2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
18 #include "blk-cgroup.h"
23 /* max queue in one round of service */
24 static const int cfq_quantum
= 8;
25 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max
= 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty
= 2;
30 static const int cfq_slice_sync
= HZ
/ 10;
31 static int cfq_slice_async
= HZ
/ 25;
32 static const int cfq_slice_async_rq
= 2;
33 static int cfq_slice_idle
= HZ
/ 125;
34 static int cfq_group_idle
= HZ
/ 125;
35 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
36 static const int cfq_hist_divisor
= 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache
*cfq_pool
;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71 unsigned long last_end_request
;
73 unsigned long ttime_total
;
74 unsigned long ttime_samples
;
75 unsigned long ttime_mean
;
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
89 struct cfq_ttime ttime
;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
95 * Per process-grouping structure
100 /* various state flags, see below */
102 /* parent cfq_data */
103 struct cfq_data
*cfqd
;
104 /* service_tree member */
105 struct rb_node rb_node
;
106 /* service_tree key */
107 unsigned long rb_key
;
108 /* prio tree member */
109 struct rb_node p_node
;
110 /* prio tree root we belong to, if any */
111 struct rb_root
*p_root
;
112 /* sorted list of pending requests */
113 struct rb_root sort_list
;
114 /* if fifo isn't expired, next request to serve */
115 struct request
*next_rq
;
116 /* requests queued in sort_list */
118 /* currently allocated requests */
120 /* fifo list of requests in sort_list */
121 struct list_head fifo
;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start
;
125 unsigned int allocated_slice
;
126 unsigned int slice_dispatch
;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start
;
129 unsigned long slice_end
;
132 /* pending priority requests */
134 /* number of requests that are on the dispatch list or inside driver */
137 /* io prio of this group */
138 unsigned short ioprio
, org_ioprio
;
139 unsigned short ioprio_class
;
144 sector_t last_request_pos
;
146 struct cfq_rb_root
*service_tree
;
147 struct cfq_queue
*new_cfqq
;
148 struct cfq_group
*cfqg
;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors
;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
165 * Second index in the service_trees.
169 SYNC_NOIDLE_WORKLOAD
= 1,
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes
;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced
;
179 /* number of ios merged */
180 struct blkg_rwstat merged
;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time
;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time
;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued
;
187 /* total sectors transferred */
188 struct blkg_stat sectors
;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time
;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time
;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum
;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples
;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue
;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time
;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time
;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time
;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time
;
208 uint64_t start_idle_time
;
209 uint64_t start_empty_time
;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
215 /* This is per cgroup per device grouping structure */
217 /* must be the first member */
218 struct blkg_policy_data pd
;
220 /* group service_tree member */
221 struct rb_node rb_node
;
223 /* group service_tree key */
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
236 unsigned int children_weight
;
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
248 unsigned int vfraction
;
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
257 unsigned int new_weight
;
258 unsigned int dev_weight
;
260 unsigned int leaf_weight
;
261 unsigned int new_leaf_weight
;
262 unsigned int dev_leaf_weight
;
264 /* number of cfqq currently on this group */
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
273 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
282 struct cfq_rb_root service_trees
[2][3];
283 struct cfq_rb_root service_tree_idle
;
285 unsigned long saved_wl_slice
;
286 enum wl_type_t saved_wl_type
;
287 enum wl_class_t saved_wl_class
;
289 /* number of requests that are on the dispatch list or inside driver */
291 struct cfq_ttime ttime
;
292 struct cfqg_stats stats
; /* stats for this cfqg */
293 struct cfqg_stats dead_stats
; /* stats pushed from dead children */
297 struct io_cq icq
; /* must be the first member */
298 struct cfq_queue
*cfqq
[2];
299 struct cfq_ttime ttime
;
300 int ioprio
; /* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_id
; /* the current blkcg ID */
307 * Per block device queue structure
310 struct request_queue
*queue
;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree
;
313 struct cfq_group
*root_group
;
316 * The priority currently being served
318 enum wl_class_t serving_wl_class
;
319 enum wl_type_t serving_wl_type
;
320 unsigned long workload_expires
;
321 struct cfq_group
*serving_group
;
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
328 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
330 unsigned int busy_queues
;
331 unsigned int busy_sync_queues
;
337 * queue-depth detection
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
347 int hw_tag_est_depth
;
348 unsigned int hw_tag_samples
;
351 * idle window management
353 struct timer_list idle_slice_timer
;
354 struct work_struct unplug_work
;
356 struct cfq_queue
*active_queue
;
357 struct cfq_io_cq
*active_cic
;
360 * async queue for each priority case
362 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
363 struct cfq_queue
*async_idle_cfqq
;
365 sector_t last_position
;
368 * tunables, see top of file
370 unsigned int cfq_quantum
;
371 unsigned int cfq_fifo_expire
[2];
372 unsigned int cfq_back_penalty
;
373 unsigned int cfq_back_max
;
374 unsigned int cfq_slice
[2];
375 unsigned int cfq_slice_async_rq
;
376 unsigned int cfq_slice_idle
;
377 unsigned int cfq_group_idle
;
378 unsigned int cfq_latency
;
379 unsigned int cfq_target_latency
;
382 * Fallback dummy cfqq for extreme OOM conditions
384 struct cfq_queue oom_cfqq
;
386 unsigned long last_delayed_sync
;
389 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
391 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
392 enum wl_class_t
class,
398 if (class == IDLE_WORKLOAD
)
399 return &cfqg
->service_tree_idle
;
401 return &cfqg
->service_trees
[class][type
];
404 enum cfqq_state_flags
{
405 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
420 #define CFQ_CFQQ_FNS(name) \
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
435 CFQ_CFQQ_FNS(wait_request
);
436 CFQ_CFQQ_FNS(must_dispatch
);
437 CFQ_CFQQ_FNS(must_alloc_slice
);
438 CFQ_CFQQ_FNS(fifo_expire
);
439 CFQ_CFQQ_FNS(idle_window
);
440 CFQ_CFQQ_FNS(prio_changed
);
441 CFQ_CFQQ_FNS(slice_new
);
444 CFQ_CFQQ_FNS(split_coop
);
446 CFQ_CFQQ_FNS(wait_busy
);
449 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
451 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
454 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
456 return pd_to_blkg(&cfqg
->pd
);
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
461 /* cfqg stats flags */
462 enum cfqg_stats_flags
{
463 CFQG_stats_waiting
= 0,
468 #define CFQG_FLAG_FNS(name) \
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
471 stats->flags |= (1 << CFQG_stats_##name); \
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
482 CFQG_FLAG_FNS(waiting)
483 CFQG_FLAG_FNS(idling
)
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
490 unsigned long long now
;
492 if (!cfqg_stats_waiting(stats
))
496 if (time_after64(now
, stats
->start_group_wait_time
))
497 blkg_stat_add(&stats
->group_wait_time
,
498 now
- stats
->start_group_wait_time
);
499 cfqg_stats_clear_waiting(stats
);
502 /* This should be called with the queue_lock held. */
503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
504 struct cfq_group
*curr_cfqg
)
506 struct cfqg_stats
*stats
= &cfqg
->stats
;
508 if (cfqg_stats_waiting(stats
))
510 if (cfqg
== curr_cfqg
)
512 stats
->start_group_wait_time
= sched_clock();
513 cfqg_stats_mark_waiting(stats
);
516 /* This should be called with the queue_lock held. */
517 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
519 unsigned long long now
;
521 if (!cfqg_stats_empty(stats
))
525 if (time_after64(now
, stats
->start_empty_time
))
526 blkg_stat_add(&stats
->empty_time
,
527 now
- stats
->start_empty_time
);
528 cfqg_stats_clear_empty(stats
);
531 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
533 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
536 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
538 struct cfqg_stats
*stats
= &cfqg
->stats
;
540 if (blkg_rwstat_total(&stats
->queued
))
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
548 if (cfqg_stats_empty(stats
))
551 stats
->start_empty_time
= sched_clock();
552 cfqg_stats_mark_empty(stats
);
555 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
557 struct cfqg_stats
*stats
= &cfqg
->stats
;
559 if (cfqg_stats_idling(stats
)) {
560 unsigned long long now
= sched_clock();
562 if (time_after64(now
, stats
->start_idle_time
))
563 blkg_stat_add(&stats
->idle_time
,
564 now
- stats
->start_idle_time
);
565 cfqg_stats_clear_idling(stats
);
569 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
571 struct cfqg_stats
*stats
= &cfqg
->stats
;
573 BUG_ON(cfqg_stats_idling(stats
));
575 stats
->start_idle_time
= sched_clock();
576 cfqg_stats_mark_idling(stats
);
579 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
581 struct cfqg_stats
*stats
= &cfqg
->stats
;
583 blkg_stat_add(&stats
->avg_queue_size_sum
,
584 blkg_rwstat_total(&stats
->queued
));
585 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
586 cfqg_stats_update_group_wait_time(stats
);
589 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
593 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
595 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
599 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
603 static struct blkcg_policy blkcg_policy_cfq
;
605 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
607 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
610 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
612 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
614 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
617 static inline void cfqg_get(struct cfq_group
*cfqg
)
619 return blkg_get(cfqg_to_blkg(cfqg
));
622 static inline void cfqg_put(struct cfq_group
*cfqg
)
624 return blkg_put(cfqg_to_blkg(cfqg
));
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
630 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
640 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
644 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
645 struct cfq_group
*curr_cfqg
, int rw
)
647 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, 1);
648 cfqg_stats_end_empty_time(&cfqg
->stats
);
649 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
653 unsigned long time
, unsigned long unaccounted_time
)
655 blkg_stat_add(&cfqg
->stats
.time
, time
);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
661 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
)
663 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, -1);
666 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
)
668 blkg_rwstat_add(&cfqg
->stats
.merged
, rw
, 1);
671 static inline void cfqg_stats_update_dispatch(struct cfq_group
*cfqg
,
672 uint64_t bytes
, int rw
)
674 blkg_stat_add(&cfqg
->stats
.sectors
, bytes
>> 9);
675 blkg_rwstat_add(&cfqg
->stats
.serviced
, rw
, 1);
676 blkg_rwstat_add(&cfqg
->stats
.service_bytes
, rw
, bytes
);
679 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
680 uint64_t start_time
, uint64_t io_start_time
, int rw
)
682 struct cfqg_stats
*stats
= &cfqg
->stats
;
683 unsigned long long now
= sched_clock();
685 if (time_after64(now
, io_start_time
))
686 blkg_rwstat_add(&stats
->service_time
, rw
, now
- io_start_time
);
687 if (time_after64(io_start_time
, start_time
))
688 blkg_rwstat_add(&stats
->wait_time
, rw
,
689 io_start_time
- start_time
);
693 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
695 /* queued stats shouldn't be cleared */
696 blkg_rwstat_reset(&stats
->service_bytes
);
697 blkg_rwstat_reset(&stats
->serviced
);
698 blkg_rwstat_reset(&stats
->merged
);
699 blkg_rwstat_reset(&stats
->service_time
);
700 blkg_rwstat_reset(&stats
->wait_time
);
701 blkg_stat_reset(&stats
->time
);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 blkg_stat_reset(&stats
->unaccounted_time
);
704 blkg_stat_reset(&stats
->avg_queue_size_sum
);
705 blkg_stat_reset(&stats
->avg_queue_size_samples
);
706 blkg_stat_reset(&stats
->dequeue
);
707 blkg_stat_reset(&stats
->group_wait_time
);
708 blkg_stat_reset(&stats
->idle_time
);
709 blkg_stat_reset(&stats
->empty_time
);
714 static void cfqg_stats_merge(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
716 /* queued stats shouldn't be cleared */
717 blkg_rwstat_merge(&to
->service_bytes
, &from
->service_bytes
);
718 blkg_rwstat_merge(&to
->serviced
, &from
->serviced
);
719 blkg_rwstat_merge(&to
->merged
, &from
->merged
);
720 blkg_rwstat_merge(&to
->service_time
, &from
->service_time
);
721 blkg_rwstat_merge(&to
->wait_time
, &from
->wait_time
);
722 blkg_stat_merge(&from
->time
, &from
->time
);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_merge(&to
->unaccounted_time
, &from
->unaccounted_time
);
725 blkg_stat_merge(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
726 blkg_stat_merge(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
727 blkg_stat_merge(&to
->dequeue
, &from
->dequeue
);
728 blkg_stat_merge(&to
->group_wait_time
, &from
->group_wait_time
);
729 blkg_stat_merge(&to
->idle_time
, &from
->idle_time
);
730 blkg_stat_merge(&to
->empty_time
, &from
->empty_time
);
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
739 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
741 struct cfq_group
*parent
= cfqg_parent(cfqg
);
743 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
745 if (unlikely(!parent
))
748 cfqg_stats_merge(&parent
->dead_stats
, &cfqg
->stats
);
749 cfqg_stats_merge(&parent
->dead_stats
, &cfqg
->dead_stats
);
750 cfqg_stats_reset(&cfqg
->stats
);
751 cfqg_stats_reset(&cfqg
->dead_stats
);
754 #else /* CONFIG_CFQ_GROUP_IOSCHED */
756 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
757 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
758 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
767 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
768 struct cfq_group
*curr_cfqg
, int rw
) { }
769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
770 unsigned long time
, unsigned long unaccounted_time
) { }
771 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
) { }
772 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
) { }
773 static inline void cfqg_stats_update_dispatch(struct cfq_group
*cfqg
,
774 uint64_t bytes
, int rw
) { }
775 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
776 uint64_t start_time
, uint64_t io_start_time
, int rw
) { }
778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
780 #define cfq_log(cfqd, fmt, args...) \
781 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 : &cfqg->service_tree_idle; \
788 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 (i == IDLE_WORKLOAD && j == 0); \
790 j++, st = i < IDLE_WORKLOAD ? \
791 &cfqg->service_trees[i][j]: NULL) \
793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 struct cfq_ttime
*ttime
, bool group_idle
)
797 if (!sample_valid(ttime
->ttime_samples
))
800 slice
= cfqd
->cfq_group_idle
;
802 slice
= cfqd
->cfq_slice_idle
;
803 return ttime
->ttime_mean
> slice
;
806 static inline bool iops_mode(struct cfq_data
*cfqd
)
809 * If we are not idling on queues and it is a NCQ drive, parallel
810 * execution of requests is on and measuring time is not possible
811 * in most of the cases until and unless we drive shallower queue
812 * depths and that becomes a performance bottleneck. In such cases
813 * switch to start providing fairness in terms of number of IOs.
