1 /* Driver for USB Mass Storage compliant devices
3 * Current development and maintenance by:
4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
6 * Developed with the assistance of:
7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9 * (c) 2002 Alan Stern <stern@rowland.org>
12 * (c) 1999 Michael Gee (michael@linuxspecific.com)
14 * This driver is based on the 'USB Mass Storage Class' document. This
15 * describes in detail the protocol used to communicate with such
16 * devices. Clearly, the designers had SCSI and ATAPI commands in
17 * mind when they created this document. The commands are all very
18 * similar to commands in the SCSI-II and ATAPI specifications.
20 * It is important to note that in a number of cases this class
21 * exhibits class-specific exemptions from the USB specification.
22 * Notably the usage of NAK, STALL and ACK differs from the norm, in
23 * that they are used to communicate wait, failed and OK on commands.
25 * Also, for certain devices, the interrupt endpoint is used to convey
26 * status of a command.
28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29 * information about this driver.
31 * This program is free software; you can redistribute it and/or modify it
32 * under the terms of the GNU General Public License as published by the
33 * Free Software Foundation; either version 2, or (at your option) any
36 * This program is distributed in the hope that it will be useful, but
37 * WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
39 * General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, write to the Free Software Foundation, Inc.,
43 * 675 Mass Ave, Cambridge, MA 02139, USA.
46 #include <linux/sched.h>
47 #include <linux/gfp.h>
48 #include <linux/errno.h>
50 #include <linux/usb/quirks.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_eh.h>
54 #include <scsi/scsi_device.h>
57 #include "transport.h"
62 #include <linux/blkdev.h>
63 #include "../../scsi/sd.h"
66 /***********************************************************************
67 * Data transfer routines
68 ***********************************************************************/
71 * This is subtle, so pay attention:
72 * ---------------------------------
73 * We're very concerned about races with a command abort. Hanging this code
74 * is a sure fire way to hang the kernel. (Note that this discussion applies
75 * only to transactions resulting from a scsi queued-command, since only
76 * these transactions are subject to a scsi abort. Other transactions, such
77 * as those occurring during device-specific initialization, must be handled
78 * by a separate code path.)
80 * The abort function (usb_storage_command_abort() in scsiglue.c) first
81 * sets the machine state and the ABORTING bit in us->dflags to prevent
82 * new URBs from being submitted. It then calls usb_stor_stop_transport()
83 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
84 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
85 * bit is tested to see if the current_sg scatter-gather request needs to be
86 * stopped. The timeout callback routine does much the same thing.
88 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
89 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
90 * called to stop any ongoing requests.
92 * The submit function first verifies that the submitting is allowed
93 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
94 * completes without errors, and only then sets the URB_ACTIVE bit. This
95 * prevents the stop_transport() function from trying to cancel the URB
96 * while the submit call is underway. Next, the submit function must test
97 * the flags to see if an abort or disconnect occurred during the submission
98 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel
99 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
100 * is still set). Either way, the function must then wait for the URB to
101 * finish. Note that the URB can still be in progress even after a call to
102 * usb_unlink_urb() returns.
104 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
105 * either the stop_transport() function or the submitting function
106 * is guaranteed to call usb_unlink_urb() for an active URB,
107 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
108 * called more than once or from being called during usb_submit_urb().
111 /* This is the completion handler which will wake us up when an URB
114 static void usb_stor_blocking_completion(struct urb
*urb
)
116 struct completion
*urb_done_ptr
= urb
->context
;
118 complete(urb_done_ptr
);
121 /* This is the common part of the URB message submission code
123 * All URBs from the usb-storage driver involved in handling a queued scsi
124 * command _must_ pass through this function (or something like it) for the
125 * abort mechanisms to work properly.
127 static int usb_stor_msg_common(struct us_data
*us
, int timeout
)
129 struct completion urb_done
;
133 /* don't submit URBs during abort processing */
134 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
))
137 /* set up data structures for the wakeup system */
138 init_completion(&urb_done
);
140 /* fill the common fields in the URB */
141 us
->current_urb
->context
= &urb_done
;
142 us
->current_urb
->transfer_flags
= 0;
144 /* we assume that if transfer_buffer isn't us->iobuf then it
145 * hasn't been mapped for DMA. Yes, this is clunky, but it's
146 * easier than always having the caller tell us whether the
147 * transfer buffer has already been mapped. */
148 if (us
->current_urb
->transfer_buffer
== us
->iobuf
)
149 us
->current_urb
->transfer_flags
|= URB_NO_TRANSFER_DMA_MAP
;
150 us
->current_urb
->transfer_dma
= us
->iobuf_dma
;
153 status
= usb_submit_urb(us
->current_urb
, GFP_NOIO
);
155 /* something went wrong */
159 /* since the URB has been submitted successfully, it's now okay
161 set_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
);
163 /* did an abort occur during the submission? */
164 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
)) {
166 /* cancel the URB, if it hasn't been cancelled already */
167 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
)) {
168 US_DEBUGP("-- cancelling URB\n");
169 usb_unlink_urb(us
->current_urb
);
173 /* wait for the completion of the URB */
174 timeleft
= wait_for_completion_interruptible_timeout(
175 &urb_done
, timeout
? : MAX_SCHEDULE_TIMEOUT
);
177 clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
);
180 US_DEBUGP("%s -- cancelling URB\n",
181 timeleft
== 0 ? "Timeout" : "Signal");
182 usb_kill_urb(us
->current_urb
);
185 /* return the URB status */
186 return us
->current_urb
->status
;
190 * Transfer one control message, with timeouts, and allowing early
191 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
193 int usb_stor_control_msg(struct us_data
*us
, unsigned int pipe
,
194 u8 request
, u8 requesttype
, u16 value
, u16 index
,
195 void *data
, u16 size
, int timeout
)
199 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
200 __func__
, request
, requesttype
,
203 /* fill in the devrequest structure */
204 us
->cr
->bRequestType
= requesttype
;
205 us
->cr
->bRequest
= request
;
206 us
->cr
->wValue
= cpu_to_le16(value
);
207 us
->cr
->wIndex
= cpu_to_le16(index
);
208 us
->cr
->wLength
= cpu_to_le16(size
);
210 /* fill and submit the URB */
211 usb_fill_control_urb(us
->current_urb
, us
->pusb_dev
, pipe
,
212 (unsigned char*) us
->cr
, data
, size
,
213 usb_stor_blocking_completion
, NULL
);
214 status
= usb_stor_msg_common(us
, timeout
);
216 /* return the actual length of the data transferred if no error */
218 status
= us
->current_urb
->actual_length
;
221 EXPORT_SYMBOL_GPL(usb_stor_control_msg
);
223 /* This is a version of usb_clear_halt() that allows early termination and
224 * doesn't read the status from the device -- this is because some devices
225 * crash their internal firmware when the status is requested after a halt.
