4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26 #define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 #define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
48 #define START_BLOCK(sbi, segno) \
49 (SM_I(sbi)->seg0_blkaddr + \
50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg) \
52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
54 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr) \
61 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
62 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
63 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno) \
65 ((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
67 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
69 #define GET_SUM_BLOCK(sbi, segno) \
70 ((sbi->sm_info->ssa_blkaddr) + segno)
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
75 #define SIT_ENTRY_OFFSET(sit_i, segno) \
76 (segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno) \
78 (segno / SIT_ENTRY_PER_BLOCK)
79 #define START_SEGNO(sit_i, segno) \
80 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define SIT_BLK_CNT(sbi) \
82 ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
83 #define f2fs_bitmap_size(nr) \
84 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
85 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
86 #define TOTAL_SECS(sbi) (sbi->total_sections)
88 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \
89 (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
90 #define SECTOR_TO_BLOCK(sbi, sectors) \
91 (sectors >> (sbi)->log_sectors_per_block)
92 #define MAX_BIO_BLOCKS(max_hw_blocks) \
93 (min((int)max_hw_blocks, BIO_MAX_PAGES))
96 * indicate a block allocation direction: RIGHT and LEFT.
97 * RIGHT means allocating new sections towards the end of volume.
98 * LEFT means the opposite direction.
106 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
107 * LFS writes data sequentially with cleaning operations.
108 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
116 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
117 * GC_CB is based on cost-benefit algorithm.
118 * GC_GREEDY is based on greedy algorithm.
126 * BG_GC means the background cleaning job.
127 * FG_GC means the on-demand cleaning job.
134 /* for a function parameter to select a victim segment */
135 struct victim_sel_policy
{
136 int alloc_mode
; /* LFS or SSR */
137 int gc_mode
; /* GC_CB or GC_GREEDY */
138 unsigned long *dirty_segmap
; /* dirty segment bitmap */
139 unsigned int max_search
; /* maximum # of segments to search */
140 unsigned int offset
; /* last scanned bitmap offset */
141 unsigned int ofs_unit
; /* bitmap search unit */
142 unsigned int min_cost
; /* minimum cost */
143 unsigned int min_segno
; /* segment # having min. cost */
147 unsigned short valid_blocks
; /* # of valid blocks */
148 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
150 * # of valid blocks and the validity bitmap stored in the the last
151 * checkpoint pack. This information is used by the SSR mode.
153 unsigned short ckpt_valid_blocks
;
154 unsigned char *ckpt_valid_map
;
155 unsigned char type
; /* segment type like CURSEG_XXX_TYPE */
156 unsigned long long mtime
; /* modification time of the segment */
160 unsigned int valid_blocks
; /* # of valid blocks in a section */
163 struct segment_allocation
{
164 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
168 const struct segment_allocation
*s_ops
;
170 block_t sit_base_addr
; /* start block address of SIT area */
171 block_t sit_blocks
; /* # of blocks used by SIT area */
172 block_t written_valid_blocks
; /* # of valid blocks in main area */
173 char *sit_bitmap
; /* SIT bitmap pointer */
174 unsigned int bitmap_size
; /* SIT bitmap size */
176 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
177 unsigned int dirty_sentries
; /* # of dirty sentries */
178 unsigned int sents_per_block
; /* # of SIT entries per block */
179 struct mutex sentry_lock
; /* to protect SIT cache */
180 struct seg_entry
*sentries
; /* SIT segment-level cache */
181 struct sec_entry
*sec_entries
; /* SIT section-level cache */
183 /* for cost-benefit algorithm in cleaning procedure */
184 unsigned long long elapsed_time
; /* elapsed time after mount */
185 unsigned long long mounted_time
; /* mount time */
186 unsigned long long min_mtime
; /* min. modification time */
187 unsigned long long max_mtime
; /* max. modification time */
190 struct free_segmap_info
{
191 unsigned int start_segno
; /* start segment number logically */
192 unsigned int free_segments
; /* # of free segments */
193 unsigned int free_sections
; /* # of free sections */
194 rwlock_t segmap_lock
; /* free segmap lock */
195 unsigned long *free_segmap
; /* free segment bitmap */
196 unsigned long *free_secmap
; /* free section bitmap */
199 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
201 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
202 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
203 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
204 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
205 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
206 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
207 DIRTY
, /* to count # of dirty segments */
208 PRE
, /* to count # of entirely obsolete segments */
212 struct dirty_seglist_info
{
213 const struct victim_selection
*v_ops
; /* victim selction operation */
214 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
215 struct mutex seglist_lock
; /* lock for segment bitmaps */
216 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
217 unsigned long *victim_secmap
; /* background GC victims */
220 /* victim selection function for cleaning and SSR */
221 struct victim_selection
{
222 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
226 /* for active log information */
228 struct mutex curseg_mutex
; /* lock for consistency */
229 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
230 unsigned char alloc_type
; /* current allocation type */
231 unsigned int segno
; /* current segment number */
232 unsigned short next_blkoff
; /* next block offset to write */
233 unsigned int zone
; /* current zone number */
234 unsigned int next_segno
; /* preallocated segment */
240 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
242 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
245 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
248 struct sit_info
*sit_i
= SIT_I(sbi
);
249 return &sit_i
->sentries
[segno
];
252 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
255 struct sit_info
*sit_i
= SIT_I(sbi
);
256 return &sit_i
->sec_entries
[GET_SECNO(sbi
, segno
)];
259 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
260 unsigned int segno
, int section
)
263 * In order to get # of valid blocks in a section instantly from many
264 * segments, f2fs manages two counting structures separately.
