2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
38 static int g_verbose
= 0;
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
56 unsigned short buf_len
:15;
57 unsigned short reversed
:1;
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 /* reused for each extent */
74 struct btrfs_root
*root
;
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85 struct file
*send_filp
;
91 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
92 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
94 struct btrfs_root
*send_root
;
95 struct btrfs_root
*parent_root
;
96 struct clone_root
*clone_roots
;
99 /* current state of the compare_tree call */
100 struct btrfs_path
*left_path
;
101 struct btrfs_path
*right_path
;
102 struct btrfs_key
*cmp_key
;
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
111 int cur_inode_new_gen
;
112 int cur_inode_deleted
;
116 u64 cur_inode_last_extent
;
120 struct list_head new_refs
;
121 struct list_head deleted_refs
;
123 struct radix_tree_root name_cache
;
124 struct list_head name_cache_list
;
127 struct file_ra_state ra
;
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
142 * Tree state when the first send was performed:
154 * Tree state when the second (incremental) send is performed:
163 * The sequence of steps that lead to the second state was:
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves
;
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
183 struct rb_root waiting_dir_moves
;
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
212 * mv /a/b/c/x /a/b/YY
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
222 * Indexed by the inode number of the directory to be deleted.
224 struct rb_root orphan_dirs
;
227 struct pending_dir_move
{
229 struct list_head list
;
233 struct list_head update_refs
;
236 struct waiting_dir_move
{
240 * There might be some directory that could not be removed because it
241 * was waiting for this directory inode to be moved first. Therefore
242 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
247 struct orphan_dir_info
{
253 struct name_cache_entry
{
254 struct list_head list
;
256 * radix_tree has only 32bit entries but we need to handle 64bit inums.
257 * We use the lower 32bit of the 64bit inum to store it in the tree. If
258 * more then one inum would fall into the same entry, we use radix_list
259 * to store the additional entries. radix_list is also used to store
260 * entries where two entries have the same inum but different
263 struct list_head radix_list
;
269 int need_later_update
;
274 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
276 static struct waiting_dir_move
*
277 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
279 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
);
281 static int need_send_hole(struct send_ctx
*sctx
)
283 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
284 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
285 S_ISREG(sctx
->cur_inode_mode
));
288 static void fs_path_reset(struct fs_path
*p
)
291 p
->start
= p
->buf
+ p
->buf_len
- 1;
301 static struct fs_path
*fs_path_alloc(void)
305 p
= kmalloc(sizeof(*p
), GFP_NOFS
);
309 p
->buf
= p
->inline_buf
;
310 p
->buf_len
= FS_PATH_INLINE_SIZE
;
315 static struct fs_path
*fs_path_alloc_reversed(void)
327 static void fs_path_free(struct fs_path
*p
)
331 if (p
->buf
!= p
->inline_buf
)
336 static int fs_path_len(struct fs_path
*p
)
338 return p
->end
- p
->start
;
341 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
349 if (p
->buf_len
>= len
)
352 if (len
> PATH_MAX
) {
357 path_len
= p
->end
- p
->start
;
358 old_buf_len
= p
->buf_len
;
361 * First time the inline_buf does not suffice
363 if (p
->buf
== p
->inline_buf
) {
364 tmp_buf
= kmalloc(len
, GFP_NOFS
);
366 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
368 tmp_buf
= krealloc(p
->buf
, len
, GFP_NOFS
);
374 * The real size of the buffer is bigger, this will let the fast path
375 * happen most of the time
377 p
->buf_len
= ksize(p
->buf
);
380 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
381 p
->end
= p
->buf
+ p
->buf_len
- 1;
382 p
->start
= p
->end
- path_len
;
383 memmove(p
->start
, tmp_buf
, path_len
+ 1);
386 p
->end
= p
->start
+ path_len
;
391 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
397 new_len
= p
->end
- p
->start
+ name_len
;
398 if (p
->start
!= p
->end
)
400 ret
= fs_path_ensure_buf(p
, new_len
);
405 if (p
->start
!= p
->end
)
407 p
->start
-= name_len
;
408 *prepared
= p
->start
;
410 if (p
->start
!= p
->end
)
421 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
426 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
429 memcpy(prepared
, name
, name_len
);
435 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
440 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
443 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
449 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
450 struct extent_buffer
*eb
,
451 unsigned long off
, int len
)
456 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
460 read_extent_buffer(eb
, prepared
, off
, len
);
466 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
470 p
->reversed
= from
->reversed
;
473 ret
= fs_path_add_path(p
, from
);
479 static void fs_path_unreverse(struct fs_path
*p
)
488 len
= p
->end
- p
->start
;
490 p
->end
= p
->start
+ len
;
491 memmove(p
->start
, tmp
, len
+ 1);
495 static struct btrfs_path
*alloc_path_for_send(void)
497 struct btrfs_path
*path
;
499 path
= btrfs_alloc_path();
502 path
->search_commit_root
= 1;
503 path
->skip_locking
= 1;
504 path
->need_commit_sem
= 1;
508 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
518 ret
= vfs_write(filp
, (__force
const char __user
*)buf
+ pos
,
520 /* TODO handle that correctly */
521 /*if (ret == -ERESTARTSYS) {
540 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
542 struct btrfs_tlv_header
*hdr
;
543 int total_len
= sizeof(*hdr
) + len
;
544 int left
= sctx
->send_max_size
- sctx
->send_size
;
546 if (unlikely(left
< total_len
))