227 * A definitive list of these 'bad' devices is too difficult to maintain or
228 * make complete enough to be useful. This problem was first observed on the
229 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
230 * MacOS nor Windows checks the status after clearing a halt.
232 * Since many vendors in this space limit their testing to interoperability
233 * with these two OSes, specification violations like this one are common.
235 int usb_stor_clear_halt(struct us_data
*us
, unsigned int pipe
)
238 int endp
= usb_pipeendpoint(pipe
);
240 if (usb_pipein (pipe
))
243 result
= usb_stor_control_msg(us
, us
->send_ctrl_pipe
,
244 USB_REQ_CLEAR_FEATURE
, USB_RECIP_ENDPOINT
,
245 USB_ENDPOINT_HALT
, endp
,
249 usb_reset_endpoint(us
->pusb_dev
, endp
);
251 US_DEBUGP("%s: result = %d\n", __func__
, result
);
254 EXPORT_SYMBOL_GPL(usb_stor_clear_halt
);
258 * Interpret the results of a URB transfer
260 * This function prints appropriate debugging messages, clears halts on
261 * non-control endpoints, and translates the status to the corresponding
262 * USB_STOR_XFER_xxx return code.
264 static int interpret_urb_result(struct us_data
*us
, unsigned int pipe
,
265 unsigned int length
, int result
, unsigned int partial
)
267 US_DEBUGP("Status code %d; transferred %u/%u\n",
268 result
, partial
, length
);
271 /* no error code; did we send all the data? */
273 if (partial
!= length
) {
274 US_DEBUGP("-- short transfer\n");
275 return USB_STOR_XFER_SHORT
;
278 US_DEBUGP("-- transfer complete\n");
279 return USB_STOR_XFER_GOOD
;
283 /* for control endpoints, (used by CB[I]) a stall indicates
284 * a failed command */
285 if (usb_pipecontrol(pipe
)) {
286 US_DEBUGP("-- stall on control pipe\n");
287 return USB_STOR_XFER_STALLED
;
290 /* for other sorts of endpoint, clear the stall */
291 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe
);
292 if (usb_stor_clear_halt(us
, pipe
) < 0)
293 return USB_STOR_XFER_ERROR
;
294 return USB_STOR_XFER_STALLED
;
296 /* babble - the device tried to send more than we wanted to read */
298 US_DEBUGP("-- babble\n");
299 return USB_STOR_XFER_LONG
;
301 /* the transfer was cancelled by abort, disconnect, or timeout */
303 US_DEBUGP("-- transfer cancelled\n");
304 return USB_STOR_XFER_ERROR
;
306 /* short scatter-gather read transfer */
308 US_DEBUGP("-- short read transfer\n");
309 return USB_STOR_XFER_SHORT
;
311 /* abort or disconnect in progress */
313 US_DEBUGP("-- abort or disconnect in progress\n");
314 return USB_STOR_XFER_ERROR
;
316 /* the catch-all error case */
318 US_DEBUGP("-- unknown error\n");
319 return USB_STOR_XFER_ERROR
;
324 * Transfer one control message, without timeouts, but allowing early
325 * termination. Return codes are USB_STOR_XFER_xxx.
327 int usb_stor_ctrl_transfer(struct us_data
*us
, unsigned int pipe
,
328 u8 request
, u8 requesttype
, u16 value
, u16 index
,
329 void *data
, u16 size
)
333 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
334 __func__
, request
, requesttype
,
337 /* fill in the devrequest structure */
338 us
->cr
->bRequestType
= requesttype
;
339 us
->cr
->bRequest
= request
;
340 us
->cr
->wValue
= cpu_to_le16(value
);
341 us
->cr
->wIndex
= cpu_to_le16(index
);
342 us
->cr
->wLength
= cpu_to_le16(size
);
344 /* fill and submit the URB */
345 usb_fill_control_urb(us
->current_urb
, us
->pusb_dev
, pipe
,
346 (unsigned char*) us
->cr
, data
, size
,
347 usb_stor_blocking_completion
, NULL
);
348 result
= usb_stor_msg_common(us
, 0);
350 return interpret_urb_result(us
, pipe
, size
, result
,
351 us
->current_urb
->actual_length
);
353 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer
);
356 * Receive one interrupt buffer, without timeouts, but allowing early
357 * termination. Return codes are USB_STOR_XFER_xxx.
359 * This routine always uses us->recv_intr_pipe as the pipe and
360 * us->ep_bInterval as the interrupt interval.