815 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
821 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
823 if (cfq_class_idle(cfqq
))
824 return IDLE_WORKLOAD
;
825 if (cfq_class_rt(cfqq
))
831 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
833 if (!cfq_cfqq_sync(cfqq
))
834 return ASYNC_WORKLOAD
;
835 if (!cfq_cfqq_idle_window(cfqq
))
836 return SYNC_NOIDLE_WORKLOAD
;
837 return SYNC_WORKLOAD
;
840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
841 struct cfq_data
*cfqd
,
842 struct cfq_group
*cfqg
)
844 if (wl_class
== IDLE_WORKLOAD
)
845 return cfqg
->service_tree_idle
.count
;
847 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
848 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
849 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
852 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
853 struct cfq_group
*cfqg
)
855 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
856 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
859 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
860 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
861 struct cfq_io_cq
*cic
, struct bio
*bio
,
864 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
866 /* cic->icq is the first member, %NULL will convert to %NULL */
867 return container_of(icq
, struct cfq_io_cq
, icq
);
870 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
871 struct io_context
*ioc
)
874 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
878 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
880 return cic
->cfqq
[is_sync
];
883 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
886 cic
->cfqq
[is_sync
] = cfqq
;
889 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
891 return cic
->icq
.q
->elevator
->elevator_data
;
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
898 static inline bool cfq_bio_sync(struct bio
*bio
)
900 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
907 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
909 if (cfqd
->busy_queues
) {
910 cfq_log(cfqd
, "schedule dispatch");
911 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
920 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
923 const int base_slice
= cfqd
->cfq_slice
[sync
];
925 WARN_ON(prio
>= IOPRIO_BE_NR
);
927 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
931 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
933 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
944 * scaled = charge / vfraction
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
948 static inline u64
cfqg_scale_charge(unsigned long charge
,
949 unsigned int vfraction
)
951 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
953 /* charge / vfraction */
954 c
<<= CFQ_SERVICE_SHIFT
;
955 do_div(c
, vfraction
);
959 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
961 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
963 min_vdisktime
= vdisktime
;
965 return min_vdisktime
;
968 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
970 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
972 min_vdisktime
= vdisktime
;
974 return min_vdisktime
;
977 static void update_min_vdisktime(struct cfq_rb_root
*st
)
979 struct cfq_group
*cfqg
;
982 cfqg
= rb_entry_cfqg(st
->left
);
983 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
995 struct cfq_group
*cfqg
, bool rt
)
997 unsigned min_q
, max_q
;
998 unsigned mult
= cfq_hist_divisor
- 1;
999 unsigned round
= cfq_hist_divisor
/ 2;
1000 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1002 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1003 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1004 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1006 return cfqg
->busy_queues_avg
[rt
];
1009 static inline unsigned
1010 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1012 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1015 static inline unsigned
1016 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1018 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1019 if (cfqd
->cfq_latency
) {
1021 * interested queues (we consider only the ones with the same
1022 * priority class in the cfq group)
1024 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1025 cfq_class_rt(cfqq
));
1026 unsigned sync_slice
= cfqd
->cfq_slice
[1];
1027 unsigned expect_latency
= sync_slice
* iq
;
1028 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1030 if (expect_latency
> group_slice
) {
1031 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1032 /* scale low_slice according to IO priority
1033 * and sync vs async */
1034 unsigned low_slice
=
1035 min(slice
, base_low_slice
* slice
/ sync_slice
);
1036 /* the adapted slice value is scaled to fit all iqs
1037 * into the target latency */
1038 slice
= max(slice
* group_slice
/ expect_latency
,
1046 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1048 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1050 cfqq
->slice_start
= jiffies
;
1051 cfqq
->slice_end
= jiffies
+ slice
;
1052 cfqq
->allocated_slice
= slice
;
1053 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1061 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1063 if (cfq_cfqq_slice_new(cfqq
))
1065 if (time_before(jiffies
, cfqq
->slice_end
))
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1076 static struct request
*
1077 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1079 sector_t s1
, s2
, d1
= 0, d2
= 0;
1080 unsigned long back_max
;
1081 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1085 if (rq1
== NULL
|| rq1
== rq2
)
1090 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1091 return rq_is_sync(rq1
) ? rq1
: rq2
;
1093 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1094 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1096 s1
= blk_rq_pos(rq1
);
1097 s2
= blk_rq_pos(rq2
);
1100 * by definition, 1KiB is 2 sectors
1102 back_max
= cfqd
->cfq_back_max
* 2;
1105 * Strict one way elevator _except_ in the case where we allow
1106 * short backward seeks which are biased as twice the cost of a
1107 * similar forward seek.
1111 else if (s1
+ back_max
>= last
)
1112 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1114 wrap
|= CFQ_RQ1_WRAP
;
1118 else if (s2
+ back_max
>= last
)
1119 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1121 wrap
|= CFQ_RQ2_WRAP
;
1123 /* Found required data */
1126 * By doing switch() on the bit mask "wrap" we avoid having to
1127 * check two variables for all permutations: --> faster!
1130 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1146 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1149 * Since both rqs are wrapped,
1150 * start with the one that's further behind head
1151 * (--> only *one* back seek required),
1152 * since back seek takes more time than forward.
1162 * The below is leftmost cache rbtree addon
1164 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1166 /* Service tree is empty */
1171 root
->left
= rb_first(&root
->rb
);
1174 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1179 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1182 root
->left
= rb_first(&root
->rb
);
1185 return rb_entry_cfqg(root
->left
);
1190 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1196 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1198 if (root
->left
== n
)
1200 rb_erase_init(n
, &root
->rb
);
1205 * would be nice to take fifo expire time into account as well
1207 static struct request
*
1208 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1209 struct request
*last
)
1211 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1212 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1213 struct request
*next
= NULL
, *prev
= NULL
;
1215 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1218 prev
= rb_entry_rq(rbprev
);
1221 next
= rb_entry_rq(rbnext
);
1223 rbnext
= rb_first(&cfqq
->sort_list
);
1224 if (rbnext
&& rbnext
!= &last
->rb_node
)
1225 next
= rb_entry_rq(rbnext
);
1228 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1231 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
1232 struct cfq_queue
*cfqq
)
1235 * just an approximation, should be ok.
1237 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1238 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1242 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1244 return cfqg
->vdisktime
- st
->min_vdisktime
;
1248 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1250 struct rb_node
**node
= &st
->rb
.rb_node
;
1251 struct rb_node
*parent
= NULL
;
1252 struct cfq_group
*__cfqg
;
1253 s64 key
= cfqg_key(st
, cfqg
);
1256 while (*node
!= NULL
) {
1258 __cfqg
= rb_entry_cfqg(parent
);
1260 if (key
< cfqg_key(st
, __cfqg
))
1261 node
= &parent
->rb_left
;
1263 node
= &parent
->rb_right
;
1269 st
->left
= &cfqg
->rb_node
;
1271 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1272 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1276 cfq_update_group_weight(struct cfq_group
*cfqg
)
1278 if (cfqg
->new_weight
) {
1279 cfqg
->weight
= cfqg
->new_weight
;
1280 cfqg
->new_weight
= 0;
1285 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1287 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1289 if (cfqg
->new_leaf_weight
) {
1290 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1291 cfqg
->new_leaf_weight
= 0;
1296 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1298 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1299 struct cfq_group
*pos
= cfqg
;
1300 struct cfq_group
*parent
;
1303 /* add to the service tree */
1304 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1306 cfq_update_group_leaf_weight(cfqg
);
1307 __cfq_group_service_tree_add(st
, cfqg
);
1310 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1311 * entitled to. vfraction is calculated by walking the tree
1312 * towards the root calculating the fraction it has at each level.
1313 * The compounded ratio is how much vfraction @cfqg owns.
1315 * Start with the proportion tasks in this cfqg has against active
1316 * children cfqgs - its leaf_weight against children_weight.
1318 propagate
= !pos
->nr_active
++;
1319 pos
->children_weight
+= pos
->leaf_weight
;
1320 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1323 * Compound ->weight walking up the tree. Both activation and
1324 * vfraction calculation are done in the same loop. Propagation
1325 * stops once an already activated node is met. vfraction
1326 * calculation should always continue to the root.
1328 while ((parent
= cfqg_parent(pos
))) {
1330 cfq_update_group_weight(pos
);
1331 propagate
= !parent
->nr_active
++;
1332 parent
->children_weight
+= pos
->weight
;
1334 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1338 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1342 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1344 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1345 struct cfq_group
*__cfqg
;
1349 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1353 * Currently put the group at the end. Later implement something
1354 * so that groups get lesser vtime based on their weights, so that
1355 * if group does not loose all if it was not continuously backlogged.