549 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
550 hdr
->tlv_type
= cpu_to_le16(attr
);
551 hdr
->tlv_len
= cpu_to_le16(len
);
552 memcpy(hdr
+ 1, data
, len
);
553 sctx
->send_size
+= total_len
;
558 #define TLV_PUT_DEFINE_INT(bits) \
559 static int tlv_put_u##bits(struct send_ctx *sctx, \
560 u##bits attr, u##bits value) \
562 __le##bits __tmp = cpu_to_le##bits(value); \
563 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
566 TLV_PUT_DEFINE_INT(64)
568 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
569 const char *str
, int len
)
573 return tlv_put(sctx
, attr
, str
, len
);
576 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
579 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
582 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
583 struct extent_buffer
*eb
,
584 struct btrfs_timespec
*ts
)
586 struct btrfs_timespec bts
;
587 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
588 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
592 #define TLV_PUT(sctx, attrtype, attrlen, data) \
594 ret = tlv_put(sctx, attrtype, attrlen, data); \
596 goto tlv_put_failure; \
599 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
601 ret = tlv_put_u##bits(sctx, attrtype, value); \
603 goto tlv_put_failure; \
606 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
607 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
608 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
609 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
610 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
612 ret = tlv_put_string(sctx, attrtype, str, len); \
614 goto tlv_put_failure; \
616 #define TLV_PUT_PATH(sctx, attrtype, p) \
618 ret = tlv_put_string(sctx, attrtype, p->start, \
619 p->end - p->start); \
621 goto tlv_put_failure; \
623 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
625 ret = tlv_put_uuid(sctx, attrtype, uuid); \
627 goto tlv_put_failure; \
629 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
631 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
633 goto tlv_put_failure; \
636 static int send_header(struct send_ctx
*sctx
)
638 struct btrfs_stream_header hdr
;
640 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
641 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
643 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
648 * For each command/item we want to send to userspace, we call this function.
650 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
652 struct btrfs_cmd_header
*hdr
;
654 if (WARN_ON(!sctx
->send_buf
))
657 BUG_ON(sctx
->send_size
);
659 sctx
->send_size
+= sizeof(*hdr
);
660 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
661 hdr
->cmd
= cpu_to_le16(cmd
);
666 static int send_cmd(struct send_ctx
*sctx
)
669 struct btrfs_cmd_header
*hdr
;
672 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
673 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
676 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
677 hdr
->crc
= cpu_to_le32(crc
);
679 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
682 sctx
->total_send_size
+= sctx
->send_size
;
683 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
690 * Sends a move instruction to user space
692 static int send_rename(struct send_ctx
*sctx
,
693 struct fs_path
*from
, struct fs_path
*to
)
697 verbose_printk("btrfs: send_rename %s -> %s\n", from
->start
, to
->start
);
699 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
703 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
704 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
706 ret
= send_cmd(sctx
);
714 * Sends a link instruction to user space
716 static int send_link(struct send_ctx
*sctx
,
717 struct fs_path
*path
, struct fs_path
*lnk
)
721 verbose_printk("btrfs: send_link %s -> %s\n", path
->start
, lnk
->start
);
723 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
727 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
728 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
730 ret
= send_cmd(sctx
);
738 * Sends an unlink instruction to user space
740 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
744 verbose_printk("btrfs: send_unlink %s\n", path
->start
);
746 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
750 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
752 ret
= send_cmd(sctx
);
760 * Sends a rmdir instruction to user space
762 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
766 verbose_printk("btrfs: send_rmdir %s\n", path
->start
);
768 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
772 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
774 ret
= send_cmd(sctx
);
782 * Helper function to retrieve some fields from an inode item.
784 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
785 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
789 struct btrfs_inode_item
*ii
;
790 struct btrfs_key key
;
793 key
.type
= BTRFS_INODE_ITEM_KEY
;
795 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
802 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
803 struct btrfs_inode_item
);
805 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
807 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
809 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
811 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
813 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
815 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
820 static int get_inode_info(struct btrfs_root
*root
,
821 u64 ino
, u64
*size
, u64
*gen
,
822 u64
*mode
, u64
*uid
, u64
*gid
,
825 struct btrfs_path
*path
;
828 path
= alloc_path_for_send();
831 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
833 btrfs_free_path(path
);
837 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
842 * Helper function to iterate the entries in ONE btrfs_inode_ref or
843 * btrfs_inode_extref.
844 * The iterate callback may return a non zero value to stop iteration. This can
845 * be a negative value for error codes or 1 to simply stop it.
847 * path must point to the INODE_REF or INODE_EXTREF when called.
