQQ_FNS(slice_new);
442 CFQ_CFQQ_FNS(sync);
443 CFQ_CFQQ_FNS(coop);
444 CFQ_CFQQ_FNS(split_coop);
445 CFQ_CFQQ_FNS(deep);
446 CFQ_CFQQ_FNS(wait_busy);
447 #undef CFQ_CFQQ_FNS
449 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
451 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
454 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
456 return pd_to_blkg(&cfqg->pd);
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
461 /* cfqg stats flags */
462 enum cfqg_stats_flags {
463 CFQG_stats_waiting = 0,
464 CFQG_stats_idling,
465 CFQG_stats_empty,
468 #define CFQG_FLAG_FNS(name) \
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
471 stats->flags |= (1 << CFQG_stats_##name); \
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
482 CFQG_FLAG_FNS(waiting)
483 CFQG_FLAG_FNS(idling)
484 CFQG_FLAG_FNS(empty)
485 #undef CFQG_FLAG_FNS
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
490 unsigned long long now;
492 if (!cfqg_stats_waiting(stats))
493 return;
495 now = sched_clock();
496 if (time_after64(now, stats->start_group_wait_time))
497 blkg_stat_add(&stats->group_wait_time,
498 now - stats->start_group_wait_time);
499 cfqg_stats_clear_waiting(stats);
502 /* This should be called with the queue_lock held. */
503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 struct cfq_group *curr_cfqg)
506 struct cfqg_stats *stats = &cfqg->stats;
508 if (cfqg_stats_waiting(stats))
509 return;
510 if (cfqg == curr_cfqg)
511 return;
512 stats->start_group_wait_time = sched_clock();
513 cfqg_stats_mark_waiting(stats);
516 /* This should be called with the queue_lock held. */
517 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
519 unsigned long long now;
521 if (!cfqg_stats_empty(stats))
522 return;
524 now = sched_clock();
525 if (time_after64(now, stats->start_empty_time))
526 blkg_stat_add(&stats->empty_time,
527 now - stats->start_empty_time);
528 cfqg_stats_clear_empty(stats);
531 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
533 blkg_stat_add(&cfqg->stats.dequeue, 1);
536 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
538 struct cfqg_stats *stats = &cfqg->stats;
540 if (blkg_rwstat_total(&stats->queued))
541 return;
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
548 if (cfqg_stats_empty(stats))
549 return;
551 stats->start_empty_time = sched_clock();
552 cfqg_stats_mark_empty(stats);
555 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
557 struct cfqg_stats *stats = &cfqg->stats;
559 if (cfqg_stats_idling(stats)) {
560 unsigned long long now = sched_clock();
562 if (time_after64(now, stats->start_idle_time))
563 blkg_stat_add(&stats->idle_time,
564 now - stats->start_idle_time);
565 cfqg_stats_clear_idling(stats);
569 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
571 struct cfqg_stats *stats = &cfqg->stats;
573 BUG_ON(cfqg_stats_idling(stats));
575 stats->start_idle_time = sched_clock();
576 cfqg_stats_mark_idling(stats);
579 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
581 struct cfqg_stats *stats = &cfqg->stats;
583 blkg_stat_add(&stats->avg_queue_size_sum,
584 blkg_rwstat_total(&stats->queued));
585 blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 cfqg_stats_update_group_wait_time(stats);
589 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
599 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
603 static struct blkcg_policy blkcg_policy_cfq;
605 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
607 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
610 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
612 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
614 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
617 static inline void cfqg_get(struct cfq_group *cfqg)
619 return blkg_get(cfqg_to_blkg(cfqg));
622 static inline void cfqg_put(struct cfq_group *cfqg)
624 return blkg_put(cfqg_to_blkg(cfqg));
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
628 char __pbuf[128]; \
630 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634 __pbuf, ##args); \
635 } while (0)
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
638 char __pbuf[128]; \
640 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
642 } while (0)
644 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645 struct cfq_group *curr_cfqg, int rw)
647 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648 cfqg_stats_end_empty_time(&cfqg->stats);
649 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653 unsigned long time, unsigned long unaccounted_time)
655 blkg_stat_add(&cfqg->stats.time, time);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658 #endif
661 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
663 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
666 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
668 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
671 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672 uint64_t bytes, int rw)
674 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
679 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680 uint64_t start_time, uint64_t io_start_time, int rw)
682 struct cfqg_stats *stats = &cfqg->stats;
683 unsigned long long now = sched_clock();
685 if (time_after64(now, io_start_time))
686 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687 if (time_after64(io_start_time, start_time))
688 blkg_rwstat_add(&stats->wait_time, rw,
689 io_start_time - start_time);
692 /* @stats = 0 */
693 static void cfqg_stats_reset(struct cfqg_stats *stats)
695 /* queued stats shouldn't be cleared */
696 blkg_rwstat_reset(&stats->service_bytes);
697 blkg_rwstat_reset(&stats->serviced);
698 blkg_rwstat_reset(&stats->merged);
699 blkg_rwstat_reset(&stats->service_time);
700 blkg_rwstat_reset(&stats->wait_time);
701 blkg_stat_reset(&stats->time);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 blkg_stat_reset(&stats->unaccounted_time);
704 blkg_stat_reset(&stats->avg_queue_size_sum);
705 blkg_stat_reset(&stats->avg_queue_size_samples);
706 blkg_stat_reset(&stats->dequeue);
707 blkg_stat_reset(&stats->group_wait_time);
708 blkg_stat_reset(&stats->idle_time);
709 blkg_stat_reset(&stats->empty_time);
710 #endif
713 /* @to += @from */
714 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
716 /* queued stats shouldn't be cleared */
717 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718 blkg_rwstat_merge(&to->serviced, &from->serviced);
719 blkg_rwstat_merge(&to->merged, &from->merged);
720 blkg_rwstat_merge(&to->service_time, &from->service_time);
721 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722 blkg_stat_merge(&from->time, &from->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727 blkg_stat_merge(&to->dequeue, &from->dequeue);
728 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729 blkg_stat_merge(&to->idle_time, &from->idle_time);
730 blkg_stat_merge(&to->empty_time, &from->empty_time);
731 #endif
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
739 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
741 struct cfq_group *parent = cfqg_parent(cfqg);
743 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
745 if (unlikely(!parent))
746 return;
748 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750 cfqg_stats_reset(&cfqg->stats);
751 cfqg_stats_reset(&cfqg->dead_stats);
754 #else /* CONFIG_CFQ_GROUP_IOSCHED */
756 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757 static inline void cfqg_get(struct cfq_group *cfqg) { }
758 static inline void cfqg_put(struct cfq_group *cfqg) { }
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764 ##args)
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
767 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768 struct cfq_group *curr_cfqg, int rw) { }
769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770 unsigned long time, unsigned long unaccounted_time) { }
771 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774 uint64_t bytes, int rw) { }
775 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776 uint64_t start_time, uint64_t io_start_time, int rw) { }
778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
780 #define cfq_log(cfqd, fmt, args...) \
781 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 : &cfqg->service_tree_idle; \
788 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 (i == IDLE_WORKLOAD && j == 0); \
790 j++, st = i < IDLE_WORKLOAD ? \
791 &cfqg->service_trees[i][j]: NULL) \
793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 struct cfq_ttime *ttime, bool group_idle)
796 unsigned long slice;
797 if (!sample_valid(ttime->ttime_samples))
798 return false;
799 if (group_idle)
800 slice = cfqd->cfq_group_idle;
801 else
802 slice = cfqd->cfq_slice_idle;
803 return ttime->ttime_mean > slice;
806 static inline bool iops_mode(struct cfq_data *cfqd)
809 * If we are not idling on queues and it is a NCQ drive, parallel
810 * execution of requests is on and measuring time is not possible
811 * in most of the cases until and unless we drive shallower queue
812 * depths and that becomes a performance bottleneck. In such cases
813 * switch to start providing fairness in terms of number of IOs.
815 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816 return true;
817 else
818 return false;
821 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
823 if (cfq_class_idle(cfqq))
824 return IDLE_WORKLOAD;
825 if (cfq_class_rt(cfqq))
826 return RT_WORKLOAD;
827 return BE_WORKLOAD;
831 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
833 if (!cfq_cfqq_sync(cfqq))
834 return ASYNC_WORKLOAD;
835 if (!cfq_cfqq_idle_window(cfqq))
836 return SYNC_NOIDLE_WORKLOAD;
837 return SYNC_WORKLOAD;
840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841 struct cfq_data *cfqd,
842 struct cfq_group *cfqg)
844 if (wl_class == IDLE_WORKLOAD)
845 return cfqg->service_tree_idle.count;
847 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
852 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853 struct cfq_group *cfqg)
855 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
859 static void cfq_dispatch_insert(struct request_queue *, struct request *);
860 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861 struct cfq_io_cq *cic, struct bio *bio,
862 gfp_t gfp_mask);
864 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
866 /* cic->icq is the first member, %NULL will convert to %NULL */
867 return container_of(icq, struct cfq_io_cq, icq);
870 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871 struct io_context *ioc)
873 if (ioc)
874 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875 return NULL;
878 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
880 return cic->cfqq[is_sync];
883 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884 bool is_sync)
886 cic->cfqq[is_sync] = cfqq;
889 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
891 return cic->icq.q->elevator->elevator_data;
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
898 static inline bool cfq_bio_sync(struct bio *bio)
900 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
907 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
909 if (cfqd->busy_queues) {
910 cfq_log(cfqd, "schedule dispatch");
911 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
920 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921 unsigned short prio)
923 const int base_slice = cfqd->cfq_slice[sync];
925 WARN_ON(prio >= IOPRIO_BE_NR);
927 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
930 static inline int
931 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
933 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
944 * scaled = charge / vfraction
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
948 static inline u64 cfqg_scale_charge(unsigned long charge,
949 unsigned int vfraction)
951 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
953 /* charge / vfraction */
954 c <<= CFQ_SERVICE_SHIFT;
955 do_div(c, vfraction);
956 return c;
959 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
961 s64 delta = (s64)(vdisktime - min_vdisktime);
962 if (delta > 0)
963 min_vdisktime = vdisktime;
965 return min_vdisktime;
968 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
970 s64 delta = (s64)(vdisktime - min_vdisktime);
971 if (delta < 0)
972 min_vdisktime = vdisktime;
974 return min_vdisktime;
977 static void update_min_vdisktime(struct cfq_rb_root *st)
979 struct cfq_group *cfqg;
981 if (st->left) {
982 cfqg = rb_entry_cfqg(st->left);
983 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984 cfqg->vdisktime);
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995 struct cfq_group *cfqg, bool rt)
997 unsigned min_q, max_q;
998 unsigned mult = cfq_hist_divisor - 1;
999 unsigned round = cfq_hist_divisor / 2;
1000 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1002 min_q = min(cfqg->busy_queues_avg[rt], busy);
1003 max_q = max(cfqg->busy_queues_avg[rt], busy);
1004 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005 cfq_hist_divisor;
1006 return cfqg->busy_queues_avg[rt];
1009 static inline unsigned
1010 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1012 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1015 static inline unsigned
1016 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1018 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019 if (cfqd->cfq_latency) {
1021 * interested queues (we consider only the ones with the same
1022 * priority class in the cfq group)
1024 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025 cfq_class_rt(cfqq));
1026 unsigned sync_slice = cfqd->cfq_slice[1];
1027 unsigned expect_latency = sync_slice * iq;
1028 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1030 if (expect_latency > group_slice) {
1031 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032 /* scale low_slice according to IO priority
1033 * and sync vs async */
1034 unsigned low_slice =
1035 min(slice, base_low_slice * slice / sync_slice);
1036 /* the adapted slice value is scaled to fit all iqs
1037 * into the target latency */
1038 slice = max(slice * group_slice / expect_latency,
1039 low_slice);
1042 return slice;
1045 static inline void
1046 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1048 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1050 cfqq->slice_start = jiffies;
1051 cfqq->slice_end = jiffies + slice;
1052 cfqq->allocated_slice = slice;
1053 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1061 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1063 if (cfq_cfqq_slice_new(cfqq))
1064 return false;
1065 if (time_before(jiffies, cfqq->slice_end))
1066 return false;
1068 return true;
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1076 static struct request *
1077 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1079 sector_t s1, s2, d1 = 0, d2 = 0;
1080 unsigned long back_max;
1081 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1085 if (rq1 == NULL || rq1 == rq2)
1086 return rq2;
1087 if (rq2 == NULL)
1088 return rq1;
1090 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091 return rq_is_sync(rq1) ? rq1 : rq2;
1093 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1096 s1 = blk_rq_pos(rq1);
1097 s2 = blk_rq_pos(rq2);
1100 * by definition, 1KiB is 2 sectors
1102 back_max = cfqd->cfq_back_max * 2;
1105 * Strict one way elevator _except_ in the case where we allow
1106 * short backward seeks which are biased as twice the cost of a
1107 * similar forward seek.