1357 n
= rb_last(&st
->rb
);
1359 __cfqg
= rb_entry_cfqg(n
);
1360 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
1362 cfqg
->vdisktime
= st
->min_vdisktime
;
1363 cfq_group_service_tree_add(st
, cfqg
);
1367 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1369 struct cfq_group
*pos
= cfqg
;
1373 * Undo activation from cfq_group_service_tree_add(). Deactivate
1374 * @cfqg and propagate deactivation upwards.
1376 propagate
= !--pos
->nr_active
;
1377 pos
->children_weight
-= pos
->leaf_weight
;
1380 struct cfq_group
*parent
= cfqg_parent(pos
);
1382 /* @pos has 0 nr_active at this point */
1383 WARN_ON_ONCE(pos
->children_weight
);
1389 propagate
= !--parent
->nr_active
;
1390 parent
->children_weight
-= pos
->weight
;
1394 /* remove from the service tree */
1395 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1396 cfq_rb_erase(&cfqg
->rb_node
, st
);
1400 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1402 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1404 BUG_ON(cfqg
->nr_cfqq
< 1);
1407 /* If there are other cfq queues under this group, don't delete it */
1411 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1412 cfq_group_service_tree_del(st
, cfqg
);
1413 cfqg
->saved_wl_slice
= 0;
1414 cfqg_stats_update_dequeue(cfqg
);
1417 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1418 unsigned int *unaccounted_time
)
1420 unsigned int slice_used
;
1423 * Queue got expired before even a single request completed or
1424 * got expired immediately after first request completion.
1426 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
1428 * Also charge the seek time incurred to the group, otherwise
1429 * if there are mutiple queues in the group, each can dispatch
1430 * a single request on seeky media and cause lots of seek time
1431 * and group will never know it.
1433 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
1436 slice_used
= jiffies
- cfqq
->slice_start
;
1437 if (slice_used
> cfqq
->allocated_slice
) {
1438 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1439 slice_used
= cfqq
->allocated_slice
;
1441 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
1442 *unaccounted_time
+= cfqq
->slice_start
-
1443 cfqq
->dispatch_start
;
1449 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1450 struct cfq_queue
*cfqq
)
1452 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1453 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
1454 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1455 - cfqg
->service_tree_idle
.count
;
1458 BUG_ON(nr_sync
< 0);
1459 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1461 if (iops_mode(cfqd
))
1462 charge
= cfqq
->slice_dispatch
;
1463 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1464 charge
= cfqq
->allocated_slice
;
1467 * Can't update vdisktime while on service tree and cfqg->vfraction
1468 * is valid only while on it. Cache vfr, leave the service tree,
1469 * update vdisktime and go back on. The re-addition to the tree
1470 * will also update the weights as necessary.
1472 vfr
= cfqg
->vfraction
;
1473 cfq_group_service_tree_del(st
, cfqg
);
1474 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1475 cfq_group_service_tree_add(st
, cfqg
);
1477 /* This group is being expired. Save the context */
1478 if (time_after(cfqd
->workload_expires
, jiffies
)) {
1479 cfqg
->saved_wl_slice
= cfqd
->workload_expires
1481 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1482 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1484 cfqg
->saved_wl_slice
= 0;
1486 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1488 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1489 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1490 used_sl
, cfqq
->slice_dispatch
, charge
,
1491 iops_mode(cfqd
), cfqq
->nr_sectors
);
1492 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1493 cfqg_stats_set_start_empty_time(cfqg
);
1497 * cfq_init_cfqg_base - initialize base part of a cfq_group
1498 * @cfqg: cfq_group to initialize
1500 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1501 * is enabled or not.
1503 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1505 struct cfq_rb_root
*st
;
1508 for_each_cfqg_st(cfqg
, i
, j
, st
)
1510 RB_CLEAR_NODE(&cfqg
->rb_node
);
1512 cfqg
->ttime
.last_end_request
= jiffies
;
1515 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1516 static void cfqg_stats_init(struct cfqg_stats
*stats
)
1518 blkg_rwstat_init(&stats
->service_bytes
);
1519 blkg_rwstat_init(&stats
->serviced
);
1520 blkg_rwstat_init(&stats
->merged
);
1521 blkg_rwstat_init(&stats
->service_time
);
1522 blkg_rwstat_init(&stats
->wait_time
);
1523 blkg_rwstat_init(&stats
->queued
);
1525 blkg_stat_init(&stats
->sectors
);
1526 blkg_stat_init(&stats
->time
);
1528 #ifdef CONFIG_DEBUG_BLK_CGROUP
1529 blkg_stat_init(&stats
->unaccounted_time
);
1530 blkg_stat_init(&stats
->avg_queue_size_sum
);
1531 blkg_stat_init(&stats
->avg_queue_size_samples
);
1532 blkg_stat_init(&stats
->dequeue
);
1533 blkg_stat_init(&stats
->group_wait_time
);
1534 blkg_stat_init(&stats
->idle_time
);
1535 blkg_stat_init(&stats
->empty_time
);
1539 static void cfq_pd_init(struct blkcg_gq
*blkg
)
1541 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1543 cfq_init_cfqg_base(cfqg
);
1544 cfqg
->weight
= blkg
->blkcg
->cfq_weight
;
1545 cfqg
->leaf_weight
= blkg
->blkcg
->cfq_leaf_weight
;
1546 cfqg_stats_init(&cfqg
->stats
);
1547 cfqg_stats_init(&cfqg
->dead_stats
);
1550 static void cfq_pd_offline(struct blkcg_gq
*blkg
)
1553 * @blkg is going offline and will be ignored by
1554 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1555 * that they don't get lost. If IOs complete after this point, the
1556 * stats for them will be lost. Oh well...
1558 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg
));
1561 /* offset delta from cfqg->stats to cfqg->dead_stats */
1562 static const int dead_stats_off_delta
= offsetof(struct cfq_group
, dead_stats
) -
1563 offsetof(struct cfq_group
, stats
);
1565 /* to be used by recursive prfill, sums live and dead stats recursively */
1566 static u64
cfqg_stat_pd_recursive_sum(struct blkg_policy_data
*pd
, int off
)
1570 sum
+= blkg_stat_recursive_sum(pd
, off
);
1571 sum
+= blkg_stat_recursive_sum(pd
, off
+ dead_stats_off_delta
);
1575 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1576 static struct blkg_rwstat
cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data
*pd
,
1579 struct blkg_rwstat a
, b
;
1581 a
= blkg_rwstat_recursive_sum(pd
, off
);
1582 b
= blkg_rwstat_recursive_sum(pd
, off
+ dead_stats_off_delta
);
1583 blkg_rwstat_merge(&a
, &b
);
1587 static void cfq_pd_reset_stats(struct blkcg_gq
*blkg
)
1589 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1591 cfqg_stats_reset(&cfqg
->stats
);
1592 cfqg_stats_reset(&cfqg
->dead_stats
);
1596 * Search for the cfq group current task belongs to. request_queue lock must
1599 static struct cfq_group
*cfq_lookup_create_cfqg(struct cfq_data
*cfqd
,
1600 struct blkcg
*blkcg
)
1602 struct request_queue
*q
= cfqd
->queue
;
1603 struct cfq_group
*cfqg
= NULL
;
1605 /* avoid lookup for the common case where there's no blkcg */
1606 if (blkcg
== &blkcg_root
) {
1607 cfqg
= cfqd
->root_group
;
1609 struct blkcg_gq
*blkg
;
1611 blkg
= blkg_lookup_create(blkcg
, q
);
1613 cfqg
= blkg_to_cfqg(blkg
);
1619 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1621 /* Currently, all async queues are mapped to root group */
1622 if (!cfq_cfqq_sync(cfqq
))
1623 cfqg
= cfqq
->cfqd
->root_group
;
1626 /* cfqq reference on cfqg */
1630 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1631 struct blkg_policy_data
*pd
, int off
)
1633 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1635 if (!cfqg
->dev_weight
)
1637 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1640 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1642 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1643 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1648 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1649 struct blkg_policy_data
*pd
, int off
)
1651 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1653 if (!cfqg
->dev_leaf_weight
)
1655 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1658 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1660 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1661 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1666 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1668 seq_printf(sf
, "%u\n", css_to_blkcg(seq_css(sf
))->cfq_weight
);
1672 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1674 seq_printf(sf
, "%u\n", css_to_blkcg(seq_css(sf
))->cfq_leaf_weight
);
1678 static int __cfqg_set_weight_device(struct cgroup_subsys_state
*css
,
1679 struct cftype
*cft
, const char *buf
,
1680 bool is_leaf_weight
)
1682 struct blkcg
*blkcg
= css_to_blkcg(css
);
1683 struct blkg_conf_ctx ctx
;
1684 struct cfq_group
*cfqg
;
1687 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1692 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1693 if (!ctx
.v
|| (ctx
.v
>= CFQ_WEIGHT_MIN
&& ctx
.v
<= CFQ_WEIGHT_MAX
)) {
1694 if (!is_leaf_weight
) {
1695 cfqg
->dev_weight
= ctx
.v
;
1696 cfqg
->new_weight
= ctx
.v
?: blkcg
->cfq_weight
;
1698 cfqg
->dev_leaf_weight
= ctx
.v
;
1699 cfqg
->new_leaf_weight
= ctx
.v
?: blkcg
->cfq_leaf_weight
;
1704 blkg_conf_finish(&ctx
);
1708 static int cfqg_set_weight_device(struct cgroup_subsys_state
*css
,
1709 struct cftype
*cft
, const char *buf
)
1711 return __cfqg_set_weight_device(css
, cft
, buf
, false);
1714 static int cfqg_set_leaf_weight_device(struct cgroup_subsys_state
*css
,
1715 struct cftype
*cft
, const char *buf
)
1717 return __cfqg_set_weight_device(css
, cft
, buf
, true);
1720 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1721 u64 val
, bool is_leaf_weight
)
1723 struct blkcg
*blkcg
= css_to_blkcg(css
);
1724 struct blkcg_gq
*blkg
;
1726 if (val
< CFQ_WEIGHT_MIN
|| val
> CFQ_WEIGHT_MAX
)
1729 spin_lock_irq(&blkcg
->lock
);
1731 if (!is_leaf_weight
)
1732 blkcg
->cfq_weight
= val
;
1734 blkcg
->cfq_leaf_weight
= val
;
1736 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1737 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1742 if (!is_leaf_weight
) {
1743 if (!cfqg
->dev_weight
)
1744 cfqg
->new_weight
= blkcg
->cfq_weight
;
1746 if (!cfqg
->dev_leaf_weight
)
1747 cfqg
->new_leaf_weight
= blkcg
->cfq_leaf_weight
;
1751 spin_unlock_irq(&blkcg
->lock
);
1755 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1758 return __cfq_set_weight(css
, cft
, val
, false);
1761 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1762 struct cftype
*cft
, u64 val
)
1764 return __cfq_set_weight(css
, cft
, val
, true);
1767 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1769 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1770 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1774 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1776 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1777 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1781 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1782 struct blkg_policy_data
*pd
, int off
)
1784 u64 sum
= cfqg_stat_pd_recursive_sum(pd
, off
);
1786 return __blkg_prfill_u64(sf
, pd
, sum
);
1789 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1790 struct blkg_policy_data
*pd
, int off
)
1792 struct blkg_rwstat sum
= cfqg_rwstat_pd_recursive_sum(pd
, off
);
1794 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1797 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1799 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1800 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1801 seq_cft(sf
)->private, false);
1805 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1807 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1808 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1809 seq_cft(sf
)->private, true);
1813 #ifdef CONFIG_DEBUG_BLK_CGROUP
1814 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1815 struct blkg_policy_data
*pd
, int off
)
1817 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1818 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1822 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1823 v
= div64_u64(v
, samples
);
1825 __blkg_prfill_u64(sf
, pd
, v
);
1829 /* print avg_queue_size */
1830 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
1832 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1833 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
1837 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1839 static struct cftype cfq_blkcg_files
[] = {
1840 /* on root, weight is mapped to leaf_weight */
1842 .name
= "weight_device",
1843 .flags
= CFTYPE_ONLY_ON_ROOT
,
1844 .seq_show
= cfqg_print_leaf_weight_device
,
1845 .write_string
= cfqg_set_leaf_weight_device
,
1846 .max_write_len
= 256,
1850 .flags
= CFTYPE_ONLY_ON_ROOT
,
1851 .seq_show
= cfq_print_leaf_weight
,
1852 .write_u64
= cfq_set_leaf_weight
,
1855 /* no such mapping necessary for !roots */
1857 .name
= "weight_device",
1858 .flags