362 static int usb_stor_intr_transfer(struct us_data
*us
, void *buf
,
366 unsigned int pipe
= us
->recv_intr_pipe
;
369 US_DEBUGP("%s: xfer %u bytes\n", __func__
, length
);
371 /* calculate the max packet size */
372 maxp
= usb_maxpacket(us
->pusb_dev
, pipe
, usb_pipeout(pipe
));
376 /* fill and submit the URB */
377 usb_fill_int_urb(us
->current_urb
, us
->pusb_dev
, pipe
, buf
,
378 maxp
, usb_stor_blocking_completion
, NULL
,
380 result
= usb_stor_msg_common(us
, 0);
382 return interpret_urb_result(us
, pipe
, length
, result
,
383 us
->current_urb
->actual_length
);
387 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
388 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
389 * stalls during the transfer, the halt is automatically cleared.
391 int usb_stor_bulk_transfer_buf(struct us_data
*us
, unsigned int pipe
,
392 void *buf
, unsigned int length
, unsigned int *act_len
)
396 US_DEBUGP("%s: xfer %u bytes\n", __func__
, length
);
398 /* fill and submit the URB */
399 usb_fill_bulk_urb(us
->current_urb
, us
->pusb_dev
, pipe
, buf
, length
,
400 usb_stor_blocking_completion
, NULL
);
401 result
= usb_stor_msg_common(us
, 0);
403 /* store the actual length of the data transferred */
405 *act_len
= us
->current_urb
->actual_length
;
406 return interpret_urb_result(us
, pipe
, length
, result
,
407 us
->current_urb
->actual_length
);
409 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf
);
412 * Transfer a scatter-gather list via bulk transfer
414 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
415 * above, but it uses the usbcore scatter-gather library.
417 static int usb_stor_bulk_transfer_sglist(struct us_data
*us
, unsigned int pipe
,
418 struct scatterlist
*sg
, int num_sg
, unsigned int length
,
419 unsigned int *act_len
)
423 /* don't submit s-g requests during abort processing */
424 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
))
425 return USB_STOR_XFER_ERROR
;
427 /* initialize the scatter-gather request block */
428 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__
,
430 result
= usb_sg_init(&us
->current_sg
, us
->pusb_dev
, pipe
, 0,
431 sg
, num_sg
, length
, GFP_NOIO
);
433 US_DEBUGP("usb_sg_init returned %d\n", result
);
434 return USB_STOR_XFER_ERROR
;
437 /* since the block has been initialized successfully, it's now
438 * okay to cancel it */
439 set_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
);
441 /* did an abort occur during the submission? */
442 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
)) {
444 /* cancel the request, if it hasn't been cancelled already */
445 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
)) {
446 US_DEBUGP("-- cancelling sg request\n");
447 usb_sg_cancel(&us
->current_sg
);
451 /* wait for the completion of the transfer */
452 usb_sg_wait(&us
->current_sg
);
453 clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
);
455 result
= us
->current_sg
.status
;
457 *act_len
= us
->current_sg
.bytes
;
458 return interpret_urb_result(us
, pipe
, length
, result
,
459 us
->current_sg
.bytes
);
463 * Common used function. Transfer a complete command
464 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
466 int usb_stor_bulk_srb(struct us_data
* us
, unsigned int pipe
,
467 struct scsi_cmnd
* srb
)
469 unsigned int partial
;
470 int result
= usb_stor_bulk_transfer_sglist(us
, pipe
, scsi_sglist(srb
),
471 scsi_sg_count(srb
), scsi_bufflen(srb
),
474 scsi_set_resid(srb
, scsi_bufflen(srb
) - partial
);
477 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb
);
480 * Transfer an entire SCSI command's worth of data payload over the bulk
483 * Note that this uses usb_stor_bulk_transfer_buf() and
484 * usb_stor_bulk_transfer_sglist() to achieve its goals --
485 * this function simply determines whether we're going to use
486 * scatter-gather or not, and acts appropriately.
488 int usb_stor_bulk_transfer_sg(struct us_data
* us
, unsigned int pipe
,
489 void *buf
, unsigned int length_left
, int use_sg
, int *residual
)
492 unsigned int partial
;
494 /* are we scatter-gathering? */
496 /* use the usb core scatter-gather primitives */
497 result
= usb_stor_bulk_transfer_sglist(us
, pipe
,
498 (struct scatterlist
*) buf
, use_sg
,
499 length_left
, &partial
);
500 length_left
-= partial
;
502 /* no scatter-gather, just make the request */
503 result
= usb_stor_bulk_transfer_buf(us
, pipe
, buf
,
504 length_left
, &partial
);
505 length_left
-= partial
;
508 /* store the residual and return the error code */
510 *residual
= length_left
;
513 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg
);
515 /***********************************************************************
517 ***********************************************************************/
519 /* There are so many devices that report the capacity incorrectly,
520 * this routine was written to counteract some of the resulting
523 static void last_sector_hacks(struct us_data
*us
, struct scsi_cmnd
*srb
)
525 struct gendisk
*disk
;
526 struct scsi_disk
*sdkp
;
529 /* To Report "Medium Error: Record Not Found */
530 static unsigned char record_not_found
[18] = {
531 [0] = 0x70, /* current error */
532 [2] = MEDIUM_ERROR
, /* = 0x03 */
533 [7] = 0x0a, /* additional length */
534 [12] = 0x14 /* Record Not Found */
537 /* If last-sector problems can't occur, whether because the
538 * capacity was already decremented or because the device is
539 * known to report the correct capacity, then we don't need
542 if (!us
->use_last_sector_hacks
)
545 /* Was this command a READ(10) or a WRITE(10)? */
546 if (srb
->cmnd
[0] != READ_10
&& srb
->cmnd
[0] != WRITE_10
)
549 /* Did this command access the last sector? */
550 sector
= (srb
->cmnd
[2] << 24) | (srb
->cmnd
[3] << 16) |
551 (srb
->cmnd
[4] << 8) | (srb
->cmnd
[5]);
552 disk
= srb
->request
->rq_disk
;
555 sdkp
= scsi_disk(disk
);
558 if (sector
+ 1 != sdkp
->capacity
)
561 if (srb
->result
== SAM_STAT_GOOD
&& scsi_get_resid(srb
) == 0) {
563 /* The command succeeded. We know this device doesn't
564 * have the last-sector bug, so stop checking it.