1109 if (s1 >= last)
1110 d1 = s1 - last;
1111 else if (s1 + back_max >= last)
1112 d1 = (last - s1) * cfqd->cfq_back_penalty;
1113 else
1114 wrap |= CFQ_RQ1_WRAP;
1116 if (s2 >= last)
1117 d2 = s2 - last;
1118 else if (s2 + back_max >= last)
1119 d2 = (last - s2) * cfqd->cfq_back_penalty;
1120 else
1121 wrap |= CFQ_RQ2_WRAP;
1123 /* Found required data */
1126 * By doing switch() on the bit mask "wrap" we avoid having to
1127 * check two variables for all permutations: --> faster!
1129 switch (wrap) {
1130 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131 if (d1 < d2)
1132 return rq1;
1133 else if (d2 < d1)
1134 return rq2;
1135 else {
1136 if (s1 >= s2)
1137 return rq1;
1138 else
1139 return rq2;
1142 case CFQ_RQ2_WRAP:
1143 return rq1;
1144 case CFQ_RQ1_WRAP:
1145 return rq2;
1146 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147 default:
1149 * Since both rqs are wrapped,
1150 * start with the one that's further behind head
1151 * (--> only *one* back seek required),
1152 * since back seek takes more time than forward.
1154 if (s1 <= s2)
1155 return rq1;
1156 else
1157 return rq2;
1162 * The below is leftmost cache rbtree addon
1164 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1166 /* Service tree is empty */
1167 if (!root->count)
1168 return NULL;
1170 if (!root->left)
1171 root->left = rb_first(&root->rb);
1173 if (root->left)
1174 return rb_entry(root->left, struct cfq_queue, rb_node);
1176 return NULL;
1179 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1181 if (!root->left)
1182 root->left = rb_first(&root->rb);
1184 if (root->left)
1185 return rb_entry_cfqg(root->left);
1187 return NULL;
1190 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1192 rb_erase(n, root);
1193 RB_CLEAR_NODE(n);
1196 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1198 if (root->left == n)
1199 root->left = NULL;
1200 rb_erase_init(n, &root->rb);
1201 --root->count;
1205 * would be nice to take fifo expire time into account as well
1207 static struct request *
1208 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209 struct request *last)
1211 struct rb_node *rbnext = rb_next(&last->rb_node);
1212 struct rb_node *rbprev = rb_prev(&last->rb_node);
1213 struct request *next = NULL, *prev = NULL;
1215 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1217 if (rbprev)
1218 prev = rb_entry_rq(rbprev);
1220 if (rbnext)
1221 next = rb_entry_rq(rbnext);
1222 else {
1223 rbnext = rb_first(&cfqq->sort_list);
1224 if (rbnext && rbnext != &last->rb_node)
1225 next = rb_entry_rq(rbnext);
1228 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1231 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232 struct cfq_queue *cfqq)
1235 * just an approximation, should be ok.
1237 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1241 static inline s64
1242 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1244 return cfqg->vdisktime - st->min_vdisktime;
1247 static void
1248 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1250 struct rb_node **node = &st->rb.rb_node;
1251 struct rb_node *parent = NULL;
1252 struct cfq_group *__cfqg;
1253 s64 key = cfqg_key(st, cfqg);
1254 int left = 1;
1256 while (*node != NULL) {
1257 parent = *node;
1258 __cfqg = rb_entry_cfqg(parent);
1260 if (key < cfqg_key(st, __cfqg))
1261 node = &parent->rb_left;
1262 else {
1263 node = &parent->rb_right;
1264 left = 0;
1268 if (left)
1269 st->left = &cfqg->rb_node;
1271 rb_link_node(&cfqg->rb_node, parent, node);
1272 rb_insert_color(&cfqg->rb_node, &st->rb);
1275 static void
1276 cfq_update_group_weight(struct cfq_group *cfqg)
1278 if (cfqg->new_weight) {
1279 cfqg->weight = cfqg->new_weight;
1280 cfqg->new_weight = 0;
1284 static void
1285 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1287 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1289 if (cfqg->new_leaf_weight) {
1290 cfqg->leaf_weight = cfqg->new_leaf_weight;
1291 cfqg->new_leaf_weight = 0;
1295 static void
1296 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1298 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1299 struct cfq_group *pos = cfqg;
1300 struct cfq_group *parent;
1301 bool propagate;
1303 /* add to the service tree */
1304 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1306 cfq_update_group_leaf_weight(cfqg);
1307 __cfq_group_service_tree_add(st, cfqg);
1310 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1311 * entitled to. vfraction is calculated by walking the tree
1312 * towards the root calculating the fraction it has at each level.
1313 * The compounded ratio is how much vfraction @cfqg owns.
1315 * Start with the proportion tasks in this cfqg has against active
1316 * children cfqgs - its leaf_weight against children_weight.
1318 propagate = !pos->nr_active++;
1319 pos->children_weight += pos->leaf_weight;
1320 vfr = vfr * pos->leaf_weight / pos->children_weight;
1323 * Compound ->weight walking up the tree. Both activation and
1324 * vfraction calculation are done in the same loop. Propagation
1325 * stops once an already activated node is met. vfraction
1326 * calculation should always continue to the root.
1328 while ((parent = cfqg_parent(pos))) {
1329 if (propagate) {
1330 cfq_update_group_weight(pos);
1331 propagate = !parent->nr_active++;
1332 parent->children_weight += pos->weight;
1334 vfr = vfr * pos->weight / parent->children_weight;
1335 pos = parent;
1338 cfqg->vfraction = max_t(unsigned, vfr, 1);
1341 static void
1342 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1344 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1345 struct cfq_group *__cfqg;
1346 struct rb_node *n;
1348 cfqg->nr_cfqq++;
1349 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1350 return;
1353 * Currently put the group at the end. Later implement something
1354 * so that groups get lesser vtime based on their weights, so that
1355 * if group does not loose all if it was not continuously backlogged.
1357 n = rb_last(&st->rb);
1358 if (n) {
1359 __cfqg = rb_entry_cfqg(n);
1360 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1361 } else
1362 cfqg->vdisktime = st->min_vdisktime;
1363 cfq_group_service_tree_add(st, cfqg);
1366 static void
1367 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1369 struct cfq_group *pos = cfqg;
1370 bool propagate;
1373 * Undo activation from cfq_group_service_tree_add(). Deactivate
1374 * @cfqg and propagate deactivation upwards.
1376 propagate = !--pos->nr_active;
1377 pos->children_weight -= pos->leaf_weight;
1379 while (propagate) {
1380 struct cfq_group *parent = cfqg_parent(pos);
1382 /* @pos has 0 nr_active at this point */
1383 WARN_ON_ONCE(pos->children_weight);
1384 pos->vfraction = 0;
1386 if (!parent)
1387 break;
1389 propagate = !--parent->nr_active;
1390 parent->children_weight -= pos->weight;
1391 pos = parent;
1394 /* remove from the service tree */
1395 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1396 cfq_rb_erase(&cfqg->rb_node, st);
1399 static void
1400 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1402 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1404 BUG_ON(cfqg->nr_cfqq < 1);
1405 cfqg->nr_cfqq--;
1407 /* If there are other cfq queues under this group, don't delete it */
1408 if (cfqg->nr_cfqq)
1409 return;
1411 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1412 cfq_group_service_tree_del(st, cfqg);
1413 cfqg->saved_wl_slice = 0;
1414 cfqg_stats_update_dequeue(cfqg);
1417 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1418 unsigned int *unaccounted_time)
1420 unsigned int slice_used;
1423 * Queue got expired before even a single request completed or
1424 * got expired immediately after first request completion.
1426 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1428 * Also charge the seek time incurred to the group, otherwise
1429 * if there are mutiple queues in the group, each can dispatch
1430 * a single request on seeky media and cause lots of seek time
1431 * and group will never know it.
1433 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1435 } else {
1436 slice_used = jiffies - cfqq->slice_start;
1437 if (slice_used > cfqq->allocated_slice) {
1438 *unaccounted_time = slice_used - cfqq->allocated_slice;
1439 slice_used = cfqq->allocated_slice;
1441 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1442 *unaccounted_time += cfqq->slice_start -
1443 cfqq->dispatch_start;
1446 return slice_used;
1449 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1450 struct cfq_queue *cfqq)
1452 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1453 unsigned int used_sl, charge, unaccounted_sl = 0;
1454 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1455 - cfqg->service_tree_idle.count;
1456 unsigned int vfr;
1458 BUG_ON(nr_sync < 0);
1459 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1461 if (iops_mode(cfqd))
1462 charge = cfqq->slice_dispatch;
1463 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1464 charge = cfqq->allocated_slice;
1467 * Can't update vdisktime while on service tree and cfqg->vfraction
1468 * is valid only while on it. Cache vfr, leave the service tree,
1469 * update vdisktime and go back on. The re-addition to the tree
1470 * will also update the weights as necessary.
1472 vfr = cfqg->vfraction;
1473 cfq_group_service_tree_del(st, cfqg);
1474 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1475 cfq_group_service_tree_add(st, cfqg);
1477 /* This group is being expired. Save the context */
1478 if (time_after(cfqd->workload_expires, jiffies)) {
1479 cfqg->saved_wl_slice = cfqd->workload_expires
1480 - jiffies;
1481 cfqg->saved_wl_type = cfqd->serving_wl_type;
1482 cfqg->saved_wl_class = cfqd->serving_wl_class;
1483 } else
1484 cfqg->saved_wl_slice = 0;
1486 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1487 st->min_vdisktime);
1488 cfq_log_cfqq(cfqq->cfqd, cfqq,
1489 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1490 used_sl, cfqq->slice_dispatch, charge,
1491 iops_mode(cfqd), cfqq->nr_sectors);
1492 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1493 cfqg_stats_set_start_empty_time(cfqg);
1497 * cfq_init_cfqg_base - initialize base part of a cfq_group
1498 * @cfqg: cfq_group to initialize
1500 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1501 * is enabled or not.
1503 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1505 struct cfq_rb_root *st;
1506 int i, j;
1508 for_each_cfqg_st(cfqg, i, j, st)
1509 *st = CFQ_RB_ROOT;
1510 RB_CLEAR_NODE(&cfqg->rb_node);
1512 cfqg->ttime.last_end_request = jiffies;
1515 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1516 static void cfqg_stats_init(struct cfqg_stats *stats)
1518 blkg_rwstat_init(&stats->service_bytes);
1519 blkg_rwstat_init(&stats->serviced);
1520 blkg_rwstat_init(&stats->merged);
1521 blkg_rwstat_init(&stats->service_time);
1522 blkg_rwstat_init(&stats->wait_time);
1523 blkg_rwstat_init(&stats->queued);
1525 blkg_stat_init(&stats->sectors);
1526 blkg_stat_init(&stats->time);
1528 #ifdef CONFIG_DEBUG_BLK_CGROUP
1529 blkg_stat_init(&stats->unaccounted_time);
1530 blkg_stat_init(&stats->avg_queue_size_sum);
1531 blkg_stat_init(&stats->avg_queue_size_samples);
1532 blkg_stat_init(&stats->dequeue);
1533 blkg_stat_init(&stats->group_wait_time);
1534 blkg_stat_init(&stats->idle_time);
1535 blkg_stat_init(&stats->empty_time);
1536 #endif
1539 static void cfq_pd_init(struct blkcg_gq *blkg)
1541 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1543 cfq_init_cfqg_base(cfqg);
1544 cfqg->weight = blkg->blkcg->cfq_weight;
1545 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1546 cfqg_stats_init(&cfqg->stats);
1547 cfqg_stats_init(&cfqg->dead_stats);
1550 static void cfq_pd_offline(struct blkcg_gq *blkg)
1553 * @blkg is going offline and will be ignored by
1554 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1555 * that they don't get lost. If IOs complete after this point, the
1556 * stats for them will be lost. Oh well...
1558 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1561 /* offset delta from cfqg->stats to cfqg->dead_stats */
1562 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1563 offsetof(struct cfq_group, stats);
1565 /* to be used by recursive prfill, sums live and dead stats recursively */
1566 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1568 u64 sum = 0;
1570 sum += blkg_stat_recursive_sum(pd, off);
1571 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1572 return sum;
1575 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1576 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1577 int off)
1579 struct blkg_rwstat a, b;
1581 a = blkg_rwstat_recursive_sum(pd, off);
1582 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1583 blkg_rwstat_merge(&a, &b);
1584 return a;
1587 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1589 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1591 cfqg_stats_reset(&cfqg->stats);
1592 cfqg_stats_reset(&cfqg->dead_stats);
1596 * Search for the cfq group current task belongs to. request_queue lock must
1597 * be held.