= CFTYPE_NOT_ON_ROOT
,
1859 .seq_show
= cfqg_print_weight_device
,
1860 .write_string
= cfqg_set_weight_device
,
1861 .max_write_len
= 256,
1865 .flags
= CFTYPE_NOT_ON_ROOT
,
1866 .seq_show
= cfq_print_weight
,
1867 .write_u64
= cfq_set_weight
,
1871 .name
= "leaf_weight_device",
1872 .seq_show
= cfqg_print_leaf_weight_device
,
1873 .write_string
= cfqg_set_leaf_weight_device
,
1874 .max_write_len
= 256,
1877 .name
= "leaf_weight",
1878 .seq_show
= cfq_print_leaf_weight
,
1879 .write_u64
= cfq_set_leaf_weight
,
1882 /* statistics, covers only the tasks in the cfqg */
1885 .private = offsetof(struct cfq_group
, stats
.time
),
1886 .seq_show
= cfqg_print_stat
,
1890 .private = offsetof(struct cfq_group
, stats
.sectors
),
1891 .seq_show
= cfqg_print_stat
,
1894 .name
= "io_service_bytes",
1895 .private = offsetof(struct cfq_group
, stats
.service_bytes
),
1896 .seq_show
= cfqg_print_rwstat
,
1899 .name
= "io_serviced",
1900 .private = offsetof(struct cfq_group
, stats
.serviced
),
1901 .seq_show
= cfqg_print_rwstat
,
1904 .name
= "io_service_time",
1905 .private = offsetof(struct cfq_group
, stats
.service_time
),
1906 .seq_show
= cfqg_print_rwstat
,
1909 .name
= "io_wait_time",
1910 .private = offsetof(struct cfq_group
, stats
.wait_time
),
1911 .seq_show
= cfqg_print_rwstat
,
1914 .name
= "io_merged",
1915 .private = offsetof(struct cfq_group
, stats
.merged
),
1916 .seq_show
= cfqg_print_rwstat
,
1919 .name
= "io_queued",
1920 .private = offsetof(struct cfq_group
, stats
.queued
),
1921 .seq_show
= cfqg_print_rwstat
,
1924 /* the same statictics which cover the cfqg and its descendants */
1926 .name
= "time_recursive",
1927 .private = offsetof(struct cfq_group
, stats
.time
),
1928 .seq_show
= cfqg_print_stat_recursive
,
1931 .name
= "sectors_recursive",
1932 .private = offsetof(struct cfq_group
, stats
.sectors
),
1933 .seq_show
= cfqg_print_stat_recursive
,
1936 .name
= "io_service_bytes_recursive",
1937 .private = offsetof(struct cfq_group
, stats
.service_bytes
),
1938 .seq_show
= cfqg_print_rwstat_recursive
,
1941 .name
= "io_serviced_recursive",
1942 .private = offsetof(struct cfq_group
, stats
.serviced
),
1943 .seq_show
= cfqg_print_rwstat_recursive
,
1946 .name
= "io_service_time_recursive",
1947 .private = offsetof(struct cfq_group
, stats
.service_time
),
1948 .seq_show
= cfqg_print_rwstat_recursive
,
1951 .name
= "io_wait_time_recursive",
1952 .private = offsetof(struct cfq_group
, stats
.wait_time
),
1953 .seq_show
= cfqg_print_rwstat_recursive
,
1956 .name
= "io_merged_recursive",
1957 .private = offsetof(struct cfq_group
, stats
.merged
),
1958 .seq_show
= cfqg_print_rwstat_recursive
,
1961 .name
= "io_queued_recursive",
1962 .private = offsetof(struct cfq_group
, stats
.queued
),
1963 .seq_show
= cfqg_print_rwstat_recursive
,
1965 #ifdef CONFIG_DEBUG_BLK_CGROUP
1967 .name
= "avg_queue_size",
1968 .seq_show
= cfqg_print_avg_queue_size
,
1971 .name
= "group_wait_time",
1972 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
1973 .seq_show
= cfqg_print_stat
,
1976 .name
= "idle_time",
1977 .private = offsetof(struct cfq_group
, stats
.idle_time
),
1978 .seq_show
= cfqg_print_stat
,
1981 .name
= "empty_time",
1982 .private = offsetof(struct cfq_group
, stats
.empty_time
),
1983 .seq_show
= cfqg_print_stat
,
1987 .private = offsetof(struct cfq_group
, stats
.dequeue
),
1988 .seq_show
= cfqg_print_stat
,
1991 .name
= "unaccounted_time",
1992 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
1993 .seq_show
= cfqg_print_stat
,
1995 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1998 #else /* GROUP_IOSCHED */
1999 static struct cfq_group
*cfq_lookup_create_cfqg(struct cfq_data
*cfqd
,
2000 struct blkcg
*blkcg
)
2002 return cfqd
->root_group
;
2006 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2010 #endif /* GROUP_IOSCHED */
2013 * The cfqd->service_trees holds all pending cfq_queue's that have
2014 * requests waiting to be processed. It is sorted in the order that
2015 * we will service the queues.
2017 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2020 struct rb_node
**p
, *parent
;
2021 struct cfq_queue
*__cfqq
;
2022 unsigned long rb_key
;
2023 struct cfq_rb_root
*st
;
2027 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2028 if (cfq_class_idle(cfqq
)) {
2029 rb_key
= CFQ_IDLE_DELAY
;
2030 parent
= rb_last(&st
->rb
);
2031 if (parent
&& parent
!= &cfqq
->rb_node
) {
2032 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2033 rb_key
+= __cfqq
->rb_key
;
2036 } else if (!add_front
) {
2038 * Get our rb key offset. Subtract any residual slice
2039 * value carried from last service. A negative resid
2040 * count indicates slice overrun, and this should position
2041 * the next service time further away in the tree.
2043 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
2044 rb_key
-= cfqq
->slice_resid
;
2045 cfqq
->slice_resid
= 0;
2048 __cfqq
= cfq_rb_first(st
);
2049 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
2052 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2055 * same position, nothing more to do
2057 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2060 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2061 cfqq
->service_tree
= NULL
;
2066 cfqq
->service_tree
= st
;
2067 p
= &st
->rb
.rb_node
;
2070 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2073 * sort by key, that represents service time.
2075 if (time_before(rb_key
, __cfqq
->rb_key
))
2076 p
= &parent
->rb_left
;
2078 p
= &parent
->rb_right
;
2084 st
->left
= &cfqq
->rb_node
;
2086 cfqq
->rb_key
= rb_key
;
2087 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2088 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2090 if (add_front
|| !new_cfqq
)
2092 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2095 static struct cfq_queue
*
2096 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2097 sector_t sector
, struct rb_node
**ret_parent
,
2098 struct rb_node
***rb_link
)
2100 struct rb_node
**p
, *parent
;
2101 struct cfq_queue
*cfqq
= NULL
;
2109 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2112 * Sort strictly based on sector. Smallest to the left,
2113 * largest to the right.
2115 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2116 n
= &(*p
)->rb_right
;
2117 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2125 *ret_parent
= parent
;
2131 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2133 struct rb_node
**p
, *parent
;
2134 struct cfq_queue
*__cfqq
;
2137 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2138 cfqq
->p_root
= NULL
;
2141 if (cfq_class_idle(cfqq
))
2146 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2147 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2148 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2150 rb_link_node(&cfqq
->p_node
, parent
, p
);
2151 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2153 cfqq
->p_root
= NULL
;
2157 * Update cfqq's position in the service tree.
2159 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2162 * Resorting requires the cfqq to be on the RR list already.
2164 if (cfq_cfqq_on_rr(cfqq
)) {
2165 cfq_service_tree_add(cfqd
, cfqq
, 0);
2166 cfq_prio_tree_add(cfqd
, cfqq
);
2171 * add to busy list of queues for service, trying to be fair in ordering
2172 * the pending list according to last request service
2174 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2176 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2177 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2178 cfq_mark_cfqq_on_rr(cfqq
);
2179 cfqd
->busy_queues
++;
2180 if (cfq_cfqq_sync(cfqq
))
2181 cfqd
->busy_sync_queues
++;
2183 cfq_resort_rr_list(cfqd
, cfqq
);
2187 * Called when the cfqq no longer has requests pending, remove it from
2190 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2192 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2193 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2194 cfq_clear_cfqq_on_rr(cfqq
);
2196 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2197 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2198 cfqq
->service_tree
= NULL
;
2201 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2202 cfqq
->p_root
= NULL
;
2205 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2206 BUG_ON(!cfqd
->busy_queues
);
2207 cfqd
->busy_queues
--;
2208 if (cfq_cfqq_sync(cfqq
))
2209 cfqd
->busy_sync_queues
--;
2213 * rb tree support functions
2215 static void cfq_del_rq_rb(struct request
*rq
)
2217 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2218 const int sync
= rq_is_sync(rq
);
2220 BUG_ON(!cfqq
->queued
[sync
]);
2221 cfqq
->queued
[sync
]--;
2223 elv_rb_del(&cfqq
->sort_list
, rq
);
2225 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2227 * Queue will be deleted from service tree when we actually
2228 * expire it later. Right now just remove it from prio tree
2232 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2233 cfqq
->p_root
= NULL
;
2238 static void cfq_add_rq_rb(struct request
*rq
)
2240 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2241 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2242 struct request
*prev
;
2244 cfqq
->queued
[rq_is_sync(rq
)]++;
2246 elv_rb_add(&cfqq
->sort_list
, rq
);
2248 if (!cfq_cfqq_on_rr(cfqq
))
2249 cfq_add_cfqq_rr(cfqd
, cfqq
);
2252 * check if this request is a better next-serve candidate
2254 prev
= cfqq
->next_rq
;
2255 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2258 * adjust priority tree position, if ->next_rq changes
2260 if (prev
!= cfqq
->next_rq
)
2261 cfq_prio_tree_add(cfqd
, cfqq
);
2263 BUG_ON(!cfqq
->next_rq
);
2266 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2268 elv_rb_del(&cfqq
->sort_list
, rq
);
2269 cfqq
->queued
[rq_is_sync(rq
)]--;
2270 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2272 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2276 static struct request
*
2277 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2279 struct task_struct
*tsk
= current
;
2280 struct cfq_io_cq
*cic
;
2281 struct cfq_queue
*cfqq
;
2283 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2287 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2289 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2294 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2296 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2298 cfqd
->rq_in_driver
++;
2299 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2300 cfqd
->rq_in_driver
);
2302 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2305 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2307 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2309 WARN_ON(!cfqd
->rq_in_driver
);
2310 cfqd
->rq_in_driver
--;
2311 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2312 cfqd
->rq_in_driver
);
2315 static void cfq_remove_request(struct request
*rq
)
2317 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2319 if (cfqq
->next_rq
== rq
)
2320 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2322 list_del_init(&rq
->queuelist
);
2325 cfqq
->cfqd
->rq_queued
--;
2326 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2327 if (rq
->cmd_flags
& REQ_PRIO
) {
2328 WARN_ON(!cfqq
->prio_pending
);
2329 cfqq
->prio_pending
--;
2333 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
2336 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2337 struct request
*__rq
;
2339 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2340 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
2342 return ELEVATOR_FRONT_MERGE
;
2345 return ELEVATOR_NO_MERGE
;
2348 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2351 if (type
== ELEVATOR_FRONT_MERGE
) {
2352 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2354 cfq_reposition_rq_rb(cfqq
, req
);
2358 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2361 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_rw
);
2365 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2366 struct request
*next
)
2368 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2369 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2372 * reposition in fifo if next is older than rq
2374 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2375 time_before(rq_fifo_time(next
), rq_fifo_time(rq
)) &&
2376 cfqq
== RQ_CFQQ(next
)) {
2377 list_move(&rq
->queuelist
, &next
->queuelist
);
2378 rq_set_fifo_time(rq
, rq_fifo_time(next
));
2381 if (cfqq
->next_rq
== next
)
2383 cfq_remove_request(next
);
2384 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
2386 cfqq
= RQ_CFQQ(next
);
2388 * all requests of this queue are merged to other queues, delete it
2389 * from the service tree. If it's the active_queue,
2390 * cfq_dispatch_requests() will choose to expire it or do idle
2392 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2393 cfqq
!= cfqd
->active_queue
)
2394 cfq_del_cfqq_rr(cfqd
, cfqq
);
2397 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
2400 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2401 struct cfq_io_cq
*cic
;
2402 struct cfq_queue
*cfqq
;
2405 * Disallow merge of a sync bio into an async request.