849 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
850 struct btrfs_key
*found_key
, int resolve
,
851 iterate_inode_ref_t iterate
, void *ctx
)
853 struct extent_buffer
*eb
= path
->nodes
[0];
854 struct btrfs_item
*item
;
855 struct btrfs_inode_ref
*iref
;
856 struct btrfs_inode_extref
*extref
;
857 struct btrfs_path
*tmp_path
;
861 int slot
= path
->slots
[0];
868 unsigned long name_off
;
869 unsigned long elem_size
;
872 p
= fs_path_alloc_reversed();
876 tmp_path
= alloc_path_for_send();
883 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
884 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
885 struct btrfs_inode_ref
);
886 item
= btrfs_item_nr(slot
);
887 total
= btrfs_item_size(eb
, item
);
888 elem_size
= sizeof(*iref
);
890 ptr
= btrfs_item_ptr_offset(eb
, slot
);
891 total
= btrfs_item_size_nr(eb
, slot
);
892 elem_size
= sizeof(*extref
);
895 while (cur
< total
) {
898 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
899 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
900 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
901 name_off
= (unsigned long)(iref
+ 1);
902 index
= btrfs_inode_ref_index(eb
, iref
);
903 dir
= found_key
->offset
;
905 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
906 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
907 name_off
= (unsigned long)&extref
->name
;
908 index
= btrfs_inode_extref_index(eb
, extref
);
909 dir
= btrfs_inode_extref_parent(eb
, extref
);
913 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
917 ret
= PTR_ERR(start
);
920 if (start
< p
->buf
) {
921 /* overflow , try again with larger buffer */
922 ret
= fs_path_ensure_buf(p
,
923 p
->buf_len
+ p
->buf
- start
);
926 start
= btrfs_ref_to_path(root
, tmp_path
,
931 ret
= PTR_ERR(start
);
934 BUG_ON(start
< p
->buf
);
938 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
944 cur
+= elem_size
+ name_len
;
945 ret
= iterate(num
, dir
, index
, p
, ctx
);
952 btrfs_free_path(tmp_path
);
957 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
958 const char *name
, int name_len
,
959 const char *data
, int data_len
,
963 * Helper function to iterate the entries in ONE btrfs_dir_item.
964 * The iterate callback may return a non zero value to stop iteration. This can
965 * be a negative value for error codes or 1 to simply stop it.
967 * path must point to the dir item when called.
969 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
970 struct btrfs_key
*found_key
,
971 iterate_dir_item_t iterate
, void *ctx
)
974 struct extent_buffer
*eb
;
975 struct btrfs_item
*item
;
976 struct btrfs_dir_item
*di
;
977 struct btrfs_key di_key
;
990 * Start with a small buffer (1 page). If later we end up needing more
991 * space, which can happen for xattrs on a fs with a leaf size greater
992 * then the page size, attempt to increase the buffer. Typically xattr
996 buf
= kmalloc(buf_len
, GFP_NOFS
);
1002 eb
= path
->nodes
[0];
1003 slot
= path
->slots
[0];
1004 item
= btrfs_item_nr(slot
);
1005 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1008 total
= btrfs_item_size(eb
, item
);
1011 while (cur
< total
) {
1012 name_len
= btrfs_dir_name_len(eb
, di
);
1013 data_len
= btrfs_dir_data_len(eb
, di
);
1014 type
= btrfs_dir_type(eb
, di
);
1015 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1017 if (type
== BTRFS_FT_XATTR
) {
1018 if (name_len
> XATTR_NAME_MAX
) {
1019 ret
= -ENAMETOOLONG
;
1022 if (name_len
+ data_len
> BTRFS_MAX_XATTR_SIZE(root
)) {
1030 if (name_len
+ data_len
> PATH_MAX
) {
1031 ret
= -ENAMETOOLONG
;
1036 if (name_len
+ data_len
> buf_len
) {
1037 buf_len
= name_len
+ data_len
;
1038 if (is_vmalloc_addr(buf
)) {
1042 char *tmp
= krealloc(buf
, buf_len
,
1043 GFP_NOFS
| __GFP_NOWARN
);
1050 buf
= vmalloc(buf_len
);
1058 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1059 name_len
+ data_len
);
1061 len
= sizeof(*di
) + name_len
+ data_len
;
1062 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1065 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1066 data_len
, type
, ctx
);
1082 static int __copy_first_ref(int num
, u64 dir
, int index
,
1083 struct fs_path
*p
, void *ctx
)
1086 struct fs_path
*pt
= ctx
;
1088 ret
= fs_path_copy(pt
, p
);
1092 /* we want the first only */
1097 * Retrieve the first path of an inode. If an inode has more then one
1098 * ref/hardlink, this is ignored.
1100 static int get_inode_path(struct btrfs_root
*root
,
1101 u64 ino
, struct fs_path
*path
)
1104 struct btrfs_key key
, found_key
;
1105 struct btrfs_path
*p
;
1107 p
= alloc_path_for_send();
1111 fs_path_reset(path
);
1114 key
.type
= BTRFS_INODE_REF_KEY
;
1117 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1124 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1125 if (found_key
.objectid
!= ino
||
1126 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1127 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1132 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1133 __copy_first_ref
, path
);
1143 struct backref_ctx
{
1144 struct send_ctx
*sctx
;
1146 struct btrfs_path
*path
;
1147 /* number of total found references */
1151 * used for clones found in send_root. clones found behind cur_objectid
1152 * and cur_offset are not considered as allowed clones.
1157 /* may be truncated in case it's the last extent in a file */
1160 /* Just to check for bugs in backref resolving */
1164 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1166 u64 root
= (u64
)(uintptr_t)key
;
1167 struct clone_root
*cr
= (struct clone_root
*)elt
;
1169 if (root
< cr
->root
->objectid
)
1171 if (root
> cr
->root
->objectid
)
1176 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1178 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1179 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1181 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1183 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1189 * Called for every backref that is found for the current extent.