566 us
->use_last_sector_hacks
= 0;
569 /* The command failed. Allow up to 3 retries in case this
570 * is some normal sort of failure. After that, assume the
571 * capacity is wrong and we're trying to access the sector
572 * beyond the end. Replace the result code and sense data
573 * with values that will cause the SCSI core to fail the
574 * command immediately, instead of going into an infinite
575 * (or even just a very long) retry loop.
577 if (++us
->last_sector_retries
< 3)
579 srb
->result
= SAM_STAT_CHECK_CONDITION
;
580 memcpy(srb
->sense_buffer
, record_not_found
,
581 sizeof(record_not_found
));
585 /* Don't reset the retry counter for TEST UNIT READY commands,
586 * because they get issued after device resets which might be
587 * caused by a failed last-sector access.
589 if (srb
->cmnd
[0] != TEST_UNIT_READY
)
590 us
->last_sector_retries
= 0;
593 /* Invoke the transport and basic error-handling/recovery methods
595 * This is used by the protocol layers to actually send the message to
596 * the device and receive the response.
598 void usb_stor_invoke_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
603 /* send the command to the transport layer */
604 scsi_set_resid(srb
, 0);
605 result
= us
->transport(srb
, us
);
607 /* if the command gets aborted by the higher layers, we need to
608 * short-circuit all other processing
610 if (test_bit(US_FLIDX_TIMED_OUT
, &us
->dflags
)) {
611 US_DEBUGP("-- command was aborted\n");
612 srb
->result
= DID_ABORT
<< 16;
616 /* if there is a transport error, reset and don't auto-sense */
617 if (result
== USB_STOR_TRANSPORT_ERROR
) {
618 US_DEBUGP("-- transport indicates error, resetting\n");
619 srb
->result
= DID_ERROR
<< 16;
623 /* if the transport provided its own sense data, don't auto-sense */
624 if (result
== USB_STOR_TRANSPORT_NO_SENSE
) {
625 srb
->result
= SAM_STAT_CHECK_CONDITION
;
626 last_sector_hacks(us
, srb
);
630 srb
->result
= SAM_STAT_GOOD
;
632 /* Determine if we need to auto-sense
634 * I normally don't use a flag like this, but it's almost impossible
635 * to understand what's going on here if I don't.
640 * If we're running the CB transport, which is incapable
641 * of determining status on its own, we will auto-sense
642 * unless the operation involved a data-in transfer. Devices
643 * can signal most data-in errors by stalling the bulk-in pipe.
645 if ((us
->protocol
== USB_PR_CB
|| us
->protocol
== USB_PR_DPCM_USB
) &&
646 srb
->sc_data_direction
!= DMA_FROM_DEVICE
) {
647 US_DEBUGP("-- CB transport device requiring auto-sense\n");
652 * If we have a failure, we're going to do a REQUEST_SENSE
653 * automatically. Note that we differentiate between a command
654 * "failure" and an "error" in the transport mechanism.
656 if (result
== USB_STOR_TRANSPORT_FAILED
) {
657 US_DEBUGP("-- transport indicates command failure\n");
662 * Determine if this device is SAT by seeing if the
663 * command executed successfully. Otherwise we'll have
664 * to wait for at least one CHECK_CONDITION to determine
667 if (unlikely((srb
->cmnd
[0] == ATA_16
|| srb
->cmnd
[0] == ATA_12
) &&
668 result
== USB_STOR_TRANSPORT_GOOD
&&
669 !(us
->fflags
& US_FL_SANE_SENSE
) &&
670 !(us
->fflags
& US_FL_BAD_SENSE
) &&
671 !(srb
->cmnd
[2] & 0x20))) {
672 US_DEBUGP("-- SAT supported, increasing auto-sense\n");
673 us
->fflags
|= US_FL_SANE_SENSE
;
677 * A short transfer on a command where we don't expect it
678 * is unusual, but it doesn't mean we need to auto-sense.
680 if ((scsi_get_resid(srb
) > 0) &&
681 !((srb
->cmnd
[0] == REQUEST_SENSE
) ||
682 (srb
->cmnd
[0] == INQUIRY
) ||
683 (srb
->cmnd
[0] == MODE_SENSE
) ||
684 (srb
->cmnd
[0] == LOG_SENSE
) ||
685 (srb
->cmnd
[0] == MODE_SENSE_10
))) {
686 US_DEBUGP("-- unexpectedly short transfer\n");
689 /* Now, if we need to do the auto-sense, let's do it */
690 if (need_auto_sense
) {
692 struct scsi_eh_save ses
;
693 int sense_size
= US_SENSE_SIZE
;
694 struct scsi_sense_hdr sshdr
;
698 /* device supports and needs bigger sense buffer */
699 if (us
->fflags
& US_FL_SANE_SENSE
)
702 US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
704 scsi_eh_prep_cmnd(srb
, &ses
, NULL
, 0, sense_size
);
706 /* FIXME: we must do the protocol translation here */
707 if (us
->subclass
== USB_SC_RBC
|| us
->subclass
== USB_SC_SCSI
||
708 us
->subclass
== USB_SC_CYP_ATACB
)
713 /* issue the auto-sense command */
714 scsi_set_resid(srb
, 0);
715 temp_result
= us
->transport(us
->srb
, us
);
717 /* let's clean up right away */
718 scsi_eh_restore_cmnd(srb
, &ses
);
720 if (test_bit(US_FLIDX_TIMED_OUT
, &us
->dflags
)) {
721 US_DEBUGP("-- auto-sense aborted\n");
722 srb
->result
= DID_ABORT
<< 16;
724 /* If SANE_SENSE caused this problem, disable it */
725 if (sense_size
!= US_SENSE_SIZE
) {
726 us
->fflags
&= ~US_FL_SANE_SENSE
;
727 us
->fflags
|= US_FL_BAD_SENSE
;
732 /* Some devices claim to support larger sense but fail when
733 * trying to request it. When a transport failure happens
734 * using US_FS_SANE_SENSE, we always retry with a standard
735 * (small) sense request. This fixes some USB GSM modems
737 if (temp_result
== USB_STOR_TRANSPORT_FAILED
&&
738 sense_size
!= US_SENSE_SIZE
) {
739 US_DEBUGP("-- auto-sense failure, retry small sense\n");
740 sense_size
= US_SENSE_SIZE
;
741 us
->fflags
&= ~US_FL_SANE_SENSE
;
742 us
->fflags
|= US_FL_BAD_SENSE
;
747 if (temp_result
!= USB_STOR_TRANSPORT_GOOD
) {
748 US_DEBUGP("-- auto-sense failure\n");
750 /* we skip the reset if this happens to be a
751 * multi-target device, since failure of an
752 * auto-sense is perfectly valid
754 srb
->result
= DID_ERROR
<< 16;
755 if (!(us
->fflags
& US_FL_SCM_MULT_TARG
))
760 /* If the sense data returned is larger than 18-bytes then we
761 * assume this device supports requesting more in the future.