2407 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
2411 * Lookup the cfqq that this bio will be queued with and allow
2412 * merge only if rq is queued there.
2414 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2418 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2419 return cfqq
== RQ_CFQQ(rq
);
2422 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2424 del_timer(&cfqd
->idle_slice_timer
);
2425 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2428 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2429 struct cfq_queue
*cfqq
)
2432 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2433 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2434 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2435 cfqq
->slice_start
= 0;
2436 cfqq
->dispatch_start
= jiffies
;
2437 cfqq
->allocated_slice
= 0;
2438 cfqq
->slice_end
= 0;
2439 cfqq
->slice_dispatch
= 0;
2440 cfqq
->nr_sectors
= 0;
2442 cfq_clear_cfqq_wait_request(cfqq
);
2443 cfq_clear_cfqq_must_dispatch(cfqq
);
2444 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2445 cfq_clear_cfqq_fifo_expire(cfqq
);
2446 cfq_mark_cfqq_slice_new(cfqq
);
2448 cfq_del_timer(cfqd
, cfqq
);
2451 cfqd
->active_queue
= cfqq
;
2455 * current cfqq expired its slice (or was too idle), select new one
2458 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2461 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2463 if (cfq_cfqq_wait_request(cfqq
))
2464 cfq_del_timer(cfqd
, cfqq
);
2466 cfq_clear_cfqq_wait_request(cfqq
);
2467 cfq_clear_cfqq_wait_busy(cfqq
);
2470 * If this cfqq is shared between multiple processes, check to
2471 * make sure that those processes are still issuing I/Os within
2472 * the mean seek distance. If not, it may be time to break the
2473 * queues apart again.
2475 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2476 cfq_mark_cfqq_split_coop(cfqq
);
2479 * store what was left of this slice, if the queue idled/timed out
2482 if (cfq_cfqq_slice_new(cfqq
))
2483 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2485 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
2486 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
2489 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2491 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2492 cfq_del_cfqq_rr(cfqd
, cfqq
);
2494 cfq_resort_rr_list(cfqd
, cfqq
);
2496 if (cfqq
== cfqd
->active_queue
)
2497 cfqd
->active_queue
= NULL
;
2499 if (cfqd
->active_cic
) {
2500 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2501 cfqd
->active_cic
= NULL
;
2505 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2507 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2510 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2514 * Get next queue for service. Unless we have a queue preemption,
2515 * we'll simply select the first cfqq in the service tree.
2517 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2519 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2520 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2522 if (!cfqd
->rq_queued
)
2525 /* There is nothing to dispatch */
2528 if (RB_EMPTY_ROOT(&st
->rb
))
2530 return cfq_rb_first(st
);
2533 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2535 struct cfq_group
*cfqg
;
2536 struct cfq_queue
*cfqq
;
2538 struct cfq_rb_root
*st
;
2540 if (!cfqd
->rq_queued
)
2543 cfqg
= cfq_get_next_cfqg(cfqd
);
2547 for_each_cfqg_st(cfqg
, i
, j
, st
)
2548 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
2554 * Get and set a new active queue for service.
2556 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2557 struct cfq_queue
*cfqq
)
2560 cfqq
= cfq_get_next_queue(cfqd
);
2562 __cfq_set_active_queue(cfqd
, cfqq
);
2566 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2569 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2570 return blk_rq_pos(rq
) - cfqd
->last_position
;
2572 return cfqd
->last_position
- blk_rq_pos(rq
);
2575 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2578 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2581 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2582 struct cfq_queue
*cur_cfqq
)
2584 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2585 struct rb_node
*parent
, *node
;
2586 struct cfq_queue
*__cfqq
;
2587 sector_t sector
= cfqd
->last_position
;
2589 if (RB_EMPTY_ROOT(root
))
2593 * First, if we find a request starting at the end of the last
2594 * request, choose it.
2596 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2601 * If the exact sector wasn't found, the parent of the NULL leaf
2602 * will contain the closest sector.
2604 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2605 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2608 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2609 node
= rb_next(&__cfqq
->p_node
);
2611 node
= rb_prev(&__cfqq
->p_node
);
2615 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2616 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2624 * cur_cfqq - passed in so that we don't decide that the current queue is
2625 * closely cooperating with itself.
2627 * So, basically we're assuming that that cur_cfqq has dispatched at least
2628 * one request, and that cfqd->last_position reflects a position on the disk
2629 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2632 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2633 struct cfq_queue
*cur_cfqq
)
2635 struct cfq_queue
*cfqq
;
2637 if (cfq_class_idle(cur_cfqq
))
2639 if (!cfq_cfqq_sync(cur_cfqq
))
2641 if (CFQQ_SEEKY(cur_cfqq
))
2645 * Don't search priority tree if it's the only queue in the group.
2647 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2651 * We should notice if some of the queues are cooperating, eg
2652 * working closely on the same area of the disk. In that case,
2653 * we can group them together and don't waste time idling.
2655 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2659 /* If new queue belongs to different cfq_group, don't choose it */
2660 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2664 * It only makes sense to merge sync queues.
2666 if (!cfq_cfqq_sync(cfqq
))
2668 if (CFQQ_SEEKY(cfqq
))
2672 * Do not merge queues of different priority classes
2674 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2681 * Determine whether we should enforce idle window for this queue.
2684 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2686 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2687 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2692 if (!cfqd
->cfq_slice_idle
)
2695 /* We never do for idle class queues. */
2696 if (wl_class
== IDLE_WORKLOAD
)
2699 /* We do for queues that were marked with idle window flag. */
2700 if (cfq_cfqq_idle_window(cfqq
) &&
2701 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2705 * Otherwise, we do only if they are the last ones
2706 * in their service tree.
2708 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2709 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2711 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2715 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2717 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2718 struct cfq_io_cq
*cic
;
2719 unsigned long sl
, group_idle
= 0;
2722 * SSD device without seek penalty, disable idling. But only do so
2723 * for devices that support queuing, otherwise we still have a problem
2724 * with sync vs async workloads.
2726 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2729 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2730 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2733 * idle is disabled, either manually or by past process history
2735 if (!cfq_should_idle(cfqd
, cfqq
)) {
2736 /* no queue idling. Check for group idling */
2737 if (cfqd
->cfq_group_idle
)
2738 group_idle
= cfqd
->cfq_group_idle
;
2744 * still active requests from this queue, don't idle
2746 if (cfqq
->dispatched
)
2750 * task has exited, don't wait
2752 cic
= cfqd
->active_cic
;
2753 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2757 * If our average think time is larger than the remaining time
2758 * slice, then don't idle. This avoids overrunning the allotted
2761 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2762 (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
)) {
2763 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%lu",
2764 cic
->ttime
.ttime_mean
);
2768 /* There are other queues in the group, don't do group idle */
2769 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
2772 cfq_mark_cfqq_wait_request(cfqq
);
2775 sl
= cfqd
->cfq_group_idle
;
2777 sl
= cfqd
->cfq_slice_idle
;
2779 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2780 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
2781 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2782 group_idle
? 1 : 0);
2786 * Move request from internal lists to the request queue dispatch list.
2788 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2790 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2791 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2793 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2795 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2796 cfq_remove_request(rq
);
2798 (RQ_CFQG(rq
))->dispatched
++;
2799 elv_dispatch_sort(q
, rq
);
2801 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
2802 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
2803 cfqg_stats_update_dispatch(cfqq
->cfqg
, blk_rq_bytes(rq
), rq
->cmd_flags
);
2807 * return expired entry, or NULL to just start from scratch in rbtree
2809 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2811 struct request
*rq
= NULL
;
2813 if (cfq_cfqq_fifo_expire(cfqq
))
2816 cfq_mark_cfqq_fifo_expire(cfqq
);
2818 if (list_empty(&cfqq
->fifo
))
2821 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2822 if (time_before(jiffies
, rq_fifo_time(rq
)))
2825 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2830 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2832 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2834 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2836 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
2840 * Must be called with the queue_lock held.
2842 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2844 int process_refs
, io_refs
;
2846 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2847 process_refs
= cfqq
->ref
- io_refs
;
2848 BUG_ON(process_refs
< 0);
2849 return process_refs
;
2852 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2854 int process_refs
, new_process_refs
;
2855 struct cfq_queue
*__cfqq
;
2858 * If there are no process references on the new_cfqq, then it is
2859 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2860 * chain may have dropped their last reference (not just their
2861 * last process reference).
2863 if (!cfqq_process_refs(new_cfqq
))
2866 /* Avoid a circular list and skip interim queue merges */
2867 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2873 process_refs
= cfqq_process_refs(cfqq
);
2874 new_process_refs
= cfqq_process_refs(new_cfqq
);
2876 * If the process for the cfqq has gone away, there is no
2877 * sense in merging the queues.
2879 if (process_refs
== 0 || new_process_refs
== 0)
2883 * Merge in the direction of the lesser amount of work.
2885 if (new_process_refs
>= process_refs
) {
2886 cfqq
->new_cfqq
= new_cfqq
;
2887 new_cfqq
->ref
+= process_refs
;
2889 new_cfqq
->new_cfqq
= cfqq
;
2890 cfqq
->ref
+= new_process_refs
;
2894 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
2895 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
2897 struct cfq_queue
*queue
;
2899 bool key_valid
= false;
2900 unsigned long lowest_key
= 0;
2901 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2903 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2904 /* select the one with lowest rb_key */
2905 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
2907 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2908 lowest_key
= queue
->rb_key
;
2918 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2922 struct cfq_rb_root
*st
;
2923 unsigned group_slice
;
2924 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
2926 /* Choose next priority. RT > BE > IDLE */
2927 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2928 cfqd
->serving_wl_class
= RT_WORKLOAD
;
2929 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2930 cfqd
->serving_wl_class
= BE_WORKLOAD
;
2932 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
2933 cfqd
->workload_expires
= jiffies
+ 1;
2937 if (original_class
!= cfqd
->serving_wl_class
)
2941 * For RT and BE, we have to choose also the type
2942 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2945 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2949 * check workload expiration, and that we still have other queues ready
2951 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2955 /* otherwise select new workload type */
2956 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
2957 cfqd
->serving_wl_class
);
2958 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2962 * the workload slice is computed as a fraction of target latency
2963 * proportional to the number of queues in that workload, over
2964 * all the queues in the same priority class
2966 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2968 slice
= group_slice
* count
/
2969 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
2970 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
2973 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
2977 * Async queues are currently system wide. Just taking
2978 * proportion of queues with-in same group will lead to higher
2979 * async ratio system wide as generally root group is going
2980 * to have higher weight. A more accurate thing would be to
2981 * calculate system wide asnc/sync ratio.