1599 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1600 struct blkcg *blkcg)
1602 struct request_queue *q = cfqd->queue;
1603 struct cfq_group *cfqg = NULL;
1605 /* avoid lookup for the common case where there's no blkcg */
1606 if (blkcg == &blkcg_root) {
1607 cfqg = cfqd->root_group;
1608 } else {
1609 struct blkcg_gq *blkg;
1611 blkg = blkg_lookup_create(blkcg, q);
1612 if (!IS_ERR(blkg))
1613 cfqg = blkg_to_cfqg(blkg);
1616 return cfqg;
1619 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1621 /* Currently, all async queues are mapped to root group */
1622 if (!cfq_cfqq_sync(cfqq))
1623 cfqg = cfqq->cfqd->root_group;
1625 cfqq->cfqg = cfqg;
1626 /* cfqq reference on cfqg */
1627 cfqg_get(cfqg);
1630 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1631 struct blkg_policy_data *pd, int off)
1633 struct cfq_group *cfqg = pd_to_cfqg(pd);
1635 if (!cfqg->dev_weight)
1636 return 0;
1637 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1640 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1642 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1643 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1644 0, false);
1645 return 0;
1648 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1649 struct blkg_policy_data *pd, int off)
1651 struct cfq_group *cfqg = pd_to_cfqg(pd);
1653 if (!cfqg->dev_leaf_weight)
1654 return 0;
1655 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1658 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1660 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1661 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1662 0, false);
1663 return 0;
1666 static int cfq_print_weight(struct seq_file *sf, void *v)
1668 seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_weight);
1669 return 0;
1672 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1674 seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_leaf_weight);
1675 return 0;
1678 static int __cfqg_set_weight_device(struct cgroup_subsys_state *css,
1679 struct cftype *cft, const char *buf,
1680 bool is_leaf_weight)
1682 struct blkcg *blkcg = css_to_blkcg(css);
1683 struct blkg_conf_ctx ctx;
1684 struct cfq_group *cfqg;
1685 int ret;
1687 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1688 if (ret)
1689 return ret;
1691 ret = -EINVAL;
1692 cfqg = blkg_to_cfqg(ctx.blkg);
1693 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1694 if (!is_leaf_weight) {
1695 cfqg->dev_weight = ctx.v;
1696 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1697 } else {
1698 cfqg->dev_leaf_weight = ctx.v;
1699 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1701 ret = 0;
1704 blkg_conf_finish(&ctx);
1705 return ret;
1708 static int cfqg_set_weight_device(struct cgroup_subsys_state *css,
1709 struct cftype *cft, const char *buf)
1711 return __cfqg_set_weight_device(css, cft, buf, false);
1714 static int cfqg_set_leaf_weight_device(struct cgroup_subsys_state *css,
1715 struct cftype *cft, const char *buf)
1717 return __cfqg_set_weight_device(css, cft, buf, true);
1720 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1721 u64 val, bool is_leaf_weight)
1723 struct blkcg *blkcg = css_to_blkcg(css);
1724 struct blkcg_gq *blkg;
1726 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1727 return -EINVAL;
1729 spin_lock_irq(&blkcg->lock);
1731 if (!is_leaf_weight)
1732 blkcg->cfq_weight = val;
1733 else
1734 blkcg->cfq_leaf_weight = val;
1736 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1737 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1739 if (!cfqg)
1740 continue;
1742 if (!is_leaf_weight) {
1743 if (!cfqg->dev_weight)
1744 cfqg->new_weight = blkcg->cfq_weight;
1745 } else {
1746 if (!cfqg->dev_leaf_weight)
1747 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1751 spin_unlock_irq(&blkcg->lock);
1752 return 0;
1755 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1756 u64 val)
1758 return __cfq_set_weight(css, cft, val, false);
1761 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1762 struct cftype *cft, u64 val)
1764 return __cfq_set_weight(css, cft, val, true);
1767 static int cfqg_print_stat(struct seq_file *sf, void *v)
1769 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1770 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1771 return 0;
1774 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1776 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1777 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1778 return 0;
1781 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1782 struct blkg_policy_data *pd, int off)
1784 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1786 return __blkg_prfill_u64(sf, pd, sum);
1789 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1790 struct blkg_policy_data *pd, int off)
1792 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1794 return __blkg_prfill_rwstat(sf, pd, &sum);
1797 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1799 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1800 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1801 seq_cft(sf)->private, false);
1802 return 0;
1805 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1807 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1808 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1809 seq_cft(sf)->private, true);
1810 return 0;
1813 #ifdef CONFIG_DEBUG_BLK_CGROUP
1814 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1815 struct blkg_policy_data *pd, int off)
1817 struct cfq_group *cfqg = pd_to_cfqg(pd);
1818 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1819 u64 v = 0;
1821 if (samples) {
1822 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1823 v = div64_u64(v, samples);
1825 __blkg_prfill_u64(sf, pd, v);
1826 return 0;
1829 /* print avg_queue_size */
1830 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1832 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1833 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1834 0, false);
1835 return 0;
1837 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1839 static struct cftype cfq_blkcg_files[] = {
1840 /* on root, weight is mapped to leaf_weight */
1842 .name = "weight_device",
1843 .flags = CFTYPE_ONLY_ON_ROOT,
1844 .seq_show = cfqg_print_leaf_weight_device,
1845 .write_string = cfqg_set_leaf_weight_device,
1846 .max_write_len = 256,
1849 .name = "weight",
1850 .flags = CFTYPE_ONLY_ON_ROOT,
1851 .seq_show = cfq_print_leaf_weight,
1852 .write_u64 = cfq_set_leaf_weight,
1855 /* no such mapping necessary for !roots */
1857 .name = "weight_device",
1858 .flags = CFTYPE_NOT_ON_ROOT,
1859 .seq_show = cfqg_print_weight_device,
1860 .write_string = cfqg_set_weight_device,
1861 .max_write_len = 256,
1864 .name = "weight",
1865 .flags = CFTYPE_NOT_ON_ROOT,
1866 .seq_show = cfq_print_weight,
1867 .write_u64 = cfq_set_weight,
1871 .name = "leaf_weight_device",
1872 .seq_show = cfqg_print_leaf_weight_device,
1873 .write_string = cfqg_set_leaf_weight_device,
1874 .max_write_len = 256,
1877 .name = "leaf_weight",
1878 .seq_show = cfq_print_leaf_weight,
1879 .write_u64 = cfq_set_leaf_weight,
1882 /* statistics, covers only the tasks in the cfqg */
1884 .name = "time",
1885 .private = offsetof(struct cfq_group, stats.time),
1886 .seq_show = cfqg_print_stat,
1889 .name = "sectors",
1890 .private = offsetof(struct cfq_group, stats.sectors),
1891 .seq_show = cfqg_print_stat,
1894 .name = "io_service_bytes",
1895 .private = offsetof(struct cfq_group, stats.service_bytes),
1896 .seq_show = cfqg_print_rwstat,
1899 .name = "io_serviced",
1900 .private = offsetof(struct cfq_group, stats.serviced),
1901 .seq_show = cfqg_print_rwstat,
1904 .name = "io_service_time",
1905 .private = offsetof(struct cfq_group, stats.service_time),
1906 .seq_show = cfqg_print_rwstat,
1909 .name = "io_wait_time",
1910 .private = offsetof(struct cfq_group, stats.wait_time),
1911 .seq_show = cfqg_print_rwstat,
1914 .name = "io_merged",
1915 .private = offsetof(struct cfq_group, stats.merged),
1916 .seq_show = cfqg_print_rwstat,
1919 .name = "io_queued",
1920 .private = offsetof(struct cfq_group, stats.queued),
1921 .seq_show = cfqg_print_rwstat,
1924 /* the same statictics which cover the cfqg and its descendants */
1926 .name = "time_recursive",
1927 .private = offsetof(struct cfq_group, stats.time),
1928 .seq_show = cfqg_print_stat_recursive,
1931 .name = "sectors_recursive",
1932 .private = offsetof(struct cfq_group, stats.sectors),
1933 .seq_show = cfqg_print_stat_recursive,
1936 .name = "io_service_bytes_recursive",
1937 .private = offsetof(struct cfq_group, stats.service_bytes),
1938 .seq_show = cfqg_print_rwstat_recursive,
1941 .name = "io_serviced_recursive",
1942 .private = offsetof(struct cfq_group, stats.serviced),
1943 .seq_show = cfqg_print_rwstat_recursive,
1946 .name = "io_service_time_recursive",
1947 .private = offsetof(struct cfq_group, stats.service_time),
1948 .seq_show = cfqg_print_rwstat_recursive,
1951 .name = "io_wait_time_recursive",
1952 .private = offsetof(struct cfq_group, stats.wait_time),
1953 .seq_show = cfqg_print_rwstat_recursive,
1956 .name = "io_merged_recursive",
1957 .private = offsetof(struct cfq_group, stats.merged),
1958 .seq_show = cfqg_print_rwstat_recursive,
1961 .name = "io_queued_recursive",
1962 .private = offsetof(struct cfq_group, stats.queued),
1963 .seq_show = cfqg_print_rwstat_recursive,
1965 #ifdef CONFIG_DEBUG_BLK_CGROUP
1967 .name = "avg_queue_size",
1968 .seq_show = cfqg_print_avg_queue_size,
1971 .name = "group_wait_time",
1972 .private = offsetof(struct cfq_group, stats.group_wait_time),
1973 .seq_show = cfqg_print_stat,
1976 .name = "idle_time",
1977 .private = offsetof(struct cfq_group, stats.idle_time),
1978 .seq_show = cfqg_print_stat,
1981 .name = "empty_time",
1982 .private = offsetof(struct cfq_group, stats.empty_time),
1983 .seq_show = cfqg_print_stat,
1986 .name = "dequeue",
1987 .private = offsetof(struct cfq_group, stats.dequeue),
1988 .seq_show = cfqg_print_stat,
1991 .name = "unaccounted_time",
1992 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1993 .seq_show = cfqg_print_stat,
1995 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1996 { } /* terminate */
1998 #else /* GROUP_IOSCHED */
1999 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
2000 struct blkcg *blkcg)
2002 return cfqd->root_group;
2005 static inline void
2006 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2007 cfqq->cfqg = cfqg;
2010 #endif /* GROUP_IOSCHED */
2013 * The cfqd->service_trees holds all pending cfq_queue's that have
2014 * requests waiting to be processed. It is sorted in the order that
2015 * we will service the queues.
2017 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2018 bool add_front)
2020 struct rb_node **p, *parent;
2021 struct cfq_queue *__cfqq;
2022 unsigned long rb_key;
2023 struct cfq_rb_root *st;
2024 int left;
2025 int new_cfqq = 1;
2027 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2028 if (cfq_class_idle(cfqq)) {
2029 rb_key = CFQ_IDLE_DELAY;
2030 parent = rb_last(&st->rb);
2031 if (parent && parent != &cfqq->rb_node) {
2032 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2033 rb_key += __cfqq->rb_key;
2034 } else
2035 rb_key += jiffies;
2036 } else if (!add_front) {
2038 * Get our rb key offset. Subtract any residual slice
2039 * value carried from last service. A negative resid
2040 * count indicates slice overrun, and this should position
2041 * the next service time further away in the tree.
2043 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2044 rb_key -= cfqq->slice_resid;
2045 cfqq->slice_resid = 0;
2046 } else {
2047 rb_key = -HZ;
2048 __cfqq = cfq_rb_first(st);
2049 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2052 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2053 new_cfqq = 0;
2055 * same position, nothing more to do
2057 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2058 return;
2060 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2061 cfqq->service_tree = NULL;
2064 left = 1;
2065 parent = NULL;
2066 cfqq->service_tree = st;
2067 p = &st->rb.rb_node;
2068 while (*p) {
2069 parent = *p;
2070 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2073 * sort by key, that represents service time.
2075 if (time_before(rb_key, __cfqq->rb_key))
2076 p = &parent->rb_left;
2077 else {
2078 p = &parent->rb_right;
2079 left = 0;
2083 if (left)
2084 st->left = &cfqq->rb_node;
2086 cfqq->rb_key = rb_key;
2087 rb_link_node(&cfqq->rb_node, parent, p);
2088 rb_insert_color(&cfqq->rb_node, &st->rb);
2089 st->count++;
2090 if (add_front || !new_cfqq)
2091 return;
2092 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2095 static struct cfq_queue *
2096 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2097 sector_t sector, struct rb_node **ret_parent,
2098 struct rb_node ***rb_link)
2100 struct rb_node **p, *parent;
2101 struct cfq_queue *cfqq = NULL;
2103 parent = NULL;
2104 p = &root->rb_node;
2105 while (*p) {
2106 struct rb_node **n;
2108 parent = *p;
2109 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2112 * Sort strictly based on sector. Smallest to the left,
2113 * largest to the right.