762 * The response code must be 70h through 73h inclusive.
764 if (srb
->sense_buffer
[7] > (US_SENSE_SIZE
- 8) &&
765 !(us
->fflags
& US_FL_SANE_SENSE
) &&
766 !(us
->fflags
& US_FL_BAD_SENSE
) &&
767 (srb
->sense_buffer
[0] & 0x7C) == 0x70) {
768 US_DEBUGP("-- SANE_SENSE support enabled\n");
769 us
->fflags
|= US_FL_SANE_SENSE
;
771 /* Indicate to the user that we truncated their sense
772 * because we didn't know it supported larger sense.
774 US_DEBUGP("-- Sense data truncated to %i from %i\n",
776 srb
->sense_buffer
[7] + 8);
777 srb
->sense_buffer
[7] = (US_SENSE_SIZE
- 8);
780 scsi_normalize_sense(srb
->sense_buffer
, SCSI_SENSE_BUFFERSIZE
,
783 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result
);
784 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
785 sshdr
.response_code
, sshdr
.sense_key
,
786 sshdr
.asc
, sshdr
.ascq
);
787 #ifdef CONFIG_USB_STORAGE_DEBUG
788 usb_stor_show_sense(sshdr
.sense_key
, sshdr
.asc
, sshdr
.ascq
);
791 /* set the result so the higher layers expect this data */
792 srb
->result
= SAM_STAT_CHECK_CONDITION
;
794 scdd
= scsi_sense_desc_find(srb
->sense_buffer
,
795 SCSI_SENSE_BUFFERSIZE
, 4);
796 fm_ili
= (scdd
? scdd
[3] : srb
->sense_buffer
[2]) & 0xA0;
798 /* We often get empty sense data. This could indicate that
799 * everything worked or that there was an unspecified
800 * problem. We have to decide which.
802 if (sshdr
.sense_key
== 0 && sshdr
.asc
== 0 && sshdr
.ascq
== 0 &&
804 /* If things are really okay, then let's show that.
805 * Zero out the sense buffer so the higher layers
806 * won't realize we did an unsolicited auto-sense.
808 if (result
== USB_STOR_TRANSPORT_GOOD
) {
809 srb
->result
= SAM_STAT_GOOD
;
810 srb
->sense_buffer
[0] = 0x0;
812 /* If there was a problem, report an unspecified
813 * hardware error to prevent the higher layers from
814 * entering an infinite retry loop.
817 srb
->result
= DID_ERROR
<< 16;
818 if ((sshdr
.response_code
& 0x72) == 0x72)
819 srb
->sense_buffer
[1] = HARDWARE_ERROR
;
821 srb
->sense_buffer
[2] = HARDWARE_ERROR
;
827 * Some devices don't work or return incorrect data the first
828 * time they get a READ(10) command, or for the first READ(10)
829 * after a media change. If the INITIAL_READ10 flag is set,
830 * keep track of whether READ(10) commands succeed. If the
831 * previous one succeeded and this one failed, set the REDO_READ10
832 * flag to force a retry.
834 if (unlikely((us
->fflags
& US_FL_INITIAL_READ10
) &&
835 srb
->cmnd
[0] == READ_10
)) {
836 if (srb
->result
== SAM_STAT_GOOD
) {
837 set_bit(US_FLIDX_READ10_WORKED
, &us
->dflags
);
838 } else if (test_bit(US_FLIDX_READ10_WORKED
, &us
->dflags
)) {
839 clear_bit(US_FLIDX_READ10_WORKED
, &us
->dflags
);
840 set_bit(US_FLIDX_REDO_READ10
, &us
->dflags
);
844 * Next, if the REDO_READ10 flag is set, return a result
845 * code that will cause the SCSI core to retry the READ(10)
846 * command immediately.