2983 tmp
= cfqd
->cfq_target_latency
*
2984 cfqg_busy_async_queues(cfqd
, cfqg
);
2985 tmp
= tmp
/cfqd
->busy_queues
;
2986 slice
= min_t(unsigned, slice
, tmp
);
2988 /* async workload slice is scaled down according to
2989 * the sync/async slice ratio. */
2990 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2992 /* sync workload slice is at least 2 * cfq_slice_idle */
2993 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2995 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2996 cfq_log(cfqd
, "workload slice:%d", slice
);
2997 cfqd
->workload_expires
= jiffies
+ slice
;
3000 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3002 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3003 struct cfq_group
*cfqg
;
3005 if (RB_EMPTY_ROOT(&st
->rb
))
3007 cfqg
= cfq_rb_first_group(st
);
3008 update_min_vdisktime(st
);
3012 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3014 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3016 cfqd
->serving_group
= cfqg
;
3018 /* Restore the workload type data */
3019 if (cfqg
->saved_wl_slice
) {
3020 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_wl_slice
;
3021 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3022 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3024 cfqd
->workload_expires
= jiffies
- 1;
3026 choose_wl_class_and_type(cfqd
, cfqg
);
3030 * Select a queue for service. If we have a current active queue,
3031 * check whether to continue servicing it, or retrieve and set a new one.
3033 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3035 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3037 cfqq
= cfqd
->active_queue
;
3041 if (!cfqd
->rq_queued
)
3045 * We were waiting for group to get backlogged. Expire the queue
3047 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3051 * The active queue has run out of time, expire it and select new.
3053 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3055 * If slice had not expired at the completion of last request
3056 * we might not have turned on wait_busy flag. Don't expire
3057 * the queue yet. Allow the group to get backlogged.
3059 * The very fact that we have used the slice, that means we
3060 * have been idling all along on this queue and it should be
3061 * ok to wait for this request to complete.
3063 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3064 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3068 goto check_group_idle
;
3072 * The active queue has requests and isn't expired, allow it to
3075 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3079 * If another queue has a request waiting within our mean seek
3080 * distance, let it run. The expire code will check for close
3081 * cooperators and put the close queue at the front of the service
3082 * tree. If possible, merge the expiring queue with the new cfqq.
3084 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3086 if (!cfqq
->new_cfqq
)
3087 cfq_setup_merge(cfqq
, new_cfqq
);
3092 * No requests pending. If the active queue still has requests in
3093 * flight or is idling for a new request, allow either of these
3094 * conditions to happen (or time out) before selecting a new queue.
3096 if (timer_pending(&cfqd
->idle_slice_timer
)) {
3102 * This is a deep seek queue, but the device is much faster than
3103 * the queue can deliver, don't idle
3105 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3106 (cfq_cfqq_slice_new(cfqq
) ||
3107 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
3108 cfq_clear_cfqq_deep(cfqq
);
3109 cfq_clear_cfqq_idle_window(cfqq
);
3112 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3118 * If group idle is enabled and there are requests dispatched from
3119 * this group, wait for requests to complete.
3122 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3123 cfqq
->cfqg
->dispatched
&&
3124 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3130 cfq_slice_expired(cfqd
, 0);
3133 * Current queue expired. Check if we have to switch to a new
3137 cfq_choose_cfqg(cfqd
);
3139 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3144 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3148 while (cfqq
->next_rq
) {
3149 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3153 BUG_ON(!list_empty(&cfqq
->fifo
));
3155 /* By default cfqq is not expired if it is empty. Do it explicitly */
3156 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3161 * Drain our current requests. Used for barriers and when switching
3162 * io schedulers on-the-fly.
3164 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3166 struct cfq_queue
*cfqq
;
3169 /* Expire the timeslice of the current active queue first */
3170 cfq_slice_expired(cfqd
, 0);
3171 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3172 __cfq_set_active_queue(cfqd
, cfqq
);
3173 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3176 BUG_ON(cfqd
->busy_queues
);
3178 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3182 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3183 struct cfq_queue
*cfqq
)
3185 /* the queue hasn't finished any request, can't estimate */
3186 if (cfq_cfqq_slice_new(cfqq
))
3188 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
3195 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3197 unsigned int max_dispatch
;
3200 * Drain async requests before we start sync IO
3202 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3206 * If this is an async queue and we have sync IO in flight, let it wait
3208 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3211 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3212 if (cfq_class_idle(cfqq
))
3216 * Does this cfqq already have too much IO in flight?
3218 if (cfqq
->dispatched
>= max_dispatch
) {
3219 bool promote_sync
= false;
3221 * idle queue must always only have a single IO in flight
3223 if (cfq_class_idle(cfqq
))
3227 * If there is only one sync queue
3228 * we can ignore async queue here and give the sync
3229 * queue no dispatch limit. The reason is a sync queue can
3230 * preempt async queue, limiting the sync queue doesn't make
3231 * sense. This is useful for aiostress test.
3233 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3234 promote_sync
= true;
3237 * We have other queues, don't allow more IO from this one
3239 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3244 * Sole queue user, no limit
3246 if (cfqd
->busy_queues
== 1 || promote_sync
)
3250 * Normally we start throttling cfqq when cfq_quantum/2
3251 * requests have been dispatched. But we can drive
3252 * deeper queue depths at the beginning of slice
3253 * subjected to upper limit of cfq_quantum.
3255 max_dispatch
= cfqd
->cfq_quantum
;
3259 * Async queues must wait a bit before being allowed dispatch.
3260 * We also ramp up the dispatch depth gradually for async IO,
3261 * based on the last sync IO we serviced
3263 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3264 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
3267 depth
= last_sync
/ cfqd
->cfq_slice
[1];
3268 if (!depth
&& !cfqq
->dispatched
)
3270 if (depth
< max_dispatch
)
3271 max_dispatch
= depth
;
3275 * If we're below the current max, allow a dispatch
3277 return cfqq
->dispatched
< max_dispatch
;
3281 * Dispatch a request from cfqq, moving them to the request queue
3284 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3288 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3290 if (!cfq_may_dispatch(cfqd
, cfqq
))
3294 * follow expired path, else get first next available
3296 rq
= cfq_check_fifo(cfqq
);
3301 * insert request into driver dispatch list
3303 cfq_dispatch_insert(cfqd
->queue
, rq
);
3305 if (!cfqd
->active_cic
) {
3306 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3308 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3309 cfqd
->active_cic
= cic
;
3316 * Find the cfqq that we need to service and move a request from that to the
3319 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3321 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3322 struct cfq_queue
*cfqq
;
3324 if (!cfqd
->busy_queues
)
3327 if (unlikely(force
))
3328 return cfq_forced_dispatch(cfqd
);
3330 cfqq
= cfq_select_queue(cfqd
);
3335 * Dispatch a request from this cfqq, if it is allowed
3337 if (!cfq_dispatch_request(cfqd
, cfqq
))
3340 cfqq
->slice_dispatch
++;
3341 cfq_clear_cfqq_must_dispatch(cfqq
);
3344 * expire an async queue immediately if it has used up its slice. idle
3345 * queue always expire after 1 dispatch round.
3347 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3348 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3349 cfq_class_idle(cfqq
))) {
3350 cfqq
->slice_end
= jiffies
+ 1;
3351 cfq_slice_expired(cfqd
, 0);
3354 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3359 * task holds one reference to the queue, dropped when task exits. each rq
3360 * in-flight on this queue also holds a reference, dropped when rq is freed.
3362 * Each cfq queue took a reference on the parent group. Drop it now.
3363 * queue lock must be held here.
3365 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3367 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3368 struct cfq_group
*cfqg
;
3370 BUG_ON(cfqq
->ref
<= 0);
3376 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3377 BUG_ON(rb_first(&cfqq
->sort_list
));
3378 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3381 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3382 __cfq_slice_expired(cfqd
, cfqq
, 0);
3383 cfq_schedule_dispatch(cfqd
);
3386 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3387 kmem_cache_free(cfq_pool
, cfqq
);
3391 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3393 struct cfq_queue
*__cfqq
, *next
;
3396 * If this queue was scheduled to merge with another queue, be
3397 * sure to drop the reference taken on that queue (and others in
3398 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3400 __cfqq
= cfqq
->new_cfqq
;
3402 if (__cfqq
== cfqq
) {
3403 WARN(1, "cfqq->new_cfqq loop detected\n");
3406 next
= __cfqq
->new_cfqq
;
3407 cfq_put_queue(__cfqq
);
3412 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3414 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3415 __cfq_slice_expired(cfqd
, cfqq
, 0);
3416 cfq_schedule_dispatch(cfqd
);
3419 cfq_put_cooperator(cfqq
);
3421 cfq_put_queue(cfqq
);
3424 static void cfq_init_icq(struct io_cq
*icq
)
3426 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3428 cic
->ttime
.last_end_request
= jiffies
;
3431 static void cfq_exit_icq(struct io_cq
*icq
)
3433 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3434 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3436 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
3437 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
3438 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
3441 if (cic
->cfqq
[BLK_RW_SYNC
]) {
3442 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
3443 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
3447 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3449 struct task_struct
*tsk
= current
;
3452 if (!cfq_cfqq_prio_changed(cfqq
))
3455 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3456 switch (ioprio_class
) {
3458 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3459 case IOPRIO_CLASS_NONE
:
3461 * no prio set, inherit CPU scheduling settings
3463 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3464 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3466 case IOPRIO_CLASS_RT
:
3467 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3468 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3470 case IOPRIO_CLASS_BE
:
3471 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3472 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3474 case IOPRIO_CLASS_IDLE
:
3475 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3477 cfq_clear_cfqq_idle_window(cfqq
);
3482 * keep track of original prio settings in case we have to temporarily
3483 * elevate the priority of this queue
3485 cfqq
->org_ioprio
= cfqq
->ioprio
;
3486 cfq_clear_cfqq_prio_changed(cfqq
);
3489 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3491 int ioprio
= cic
->icq
.ioc
->ioprio
;
3492 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3493 struct cfq_queue
*cfqq
;
3496 * Check whether ioprio has changed. The condition may trigger
3497 * spuriously on a newly created cic but there's no harm.
3499 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3502 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
3504 struct cfq_queue
*new_cfqq
;
3505 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
,
3508 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
3509 cfq_put_queue(cfqq
);
3513 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
3515 cfq_mark_cfqq_prio_changed(cfqq
);
3517 cic
->ioprio
= ioprio
;
3520 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3521 pid_t pid
, bool is_sync
)
3523 RB_CLEAR_NODE(&cfqq
->rb_node
);
3524 RB_CLEAR_NODE(&cfqq
->p_node
);
3525 INIT_LIST_HEAD(&cfqq
->fifo
);
3530 cfq_mark_cfqq_prio_changed(cfqq
);
3533 if (!cfq_class_idle(cfqq
))
3534 cfq_mark_cfqq_idle_window(cfqq
);
3535 cfq_mark_cfqq_sync(cfqq
);
3540 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3541 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3543 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3544 struct cfq_queue
*sync_cfqq
;
3548 id
= bio_blkcg(bio
)->id
;
3552 * Check whether blkcg has changed. The condition may trigger
3553 * spuriously on a newly created cic but there's no harm.