2115 if (sector > blk_rq_pos(cfqq->next_rq))
2116 n = &(*p)->rb_right;
2117 else if (sector < blk_rq_pos(cfqq->next_rq))
2118 n = &(*p)->rb_left;
2119 else
2120 break;
2121 p = n;
2122 cfqq = NULL;
2125 *ret_parent = parent;
2126 if (rb_link)
2127 *rb_link = p;
2128 return cfqq;
2131 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2133 struct rb_node **p, *parent;
2134 struct cfq_queue *__cfqq;
2136 if (cfqq->p_root) {
2137 rb_erase(&cfqq->p_node, cfqq->p_root);
2138 cfqq->p_root = NULL;
2141 if (cfq_class_idle(cfqq))
2142 return;
2143 if (!cfqq->next_rq)
2144 return;
2146 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2147 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2148 blk_rq_pos(cfqq->next_rq), &parent, &p);
2149 if (!__cfqq) {
2150 rb_link_node(&cfqq->p_node, parent, p);
2151 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2152 } else
2153 cfqq->p_root = NULL;
2157 * Update cfqq's position in the service tree.
2159 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2162 * Resorting requires the cfqq to be on the RR list already.
2164 if (cfq_cfqq_on_rr(cfqq)) {
2165 cfq_service_tree_add(cfqd, cfqq, 0);
2166 cfq_prio_tree_add(cfqd, cfqq);
2171 * add to busy list of queues for service, trying to be fair in ordering
2172 * the pending list according to last request service
2174 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2176 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2177 BUG_ON(cfq_cfqq_on_rr(cfqq));
2178 cfq_mark_cfqq_on_rr(cfqq);
2179 cfqd->busy_queues++;
2180 if (cfq_cfqq_sync(cfqq))
2181 cfqd->busy_sync_queues++;
2183 cfq_resort_rr_list(cfqd, cfqq);
2187 * Called when the cfqq no longer has requests pending, remove it from
2188 * the service tree.
2190 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2192 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2193 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2194 cfq_clear_cfqq_on_rr(cfqq);
2196 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2197 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2198 cfqq->service_tree = NULL;
2200 if (cfqq->p_root) {
2201 rb_erase(&cfqq->p_node, cfqq->p_root);
2202 cfqq->p_root = NULL;
2205 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2206 BUG_ON(!cfqd->busy_queues);
2207 cfqd->busy_queues--;
2208 if (cfq_cfqq_sync(cfqq))
2209 cfqd->busy_sync_queues--;
2213 * rb tree support functions
2215 static void cfq_del_rq_rb(struct request *rq)
2217 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2218 const int sync = rq_is_sync(rq);
2220 BUG_ON(!cfqq->queued[sync]);
2221 cfqq->queued[sync]--;
2223 elv_rb_del(&cfqq->sort_list, rq);
2225 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2227 * Queue will be deleted from service tree when we actually
2228 * expire it later. Right now just remove it from prio tree
2229 * as it is empty.
2231 if (cfqq->p_root) {
2232 rb_erase(&cfqq->p_node, cfqq->p_root);
2233 cfqq->p_root = NULL;
2238 static void cfq_add_rq_rb(struct request *rq)
2240 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2241 struct cfq_data *cfqd = cfqq->cfqd;
2242 struct request *prev;
2244 cfqq->queued[rq_is_sync(rq)]++;
2246 elv_rb_add(&cfqq->sort_list, rq);
2248 if (!cfq_cfqq_on_rr(cfqq))
2249 cfq_add_cfqq_rr(cfqd, cfqq);
2252 * check if this request is a better next-serve candidate
2254 prev = cfqq->next_rq;
2255 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2258 * adjust priority tree position, if ->next_rq changes
2260 if (prev != cfqq->next_rq)
2261 cfq_prio_tree_add(cfqd, cfqq);
2263 BUG_ON(!cfqq->next_rq);
2266 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2268 elv_rb_del(&cfqq->sort_list, rq);
2269 cfqq->queued[rq_is_sync(rq)]--;
2270 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2271 cfq_add_rq_rb(rq);
2272 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2273 rq->cmd_flags);
2276 static struct request *
2277 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2279 struct task_struct *tsk = current;
2280 struct cfq_io_cq *cic;
2281 struct cfq_queue *cfqq;
2283 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2284 if (!cic)
2285 return NULL;
2287 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2288 if (cfqq)
2289 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2291 return NULL;
2294 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2296 struct cfq_data *cfqd = q->elevator->elevator_data;
2298 cfqd->rq_in_driver++;
2299 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2300 cfqd->rq_in_driver);
2302 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2305 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2307 struct cfq_data *cfqd = q->elevator->elevator_data;
2309 WARN_ON(!cfqd->rq_in_driver);
2310 cfqd->rq_in_driver--;
2311 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2312 cfqd->rq_in_driver);
2315 static void cfq_remove_request(struct request *rq)
2317 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2319 if (cfqq->next_rq == rq)
2320 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2322 list_del_init(&rq->queuelist);
2323 cfq_del_rq_rb(rq);
2325 cfqq->cfqd->rq_queued--;
2326 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2327 if (rq->cmd_flags & REQ_PRIO) {
2328 WARN_ON(!cfqq->prio_pending);
2329 cfqq->prio_pending--;
2333 static int cfq_merge(struct request_queue *q, struct request **req,
2334 struct bio *bio)
2336 struct cfq_data *cfqd = q->elevator->elevator_data;
2337 struct request *__rq;
2339 __rq = cfq_find_rq_fmerge(cfqd, bio);
2340 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2341 *req = __rq;
2342 return ELEVATOR_FRONT_MERGE;
2345 return ELEVATOR_NO_MERGE;
2348 static void cfq_merged_request(struct request_queue *q, struct request *req,
2349 int type)
2351 if (type == ELEVATOR_FRONT_MERGE) {
2352 struct cfq_queue *cfqq = RQ_CFQQ(req);
2354 cfq_reposition_rq_rb(cfqq, req);
2358 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2359 struct bio *bio)
2361 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2364 static void
2365 cfq_merged_requests(struct request_queue *q, struct request *rq,
2366 struct request *next)
2368 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2369 struct cfq_data *cfqd = q->elevator->elevator_data;
2372 * reposition in fifo if next is older than rq
2374 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2375 time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2376 cfqq == RQ_CFQQ(next)) {
2377 list_move(&rq->queuelist, &next->queuelist);
2378 rq_set_fifo_time(rq, rq_fifo_time(next));
2381 if (cfqq->next_rq == next)
2382 cfqq->next_rq = rq;
2383 cfq_remove_request(next);
2384 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2386 cfqq = RQ_CFQQ(next);
2388 * all requests of this queue are merged to other queues, delete it
2389 * from the service tree. If it's the active_queue,
2390 * cfq_dispatch_requests() will choose to expire it or do idle
2392 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2393 cfqq != cfqd->active_queue)
2394 cfq_del_cfqq_rr(cfqd, cfqq);
2397 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2398 struct bio *bio)
2400 struct cfq_data *cfqd = q->elevator->elevator_data;
2401 struct cfq_io_cq *cic;
2402 struct cfq_queue *cfqq;
2405 * Disallow merge of a sync bio into an async request.
2407 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2408 return false;
2411 * Lookup the cfqq that this bio will be queued with and allow
2412 * merge only if rq is queued there.
2414 cic = cfq_cic_lookup(cfqd, current->io_context);
2415 if (!cic)
2416 return false;
2418 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2419 return cfqq == RQ_CFQQ(rq);
2422 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2424 del_timer(&cfqd->idle_slice_timer);
2425 cfqg_stats_update_idle_time(cfqq->cfqg);
2428 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2429 struct cfq_queue *cfqq)
2431 if (cfqq) {
2432 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2433 cfqd->serving_wl_class, cfqd->serving_wl_type);
2434 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2435 cfqq->slice_start = 0;
2436 cfqq->dispatch_start = jiffies;
2437 cfqq->allocated_slice = 0;
2438 cfqq->slice_end = 0;
2439 cfqq->slice_dispatch = 0;
2440 cfqq->nr_sectors = 0;
2442 cfq_clear_cfqq_wait_request(cfqq);
2443 cfq_clear_cfqq_must_dispatch(cfqq);
2444 cfq_clear_cfqq_must_alloc_slice(cfqq);
2445 cfq_clear_cfqq_fifo_expire(cfqq);
2446 cfq_mark_cfqq_slice_new(cfqq);
2448 cfq_del_timer(cfqd, cfqq);
2451 cfqd->active_queue = cfqq;
2455 * current cfqq expired its slice (or was too idle), select new one
2457 static void
2458 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2459 bool timed_out)
2461 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2463 if (cfq_cfqq_wait_request(cfqq))
2464 cfq_del_timer(cfqd, cfqq);
2466 cfq_clear_cfqq_wait_request(cfqq);
2467 cfq_clear_cfqq_wait_busy(cfqq);
2470 * If this cfqq is shared between multiple processes, check to
2471 * make sure that those processes are still issuing I/Os within
2472 * the mean seek distance. If not, it may be time to break the
2473 * queues apart again.
2475 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2476 cfq_mark_cfqq_split_coop(cfqq);
2479 * store what was left of this slice, if the queue idled/timed out
2481 if (timed_out) {
2482 if (cfq_cfqq_slice_new(cfqq))
2483 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2484 else
2485 cfqq->slice_resid = cfqq->slice_end - jiffies;
2486 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2489 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2491 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2492 cfq_del_cfqq_rr(cfqd, cfqq);
2494 cfq_resort_rr_list(cfqd, cfqq);
2496 if (cfqq == cfqd->active_queue)
2497 cfqd->active_queue = NULL;
2499 if (cfqd->active_cic) {
2500 put_io_context(cfqd->active_cic->icq.ioc);
2501 cfqd->active_cic = NULL;
2505 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2507 struct cfq_queue *cfqq = cfqd->active_queue;
2509 if (cfqq)
2510 __cfq_slice_expired(cfqd, cfqq, timed_out);
2514 * Get next queue for service. Unless we have a queue preemption,
2515 * we'll simply select the first cfqq in the service tree.
2517 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2519 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2520 cfqd->serving_wl_class, cfqd->serving_wl_type);
2522 if (!cfqd->rq_queued)
2523 return NULL;
2525 /* There is nothing to dispatch */
2526 if (!st)
2527 return NULL;
2528 if (RB_EMPTY_ROOT(&st->rb))
2529 return NULL;
2530 return cfq_rb_first(st);
2533 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2535 struct cfq_group *cfqg;
2536 struct cfq_queue *cfqq;
2537 int i, j;
2538 struct cfq_rb_root *st;
2540 if (!cfqd->rq_queued)
2541 return NULL;
2543 cfqg = cfq_get_next_cfqg(cfqd);
2544 if (!cfqg)
2545 return NULL;
2547 for_each_cfqg_st(cfqg, i, j, st)
2548 if ((cfqq = cfq_rb_first(st)) != NULL)
2549 return cfqq;
2550 return NULL;
2554 * Get and set a new active queue for service.
2556 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2557 struct cfq_queue *cfqq)
2559 if (!cfqq)
2560 cfqq = cfq_get_next_queue(cfqd);
2562 __cfq_set_active_queue(cfqd, cfqq);
2563 return cfqq;
2566 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2567 struct request *rq)
2569 if (blk_rq_pos(rq) >= cfqd->last_position)
2570 return blk_rq_pos(rq) - cfqd->last_position;
2571 else
2572 return cfqd->last_position - blk_rq_pos(rq);
2575 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2576 struct request *rq)
2578 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2581 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2582 struct cfq_queue *cur_cfqq)
2584 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2585 struct rb_node *parent, *node;
2586 struct cfq_queue *__cfqq;
2587 sector_t sector = cfqd->last_position;
2589 if (RB_EMPTY_ROOT(root))
2590 return NULL;
2593 * First, if we find a request starting at the end of the last
2594 * request, choose it.
2596 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2597 if (__cfqq)
2598 return __cfqq;
2601 * If the exact sector wasn't found, the parent of the NULL leaf
2602 * will contain the closest sector.
2604 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2605 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2606 return __cfqq;
2608 if (blk_rq_pos(__cfqq->next_rq) < sector)
2609 node = rb_next(&__cfqq->p_node);
2610 else
2611 node = rb_prev(&__cfqq->p_node);
2612 if (!node)
2613 return NULL;
2615 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2616 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2617 return __cfqq;
2619 return NULL;
2623 * cfqd - obvious
2624 * cur_cfqq - passed in so that we don't decide that the current queue is
2625 * closely cooperating with itself.
2627 * So, basically we're assuming that that cur_cfqq has dispatched at least
2628 * one request, and that cfqd->last_position reflects a position on the disk
2629 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2630 * assumption.