848 if (test_bit(US_FLIDX_REDO_READ10
, &us
->dflags
)) {
849 clear_bit(US_FLIDX_REDO_READ10
, &us
->dflags
);
850 srb
->result
= DID_IMM_RETRY
<< 16;
851 srb
->sense_buffer
[0] = 0;
855 /* Did we transfer less than the minimum amount required? */
856 if ((srb
->result
== SAM_STAT_GOOD
|| srb
->sense_buffer
[2] == 0) &&
857 scsi_bufflen(srb
) - scsi_get_resid(srb
) < srb
->underflow
)
858 srb
->result
= DID_ERROR
<< 16;
860 last_sector_hacks(us
, srb
);
863 /* Error and abort processing: try to resynchronize with the device
864 * by issuing a port reset. If that fails, try a class-specific
868 /* Set the RESETTING bit, and clear the ABORTING bit so that
869 * the reset may proceed. */
870 scsi_lock(us_to_host(us
));
871 set_bit(US_FLIDX_RESETTING
, &us
->dflags
);
872 clear_bit(US_FLIDX_ABORTING
, &us
->dflags
);
873 scsi_unlock(us_to_host(us
));
875 /* We must release the device lock because the pre_reset routine
876 * will want to acquire it. */
877 mutex_unlock(&us
->dev_mutex
);
878 result
= usb_stor_port_reset(us
);
879 mutex_lock(&us
->dev_mutex
);
882 scsi_lock(us_to_host(us
));
883 usb_stor_report_device_reset(us
);
884 scsi_unlock(us_to_host(us
));
885 us
->transport_reset(us
);
887 clear_bit(US_FLIDX_RESETTING
, &us
->dflags
);
888 last_sector_hacks(us
, srb
);
891 /* Stop the current URB transfer */
892 void usb_stor_stop_transport(struct us_data
*us
)
894 US_DEBUGP("%s called\n", __func__
);
896 /* If the state machine is blocked waiting for an URB,
897 * let's wake it up. The test_and_clear_bit() call
898 * guarantees that if a URB has just been submitted,
899 * it won't be cancelled more than once. */
900 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
)) {
901 US_DEBUGP("-- cancelling URB\n");
902 usb_unlink_urb(us
->current_urb
);
905 /* If we are waiting for a scatter-gather operation, cancel it. */
906 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
)) {
907 US_DEBUGP("-- cancelling sg request\n");
908 usb_sg_cancel(&us
->current_sg
);
913 * Control/Bulk and Control/Bulk/Interrupt transport
916 int usb_stor_CB_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
918 unsigned int transfer_length
= scsi_bufflen(srb
);
919 unsigned int pipe
= 0;
923 /* let's send the command via the control pipe */
924 result
= usb_stor_ctrl_transfer(us
, us
->send_ctrl_pipe
,
926 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
, 0,
927 us
->ifnum
, srb
->cmnd
, srb
->cmd_len
);
929 /* check the return code for the command */
930 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result
);
932 /* if we stalled the command, it means command failed */
933 if (result
== USB_STOR_XFER_STALLED
) {
934 return USB_STOR_TRANSPORT_FAILED
;
937 /* Uh oh... serious problem here */
938 if (result
!= USB_STOR_XFER_GOOD
) {
939 return USB_STOR_TRANSPORT_ERROR
;
943 /* transfer the data payload for this command, if one exists*/
944 if (transfer_length
) {
945 pipe
= srb
->sc_data_direction
== DMA_FROM_DEVICE
?
946 us
->recv_bulk_pipe
: us
->send_bulk_pipe
;
947 result
= usb_stor_bulk_srb(us
, pipe
, srb
);
948 US_DEBUGP("CBI data stage result is 0x%x\n", result
);
950 /* if we stalled the data transfer it means command failed */
951 if (result
== USB_STOR_XFER_STALLED
)
952 return USB_STOR_TRANSPORT_FAILED
;
953 if (result
> USB_STOR_XFER_STALLED
)
954 return USB_STOR_TRANSPORT_ERROR
;
959 /* NOTE: CB does not have a status stage. Silly, I know. So
960 * we have to catch this at a higher level.
962 if (us
->protocol
!= USB_PR_CBI
)
963 return USB_STOR_TRANSPORT_GOOD
;
965 result
= usb_stor_intr_transfer(us
, us
->iobuf
, 2);
966 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
967 us
->iobuf
[0], us
->iobuf
[1]);
968 if (result
!= USB_STOR_XFER_GOOD
)
969 return USB_STOR_TRANSPORT_ERROR
;
971 /* UFI gives us ASC and ASCQ, like a request sense
973 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
974 * devices, so we ignore the information for those commands. Note
975 * that this means we could be ignoring a real error on these
976 * commands, but that can't be helped.
978 if (us
->subclass
== USB_SC_UFI
) {
979 if (srb
->cmnd
[0] == REQUEST_SENSE
||
980 srb
->cmnd
[0] == INQUIRY
)
981 return USB_STOR_TRANSPORT_GOOD
;
984 return USB_STOR_TRANSPORT_GOOD
;
987 /* If not UFI, we interpret the data as a result code
988 * The first byte should always be a 0x0.
990 * Some bogus devices don't follow that rule. They stuff the ASC
991 * into the first byte -- so if it's non-zero, call it a failure.
994 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
1000 /* The second byte & 0x0F should be 0x0 for good, otherwise error */
1001 switch (us
->iobuf
[1] & 0x0F) {
1003 return USB_STOR_TRANSPORT_GOOD
;
1007 return USB_STOR_TRANSPORT_ERROR
;
1009 /* the CBI spec requires that the bulk pipe must be cleared
1010 * following any data-in/out command failure (section 2.4.3.1.3)
1014 usb_stor_clear_halt(us
, pipe
);
1015 return USB_STOR_TRANSPORT_FAILED
;
1017 EXPORT_SYMBOL_GPL(usb_stor_CB_transport
);
1020 * Bulk only transport
1023 /* Determine what the maximum LUN supported is */
1024 int usb_stor_Bulk_max_lun(struct us_data
*us
)
1028 /* issue the command */
1030 result
= usb_stor_control_msg(us
, us
->recv_ctrl_pipe
,
1031 US_BULK_GET_MAX_LUN
,
1032 USB_DIR_IN
| USB_TYPE_CLASS
|
1033 USB_RECIP_INTERFACE
,
1034 0, us
->ifnum
, us
->iobuf
, 1, 10*HZ
);
1036 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
1037 result
, us
->iobuf
[0]);
1039 /* if we have a successful request, return the result */
1041 return us
->iobuf
[0];
1044 * Some devices don't like GetMaxLUN. They may STALL the control
1045 * pipe, they may return a zero-length result, they may do nothing at
1046 * all and timeout, or they may fail in even more bizarrely creative
1047 * ways. In these cases the best approach is to use the default
1048 * value: only one LUN.