1190 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1192 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1194 struct backref_ctx
*bctx
= ctx_
;
1195 struct clone_root
*found
;
1199 /* First check if the root is in the list of accepted clone sources */
1200 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1201 bctx
->sctx
->clone_roots_cnt
,
1202 sizeof(struct clone_root
),
1203 __clone_root_cmp_bsearch
);
1207 if (found
->root
== bctx
->sctx
->send_root
&&
1208 ino
== bctx
->cur_objectid
&&
1209 offset
== bctx
->cur_offset
) {
1210 bctx
->found_itself
= 1;
1214 * There are inodes that have extents that lie behind its i_size. Don't
1215 * accept clones from these extents.
1217 ret
= __get_inode_info(found
->root
, bctx
->path
, ino
, &i_size
, NULL
, NULL
,
1219 btrfs_release_path(bctx
->path
);
1223 if (offset
+ bctx
->extent_len
> i_size
)
1227 * Make sure we don't consider clones from send_root that are
1228 * behind the current inode/offset.
1230 if (found
->root
== bctx
->sctx
->send_root
) {
1232 * TODO for the moment we don't accept clones from the inode
1233 * that is currently send. We may change this when
1234 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1237 if (ino
>= bctx
->cur_objectid
)
1240 if (ino
> bctx
->cur_objectid
)
1242 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1248 found
->found_refs
++;
1249 if (ino
< found
->ino
) {
1251 found
->offset
= offset
;
1252 } else if (found
->ino
== ino
) {
1254 * same extent found more then once in the same file.
1256 if (found
->offset
> offset
+ bctx
->extent_len
)
1257 found
->offset
= offset
;
1264 * Given an inode, offset and extent item, it finds a good clone for a clone
1265 * instruction. Returns -ENOENT when none could be found. The function makes
1266 * sure that the returned clone is usable at the point where sending is at the
1267 * moment. This means, that no clones are accepted which lie behind the current
1270 * path must point to the extent item when called.
1272 static int find_extent_clone(struct send_ctx
*sctx
,
1273 struct btrfs_path
*path
,
1274 u64 ino
, u64 data_offset
,
1276 struct clone_root
**found
)
1283 u64 extent_item_pos
;
1285 struct btrfs_file_extent_item
*fi
;
1286 struct extent_buffer
*eb
= path
->nodes
[0];
1287 struct backref_ctx
*backref_ctx
= NULL
;
1288 struct clone_root
*cur_clone_root
;
1289 struct btrfs_key found_key
;
1290 struct btrfs_path
*tmp_path
;
1294 tmp_path
= alloc_path_for_send();
1298 /* We only use this path under the commit sem */
1299 tmp_path
->need_commit_sem
= 0;
1301 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_NOFS
);
1307 backref_ctx
->path
= tmp_path
;
1309 if (data_offset
>= ino_size
) {
1311 * There may be extents that lie behind the file's size.
1312 * I at least had this in combination with snapshotting while
1313 * writing large files.
1319 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1320 struct btrfs_file_extent_item
);
1321 extent_type
= btrfs_file_extent_type(eb
, fi
);
1322 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1326 compressed
= btrfs_file_extent_compression(eb
, fi
);
1328 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1329 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1330 if (disk_byte
== 0) {
1334 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1336 down_read(&sctx
->send_root
->fs_info
->commit_root_sem
);
1337 ret
= extent_from_logical(sctx
->send_root
->fs_info
, disk_byte
, tmp_path
,
1338 &found_key
, &flags
);
1339 up_read(&sctx
->send_root
->fs_info
->commit_root_sem
);
1340 btrfs_release_path(tmp_path
);
1344 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1350 * Setup the clone roots.
1352 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1353 cur_clone_root
= sctx
->clone_roots
+ i
;
1354 cur_clone_root
->ino
= (u64
)-1;
1355 cur_clone_root
->offset
= 0;
1356 cur_clone_root
->found_refs
= 0;
1359 backref_ctx
->sctx
= sctx
;
1360 backref_ctx
->found
= 0;
1361 backref_ctx
->cur_objectid
= ino
;
1362 backref_ctx
->cur_offset
= data_offset
;
1363 backref_ctx
->found_itself
= 0;
1364 backref_ctx
->extent_len
= num_bytes
;
1367 * The last extent of a file may be too large due to page alignment.
1368 * We need to adjust extent_len in this case so that the checks in
1369 * __iterate_backrefs work.
1371 if (data_offset
+ num_bytes
>= ino_size
)
1372 backref_ctx
->extent_len
= ino_size
- data_offset
;
1375 * Now collect all backrefs.