2632 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2633 struct cfq_queue *cur_cfqq)
2635 struct cfq_queue *cfqq;
2637 if (cfq_class_idle(cur_cfqq))
2638 return NULL;
2639 if (!cfq_cfqq_sync(cur_cfqq))
2640 return NULL;
2641 if (CFQQ_SEEKY(cur_cfqq))
2642 return NULL;
2645 * Don't search priority tree if it's the only queue in the group.
2647 if (cur_cfqq->cfqg->nr_cfqq == 1)
2648 return NULL;
2651 * We should notice if some of the queues are cooperating, eg
2652 * working closely on the same area of the disk. In that case,
2653 * we can group them together and don't waste time idling.
2655 cfqq = cfqq_close(cfqd, cur_cfqq);
2656 if (!cfqq)
2657 return NULL;
2659 /* If new queue belongs to different cfq_group, don't choose it */
2660 if (cur_cfqq->cfqg != cfqq->cfqg)
2661 return NULL;
2664 * It only makes sense to merge sync queues.
2666 if (!cfq_cfqq_sync(cfqq))
2667 return NULL;
2668 if (CFQQ_SEEKY(cfqq))
2669 return NULL;
2672 * Do not merge queues of different priority classes
2674 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2675 return NULL;
2677 return cfqq;
2681 * Determine whether we should enforce idle window for this queue.
2684 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2686 enum wl_class_t wl_class = cfqq_class(cfqq);
2687 struct cfq_rb_root *st = cfqq->service_tree;
2689 BUG_ON(!st);
2690 BUG_ON(!st->count);
2692 if (!cfqd->cfq_slice_idle)
2693 return false;
2695 /* We never do for idle class queues. */
2696 if (wl_class == IDLE_WORKLOAD)
2697 return false;
2699 /* We do for queues that were marked with idle window flag. */
2700 if (cfq_cfqq_idle_window(cfqq) &&
2701 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2702 return true;
2705 * Otherwise, we do only if they are the last ones
2706 * in their service tree.
2708 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2709 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2710 return true;
2711 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2712 return false;
2715 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2717 struct cfq_queue *cfqq = cfqd->active_queue;
2718 struct cfq_io_cq *cic;
2719 unsigned long sl, group_idle = 0;
2722 * SSD device without seek penalty, disable idling. But only do so
2723 * for devices that support queuing, otherwise we still have a problem
2724 * with sync vs async workloads.
2726 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2727 return;
2729 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2730 WARN_ON(cfq_cfqq_slice_new(cfqq));
2733 * idle is disabled, either manually or by past process history
2735 if (!cfq_should_idle(cfqd, cfqq)) {
2736 /* no queue idling. Check for group idling */
2737 if (cfqd->cfq_group_idle)
2738 group_idle = cfqd->cfq_group_idle;
2739 else
2740 return;
2744 * still active requests from this queue, don't idle
2746 if (cfqq->dispatched)
2747 return;
2750 * task has exited, don't wait
2752 cic = cfqd->active_cic;
2753 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2754 return;
2757 * If our average think time is larger than the remaining time
2758 * slice, then don't idle. This avoids overrunning the allotted
2759 * time slice.
2761 if (sample_valid(cic->ttime.ttime_samples) &&
2762 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2763 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2764 cic->ttime.ttime_mean);
2765 return;
2768 /* There are other queues in the group, don't do group idle */
2769 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2770 return;
2772 cfq_mark_cfqq_wait_request(cfqq);
2774 if (group_idle)
2775 sl = cfqd->cfq_group_idle;
2776 else
2777 sl = cfqd->cfq_slice_idle;
2779 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2780 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2781 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2782 group_idle ? 1 : 0);
2786 * Move request from internal lists to the request queue dispatch list.
2788 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2790 struct cfq_data *cfqd = q->elevator->elevator_data;
2791 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2793 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2795 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2796 cfq_remove_request(rq);
2797 cfqq->dispatched++;
2798 (RQ_CFQG(rq))->dispatched++;
2799 elv_dispatch_sort(q, rq);
2801 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2802 cfqq->nr_sectors += blk_rq_sectors(rq);
2803 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2807 * return expired entry, or NULL to just start from scratch in rbtree
2809 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2811 struct request *rq = NULL;
2813 if (cfq_cfqq_fifo_expire(cfqq))
2814 return NULL;
2816 cfq_mark_cfqq_fifo_expire(cfqq);
2818 if (list_empty(&cfqq->fifo))
2819 return NULL;
2821 rq = rq_entry_fifo(cfqq->fifo.next);
2822 if (time_before(jiffies, rq_fifo_time(rq)))
2823 rq = NULL;
2825 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2826 return rq;
2829 static inline int
2830 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2832 const int base_rq = cfqd->cfq_slice_async_rq;
2834 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2836 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2840 * Must be called with the queue_lock held.
2842 static int cfqq_process_refs(struct cfq_queue *cfqq)
2844 int process_refs, io_refs;
2846 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2847 process_refs = cfqq->ref - io_refs;
2848 BUG_ON(process_refs < 0);
2849 return process_refs;
2852 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2854 int process_refs, new_process_refs;
2855 struct cfq_queue *__cfqq;
2858 * If there are no process references on the new_cfqq, then it is
2859 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2860 * chain may have dropped their last reference (not just their
2861 * last process reference).
2863 if (!cfqq_process_refs(new_cfqq))
2864 return;
2866 /* Avoid a circular list and skip interim queue merges */
2867 while ((__cfqq = new_cfqq->new_cfqq)) {
2868 if (__cfqq == cfqq)
2869 return;
2870 new_cfqq = __cfqq;
2873 process_refs = cfqq_process_refs(cfqq);
2874 new_process_refs = cfqq_process_refs(new_cfqq);
2876 * If the process for the cfqq has gone away, there is no
2877 * sense in merging the queues.
2879 if (process_refs == 0 || new_process_refs == 0)
2880 return;
2883 * Merge in the direction of the lesser amount of work.
2885 if (new_process_refs >= process_refs) {
2886 cfqq->new_cfqq = new_cfqq;
2887 new_cfqq->ref += process_refs;
2888 } else {
2889 new_cfqq->new_cfqq = cfqq;
2890 cfqq->ref += new_process_refs;
2894 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2895 struct cfq_group *cfqg, enum wl_class_t wl_class)
2897 struct cfq_queue *queue;
2898 int i;
2899 bool key_valid = false;
2900 unsigned long lowest_key = 0;
2901 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2903 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2904 /* select the one with lowest rb_key */
2905 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2906 if (queue &&
2907 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2908 lowest_key = queue->rb_key;
2909 cur_best = i;
2910 key_valid = true;
2914 return cur_best;
2917 static void
2918 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2920 unsigned slice;
2921 unsigned count;
2922 struct cfq_rb_root *st;
2923 unsigned group_slice;
2924 enum wl_class_t original_class = cfqd->serving_wl_class;
2926 /* Choose next priority. RT > BE > IDLE */
2927 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2928 cfqd->serving_wl_class = RT_WORKLOAD;
2929 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2930 cfqd->serving_wl_class = BE_WORKLOAD;
2931 else {
2932 cfqd->serving_wl_class = IDLE_WORKLOAD;
2933 cfqd->workload_expires = jiffies + 1;
2934 return;
2937 if (original_class != cfqd->serving_wl_class)
2938 goto new_workload;
2941 * For RT and BE, we have to choose also the type
2942 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2943 * expiration time
2945 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2946 count = st->count;
2949 * check workload expiration, and that we still have other queues ready
2951 if (count && !time_after(jiffies, cfqd->workload_expires))
2952 return;
2954 new_workload:
2955 /* otherwise select new workload type */
2956 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2957 cfqd->serving_wl_class);
2958 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2959 count = st->count;
2962 * the workload slice is computed as a fraction of target latency
2963 * proportional to the number of queues in that workload, over
2964 * all the queues in the same priority class
2966 group_slice = cfq_group_slice(cfqd, cfqg);
2968 slice = group_slice * count /
2969 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2970 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2971 cfqg));
2973 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2974 unsigned int tmp;
2977 * Async queues are currently system wide. Just taking
2978 * proportion of queues with-in same group will lead to higher
2979 * async ratio system wide as generally root group is going
2980 * to have higher weight. A more accurate thing would be to
2981 * calculate system wide asnc/sync ratio.
2983 tmp = cfqd->cfq_target_latency *
2984 cfqg_busy_async_queues(cfqd, cfqg);
2985 tmp = tmp/cfqd->busy_queues;
2986 slice = min_t(unsigned, slice, tmp);
2988 /* async workload slice is scaled down according to
2989 * the sync/async slice ratio. */
2990 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2991 } else
2992 /* sync workload slice is at least 2 * cfq_slice_idle */
2993 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2995 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2996 cfq_log(cfqd, "workload slice:%d", slice);
2997 cfqd->workload_expires = jiffies + slice;
3000 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3002 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3003 struct cfq_group *cfqg;
3005 if (RB_EMPTY_ROOT(&st->rb))
3006 return NULL;
3007 cfqg = cfq_rb_first_group(st);
3008 update_min_vdisktime(st);
3009 return cfqg;
3012 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3014 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3016 cfqd->serving_group = cfqg;
3018 /* Restore the workload type data */
3019 if (cfqg->saved_wl_slice) {
3020 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3021 cfqd->serving_wl_type = cfqg->saved_wl_type;
3022 cfqd->serving_wl_class = cfqg->saved_wl_class;
3023 } else
3024 cfqd->workload_expires = jiffies - 1;
3026 choose_wl_class_and_type(cfqd, cfqg);
3030 * Select a queue for service. If we have a current active queue,
3031 * check whether to continue servicing it, or retrieve and set a new one.
3033 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3035 struct cfq_queue *cfqq, *new_cfqq = NULL;
3037 cfqq = cfqd->active_queue;
3038 if (!cfqq)
3039 goto new_queue;
3041 if (!cfqd->rq_queued)
3042 return NULL;
3045 * We were waiting for group to get backlogged. Expire the queue
3047 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3048 goto expire;
3051 * The active queue has run out of time, expire it and select new.
3053 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3055 * If slice had not expired at the completion of last request
3056 * we might not have turned on wait_busy flag. Don't expire
3057 * the queue yet. Allow the group to get backlogged.
3059 * The very fact that we have used the slice, that means we
3060 * have been idling all along on this queue and it should be
3061 * ok to wait for this request to complete.
3063 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3064 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3065 cfqq = NULL;
3066 goto keep_queue;
3067 } else
3068 goto check_group_idle;
3072 * The active queue has requests and isn't expired, allow it to
3073 * dispatch.
3075 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3076 goto keep_queue;
3079 * If another queue has a request waiting within our mean seek
3080 * distance, let it run. The expire code will check for close
3081 * cooperators and put the close queue at the front of the service
3082 * tree. If possible, merge the expiring queue with the new cfqq.
3084 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3085 if (new_cfqq) {
3086 if (!cfqq->new_cfqq)
3087 cfq_setup_merge(cfqq, new_cfqq);
3088 goto expire;
3092 * No requests pending. If the active queue still has requests in
3093 * flight or is idling for a new request, allow either of these
3094 * conditions to happen (or time out) before selecting a new queue.
3096 if (timer_pending(&cfqd->idle_slice_timer)) {
3097 cfqq = NULL;
3098 goto keep_queue;
3102 * This is a deep seek queue, but the device is much faster than
3103 * the queue can deliver, don't idle
3105 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3106 (cfq_cfqq_slice_new(cfqq) ||
3107 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3108 cfq_clear_cfqq_deep(cfqq);
3109 cfq_clear_cfqq_idle_window(cfqq);
3112 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3113 cfqq = NULL;
3114 goto keep_queue;
3118 * If group idle is enabled and there are requests dispatched from
3119 * this group, wait for requests to complete.
3121 check_group_idle:
3122 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3123 cfqq->cfqg->dispatched &&
3124 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3125 cfqq = NULL;
3126 goto keep_queue;
3129 expire:
3130 cfq_slice_expired(cfqd, 0);
3131 new_queue:
3133 * Current queue expired. Check if we have to switch to a new
3134 * service tree
3136 if (!new_cfqq)
3137 cfq_choose_cfqg(cfqd);
3139 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3140 keep_queue:
3141 return cfqq;
3144 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3146 int dispatched = 0;
3148 while (cfqq->next_rq) {
3149 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3150 dispatched++;
3153 BUG_ON(!list_empty(&cfqq->fifo));
3155 /* By default cfqq is not expired if it is empty. Do it explicitly */
3156 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3157 return dispatched;
3161 * Drain our current requests. Used for barriers and when switching
3162 * io schedulers on-the-fly.