1053 int usb_stor_Bulk_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
1055 struct bulk_cb_wrap
*bcb
= (struct bulk_cb_wrap
*) us
->iobuf
;
1056 struct bulk_cs_wrap
*bcs
= (struct bulk_cs_wrap
*) us
->iobuf
;
1057 unsigned int transfer_length
= scsi_bufflen(srb
);
1058 unsigned int residue
;
1061 unsigned int cswlen
;
1062 unsigned int cbwlen
= US_BULK_CB_WRAP_LEN
;
1064 /* Take care of BULK32 devices; set extra byte to 0 */
1065 if (unlikely(us
->fflags
& US_FL_BULK32
)) {
1070 /* set up the command wrapper */
1071 bcb
->Signature
= cpu_to_le32(US_BULK_CB_SIGN
);
1072 bcb
->DataTransferLength
= cpu_to_le32(transfer_length
);
1073 bcb
->Flags
= srb
->sc_data_direction
== DMA_FROM_DEVICE
? 1 << 7 : 0;
1074 bcb
->Tag
= ++us
->tag
;
1075 bcb
->Lun
= srb
->device
->lun
;
1076 if (us
->fflags
& US_FL_SCM_MULT_TARG
)
1077 bcb
->Lun
|= srb
->device
->id
<< 4;
1078 bcb
->Length
= srb
->cmd_len
;
1080 /* copy the command payload */
1081 memset(bcb
->CDB
, 0, sizeof(bcb
->CDB
));
1082 memcpy(bcb
->CDB
, srb
->cmnd
, bcb
->Length
);
1084 /* send it to out endpoint */
1085 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1086 le32_to_cpu(bcb
->Signature
), bcb
->Tag
,
1087 le32_to_cpu(bcb
->DataTransferLength
), bcb
->Flags
,
1088 (bcb
->Lun
>> 4), (bcb
->Lun
& 0x0F),
1090 result
= usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
1092 US_DEBUGP("Bulk command transfer result=%d\n", result
);
1093 if (result
!= USB_STOR_XFER_GOOD
)
1094 return USB_STOR_TRANSPORT_ERROR
;
1097 /* send/receive data payload, if there is any */
1099 /* Some USB-IDE converter chips need a 100us delay between the
1100 * command phase and the data phase. Some devices need a little
1101 * more than that, probably because of clock rate inaccuracies. */
1102 if (unlikely(us
->fflags
& US_FL_GO_SLOW
))
1105 if (transfer_length
) {
1106 unsigned int pipe
= srb
->sc_data_direction
== DMA_FROM_DEVICE
?
1107 us
->recv_bulk_pipe
: us
->send_bulk_pipe
;
1108 result
= usb_stor_bulk_srb(us
, pipe
, srb
);
1109 US_DEBUGP("Bulk data transfer result 0x%x\n", result
);
1110 if (result
== USB_STOR_XFER_ERROR
)
1111 return USB_STOR_TRANSPORT_ERROR
;
1113 /* If the device tried to send back more data than the
1114 * amount requested, the spec requires us to transfer
1115 * the CSW anyway. Since there's no point retrying the
1116 * the command, we'll return fake sense data indicating
1117 * Illegal Request, Invalid Field in CDB.
1119 if (result
== USB_STOR_XFER_LONG
)
1123 /* See flow chart on pg 15 of the Bulk Only Transport spec for
1124 * an explanation of how this code works.
1127 /* get CSW for device status */
1128 US_DEBUGP("Attempting to get CSW...\n");
1129 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1130 bcs
, US_BULK_CS_WRAP_LEN
, &cswlen
);
1132 /* Some broken devices add unnecessary zero-length packets to the
1133 * end of their data transfers. Such packets show up as 0-length
1134 * CSWs. If we encounter such a thing, try to read the CSW again.
1136 if (result
== USB_STOR_XFER_SHORT
&& cswlen
== 0) {
1137 US_DEBUGP("Received 0-length CSW; retrying...\n");
1138 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1139 bcs
, US_BULK_CS_WRAP_LEN
, &cswlen
);
1142 /* did the attempt to read the CSW fail? */
1143 if (result
== USB_STOR_XFER_STALLED
) {
1145 /* get the status again */
1146 US_DEBUGP("Attempting to get CSW (2nd try)...\n");
1147 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1148 bcs
, US_BULK_CS_WRAP_LEN
, NULL
);
1151 /* if we still have a failure at this point, we're in trouble */
1152 US_DEBUGP("Bulk status result = %d\n", result
);
1153 if (result
!= USB_STOR_XFER_GOOD
)
1154 return USB_STOR_TRANSPORT_ERROR
;
1156 /* check bulk status */
1157 residue
= le32_to_cpu(bcs
->Residue
);
1158 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1159 le32_to_cpu(bcs
->Signature
), bcs
->Tag
,
1160 residue
, bcs
->Status
);
1161 if (!(bcs
->Tag
== us
->tag
|| (us
->fflags
& US_FL_BULK_IGNORE_TAG
)) ||
1162 bcs
->Status
> US_BULK_STAT_PHASE
) {
1163 US_DEBUGP("Bulk logical error\n");
1164 return USB_STOR_TRANSPORT_ERROR
;
1167 /* Some broken devices report odd signatures, so we do not check them
1168 * for validity against the spec. We store the first one we see,
1169 * and check subsequent transfers for validity against this signature.