1377 if (compressed
== BTRFS_COMPRESS_NONE
)
1378 extent_item_pos
= logical
- found_key
.objectid
;
1380 extent_item_pos
= 0;
1381 ret
= iterate_extent_inodes(sctx
->send_root
->fs_info
,
1382 found_key
.objectid
, extent_item_pos
, 1,
1383 __iterate_backrefs
, backref_ctx
);
1388 if (!backref_ctx
->found_itself
) {
1389 /* found a bug in backref code? */
1391 btrfs_err(sctx
->send_root
->fs_info
, "did not find backref in "
1392 "send_root. inode=%llu, offset=%llu, "
1393 "disk_byte=%llu found extent=%llu",
1394 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1398 verbose_printk(KERN_DEBUG
"btrfs: find_extent_clone: data_offset=%llu, "
1400 "num_bytes=%llu, logical=%llu\n",
1401 data_offset
, ino
, num_bytes
, logical
);
1403 if (!backref_ctx
->found
)
1404 verbose_printk("btrfs: no clones found\n");
1406 cur_clone_root
= NULL
;
1407 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1408 if (sctx
->clone_roots
[i
].found_refs
) {
1409 if (!cur_clone_root
)
1410 cur_clone_root
= sctx
->clone_roots
+ i
;
1411 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1412 /* prefer clones from send_root over others */
1413 cur_clone_root
= sctx
->clone_roots
+ i
;
1418 if (cur_clone_root
) {
1419 if (compressed
!= BTRFS_COMPRESS_NONE
) {
1421 * Offsets given by iterate_extent_inodes() are relative
1422 * to the start of the extent, we need to add logical
1423 * offset from the file extent item.
1424 * (See why at backref.c:check_extent_in_eb())
1426 cur_clone_root
->offset
+= btrfs_file_extent_offset(eb
,
1429 *found
= cur_clone_root
;
1436 btrfs_free_path(tmp_path
);
1441 static int read_symlink(struct btrfs_root
*root
,
1443 struct fs_path
*dest
)
1446 struct btrfs_path
*path
;
1447 struct btrfs_key key
;
1448 struct btrfs_file_extent_item
*ei
;
1454 path
= alloc_path_for_send();
1459 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1461 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1466 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1467 struct btrfs_file_extent_item
);
1468 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1469 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1470 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1471 BUG_ON(compression
);
1473 off
= btrfs_file_extent_inline_start(ei
);
1474 len
= btrfs_file_extent_inline_len(path
->nodes
[0], path
->slots
[0], ei
);
1476 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1479 btrfs_free_path(path
);
1484 * Helper function to generate a file name that is unique in the root of
1485 * send_root and parent_root. This is used to generate names for orphan inodes.
1487 static int gen_unique_name(struct send_ctx
*sctx
,
1489 struct fs_path
*dest
)
1492 struct btrfs_path
*path
;
1493 struct btrfs_dir_item
*di
;
1498 path
= alloc_path_for_send();
1503 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1505 ASSERT(len
< sizeof(tmp
));
1507 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1508 path
, BTRFS_FIRST_FREE_OBJECTID
,
1509 tmp
, strlen(tmp
), 0);
1510 btrfs_release_path(path
);
1516 /* not unique, try again */
1521 if (!sctx
->parent_root
) {
1527 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1528 path
, BTRFS_FIRST_FREE_OBJECTID
,
1529 tmp
, strlen(tmp
), 0);
1530 btrfs_release_path(path
);
1536 /* not unique, try again */
1544 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1547 btrfs_free_path(path
);
1552 inode_state_no_change
,
1553 inode_state_will_create
,
1554 inode_state_did_create
,
1555 inode_state_will_delete
,
1556 inode_state_did_delete
,
1559 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1567 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1569 if (ret
< 0 && ret
!= -ENOENT
)
1573 if (!sctx
->parent_root
) {
1574 right_ret
= -ENOENT
;
1576 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1577 NULL
, NULL
, NULL
, NULL
);
1578 if (ret
< 0 && ret
!= -ENOENT
)
1583 if (!left_ret
&& !right_ret
) {
1584 if (left_gen
== gen
&& right_gen
== gen
) {
1585 ret
= inode_state_no_change
;
1586 } else if (left_gen
== gen
) {
1587 if (ino
< sctx
->send_progress
)
1588 ret
= inode_state_did_create
;
1590 ret
= inode_state_will_create
;
1591 } else if (right_gen
== gen
) {
1592 if (ino
< sctx
->send_progress
)
1593 ret
= inode_state_did_delete
;
1595 ret
= inode_state_will_delete
;
1599 } else if (!left_ret
) {
1600 if (left_gen
== gen
) {
1601 if (ino
< sctx
->send_progress
)
1602 ret
= inode_state_did_create
;
1604 ret
= inode_state_will_create
;
1608 } else if (!right_ret
) {
1609 if (right_gen
== gen
) {
1610 if (ino
< sctx
->send_progress
)
1611 ret
= inode_state_did_delete
;
1613 ret
= inode_state_will_delete
;
1625 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1629 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1633 if (ret
== inode_state_no_change
||
1634 ret
== inode_state_did_create
||
1635 ret
== inode_state_will_delete
)
1645 * Helper function to lookup a dir item in a dir.
1647 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1648 u64 dir
, const char *name
, int name_len
,
1653 struct btrfs_dir_item
*di
;
1654 struct btrfs_key key
;
1655 struct btrfs_path
*path
;
1657 path
= alloc_path_for_send();
1661 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1662 dir
, name
, name_len
, 0);
1671 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1672 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1676 *found_inode
= key
.objectid
;
1677 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1680 btrfs_free_path(path
);
1685 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1686 * generation of the parent dir and the name of the dir entry.