3164 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3166 struct cfq_queue *cfqq;
3167 int dispatched = 0;
3169 /* Expire the timeslice of the current active queue first */
3170 cfq_slice_expired(cfqd, 0);
3171 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3172 __cfq_set_active_queue(cfqd, cfqq);
3173 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3176 BUG_ON(cfqd->busy_queues);
3178 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3179 return dispatched;
3182 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3183 struct cfq_queue *cfqq)
3185 /* the queue hasn't finished any request, can't estimate */
3186 if (cfq_cfqq_slice_new(cfqq))
3187 return true;
3188 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3189 cfqq->slice_end))
3190 return true;
3192 return false;
3195 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3197 unsigned int max_dispatch;
3200 * Drain async requests before we start sync IO
3202 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3203 return false;
3206 * If this is an async queue and we have sync IO in flight, let it wait
3208 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3209 return false;
3211 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3212 if (cfq_class_idle(cfqq))
3213 max_dispatch = 1;
3216 * Does this cfqq already have too much IO in flight?
3218 if (cfqq->dispatched >= max_dispatch) {
3219 bool promote_sync = false;
3221 * idle queue must always only have a single IO in flight
3223 if (cfq_class_idle(cfqq))
3224 return false;
3227 * If there is only one sync queue
3228 * we can ignore async queue here and give the sync
3229 * queue no dispatch limit. The reason is a sync queue can
3230 * preempt async queue, limiting the sync queue doesn't make
3231 * sense. This is useful for aiostress test.
3233 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3234 promote_sync = true;
3237 * We have other queues, don't allow more IO from this one
3239 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3240 !promote_sync)
3241 return false;
3244 * Sole queue user, no limit
3246 if (cfqd->busy_queues == 1 || promote_sync)
3247 max_dispatch = -1;
3248 else
3250 * Normally we start throttling cfqq when cfq_quantum/2
3251 * requests have been dispatched. But we can drive
3252 * deeper queue depths at the beginning of slice
3253 * subjected to upper limit of cfq_quantum.
3254 * */
3255 max_dispatch = cfqd->cfq_quantum;
3259 * Async queues must wait a bit before being allowed dispatch.
3260 * We also ramp up the dispatch depth gradually for async IO,
3261 * based on the last sync IO we serviced
3263 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3264 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3265 unsigned int depth;
3267 depth = last_sync / cfqd->cfq_slice[1];
3268 if (!depth && !cfqq->dispatched)
3269 depth = 1;
3270 if (depth < max_dispatch)
3271 max_dispatch = depth;
3275 * If we're below the current max, allow a dispatch
3277 return cfqq->dispatched < max_dispatch;
3281 * Dispatch a request from cfqq, moving them to the request queue
3282 * dispatch list.
3284 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3286 struct request *rq;
3288 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3290 if (!cfq_may_dispatch(cfqd, cfqq))
3291 return false;
3294 * follow expired path, else get first next available
3296 rq = cfq_check_fifo(cfqq);
3297 if (!rq)
3298 rq = cfqq->next_rq;
3301 * insert request into driver dispatch list
3303 cfq_dispatch_insert(cfqd->queue, rq);
3305 if (!cfqd->active_cic) {
3306 struct cfq_io_cq *cic = RQ_CIC(rq);
3308 atomic_long_inc(&cic->icq.ioc->refcount);
3309 cfqd->active_cic = cic;
3312 return true;
3316 * Find the cfqq that we need to service and move a request from that to the
3317 * dispatch list
3319 static int cfq_dispatch_requests(struct request_queue *q, int force)
3321 struct cfq_data *cfqd = q->elevator->elevator_data;
3322 struct cfq_queue *cfqq;
3324 if (!cfqd->busy_queues)
3325 return 0;
3327 if (unlikely(force))
3328 return cfq_forced_dispatch(cfqd);
3330 cfqq = cfq_select_queue(cfqd);
3331 if (!cfqq)
3332 return 0;
3335 * Dispatch a request from this cfqq, if it is allowed
3337 if (!cfq_dispatch_request(cfqd, cfqq))
3338 return 0;
3340 cfqq->slice_dispatch++;
3341 cfq_clear_cfqq_must_dispatch(cfqq);
3344 * expire an async queue immediately if it has used up its slice. idle
3345 * queue always expire after 1 dispatch round.
3347 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3348 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3349 cfq_class_idle(cfqq))) {
3350 cfqq->slice_end = jiffies + 1;
3351 cfq_slice_expired(cfqd, 0);
3354 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3355 return 1;
3359 * task holds one reference to the queue, dropped when task exits. each rq
3360 * in-flight on this queue also holds a reference, dropped when rq is freed.
3362 * Each cfq queue took a reference on the parent group. Drop it now.
3363 * queue lock must be held here.
3365 static void cfq_put_queue(struct cfq_queue *cfqq)
3367 struct cfq_data *cfqd = cfqq->cfqd;
3368 struct cfq_group *cfqg;
3370 BUG_ON(cfqq->ref <= 0);
3372 cfqq->ref--;
3373 if (cfqq->ref)
3374 return;
3376 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3377 BUG_ON(rb_first(&cfqq->sort_list));
3378 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3379 cfqg = cfqq->cfqg;
3381 if (unlikely(cfqd->active_queue == cfqq)) {
3382 __cfq_slice_expired(cfqd, cfqq, 0);
3383 cfq_schedule_dispatch(cfqd);
3386 BUG_ON(cfq_cfqq_on_rr(cfqq));
3387 kmem_cache_free(cfq_pool, cfqq);
3388 cfqg_put(cfqg);
3391 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3393 struct cfq_queue *__cfqq, *next;
3396 * If this queue was scheduled to merge with another queue, be
3397 * sure to drop the reference taken on that queue (and others in
3398 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3400 __cfqq = cfqq->new_cfqq;
3401 while (__cfqq) {
3402 if (__cfqq == cfqq) {
3403 WARN(1, "cfqq->new_cfqq loop detected\n");
3404 break;
3406 next = __cfqq->new_cfqq;
3407 cfq_put_queue(__cfqq);
3408 __cfqq = next;
3412 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3414 if (unlikely(cfqq == cfqd->active_queue)) {
3415 __cfq_slice_expired(cfqd, cfqq, 0);
3416 cfq_schedule_dispatch(cfqd);
3419 cfq_put_cooperator(cfqq);
3421 cfq_put_queue(cfqq);
3424 static void cfq_init_icq(struct io_cq *icq)
3426 struct cfq_io_cq *cic = icq_to_cic(icq);
3428 cic->ttime.last_end_request = jiffies;
3431 static void cfq_exit_icq(struct io_cq *icq)
3433 struct cfq_io_cq *cic = icq_to_cic(icq);
3434 struct cfq_data *cfqd = cic_to_cfqd(cic);
3436 if (cic->cfqq[BLK_RW_ASYNC]) {
3437 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3438 cic->cfqq[BLK_RW_ASYNC] = NULL;
3441 if (cic->cfqq[BLK_RW_SYNC]) {
3442 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3443 cic->cfqq[BLK_RW_SYNC] = NULL;
3447 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3449 struct task_struct *tsk = current;
3450 int ioprio_class;
3452 if (!cfq_cfqq_prio_changed(cfqq))
3453 return;
3455 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3456 switch (ioprio_class) {
3457 default:
3458 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3459 case IOPRIO_CLASS_NONE:
3461 * no prio set, inherit CPU scheduling settings
3463 cfqq->ioprio = task_nice_ioprio(tsk);
3464 cfqq->ioprio_class = task_nice_ioclass(tsk);
3465 break;
3466 case IOPRIO_CLASS_RT:
3467 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3468 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3469 break;
3470 case IOPRIO_CLASS_BE:
3471 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3472 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3473 break;
3474 case IOPRIO_CLASS_IDLE:
3475 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3476 cfqq->ioprio = 7;
3477 cfq_clear_cfqq_idle_window(cfqq);
3478 break;
3482 * keep track of original prio settings in case we have to temporarily
3483 * elevate the priority of this queue
3485 cfqq->org_ioprio = cfqq->ioprio;
3486 cfq_clear_cfqq_prio_changed(cfqq);
3489 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3491 int ioprio = cic->icq.ioc->ioprio;
3492 struct cfq_data *cfqd = cic_to_cfqd(cic);
3493 struct cfq_queue *cfqq;
3496 * Check whether ioprio has changed. The condition may trigger
3497 * spuriously on a newly created cic but there's no harm.
3499 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3500 return;
3502 cfqq = cic->cfqq[BLK_RW_ASYNC];
3503 if (cfqq) {
3504 struct cfq_queue *new_cfqq;
3505 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3506 GFP_ATOMIC);
3507 if (new_cfqq) {
3508 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3509 cfq_put_queue(cfqq);
3513 cfqq = cic->cfqq[BLK_RW_SYNC];
3514 if (cfqq)
3515 cfq_mark_cfqq_prio_changed(cfqq);
3517 cic->ioprio = ioprio;
3520 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3521 pid_t pid, bool is_sync)
3523 RB_CLEAR_NODE(&cfqq->rb_node);
3524 RB_CLEAR_NODE(&cfqq->p_node);
3525 INIT_LIST_HEAD(&cfqq->fifo);
3527 cfqq->ref = 0;
3528 cfqq->cfqd = cfqd;
3530 cfq_mark_cfqq_prio_changed(cfqq);
3532 if (is_sync) {
3533 if (!cfq_class_idle(cfqq))
3534 cfq_mark_cfqq_idle_window(cfqq);
3535 cfq_mark_cfqq_sync(cfqq);
3537 cfqq->pid = pid;
3540 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3541 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3543 struct cfq_data *cfqd = cic_to_cfqd(cic);
3544 struct cfq_queue *sync_cfqq;
3545 uint64_t id;
3547 rcu_read_lock();
3548 id = bio_blkcg(bio)->id;
3549 rcu_read_unlock();
3552 * Check whether blkcg has changed. The condition may trigger
3553 * spuriously on a newly created cic but there's no harm.
3555 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3556 return;
3558 sync_cfqq = cic_to_cfqq(cic, 1);
3559 if (sync_cfqq) {
3561 * Drop reference to sync queue. A new sync queue will be
3562 * assigned in new group upon arrival of a fresh request.
3564 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3565 cic_set_cfqq(cic, NULL, 1);
3566 cfq_put_queue(sync_cfqq);
3569 cic->blkcg_id = id;
3571 #else
3572 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3573 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3575 static struct cfq_queue *
3576 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3577 struct bio *bio, gfp_t gfp_mask)
3579 struct blkcg *blkcg;
3580 struct cfq_queue *cfqq, *new_cfqq = NULL;
3581 struct cfq_group *cfqg;
3583 retry:
3584 rcu_read_lock();
3586 blkcg = bio_blkcg(bio);
3587 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3588 cfqq = cic_to_cfqq(cic, is_sync);
3591 * Always try a new alloc if we fell back to the OOM cfqq
3592 * originally, since it should just be a temporary situation.
3594 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3595 cfqq = NULL;
3596 if (new_cfqq) {
3597 cfqq = new_cfqq;
3598 new_cfqq = NULL;
3599 } else if (gfp_mask & __GFP_WAIT) {
3600 rcu_read_unlock();
3601 spin_unlock_irq(cfqd->queue->queue_lock);
3602 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3603 gfp_mask | __GFP_ZERO,
3604 cfqd->queue->node);
3605 spin_lock_irq(cfqd->queue->queue_lock);
3606 if (new_cfqq)
3607 goto retry;
3608 else
3609 return &cfqd->oom_cfqq;
3610 } else {
3611 cfqq = kmem_cache_alloc_node(cfq_pool,
3612 gfp_mask | __GFP_ZERO,
3613 cfqd->queue->node);
3616 if (cfqq) {
3617 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3618 cfq_init_prio_data(cfqq, cic);
3619 cfq_link_cfqq_cfqg(cfqq, cfqg);
3620 cfq_log_cfqq(cfqd, cfqq, "alloced");
3621 } else
3622 cfqq = &cfqd->oom_cfqq;
3625 if (new_cfqq)
3626 kmem_cache_free(cfq_pool, new_cfqq);
3628 rcu_read_unlock();
3629 return cfqq;
3632 static struct cfq_queue **
3633 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3635 switch (ioprio_class) {
3636 case IOPRIO_CLASS_RT:
3637 return &cfqd->async_cfqq[0][ioprio];
3638 case IOPRIO_CLASS_NONE:
3639 ioprio = IOPRIO_NORM;
3640 /* fall through */
3641 case IOPRIO_CLASS_BE:
3642 return &cfqd->async_cfqq[1][ioprio];
3643 case IOPRIO_CLASS_IDLE:
3644 return &cfqd->async_idle_cfqq;
3645 default:
3646 BUG();
3650 static struct cfq_queue *
3651 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3652 struct bio *bio, gfp_t gfp_mask)
3654 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3655 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3656 struct cfq_queue **async_cfqq = NULL;
3657 struct cfq_queue *cfqq = NULL;
3659 if (!is_sync) {
3660 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3661 cfqq = *async_cfqq;
3664 if (!cfqq)
3665 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3668 * pin the queue now that it's allocated, scheduler exit will prune it
3670 if (!is_sync && !(*async_cfqq)) {
3671 cfqq->ref++;
3672 *async_cfqq = cfqq;
3675 cfqq->ref++;
3676 return cfqq;
3679 static void
3680 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3682 unsigned long elapsed = jiffies - ttime->last_end_request;
3683 elapsed = min(elapsed, 2UL * slice_idle);
3685 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3686 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3687 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3690 static void
3691 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3692 struct cfq_io_cq *cic)
3694 if (cfq_cfqq_sync(cfqq)) {
3695 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3696 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3697 cfqd->cfq_slice_idle);
3699 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3700 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3701 #endif
3704 static void
3705 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3706 struct request *rq)
3708 sector_t sdist = 0;
3709 sector_t n_sec = blk_rq_sectors(rq);
3710 if (cfqq->last_request_pos) {
3711 if (cfqq->last_request_pos < blk_rq_pos(rq))
3712 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3713 else
3714 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3717 cfqq->seek_history <<= 1;
3718 if (blk_queue_nonrot(cfqd->queue))
3719 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3720 else
3721 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3725 * Disable idle window if the process thinks too long or seeks so much that
3726 * it doesn't matter
3728 static void
3729 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3730 struct cfq_io_cq *cic)
3732 int old_idle, enable_idle;
3735 * Don't idle for async or idle io prio class
3737 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3738 return;
3740 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3742 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3743 cfq_mark_cfqq_deep(cfqq);
3745 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3746 enable_idle = 0;
3747 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3748 !cfqd->cfq_slice_idle ||
3749 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3750 enable_idle = 0;
3751 else if (sample_valid(cic->ttime.ttime_samples)) {
3752 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3753 enable_idle = 0;
3754 else
3755 enable_idle = 1;
3758 if (old_idle != enable_idle) {
3759 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3760 if (enable_idle)
3761 cfq_mark_cfqq_idle_window(cfqq);
3762 else
3763 cfq_clear_cfqq_idle_window(cfqq);
3768 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3769 * no or if we aren't sure, a 1 will cause a preempt.