267 return get_sec_entry(sbi
, segno
)->valid_blocks
;
269 return get_seg_entry(sbi
, segno
)->valid_blocks
;
272 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
273 struct f2fs_sit_entry
*rs
)
275 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
276 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
277 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
278 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
279 se
->type
= GET_SIT_TYPE(rs
);
280 se
->mtime
= le64_to_cpu(rs
->mtime
);
283 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
284 struct f2fs_sit_entry
*rs
)
286 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
288 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
289 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
290 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
291 se
->ckpt_valid_blocks
= se
->valid_blocks
;
292 rs
->mtime
= cpu_to_le64(se
->mtime
);
295 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
296 unsigned int max
, unsigned int segno
)
299 read_lock(&free_i
->segmap_lock
);
300 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
301 read_unlock(&free_i
->segmap_lock
);
305 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
307 struct free_segmap_info
*free_i
= FREE_I(sbi
);
308 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
309 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
312 write_lock(&free_i
->segmap_lock
);
313 clear_bit(segno
, free_i
->free_segmap
);
314 free_i
->free_segments
++;
316 next
= find_next_bit(free_i
->free_segmap
, TOTAL_SEGS(sbi
), start_segno
);
317 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
318 clear_bit(secno
, free_i
->free_secmap
);
319 free_i
->free_sections
++;
321 write_unlock(&free_i
->segmap_lock
);
324 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
327 struct free_segmap_info
*free_i
= FREE_I(sbi
);
328 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
329 set_bit(segno
, free_i
->free_segmap
);
330 free_i
->free_segments
--;
331 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
332 free_i
->free_sections
--;
335 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
338 struct free_segmap_info
*free_i
= FREE_I(sbi
);
339 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
340 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
343 write_lock(&free_i
->segmap_lock
);
344 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
345 free_i
->free_segments
++;
347 next
= find_next_bit(free_i
->free_segmap
, TOTAL_SEGS(sbi
),
349 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
350 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
351 free_i
->free_sections
++;
354 write_unlock(&free_i
->segmap_lock
);
357 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
360 struct free_segmap_info
*free_i
= FREE_I(sbi
);
361 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
362 write_lock(&free_i
->segmap_lock
);
363 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
364 free_i
->free_segments
--;
365 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
366 free_i
->free_sections
--;
368 write_unlock(&free_i
->segmap_lock
);
371 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
374 struct sit_info
*sit_i
= SIT_I(sbi
);
375 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
378 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
380 struct sit_info
*sit_i
= SIT_I(sbi
);
383 mutex_lock(&sit_i
->sentry_lock
);
384 vblocks
= sit_i
->written_valid_blocks
;
385 mutex_unlock(&sit_i
->sentry_lock
);
390 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
392 struct free_segmap_info
*free_i
= FREE_I(sbi
);
393 unsigned int free_segs
;
395 read_lock(&free_i
->segmap_lock
);
396 free_segs
= free_i
->free_segments
;
397 read_unlock(&free_i
->segmap_lock
);
402 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
404 return SM_I(sbi
)->reserved_segments
;
407 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
409 struct free_segmap_info
*free_i
= FREE_I(sbi
);
410 unsigned int free_secs
;
412 read_lock(&free_i
->segmap_lock
);
413 free_secs
= free_i
->free_sections
;
414 read_unlock(&free_i
->segmap_lock
);
419 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
421 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
424 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
426 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
427 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
428 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
429 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
430 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
431 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
434 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
436 return SM_I(sbi
)->ovp_segments
;
439 static inline int overprovision_sections(struct f2fs_sb_info
*sbi
)
441 return ((unsigned int) overprovision_segments(sbi
)) / sbi
->segs_per_sec
;
444 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
446 return ((unsigned int) reserved_segments(sbi
)) / sbi
->segs_per_sec
;
449 static inline bool need_SSR(struct f2fs_sb_info
*sbi
)
451 return (prefree_segments(sbi
) / sbi
->segs_per_sec
)
452 + free_sections(sbi
) < overprovision_sections(sbi
);
455 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
, int freed
)
457 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
458 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
460 if (unlikely(sbi
->por_doing
))
463 return (free_sections(sbi
) + freed
) <= (node_secs
+ 2 * dent_secs
+
464 reserved_sections(sbi
));
467 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
469 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
472 static inline int utilization(struct f2fs_sb_info
*sbi
)
474 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
475 sbi
->user_block_count
);
479 * Sometimes f2fs may be better to drop out-of-place update policy.