1688 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1689 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1692 struct btrfs_key key
;
1693 struct btrfs_key found_key
;
1694 struct btrfs_path
*path
;
1698 path
= alloc_path_for_send();
1703 key
.type
= BTRFS_INODE_REF_KEY
;
1706 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1710 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1712 if (ret
|| found_key
.objectid
!= ino
||
1713 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1714 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1719 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1720 struct btrfs_inode_ref
*iref
;
1721 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1722 struct btrfs_inode_ref
);
1723 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1724 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1725 (unsigned long)(iref
+ 1),
1727 parent_dir
= found_key
.offset
;
1729 struct btrfs_inode_extref
*extref
;
1730 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1731 struct btrfs_inode_extref
);
1732 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1733 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1734 (unsigned long)&extref
->name
, len
);
1735 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1739 btrfs_release_path(path
);
1742 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1751 btrfs_free_path(path
);
1755 static int is_first_ref(struct btrfs_root
*root
,
1757 const char *name
, int name_len
)
1760 struct fs_path
*tmp_name
;
1763 tmp_name
= fs_path_alloc();
1767 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1771 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1776 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1779 fs_path_free(tmp_name
);
1784 * Used by process_recorded_refs to determine if a new ref would overwrite an
1785 * already existing ref. In case it detects an overwrite, it returns the
1786 * inode/gen in who_ino/who_gen.
1787 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1788 * to make sure later references to the overwritten inode are possible.
1789 * Orphanizing is however only required for the first ref of an inode.
1790 * process_recorded_refs does an additional is_first_ref check to see if
1791 * orphanizing is really required.
1793 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1794 const char *name
, int name_len
,
1795 u64
*who_ino
, u64
*who_gen
)
1799 u64 other_inode
= 0;
1802 if (!sctx
->parent_root
)
1805 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1810 * If we have a parent root we need to verify that the parent dir was
1811 * not delted and then re-created, if it was then we have no overwrite
1812 * and we can just unlink this entry.
1814 if (sctx
->parent_root
) {
1815 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1817 if (ret
< 0 && ret
!= -ENOENT
)
1827 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1828 &other_inode
, &other_type
);
1829 if (ret
< 0 && ret
!= -ENOENT
)
1837 * Check if the overwritten ref was already processed. If yes, the ref
1838 * was already unlinked/moved, so we can safely assume that we will not
1839 * overwrite anything at this point in time.
1841 if (other_inode
> sctx
->send_progress
) {
1842 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1843 who_gen
, NULL
, NULL
, NULL
, NULL
);
1848 *who_ino
= other_inode
;
1858 * Checks if the ref was overwritten by an already processed inode. This is
1859 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1860 * thus the orphan name needs be used.
1861 * process_recorded_refs also uses it to avoid unlinking of refs that were
1864 static int did_overwrite_ref(struct send_ctx
*sctx
,
1865 u64 dir
, u64 dir_gen
,
1866 u64 ino
, u64 ino_gen
,
1867 const char *name
, int name_len
)
1874 if (!sctx
->parent_root
)
1877 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1881 /* check if the ref was overwritten by another ref */
1882 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1883 &ow_inode
, &other_type
);
1884 if (ret
< 0 && ret
!= -ENOENT
)
1887 /* was never and will never be overwritten */
1892 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1897 if (ow_inode
== ino
&& gen
== ino_gen
) {
1902 /* we know that it is or will be overwritten. check this now */
1903 if (ow_inode
< sctx
->send_progress
)
1913 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1914 * that got overwritten. This is used by process_recorded_refs to determine
1915 * if it has to use the path as returned by get_cur_path or the orphan name.
1917 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1920 struct fs_path
*name
= NULL
;
1924 if (!sctx
->parent_root
)
1927 name
= fs_path_alloc();
1931 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
1935 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
1936 name
->start
, fs_path_len(name
));
1944 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1945 * so we need to do some special handling in case we have clashes. This function
1946 * takes care of this with the help of name_cache_entry::radix_list.
1947 * In case of error, nce is kfreed.
1949 static int name_cache_insert(struct send_ctx
*sctx
,
1950 struct name_cache_entry
*nce
)
1953 struct list_head
*nce_head
;
1955 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1956 (unsigned long)nce
->ino
);
1958 nce_head
= kmalloc(sizeof(*nce_head
), GFP_NOFS
);
1963 INIT_LIST_HEAD(nce_head
);
1965 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
1972 list_add_tail(&nce
->radix_list
, nce_head
);
1973 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
1974 sctx
->name_cache_size
++;
1979 static void name_cache_delete(struct send_ctx
*sctx
,
1980 struct name_cache_entry
*nce
)
1982 struct list_head
*nce_head
;
1984 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1985 (unsigned long)nce
->ino
);
1987 btrfs_err(sctx
->send_root
->fs_info
,
1988 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1989 nce
->ino
, sctx
->name_cache_size
);
1992 list_del(&nce
->radix_list
);
1993 list_del(&nce
->list
);
1994 sctx
->name_cache_size
--;
1997 * We may not get to the final release of nce_head if the lookup fails
1999 if (nce_head
&& list_empty(nce_head
)) {
2000 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2005 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2008 struct list_head
*nce_head
;
2009 struct name_cache_entry
*cur
;
2011 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2015 list_for_each_entry(cur
, nce_head
, radix_list
) {
2016 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2023 * Removes the entry from the list and adds it back to the end. This marks the
2024 * entry as recently used so that name_cache_clean_unused does not remove it.
2026 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2028 list_del(&nce
->list
);
2029 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2033 * Remove some entries from the beginning of name_cache_list.