3771 static bool
3772 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3773 struct request *rq)
3775 struct cfq_queue *cfqq;
3777 cfqq = cfqd->active_queue;
3778 if (!cfqq)
3779 return false;
3781 if (cfq_class_idle(new_cfqq))
3782 return false;
3784 if (cfq_class_idle(cfqq))
3785 return true;
3788 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3790 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3791 return false;
3794 * if the new request is sync, but the currently running queue is
3795 * not, let the sync request have priority.
3797 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3798 return true;
3800 if (new_cfqq->cfqg != cfqq->cfqg)
3801 return false;
3803 if (cfq_slice_used(cfqq))
3804 return true;
3806 /* Allow preemption only if we are idling on sync-noidle tree */
3807 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3808 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3809 new_cfqq->service_tree->count == 2 &&
3810 RB_EMPTY_ROOT(&cfqq->sort_list))
3811 return true;
3814 * So both queues are sync. Let the new request get disk time if
3815 * it's a metadata request and the current queue is doing regular IO.
3817 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3818 return true;
3821 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3823 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3824 return true;
3826 /* An idle queue should not be idle now for some reason */
3827 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3828 return true;
3830 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3831 return false;
3834 * if this request is as-good as one we would expect from the
3835 * current cfqq, let it preempt
3837 if (cfq_rq_close(cfqd, cfqq, rq))
3838 return true;
3840 return false;
3844 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3845 * let it have half of its nominal slice.
3847 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3849 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3851 cfq_log_cfqq(cfqd, cfqq, "preempt");
3852 cfq_slice_expired(cfqd, 1);
3855 * workload type is changed, don't save slice, otherwise preempt
3856 * doesn't happen
3858 if (old_type != cfqq_type(cfqq))
3859 cfqq->cfqg->saved_wl_slice = 0;
3862 * Put the new queue at the front of the of the current list,
3863 * so we know that it will be selected next.
3865 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3867 cfq_service_tree_add(cfqd, cfqq, 1);
3869 cfqq->slice_end = 0;
3870 cfq_mark_cfqq_slice_new(cfqq);
3874 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3875 * something we should do about it
3877 static void
3878 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3879 struct request *rq)
3881 struct cfq_io_cq *cic = RQ_CIC(rq);
3883 cfqd->rq_queued++;
3884 if (rq->cmd_flags & REQ_PRIO)
3885 cfqq->prio_pending++;
3887 cfq_update_io_thinktime(cfqd, cfqq, cic);
3888 cfq_update_io_seektime(cfqd, cfqq, rq);
3889 cfq_update_idle_window(cfqd, cfqq, cic);
3891 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3893 if (cfqq == cfqd->active_queue) {
3895 * Remember that we saw a request from this process, but
3896 * don't start queuing just yet. Otherwise we risk seeing lots
3897 * of tiny requests, because we disrupt the normal plugging
3898 * and merging. If the request is already larger than a single
3899 * page, let it rip immediately. For that case we assume that
3900 * merging is already done. Ditto for a busy system that
3901 * has other work pending, don't risk delaying until the
3902 * idle timer unplug to continue working.
3904 if (cfq_cfqq_wait_request(cfqq)) {
3905 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3906 cfqd->busy_queues > 1) {
3907 cfq_del_timer(cfqd, cfqq);
3908 cfq_clear_cfqq_wait_request(cfqq);
3909 __blk_run_queue(cfqd->queue);
3910 } else {
3911 cfqg_stats_update_idle_time(cfqq->cfqg);
3912 cfq_mark_cfqq_must_dispatch(cfqq);
3915 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3917 * not the active queue - expire current slice if it is
3918 * idle and has expired it's mean thinktime or this new queue
3919 * has some old slice time left and is of higher priority or
3920 * this new queue is RT and the current one is BE
3922 cfq_preempt_queue(cfqd, cfqq);
3923 __blk_run_queue(cfqd->queue);
3927 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3929 struct cfq_data *cfqd = q->elevator->elevator_data;
3930 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3932 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3933 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3935 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3936 list_add_tail(&rq->queuelist, &cfqq->fifo);
3937 cfq_add_rq_rb(rq);
3938 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3939 rq->cmd_flags);
3940 cfq_rq_enqueued(cfqd, cfqq, rq);
3944 * Update hw_tag based on peak queue depth over 50 samples under
3945 * sufficient load.
3947 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3949 struct cfq_queue *cfqq = cfqd->active_queue;
3951 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3952 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3954 if (cfqd->hw_tag == 1)
3955 return;
3957 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3958 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3959 return;
3962 * If active queue hasn't enough requests and can idle, cfq might not
3963 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3964 * case
3966 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3967 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3968 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3969 return;
3971 if (cfqd->hw_tag_samples++ < 50)
3972 return;
3974 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3975 cfqd->hw_tag = 1;
3976 else
3977 cfqd->hw_tag = 0;
3980 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3982 struct cfq_io_cq *cic = cfqd->active_cic;
3984 /* If the queue already has requests, don't wait */
3985 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3986 return false;
3988 /* If there are other queues in the group, don't wait */
3989 if (cfqq->cfqg->nr_cfqq > 1)
3990 return false;
3992 /* the only queue in the group, but think time is big */
3993 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3994 return false;
3996 if (cfq_slice_used(cfqq))
3997 return true;
3999 /* if slice left is less than think time, wait busy */
4000 if (cic && sample_valid(cic->ttime.ttime_samples)
4001 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4002 return true;
4005 * If think times is less than a jiffy than ttime_mean=0 and above
4006 * will not be true. It might happen that slice has not expired yet
4007 * but will expire soon (4-5 ns) during select_queue(). To cover the
4008 * case where think time is less than a jiffy, mark the queue wait
4009 * busy if only 1 jiffy is left in the slice.
4011 if (cfqq->slice_end - jiffies == 1)
4012 return true;
4014 return false;
4017 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4019 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4020 struct cfq_data *cfqd = cfqq->cfqd;
4021 const int sync = rq_is_sync(rq);
4022 unsigned long now;
4024 now = jiffies;
4025 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4026 !!(rq->cmd_flags & REQ_NOIDLE));
4028 cfq_update_hw_tag(cfqd);
4030 WARN_ON(!cfqd->rq_in_driver);
4031 WARN_ON(!cfqq->dispatched);
4032 cfqd->rq_in_driver--;
4033 cfqq->dispatched--;
4034 (RQ_CFQG(rq))->dispatched--;
4035 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4036 rq_io_start_time_ns(rq), rq->cmd_flags);
4038 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4040 if (sync) {
4041 struct cfq_rb_root *st;
4043 RQ_CIC(rq)->ttime.last_end_request = now;
4045 if (cfq_cfqq_on_rr(cfqq))
4046 st = cfqq->service_tree;
4047 else
4048 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4049 cfqq_type(cfqq));
4051 st->ttime.last_end_request = now;
4052 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4053 cfqd->last_delayed_sync = now;
4056 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4057 cfqq->cfqg->ttime.last_end_request = now;
4058 #endif
4061 * If this is the active queue, check if it needs to be expired,
4062 * or if we want to idle in case it has no pending requests.
4064 if (cfqd->active_queue == cfqq) {
4065 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4067 if (cfq_cfqq_slice_new(cfqq)) {
4068 cfq_set_prio_slice(cfqd, cfqq);
4069 cfq_clear_cfqq_slice_new(cfqq);
4073 * Should we wait for next request to come in before we expire
4074 * the queue.
4076 if (cfq_should_wait_busy(cfqd, cfqq)) {
4077 unsigned long extend_sl = cfqd->cfq_slice_idle;
4078 if (!cfqd->cfq_slice_idle)
4079 extend_sl = cfqd->cfq_group_idle;
4080 cfqq->slice_end = jiffies + extend_sl;
4081 cfq_mark_cfqq_wait_busy(cfqq);
4082 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4086 * Idling is not enabled on:
4087 * - expired queues
4088 * - idle-priority queues
4089 * - async queues
4090 * - queues with still some requests queued
4091 * - when there is a close cooperator
4093 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4094 cfq_slice_expired(cfqd, 1);
4095 else if (sync && cfqq_empty &&
4096 !cfq_close_cooperator(cfqd, cfqq)) {
4097 cfq_arm_slice_timer(cfqd);
4101 if (!cfqd->rq_in_driver)
4102 cfq_schedule_dispatch(cfqd);
4105 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4107 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4108 cfq_mark_cfqq_must_alloc_slice(cfqq);
4109 return ELV_MQUEUE_MUST;
4112 return ELV_MQUEUE_MAY;
4115 static int cfq_may_queue(struct request_queue *q, int rw)
4117 struct cfq_data *cfqd = q->elevator->elevator_data;
4118 struct task_struct *tsk = current;
4119 struct cfq_io_cq *cic;
4120 struct cfq_queue *cfqq;
4123 * don't force setup of a queue from here, as a call to may_queue
4124 * does not necessarily imply that a request actually will be queued.
4125 * so just lookup a possibly existing queue, or return 'may queue'
4126 * if that fails
4128 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4129 if (!cic)
4130 return ELV_MQUEUE_MAY;
4132 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4133 if (cfqq) {
4134 cfq_init_prio_data(cfqq, cic);
4136 return __cfq_may_queue(cfqq);
4139 return ELV_MQUEUE_MAY;
4143 * queue lock held here
4145 static void cfq_put_request(struct request *rq)
4147 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4149 if (cfqq) {
4150 const int rw = rq_data_dir(rq);
4152 BUG_ON(!cfqq->allocated[rw]);
4153 cfqq->allocated[rw]--;
4155 /* Put down rq reference on cfqg */
4156 cfqg_put(RQ_CFQG(rq));
4157 rq->elv.priv[0] = NULL;
4158 rq->elv.priv[1] = NULL;
4160 cfq_put_queue(cfqq);
4164 static struct cfq_queue *
4165 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4166 struct cfq_queue *cfqq)
4168 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4169 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4170 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4171 cfq_put_queue(cfqq);
4172 return cic_to_cfqq(cic, 1);
4176 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4177 * was the last process referring to said cfqq.
4179 static struct cfq_queue *
4180 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4182 if (cfqq_process_refs(cfqq) == 1) {
4183 cfqq->pid = current->pid;
4184 cfq_clear_cfqq_coop(cfqq);
4185 cfq_clear_cfqq_split_coop(cfqq);
4186 return cfqq;
4189 cic_set_cfqq(cic, NULL, 1);
4191 cfq_put_cooperator(cfqq);
4193 cfq_put_queue(cfqq);
4194 return NULL;
4197 * Allocate cfq data structures associated with this request.