3555 if (unlikely(!cfqd
) || likely(cic
->blkcg_id
== id
))
3558 sync_cfqq
= cic_to_cfqq(cic
, 1);
3561 * Drop reference to sync queue. A new sync queue will be
3562 * assigned in new group upon arrival of a fresh request.
3564 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
3565 cic_set_cfqq(cic
, NULL
, 1);
3566 cfq_put_queue(sync_cfqq
);
3572 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
) { }
3573 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3575 static struct cfq_queue
*
3576 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3577 struct bio
*bio
, gfp_t gfp_mask
)
3579 struct blkcg
*blkcg
;
3580 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3581 struct cfq_group
*cfqg
;
3586 blkcg
= bio_blkcg(bio
);
3587 cfqg
= cfq_lookup_create_cfqg(cfqd
, blkcg
);
3588 cfqq
= cic_to_cfqq(cic
, is_sync
);
3591 * Always try a new alloc if we fell back to the OOM cfqq
3592 * originally, since it should just be a temporary situation.
3594 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3599 } else if (gfp_mask
& __GFP_WAIT
) {
3601 spin_unlock_irq(cfqd
->queue
->queue_lock
);
3602 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
3603 gfp_mask
| __GFP_ZERO
,
3605 spin_lock_irq(cfqd
->queue
->queue_lock
);
3609 return &cfqd
->oom_cfqq
;
3611 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3612 gfp_mask
| __GFP_ZERO
,
3617 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3618 cfq_init_prio_data(cfqq
, cic
);
3619 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3620 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3622 cfqq
= &cfqd
->oom_cfqq
;
3626 kmem_cache_free(cfq_pool
, new_cfqq
);
3632 static struct cfq_queue
**
3633 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
3635 switch (ioprio_class
) {
3636 case IOPRIO_CLASS_RT
:
3637 return &cfqd
->async_cfqq
[0][ioprio
];
3638 case IOPRIO_CLASS_NONE
:
3639 ioprio
= IOPRIO_NORM
;
3641 case IOPRIO_CLASS_BE
:
3642 return &cfqd
->async_cfqq
[1][ioprio
];
3643 case IOPRIO_CLASS_IDLE
:
3644 return &cfqd
->async_idle_cfqq
;
3650 static struct cfq_queue
*
3651 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3652 struct bio
*bio
, gfp_t gfp_mask
)
3654 const int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3655 const int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3656 struct cfq_queue
**async_cfqq
= NULL
;
3657 struct cfq_queue
*cfqq
= NULL
;
3660 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
3665 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, cic
, bio
, gfp_mask
);
3668 * pin the queue now that it's allocated, scheduler exit will prune it
3670 if (!is_sync
&& !(*async_cfqq
)) {
3680 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, unsigned long slice_idle
)
3682 unsigned long elapsed
= jiffies
- ttime
->last_end_request
;
3683 elapsed
= min(elapsed
, 2UL * slice_idle
);
3685 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3686 ttime
->ttime_total
= (7*ttime
->ttime_total
+ 256*elapsed
) / 8;
3687 ttime
->ttime_mean
= (ttime
->ttime_total
+ 128) / ttime
->ttime_samples
;
3691 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3692 struct cfq_io_cq
*cic
)
3694 if (cfq_cfqq_sync(cfqq
)) {
3695 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3696 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3697 cfqd
->cfq_slice_idle
);
3699 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3700 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3705 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3709 sector_t n_sec
= blk_rq_sectors(rq
);
3710 if (cfqq
->last_request_pos
) {
3711 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3712 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3714 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3717 cfqq
->seek_history
<<= 1;
3718 if (blk_queue_nonrot(cfqd
->queue
))
3719 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3721 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3725 * Disable idle window if the process thinks too long or seeks so much that
3729 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3730 struct cfq_io_cq
*cic
)
3732 int old_idle
, enable_idle
;
3735 * Don't idle for async or idle io prio class
3737 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3740 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3742 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3743 cfq_mark_cfqq_deep(cfqq
);
3745 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3747 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3748 !cfqd
->cfq_slice_idle
||
3749 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3751 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3752 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3758 if (old_idle
!= enable_idle
) {
3759 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3761 cfq_mark_cfqq_idle_window(cfqq
);
3763 cfq_clear_cfqq_idle_window(cfqq
);
3768 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3769 * no or if we aren't sure, a 1 will cause a preempt.
3772 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3775 struct cfq_queue
*cfqq
;
3777 cfqq
= cfqd
->active_queue
;
3781 if (cfq_class_idle(new_cfqq
))
3784 if (cfq_class_idle(cfqq
))
3788 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3790 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3794 * if the new request is sync, but the currently running queue is
3795 * not, let the sync request have priority.
3797 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3800 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3803 if (cfq_slice_used(cfqq
))
3806 /* Allow preemption only if we are idling on sync-noidle tree */
3807 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
3808 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3809 new_cfqq
->service_tree
->count
== 2 &&
3810 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3814 * So both queues are sync. Let the new request get disk time if
3815 * it's a metadata request and the current queue is doing regular IO.
3817 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
3821 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3823 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3826 /* An idle queue should not be idle now for some reason */
3827 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3830 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3834 * if this request is as-good as one we would expect from the
3835 * current cfqq, let it preempt
3837 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3844 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3845 * let it have half of its nominal slice.
3847 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3849 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
3851 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3852 cfq_slice_expired(cfqd
, 1);
3855 * workload type is changed, don't save slice, otherwise preempt
3858 if (old_type
!= cfqq_type(cfqq
))
3859 cfqq
->cfqg
->saved_wl_slice
= 0;
3862 * Put the new queue at the front of the of the current list,
3863 * so we know that it will be selected next.
3865 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3867 cfq_service_tree_add(cfqd
, cfqq
, 1);
3869 cfqq
->slice_end
= 0;
3870 cfq_mark_cfqq_slice_new(cfqq
);
3874 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3875 * something we should do about it
3878 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3881 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3884 if (rq
->cmd_flags
& REQ_PRIO
)
3885 cfqq
->prio_pending
++;
3887 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
3888 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3889 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3891 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3893 if (cfqq
== cfqd
->active_queue
) {
3895 * Remember that we saw a request from this process, but
3896 * don't start queuing just yet. Otherwise we risk seeing lots
3897 * of tiny requests, because we disrupt the normal plugging
3898 * and merging. If the request is already larger than a single
3899 * page, let it rip immediately. For that case we assume that
3900 * merging is already done. Ditto for a busy system that
3901 * has other work pending, don't risk delaying until the
3902 * idle timer unplug to continue working.
3904 if (cfq_cfqq_wait_request(cfqq
)) {
3905 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3906 cfqd
->busy_queues
> 1) {
3907 cfq_del_timer(cfqd
, cfqq
);
3908 cfq_clear_cfqq_wait_request(cfqq
);
3909 __blk_run_queue(cfqd
->queue
);
3911 cfqg_stats_update_idle_time(cfqq
->cfqg
);
3912 cfq_mark_cfqq_must_dispatch(cfqq
);
3915 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3917 * not the active queue - expire current slice if it is
3918 * idle and has expired it's mean thinktime or this new queue
3919 * has some old slice time left and is of higher priority or
3920 * this new queue is RT and the current one is BE
3922 cfq_preempt_queue(cfqd
, cfqq
);
3923 __blk_run_queue(cfqd
->queue
);
3927 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3929 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3930 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3932 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3933 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
3935 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3936 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3938 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
3940 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3944 * Update hw_tag based on peak queue depth over 50 samples under
3947 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3949 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3951 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3952 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3954 if (cfqd
->hw_tag
== 1)
3957 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3958 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3962 * If active queue hasn't enough requests and can idle, cfq might not
3963 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3966 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3967 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3968 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3971 if (cfqd
->hw_tag_samples
++ < 50)
3974 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3980 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3982 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
3984 /* If the queue already has requests, don't wait */
3985 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3988 /* If there are other queues in the group, don't wait */
3989 if (cfqq
->cfqg
->nr_cfqq
> 1)
3992 /* the only queue in the group, but think time is big */
3993 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
3996 if (cfq_slice_used(cfqq
))
3999 /* if slice left is less than think time, wait busy */
4000 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4001 && (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
))
4005 * If think times is less than a jiffy than ttime_mean=0 and above
4006 * will not be true. It might happen that slice has not expired yet
4007 * but will expire soon (4-5 ns) during select_queue(). To cover the
4008 * case where think time is less than a jiffy, mark the queue wait
4009 * busy if only 1 jiffy is left in the slice.
4011 if (cfqq
->slice_end
- jiffies
== 1)
4017 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4019 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4020 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4021 const int sync
= rq_is_sync(rq
);
4025 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
4026 !!(rq
->cmd_flags
& REQ_NOIDLE
));
4028 cfq_update_hw_tag(cfqd
);
4030 WARN_ON(!cfqd
->rq_in_driver
);
4031 WARN_ON(!cfqq
->dispatched
);
4032 cfqd
->rq_in_driver
--;
4034 (RQ_CFQG(rq
))->dispatched
--;
4035 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4036 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
4038 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4041 struct cfq_rb_root
*st
;
4043 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4045 if (cfq_cfqq_on_rr(cfqq
))
4046 st
= cfqq
->service_tree
;
4048 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4051 st
->ttime
.last_end_request
= now
;
4052 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
4053 cfqd
->last_delayed_sync
= now
;
4056 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4057 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4061 * If this is the active queue, check if it needs to be expired,
4062 * or if we want to idle in case it has no pending requests.
4064 if (cfqd
->active_queue
== cfqq
) {
4065 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4067 if (cfq_cfqq_slice_new(cfqq
)) {
4068 cfq_set_prio_slice(cfqd
, cfqq
);
4069 cfq_clear_cfqq_slice_new(cfqq
);
4073 * Should we wait for next request to come in before we expire
4076 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4077 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
4078 if (!cfqd
->cfq_slice_idle
)
4079 extend_sl
= cfqd
->cfq_group_idle
;
4080 cfqq
->slice_end
= jiffies
+ extend_sl
;
4081 cfq_mark_cfqq_wait_busy(cfqq
);
4082 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4086 * Idling is not enabled on:
4088 * - idle-priority queues
4090 * - queues with still some requests queued
4091 * - when there is a close cooperator
4093 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4094 cfq_slice_expired(cfqd
, 1);
4095 else if (sync
&& cfqq_empty
&&
4096 !cfq_close_cooperator(cfqd
, cfqq
)) {
4097 cfq_arm_slice_timer(cfqd
);
4101 if (!cfqd
->rq_in_driver
)
4102 cfq_schedule_dispatch(cfqd
);
4105 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4107 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4108 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4109 return ELV_MQUEUE_MUST
;
4112 return ELV_MQUEUE_MAY
;
4115 static int cfq_may_queue(struct request_queue
*q
, int rw
)
4117 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4118 struct task_struct
*tsk
= current
;
4119 struct cfq_io_cq
*cic
;
4120 struct cfq_queue
*cfqq
;
4123 * don't force setup of a queue from here, as a call to may_queue
4124 * does not necessarily imply that a request actually will be queued.
4125 * so just lookup a possibly existing queue, or return 'may queue'
4128 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4130 return ELV_MQUEUE_MAY
;
4132 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
4134 cfq_init_prio_data(cfqq
, cic
);
4136 return __cfq_may_queue(cfqq
);
4139 return ELV_MQUEUE_MAY
;
4143 * queue lock held here
4145 static void cfq_put_request(struct request
*rq
)
4147 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4150 const int rw
= rq_data_dir(rq
);
4152 BUG_ON(!cfqq
->allocated
[rw
]);
4153 cfqq
->allocated
[rw
]--;
4155 /* Put down rq reference on cfqg */
4156 cfqg_put(RQ_CFQG(rq
));
4157 rq
->elv
.priv
[0] = NULL
;
4158 rq
->elv
.priv
[1] = NULL
;
4160 cfq_put_queue(cfqq
);
4164 static struct cfq_queue
*
4165 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4166 struct cfq_queue
*cfqq
)
4168 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4169 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4170 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4171 cfq_put_queue(cfqq
);
4172 return cic_to_cfqq(cic
, 1);
4176 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4177 * was the last process referring to said cfqq.