2035 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2037 struct name_cache_entry
*nce
;
2039 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2042 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2043 nce
= list_entry(sctx
->name_cache_list
.next
,
2044 struct name_cache_entry
, list
);
2045 name_cache_delete(sctx
, nce
);
2050 static void name_cache_free(struct send_ctx
*sctx
)
2052 struct name_cache_entry
*nce
;
2054 while (!list_empty(&sctx
->name_cache_list
)) {
2055 nce
= list_entry(sctx
->name_cache_list
.next
,
2056 struct name_cache_entry
, list
);
2057 name_cache_delete(sctx
, nce
);
2063 * Used by get_cur_path for each ref up to the root.
2064 * Returns 0 if it succeeded.
2065 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2066 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2067 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2068 * Returns <0 in case of error.
2070 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2074 struct fs_path
*dest
)
2078 struct name_cache_entry
*nce
= NULL
;
2081 * First check if we already did a call to this function with the same
2082 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2083 * return the cached result.
2085 nce
= name_cache_search(sctx
, ino
, gen
);
2087 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2088 name_cache_delete(sctx
, nce
);
2092 name_cache_used(sctx
, nce
);
2093 *parent_ino
= nce
->parent_ino
;
2094 *parent_gen
= nce
->parent_gen
;
2095 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2104 * If the inode is not existent yet, add the orphan name and return 1.
2105 * This should only happen for the parent dir that we determine in
2108 ret
= is_inode_existent(sctx
, ino
, gen
);
2113 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2121 * Depending on whether the inode was already processed or not, use
2122 * send_root or parent_root for ref lookup.
2124 if (ino
< sctx
->send_progress
)
2125 ret
= get_first_ref(sctx
->send_root
, ino
,
2126 parent_ino
, parent_gen
, dest
);
2128 ret
= get_first_ref(sctx
->parent_root
, ino
,
2129 parent_ino
, parent_gen
, dest
);
2134 * Check if the ref was overwritten by an inode's ref that was processed
2135 * earlier. If yes, treat as orphan and return 1.
2137 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2138 dest
->start
, dest
->end
- dest
->start
);
2142 fs_path_reset(dest
);
2143 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2151 * Store the result of the lookup in the name cache.
2153 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_NOFS
);
2161 nce
->parent_ino
= *parent_ino
;
2162 nce
->parent_gen
= *parent_gen
;
2163 nce
->name_len
= fs_path_len(dest
);
2165 strcpy(nce
->name
, dest
->start
);
2167 if (ino
< sctx
->send_progress
)
2168 nce
->need_later_update
= 0;
2170 nce
->need_later_update
= 1;
2172 nce_ret
= name_cache_insert(sctx
, nce
);
2175 name_cache_clean_unused(sctx
);
2182 * Magic happens here. This function returns the first ref to an inode as it
2183 * would look like while receiving the stream at this point in time.
2184 * We walk the path up to the root. For every inode in between, we check if it
2185 * was already processed/sent. If yes, we continue with the parent as found
2186 * in send_root. If not, we continue with the parent as found in parent_root.
2187 * If we encounter an inode that was deleted at this point in time, we use the
2188 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2189 * that were not created yet and overwritten inodes/refs.
2191 * When do we have have orphan inodes:
2192 * 1. When an inode is freshly created and thus no valid refs are available yet
2193 * 2. When a directory lost all it's refs (deleted) but still has dir items
2194 * inside which were not processed yet (pending for move/delete). If anyone
2195 * tried to get the path to the dir items, it would get a path inside that
2197 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2198 * of an unprocessed inode. If in that case the first ref would be
2199 * overwritten, the overwritten inode gets "orphanized". Later when we
2200 * process this overwritten inode, it is restored at a new place by moving
2203 * sctx->send_progress tells this function at which point in time receiving
2206 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2207 struct fs_path
*dest
)
2210 struct fs_path
*name
= NULL
;
2211 u64 parent_inode
= 0;
2215 name
= fs_path_alloc();
2222 fs_path_reset(dest
);
2224 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2225 fs_path_reset(name
);
2227 if (is_waiting_for_rm(sctx
, ino
)) {
2228 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2231 ret
= fs_path_add_path(dest
, name
);
2235 if (is_waiting_for_move(sctx
, ino
)) {
2236 ret
= get_first_ref(sctx
->parent_root
, ino
,
2237 &parent_inode
, &parent_gen
, name
);
2239 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2249 ret
= fs_path_add_path(dest
, name
);
2260 fs_path_unreverse(dest
);
2265 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2267 static int send_subvol_begin(struct send_ctx
*sctx
)
2270 struct btrfs_root
*send_root
= sctx
->send_root
;
2271 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2272 struct btrfs_path
*path
;
2273 struct btrfs_key key
;
2274 struct btrfs_root_ref
*ref
;
2275 struct extent_buffer
*leaf
;
2279 path
= btrfs_alloc_path();
2283 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_NOFS
);
2285 btrfs_free_path(path
);
2289 key
.objectid
= send_root
->objectid
;
2290 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2293 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2302 leaf
= path
->nodes
[0];
2303 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2304 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2305 key
.objectid
!= send_root
->objectid
) {
2309 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2310 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2311 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2312 btrfs_release_path(path
);
2315 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2319 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2324 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2325 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2326 sctx
->send_root
->root_item
.uuid
);
2327 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2328 le64_to_cpu(sctx
->send_root
->root_item
.ctransid
));
2330 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2331 sctx
->parent_root
->root_item
.uuid
);
2332 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2333 le64_to_cpu(sctx
->parent_root