4199 static int
4200 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4201 gfp_t gfp_mask)
4203 struct cfq_data *cfqd = q->elevator->elevator_data;
4204 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4205 const int rw = rq_data_dir(rq);
4206 const bool is_sync = rq_is_sync(rq);
4207 struct cfq_queue *cfqq;
4209 might_sleep_if(gfp_mask & __GFP_WAIT);
4211 spin_lock_irq(q->queue_lock);
4213 check_ioprio_changed(cic, bio);
4214 check_blkcg_changed(cic, bio);
4215 new_queue:
4216 cfqq = cic_to_cfqq(cic, is_sync);
4217 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4218 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4219 cic_set_cfqq(cic, cfqq, is_sync);
4220 } else {
4222 * If the queue was seeky for too long, break it apart.
4224 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4225 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4226 cfqq = split_cfqq(cic, cfqq);
4227 if (!cfqq)
4228 goto new_queue;
4232 * Check to see if this queue is scheduled to merge with
4233 * another, closely cooperating queue. The merging of
4234 * queues happens here as it must be done in process context.
4235 * The reference on new_cfqq was taken in merge_cfqqs.
4237 if (cfqq->new_cfqq)
4238 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4241 cfqq->allocated[rw]++;
4243 cfqq->ref++;
4244 cfqg_get(cfqq->cfqg);
4245 rq->elv.priv[0] = cfqq;
4246 rq->elv.priv[1] = cfqq->cfqg;
4247 spin_unlock_irq(q->queue_lock);
4248 return 0;
4251 static void cfq_kick_queue(struct work_struct *work)
4253 struct cfq_data *cfqd =
4254 container_of(work, struct cfq_data, unplug_work);
4255 struct request_queue *q = cfqd->queue;
4257 spin_lock_irq(q->queue_lock);
4258 __blk_run_queue(cfqd->queue);
4259 spin_unlock_irq(q->queue_lock);
4263 * Timer running if the active_queue is currently idling inside its time slice
4265 static void cfq_idle_slice_timer(unsigned long data)
4267 struct cfq_data *cfqd = (struct cfq_data *) data;
4268 struct cfq_queue *cfqq;
4269 unsigned long flags;
4270 int timed_out = 1;
4272 cfq_log(cfqd, "idle timer fired");
4274 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4276 cfqq = cfqd->active_queue;
4277 if (cfqq) {
4278 timed_out = 0;
4281 * We saw a request before the queue expired, let it through
4283 if (cfq_cfqq_must_dispatch(cfqq))
4284 goto out_kick;
4287 * expired
4289 if (cfq_slice_used(cfqq))
4290 goto expire;
4293 * only expire and reinvoke request handler, if there are
4294 * other queues with pending requests
4296 if (!cfqd->busy_queues)
4297 goto out_cont;
4300 * not expired and it has a request pending, let it dispatch
4302 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4303 goto out_kick;
4306 * Queue depth flag is reset only when the idle didn't succeed
4308 cfq_clear_cfqq_deep(cfqq);
4310 expire:
4311 cfq_slice_expired(cfqd, timed_out);
4312 out_kick:
4313 cfq_schedule_dispatch(cfqd);
4314 out_cont:
4315 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4318 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4320 del_timer_sync(&cfqd->idle_slice_timer);
4321 cancel_work_sync(&cfqd->unplug_work);
4324 static void cfq_put_async_queues(struct cfq_data *cfqd)
4326 int i;
4328 for (i = 0; i < IOPRIO_BE_NR; i++) {
4329 if (cfqd->async_cfqq[0][i])
4330 cfq_put_queue(cfqd->async_cfqq[0][i]);
4331 if (cfqd->async_cfqq[1][i])
4332 cfq_put_queue(cfqd->async_cfqq[1][i]);
4335 if (cfqd->async_idle_cfqq)
4336 cfq_put_queue(cfqd->async_idle_cfqq);
4339 static void cfq_exit_queue(struct elevator_queue *e)
4341 struct cfq_data *cfqd = e->elevator_data;
4342 struct request_queue *q = cfqd->queue;
4344 cfq_shutdown_timer_wq(cfqd);
4346 spin_lock_irq(q->queue_lock);
4348 if (cfqd->active_queue)
4349 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4351 cfq_put_async_queues(cfqd);
4353 spin_unlock_irq(q->queue_lock);
4355 cfq_shutdown_timer_wq(cfqd);
4357 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4358 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4359 #else
4360 kfree(cfqd->root_group);
4361 #endif
4362 kfree(cfqd);
4365 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4367 struct cfq_data *cfqd;
4368 struct blkcg_gq *blkg __maybe_unused;
4369 int i, ret;
4370 struct elevator_queue *eq;
4372 eq = elevator_alloc(q, e);
4373 if (!eq)
4374 return -ENOMEM;
4376 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4377 if (!cfqd) {
4378 kobject_put(&eq->kobj);
4379 return -ENOMEM;
4381 eq->elevator_data = cfqd;
4383 cfqd->queue = q;
4384 spin_lock_irq(q->queue_lock);
4385 q->elevator = eq;
4386 spin_unlock_irq(q->queue_lock);
4388 /* Init root service tree */
4389 cfqd->grp_service_tree = CFQ_RB_ROOT;
4391 /* Init root group and prefer root group over other groups by default */
4392 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4393 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4394 if (ret)
4395 goto out_free;
4397 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4398 #else
4399 ret = -ENOMEM;
4400 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4401 GFP_KERNEL, cfqd->queue->node);
4402 if (!cfqd->root_group)
4403 goto out_free;
4405 cfq_init_cfqg_base(cfqd->root_group);
4406 #endif
4407 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4408 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4411 * Not strictly needed (since RB_ROOT just clears the node and we
4412 * zeroed cfqd on alloc), but better be safe in case someone decides
4413 * to add magic to the rb code
4415 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4416 cfqd->prio_trees[i] = RB_ROOT;
4419 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4420 * Grab a permanent reference to it, so that the normal code flow
4421 * will not attempt to free it. oom_cfqq is linked to root_group
4422 * but shouldn't hold a reference as it'll never be unlinked. Lose
4423 * the reference from linking right away.
4425 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4426 cfqd->oom_cfqq.ref++;
4428 spin_lock_irq(q->queue_lock);
4429 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4430 cfqg_put(cfqd->root_group);
4431 spin_unlock_irq(q->queue_lock);
4433 init_timer(&cfqd->idle_slice_timer);
4434 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4435 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4437 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4439 cfqd->cfq_quantum = cfq_quantum;
4440 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4441 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4442 cfqd->cfq_back_max = cfq_back_max;
4443 cfqd->cfq_back_penalty = cfq_back_penalty;
4444 cfqd->cfq_slice[0] = cfq_slice_async;
4445 cfqd->cfq_slice[1] = cfq_slice_sync;
4446 cfqd->cfq_target_latency = cfq_target_latency;
4447 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4448 cfqd->cfq_slice_idle = cfq_slice_idle;
4449 cfqd->cfq_group_idle = cfq_group_idle;
4450 cfqd->cfq_latency = 1;
4451 cfqd->hw_tag = -1;
4453 * we optimistically start assuming sync ops weren't delayed in last
4454 * second, in order to have larger depth for async operations.
4456 cfqd->last_delayed_sync = jiffies - HZ;
4457 return 0;
4459 out_free:
4460 kfree(cfqd);
4461 kobject_put(&eq->kobj);
4462 return ret;
4466 * sysfs parts below -->
4468 static ssize_t
4469 cfq_var_show(unsigned int var, char *page)
4471 return sprintf(page, "%d\n", var);
4474 static ssize_t
4475 cfq_var_store(unsigned int *var, const char *page, size_t count)
4477 char *p = (char *) page;
4479 *var = simple_strtoul(p, &p, 10);
4480 return count;
4483 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4484 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4486 struct cfq_data *cfqd = e->elevator_data; \
4487 unsigned int __data = __VAR; \
4488 if (__CONV) \
4489 __data = jiffies_to_msecs(__data); \
4490 return cfq_var_show(__data, (page)); \
4492 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4493 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4494 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4495 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4496 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4497 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4498 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4499 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4500 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4501 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4502 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4503 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4504 #undef SHOW_FUNCTION
4506 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4507 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4509 struct cfq_data *cfqd = e->elevator_data; \
4510 unsigned int __data; \
4511 int ret = cfq_var_store(&__data, (page), count); \
4512 if (__data < (MIN)) \
4513 __data = (MIN); \
4514 else if (__data > (MAX)) \
4515 __data = (MAX); \
4516 if (__CONV) \
4517 *(__PTR) = msecs_to_jiffies(__data); \
4518 else \
4519 *(__PTR) = __data; \
4520 return ret; \
4522 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4523 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4524 UINT_MAX, 1);
4525 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4526 UINT_MAX, 1);
4527 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4528 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4529 UINT_MAX, 0);
4530 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4531 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4532 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4533 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4534 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4535 UINT_MAX, 0);
4536 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4537 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4538 #undef STORE_FUNCTION
4540 #define CFQ_ATTR(name) \
4541 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4543 static struct elv_fs_entry cfq_attrs[] = {
4544 CFQ_ATTR(quantum),
4545 CFQ_ATTR(fifo_expire_sync),
4546 CFQ_ATTR(fifo_expire_async),
4547 CFQ_ATTR(back_seek_max),
4548 CFQ_ATTR(back_seek_penalty),
4549 CFQ_ATTR(slice_sync),
4550 CFQ_ATTR(slice_async),
4551 CFQ_ATTR(slice_async_rq),
4552 CFQ_ATTR(slice_idle),
4553 CFQ_ATTR(group_idle),
4554 CFQ_ATTR(low_latency),
4555 CFQ_ATTR(target_latency),
4556 __ATTR_NULL
4559 static struct elevator_type iosched_cfq = {
4560 .ops = {
4561 .elevator_merge_fn = cfq_merge,
4562 .elevator_merged_fn = cfq_merged_request,
4563 .elevator_merge_req_fn = cfq_merged_requests,
4564 .elevator_allow_merge_fn = cfq_allow_merge,
4565 .elevator_bio_merged_fn = cfq_bio_merged,
4566 .elevator_dispatch_fn = cfq_dispatch_requests,
4567 .elevator_add_req_fn = cfq_insert_request,
4568 .elevator_activate_req_fn = cfq_activate_request,
4569 .elevator_deactivate_req_fn = cfq_deactivate_request,
4570 .elevator_completed_req_fn = cfq_completed_request,
4571 .elevator_former_req_fn = elv_rb_former_request,
4572 .elevator_latter_req_fn = elv_rb_latter_request,
4573 .elevator_init_icq_fn = cfq_init_icq,
4574 .elevator_exit_icq_fn = cfq_exit_icq,
4575 .elevator_set_req_fn = cfq_set_request,
4576 .elevator_put_req_fn = cfq_put_request,
4577 .elevator_may_queue_fn = cfq_may_queue,
4578 .elevator_init_fn = cfq_init_queue,
4579 .elevator_exit_fn = cfq_exit_queue,
4581 .icq_size = sizeof(struct cfq_io_cq),
4582 .icq_align = __alignof__(struct cfq_io_cq),
4583 .elevator_attrs = cfq_attrs,
4584 .elevator_name = "cfq",
4585 .elevator_owner = THIS_MODULE,
4588 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4589 static struct blkcg_policy blkcg_policy_cfq = {
4590 .pd_size = sizeof(struct cfq_group),
4591 .cftypes = cfq_blkcg_files,
4593 .pd_init_fn = cfq_pd_init,
4594 .pd_offline_fn = cfq_pd_offline,
4595 .pd_reset_stats_fn = cfq_pd_reset_stats,
4597 #endif
4599 static int __init cfq_init(void)
4601 int ret;
4604 * could be 0 on HZ < 1000 setups
4606 if (!cfq_slice_async)
4607 cfq_slice_async = 1;
4608 if (!cfq_slice_idle)
4609 cfq_slice_idle = 1;
4611 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4612 if (!cfq_group_idle)
4613 cfq_group_idle = 1;
4615 ret = blkcg_policy_register(&blkcg_policy_cfq);
4616 if (ret)
4617 return ret;
4618 #else
4619 cfq_group_idle = 0;
4620 #endif
4622 ret = -ENOMEM;
4623 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4624 if (!cfq_pool)
4625 goto err_pol_unreg;
4627 ret = elv_register(&iosched_cfq);
4628 if (ret)
4629 goto err_free_pool;
4631 return 0;
4633 err_free_pool:
4634 kmem_cache_destroy(cfq_pool);
4635 err_pol_unreg:
4636 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4637 blkcg_policy_unregister(&blkcg_policy_cfq);
4638 #endif
4639 return ret;
4642 static void __exit cfq_exit(void)
4644 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4645 blkcg_policy_unregister(&blkcg_policy_cfq);
4646 #endif
4647 elv_unregister(&iosched_cfq);
4648 kmem_cache_destroy(cfq_pool);
4651 module_init(cfq_init);
4652 module_exit(cfq_exit);
4654 MODULE_AUTHOR("Jens Axboe");
4655 MODULE_LICENSE("GPL");
4656 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");