480 * And, users can control the policy through sysfs entries.
481 * There are five policies with triggering conditions as follows.
482 * F2FS_IPU_FORCE - all the time,
483 * F2FS_IPU_SSR - if SSR mode is activated,
484 * F2FS_IPU_UTIL - if FS utilization is over threashold,
485 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
487 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
489 #define DEF_MIN_IPU_UTIL 70
499 static inline bool need_inplace_update(struct inode
*inode
)
501 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
503 /* IPU can be done only for the user data */
504 if (S_ISDIR(inode
->i_mode
))
507 switch (SM_I(sbi
)->ipu_policy
) {
515 if (utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
518 case F2FS_IPU_SSR_UTIL
:
519 if (need_SSR(sbi
) && utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
522 case F2FS_IPU_DISABLE
:
528 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
531 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
532 return curseg
->segno
;
535 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
538 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
539 return curseg
->alloc_type
;
542 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
544 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
545 return curseg
->next_blkoff
;
548 #ifdef CONFIG_F2FS_CHECK_FS
549 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
551 unsigned int end_segno
= SM_I(sbi
)->segment_count
- 1;
552 BUG_ON(segno
> end_segno
);
555 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
557 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
558 block_t total_blks
= sm_info
->segment_count
<< sbi
->log_blocks_per_seg
;
559 block_t start_addr
= sm_info
->seg0_blkaddr
;
560 block_t end_addr
= start_addr
+ total_blks
- 1;
561 BUG_ON(blk_addr
< start_addr
);
562 BUG_ON(blk_addr
> end_addr
);
566 * Summary block is always treated as invalid block
568 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
569 int segno
, struct f2fs_sit_entry
*raw_sit
)
571 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
572 unsigned int end_segno
= sm_info
->segment_count
- 1;
573 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
574 int valid_blocks
= 0;
575 int cur_pos
= 0, next_pos
;
577 /* check segment usage */
578 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
);
580 /* check boundary of a given segment number */
581 BUG_ON(segno
> end_segno
);
583 /* check bitmap with valid block count */
586 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
589 valid_blocks
+= next_pos
- cur_pos
;
591 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
595 is_valid
= !is_valid
;
596 } while (cur_pos
< sbi
->blocks_per_seg
);
597 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
);
600 #define check_seg_range(sbi, segno)
601 #define verify_block_addr(sbi, blk_addr)
602 #define check_block_count(sbi, segno, raw_sit)
605 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
608 struct sit_info
*sit_i
= SIT_I(sbi
);
609 unsigned int offset
= SIT_BLOCK_OFFSET(sit_i
, start
);
610 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
612 check_seg_range(sbi
, start
);
614 /* calculate sit block address */
615 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
616 blk_addr
+= sit_i
->sit_blocks
;
621 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
624 struct sit_info
*sit_i
= SIT_I(sbi
);
625 block_addr
-= sit_i
->sit_base_addr
;
626 if (block_addr
< sit_i
->sit_blocks
)
627 block_addr
+= sit_i
->sit_blocks
;
629 block_addr
-= sit_i
->sit_blocks
;
631 return block_addr
+ sit_i
->sit_base_addr
;
634 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
636 unsigned int block_off
= SIT_BLOCK_OFFSET(sit_i
, start
);
638 if (f2fs_test_bit(block_off
, sit_i
->sit_bitmap
))
639 f2fs_clear_bit(block_off
, sit_i
->sit_bitmap
);
641 f2fs_set_bit(block_off
, sit_i
->sit_bitmap
);
644 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
)
646 struct sit_info
*sit_i
= SIT_I(sbi
);
647 return sit_i
->elapsed_time
+ CURRENT_TIME_SEC
.tv_sec
-
651 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
652 unsigned int ofs_in_node
, unsigned char version
)
654 sum
->nid
= cpu_to_le32(nid
);
655 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
656 sum
->version
= version
;
659 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
661 return __start_cp_addr(sbi
) +
662 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
665 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
667 return __start_cp_addr(sbi
) +
668 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
672 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
674 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
679 static inline unsigned int max_hw_blocks(struct f2fs_sb_info
*sbi
)
681 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
682 struct request_queue
*q
= bdev_get_queue(bdev
);
683 return SECTOR_TO_BLOCK(sbi
, queue_max_sectors(q
));