4179 static struct cfq_queue
*
4180 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4182 if (cfqq_process_refs(cfqq
) == 1) {
4183 cfqq
->pid
= current
->pid
;
4184 cfq_clear_cfqq_coop(cfqq
);
4185 cfq_clear_cfqq_split_coop(cfqq
);
4189 cic_set_cfqq(cic
, NULL
, 1);
4191 cfq_put_cooperator(cfqq
);
4193 cfq_put_queue(cfqq
);
4197 * Allocate cfq data structures associated with this request.
4200 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4203 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4204 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4205 const int rw
= rq_data_dir(rq
);
4206 const bool is_sync
= rq_is_sync(rq
);
4207 struct cfq_queue
*cfqq
;
4209 might_sleep_if(gfp_mask
& __GFP_WAIT
);
4211 spin_lock_irq(q
->queue_lock
);
4213 check_ioprio_changed(cic
, bio
);
4214 check_blkcg_changed(cic
, bio
);
4216 cfqq
= cic_to_cfqq(cic
, is_sync
);
4217 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4218 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
, gfp_mask
);
4219 cic_set_cfqq(cic
, cfqq
, is_sync
);
4222 * If the queue was seeky for too long, break it apart.
4224 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4225 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4226 cfqq
= split_cfqq(cic
, cfqq
);
4232 * Check to see if this queue is scheduled to merge with
4233 * another, closely cooperating queue. The merging of
4234 * queues happens here as it must be done in process context.
4235 * The reference on new_cfqq was taken in merge_cfqqs.
4238 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4241 cfqq
->allocated
[rw
]++;
4244 cfqg_get(cfqq
->cfqg
);
4245 rq
->elv
.priv
[0] = cfqq
;
4246 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4247 spin_unlock_irq(q
->queue_lock
);
4251 static void cfq_kick_queue(struct work_struct
*work
)
4253 struct cfq_data
*cfqd
=
4254 container_of(work
, struct cfq_data
, unplug_work
);
4255 struct request_queue
*q
= cfqd
->queue
;
4257 spin_lock_irq(q
->queue_lock
);
4258 __blk_run_queue(cfqd
->queue
);
4259 spin_unlock_irq(q
->queue_lock
);
4263 * Timer running if the active_queue is currently idling inside its time slice
4265 static void cfq_idle_slice_timer(unsigned long data
)
4267 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
4268 struct cfq_queue
*cfqq
;
4269 unsigned long flags
;
4272 cfq_log(cfqd
, "idle timer fired");
4274 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4276 cfqq
= cfqd
->active_queue
;
4281 * We saw a request before the queue expired, let it through
4283 if (cfq_cfqq_must_dispatch(cfqq
))
4289 if (cfq_slice_used(cfqq
))
4293 * only expire and reinvoke request handler, if there are
4294 * other queues with pending requests
4296 if (!cfqd
->busy_queues
)
4300 * not expired and it has a request pending, let it dispatch
4302 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4306 * Queue depth flag is reset only when the idle didn't succeed
4308 cfq_clear_cfqq_deep(cfqq
);
4311 cfq_slice_expired(cfqd
, timed_out
);
4313 cfq_schedule_dispatch(cfqd
);
4315 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4318 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4320 del_timer_sync(&cfqd
->idle_slice_timer
);
4321 cancel_work_sync(&cfqd
->unplug_work
);
4324 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
4328 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
4329 if (cfqd
->async_cfqq
[0][i
])
4330 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
4331 if (cfqd
->async_cfqq
[1][i
])
4332 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
4335 if (cfqd
->async_idle_cfqq
)
4336 cfq_put_queue(cfqd
->async_idle_cfqq
);
4339 static void cfq_exit_queue(struct elevator_queue
*e
)
4341 struct cfq_data
*cfqd
= e
->elevator_data
;
4342 struct request_queue
*q
= cfqd
->queue
;
4344 cfq_shutdown_timer_wq(cfqd
);
4346 spin_lock_irq(q
->queue_lock
);
4348 if (cfqd
->active_queue
)
4349 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4351 cfq_put_async_queues(cfqd
);
4353 spin_unlock_irq(q
->queue_lock
);
4355 cfq_shutdown_timer_wq(cfqd
);
4357 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4358 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4360 kfree(cfqd
->root_group
);
4365 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4367 struct cfq_data
*cfqd
;
4368 struct blkcg_gq
*blkg __maybe_unused
;
4370 struct elevator_queue
*eq
;
4372 eq
= elevator_alloc(q
, e
);
4376 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4378 kobject_put(&eq
->kobj
);
4381 eq
->elevator_data
= cfqd
;
4384 spin_lock_irq(q
->queue_lock
);
4386 spin_unlock_irq(q
->queue_lock
);
4388 /* Init root service tree */
4389 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4391 /* Init root group and prefer root group over other groups by default */
4392 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4393 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4397 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4400 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4401 GFP_KERNEL
, cfqd
->queue
->node
);
4402 if (!cfqd
->root_group
)
4405 cfq_init_cfqg_base(cfqd
->root_group
);
4407 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_DEFAULT
;
4408 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_DEFAULT
;
4411 * Not strictly needed (since RB_ROOT just clears the node and we
4412 * zeroed cfqd on alloc), but better be safe in case someone decides
4413 * to add magic to the rb code
4415 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4416 cfqd
->prio_trees
[i
] = RB_ROOT
;
4419 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4420 * Grab a permanent reference to it, so that the normal code flow
4421 * will not attempt to free it. oom_cfqq is linked to root_group
4422 * but shouldn't hold a reference as it'll never be unlinked. Lose
4423 * the reference from linking right away.
4425 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4426 cfqd
->oom_cfqq
.ref
++;
4428 spin_lock_irq(q
->queue_lock
);
4429 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4430 cfqg_put(cfqd
->root_group
);
4431 spin_unlock_irq(q
->queue_lock
);
4433 init_timer(&cfqd
->idle_slice_timer
);
4434 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4435 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
4437 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4439 cfqd
->cfq_quantum
= cfq_quantum
;
4440 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4441 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4442 cfqd
->cfq_back_max
= cfq_back_max
;
4443 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4444 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4445 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4446 cfqd
->cfq_target_latency
= cfq_target_latency
;
4447 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4448 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4449 cfqd
->cfq_group_idle
= cfq_group_idle
;
4450 cfqd
->cfq_latency
= 1;
4453 * we optimistically start assuming sync ops weren't delayed in last
4454 * second, in order to have larger depth for async operations.
4456 cfqd
->last_delayed_sync
= jiffies
- HZ
;
4461 kobject_put(&eq
->kobj
);
4466 * sysfs parts below -->
4469 cfq_var_show(unsigned int var
, char *page
)
4471 return sprintf(page
, "%d\n", var
);
4475 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4477 char *p
= (char *) page
;
4479 *var
= simple_strtoul(p
, &p
, 10);
4483 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4484 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4486 struct cfq_data *cfqd = e->elevator_data; \
4487 unsigned int __data = __VAR; \
4489 __data = jiffies_to_msecs(__data); \
4490 return cfq_var_show(__data, (page)); \
4492 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4493 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4494 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4495 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4496 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4497 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4498 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4499 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4500 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4501 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4502 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4503 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4504 #undef SHOW_FUNCTION
4506 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4507 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4509 struct cfq_data *cfqd = e->elevator_data; \
4510 unsigned int __data; \
4511 int ret = cfq_var_store(&__data, (page), count); \
4512 if (__data < (MIN)) \
4514 else if (__data > (MAX)) \
4517 *(__PTR) = msecs_to_jiffies(__data); \
4519 *(__PTR) = __data; \
4522 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4523 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4525 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4527 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4528 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4530 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4531 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4532 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4533 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4534 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4536 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4537 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4538 #undef STORE_FUNCTION
4540 #define CFQ_ATTR(name) \
4541 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4543 static struct elv_fs_entry cfq_attrs
[] = {
4545 CFQ_ATTR(fifo_expire_sync
),
4546 CFQ_ATTR(fifo_expire_async
),
4547 CFQ_ATTR(back_seek_max
),
4548 CFQ_ATTR(back_seek_penalty
),
4549 CFQ_ATTR(slice_sync
),
4550 CFQ_ATTR(slice_async
),
4551 CFQ_ATTR(slice_async_rq
),
4552 CFQ_ATTR(slice_idle
),
4553 CFQ_ATTR(group_idle
),
4554 CFQ_ATTR(low_latency
),
4555 CFQ_ATTR(target_latency
),
4559 static struct elevator_type iosched_cfq
= {
4561 .elevator_merge_fn
= cfq_merge
,
4562 .elevator_merged_fn
= cfq_merged_request
,
4563 .elevator_merge_req_fn
= cfq_merged_requests
,
4564 .elevator_allow_merge_fn
= cfq_allow_merge
,
4565 .elevator_bio_merged_fn
= cfq_bio_merged
,
4566 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4567 .elevator_add_req_fn
= cfq_insert_request
,
4568 .elevator_activate_req_fn
= cfq_activate_request
,
4569 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4570 .elevator_completed_req_fn
= cfq_completed_request
,
4571 .elevator_former_req_fn
= elv_rb_former_request
,
4572 .elevator_latter_req_fn
= elv_rb_latter_request
,
4573 .elevator_init_icq_fn
= cfq_init_icq
,
4574 .elevator_exit_icq_fn
= cfq_exit_icq
,
4575 .elevator_set_req_fn
= cfq_set_request
,
4576 .elevator_put_req_fn
= cfq_put_request
,
4577 .elevator_may_queue_fn
= cfq_may_queue
,
4578 .elevator_init_fn
= cfq_init_queue
,
4579 .elevator_exit_fn
= cfq_exit_queue
,
4581 .icq_size
= sizeof(struct cfq_io_cq
),
4582 .icq_align
= __alignof__(struct cfq_io_cq
),
4583 .elevator_attrs
= cfq_attrs
,
4584 .elevator_name
= "cfq",
4585 .elevator_owner
= THIS_MODULE
,
4588 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4589 static struct blkcg_policy blkcg_policy_cfq
= {
4590 .pd_size
= sizeof(struct cfq_group
),
4591 .cftypes
= cfq_blkcg_files
,
4593 .pd_init_fn
= cfq_pd_init
,
4594 .pd_offline_fn
= cfq_pd_offline
,
4595 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4599 static int __init
cfq_init(void)
4604 * could be 0 on HZ < 1000 setups
4606 if (!cfq_slice_async
)
4607 cfq_slice_async
= 1;
4608 if (!cfq_slice_idle
)
4611 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4612 if (!cfq_group_idle
)
4615 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4623 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4627 ret
= elv_register(&iosched_cfq
);
4634 kmem_cache_destroy(cfq_pool
);
4636 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4637 blkcg_policy_unregister(&blkcg_policy_cfq
);
4642 static void __exit
cfq_exit(void)
4644 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4645 blkcg_policy_unregister(&blkcg_policy_cfq
);
4647 elv_unregister(&iosched_cfq
);
4648 kmem_cache_destroy(cfq_pool
);
4651 module_init(cfq_init
);
4652 module_exit(cfq_exit
);
4654 MODULE_AUTHOR("Jens Axboe");
4655 MODULE_LICENSE("GPL");
4656 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");