1171 if (!us
->bcs_signature
) {
1172 us
->bcs_signature
= bcs
->Signature
;
1173 if (us
->bcs_signature
!= cpu_to_le32(US_BULK_CS_SIGN
))
1174 US_DEBUGP("Learnt BCS signature 0x%08X\n",
1175 le32_to_cpu(us
->bcs_signature
));
1176 } else if (bcs
->Signature
!= us
->bcs_signature
) {
1177 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
1178 le32_to_cpu(bcs
->Signature
),
1179 le32_to_cpu(us
->bcs_signature
));
1180 return USB_STOR_TRANSPORT_ERROR
;
1183 /* try to compute the actual residue, based on how much data
1184 * was really transferred and what the device tells us */
1185 if (residue
&& !(us
->fflags
& US_FL_IGNORE_RESIDUE
)) {
1187 /* Heuristically detect devices that generate bogus residues
1188 * by seeing what happens with INQUIRY and READ CAPACITY
1191 if (bcs
->Status
== US_BULK_STAT_OK
&&
1192 scsi_get_resid(srb
) == 0 &&
1193 ((srb
->cmnd
[0] == INQUIRY
&&
1194 transfer_length
== 36) ||
1195 (srb
->cmnd
[0] == READ_CAPACITY
&&
1196 transfer_length
== 8))) {
1197 us
->fflags
|= US_FL_IGNORE_RESIDUE
;
1200 residue
= min(residue
, transfer_length
);
1201 scsi_set_resid(srb
, max(scsi_get_resid(srb
),
1206 /* based on the status code, we report good or bad */
1207 switch (bcs
->Status
) {
1208 case US_BULK_STAT_OK
:
1209 /* device babbled -- return fake sense data */
1211 memcpy(srb
->sense_buffer
,
1212 usb_stor_sense_invalidCDB
,
1213 sizeof(usb_stor_sense_invalidCDB
));
1214 return USB_STOR_TRANSPORT_NO_SENSE
;
1217 /* command good -- note that data could be short */
1218 return USB_STOR_TRANSPORT_GOOD
;
1220 case US_BULK_STAT_FAIL
:
1221 /* command failed */
1222 return USB_STOR_TRANSPORT_FAILED
;
1224 case US_BULK_STAT_PHASE
:
1225 /* phase error -- note that a transport reset will be
1226 * invoked by the invoke_transport() function
1228 return USB_STOR_TRANSPORT_ERROR
;
1231 /* we should never get here, but if we do, we're in trouble */
1232 return USB_STOR_TRANSPORT_ERROR
;
1234 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport
);
1236 /***********************************************************************
1238 ***********************************************************************/
1240 /* This is the common part of the device reset code.
1242 * It's handy that every transport mechanism uses the control endpoint for
1245 * Basically, we send a reset with a 5-second timeout, so we don't get
1246 * jammed attempting to do the reset.
1248 static int usb_stor_reset_common(struct us_data
*us
,
1249 u8 request
, u8 requesttype
,
1250 u16 value
, u16 index
, void *data
, u16 size
)
1255 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1256 US_DEBUGP("No reset during disconnect\n");
1260 result
= usb_stor_control_msg(us
, us
->send_ctrl_pipe
,
1261 request
, requesttype
, value
, index
, data
, size
,
1264 US_DEBUGP("Soft reset failed: %d\n", result
);
1268 /* Give the device some time to recover from the reset,
1269 * but don't delay disconnect processing. */
1270 wait_event_interruptible_timeout(us
->delay_wait
,
1271 test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
),
1273 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1274 US_DEBUGP("Reset interrupted by disconnect\n");
1278 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
1279 result
= usb_stor_clear_halt(us
, us
->recv_bulk_pipe
);
1281 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
1282 result2
= usb_stor_clear_halt(us
, us
->send_bulk_pipe
);
1284 /* return a result code based on the result of the clear-halts */
1288 US_DEBUGP("Soft reset failed\n");
1290 US_DEBUGP("Soft reset done\n");
1294 /* This issues a CB[I] Reset to the device in question
1296 #define CB_RESET_CMD_SIZE 12
1298 int usb_stor_CB_reset(struct us_data
*us
)
1300 US_DEBUGP("%s called\n", __func__
);
1302 memset(us
->iobuf
, 0xFF, CB_RESET_CMD_SIZE
);
1303 us
->iobuf
[0] = SEND_DIAGNOSTIC
;
1305 return usb_stor_reset_common(us
, US_CBI_ADSC
,
1306 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
,
1307 0, us
->ifnum
, us
->iobuf
, CB_RESET_CMD_SIZE
);
1309 EXPORT_SYMBOL_GPL(usb_stor_CB_reset
);
1311 /* This issues a Bulk-only Reset to the device in question, including
1312 * clearing the subsequent endpoint halts that may occur.
1314 int usb_stor_Bulk_reset(struct us_data
*us
)
1316 US_DEBUGP("%s called\n", __func__
);
1318 return usb_stor_reset_common(us
, US_BULK_RESET_REQUEST
,
1319 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
,
1320 0, us
->ifnum
, NULL
, 0);
1322 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset
);
1324 /* Issue a USB port reset to the device. The caller must not hold
1327 int usb_stor_port_reset(struct us_data
*us
)
1331 /*for these devices we must use the class specific method */
1332 if (us
->pusb_dev
->quirks
& USB_QUIRK_RESET_MORPHS
)
1335 result
= usb_lock_device_for_reset(us
->pusb_dev
, us
->pusb_intf
);
1337 US_DEBUGP("unable to lock device for reset: %d\n", result
);
1339 /* Were we disconnected while waiting for the lock? */
1340 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1342 US_DEBUGP("No reset during disconnect\n");
1344 result
= usb_reset_device(us
->pusb_dev
);
1345 US_DEBUGP("usb_reset_device returns %d\n",
1348 usb_unlock_device(us
->pusb_dev
);