->root_item
.ctransid
));
2336 ret
= send_cmd(sctx
);
2340 btrfs_free_path(path
);
2345 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2350 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino
, size
);
2352 p
= fs_path_alloc();
2356 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2360 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2363 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2364 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2366 ret
= send_cmd(sctx
);
2374 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2379 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino
, mode
);
2381 p
= fs_path_alloc();
2385 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2389 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2392 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2393 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2395 ret
= send_cmd(sctx
);
2403 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2408 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino
, uid
, gid
);
2410 p
= fs_path_alloc();
2414 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2418 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2421 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2422 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2423 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2425 ret
= send_cmd(sctx
);
2433 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2436 struct fs_path
*p
= NULL
;
2437 struct btrfs_inode_item
*ii
;
2438 struct btrfs_path
*path
= NULL
;
2439 struct extent_buffer
*eb
;
2440 struct btrfs_key key
;
2443 verbose_printk("btrfs: send_utimes %llu\n", ino
);
2445 p
= fs_path_alloc();
2449 path
= alloc_path_for_send();
2456 key
.type
= BTRFS_INODE_ITEM_KEY
;
2458 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2462 eb
= path
->nodes
[0];
2463 slot
= path
->slots
[0];
2464 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2466 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2470 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2473 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2474 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
,
2475 btrfs_inode_atime(ii
));
2476 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
,
2477 btrfs_inode_mtime(ii
));
2478 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
,
2479 btrfs_inode_ctime(ii
));
2480 /* TODO Add otime support when the otime patches get into upstream */
2482 ret
= send_cmd(sctx
);
2487 btrfs_free_path(path
);
2492 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2493 * a valid path yet because we did not process the refs yet. So, the inode
2494 * is created as orphan.
2496 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2505 verbose_printk("btrfs: send_create_inode %llu\n", ino
);
2507 p
= fs_path_alloc();
2511 if (ino
!= sctx
->cur_ino
) {
2512 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2517 gen
= sctx
->cur_inode_gen
;
2518 mode
= sctx
->cur_inode_mode
;
2519 rdev
= sctx
->cur_inode_rdev
;
2522 if (S_ISREG(mode
)) {
2523 cmd
= BTRFS_SEND_C_MKFILE
;
2524 } else if (S_ISDIR(mode
)) {
2525 cmd
= BTRFS_SEND_C_MKDIR
;
2526 } else if (S_ISLNK(mode
)) {
2527 cmd
= BTRFS_SEND_C_SYMLINK
;
2528 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2529 cmd
= BTRFS_SEND_C_MKNOD
;
2530 } else if (S_ISFIFO(mode
)) {
2531 cmd
= BTRFS_SEND_C_MKFIFO
;
2532 } else if (S_ISSOCK(mode
)) {
2533 cmd
= BTRFS_SEND_C_MKSOCK
;
2535 printk(KERN_WARNING
"btrfs: unexpected inode type %o",
2536 (int)(mode
& S_IFMT
));
2541 ret
= begin_cmd(sctx
, cmd
);
2545 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2549 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2550 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2552 if (S_ISLNK(mode
)) {
2554 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2557 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2558 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2559 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2560 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2561 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2564 ret
= send_cmd(sctx
);
2576 * We need some special handling for inodes that get processed before the parent
2577 * directory got created. See process_recorded_refs for details.
2578 * This function does the check if we already created the dir out of order.
2580 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2583 struct btrfs_path
*path
= NULL
;
2584 struct btrfs_key key
;
2585 struct btrfs_key found_key
;
2586 struct btrfs_key di_key
;
2587 struct extent_buffer
*eb
;
2588 struct btrfs_dir_item
*di
;
2591 path
= alloc_path_for_send();
2598 key
.type
= BTRFS_DIR_INDEX_KEY
;
2600 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2605 eb
= path
->nodes
[0];
2606 slot
= path
->slots
[0];
2607 if (slot
>= btrfs_header_nritems(eb
)) {
2608 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2611 } else if (ret
> 0) {
2618 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2619 if (found_key
.objectid
!= key
.objectid
||
2620 found_key
.type
!= key
.type
) {
2625 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2626 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2628 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2629 di_key
.objectid
< sctx
->send_progress
) {
2638 btrfs_free_path(path
);
2643 * Only creates the inode if it is:
2644 * 1. Not a directory
2645 * 2. Or a directory which was not created already due to out of order
2646 * directories. See did_create_dir and process_recorded_refs for details.
2648 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2652 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2653 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2662 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2670 struct recorded_ref
{
2671 struct list_head list
;
2674 struct fs_path
*full_path
;
2682 * We need to process new refs before deleted refs, but compare_tree gives us
2683 * everything mixed. So we first record all refs and later process them.
2684 * This function is a helper to record one ref.
2686 static int __record_ref(struct list_head
*head
, u64 dir
,
2687 u64 dir_gen
, struct fs_path
*path
)
2689 struct recorded_ref
*ref
;
2691 ref
= kmalloc(sizeof(*ref
), GFP_NOFS
);
2696 ref
->dir_gen
= dir_gen
;
2697 ref
->full_path
= path
;
2699 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2700 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2701 ref
->dir_path
= ref
->full_path
->start
;
2702 if (ref
->name
== ref
->full_path
->start
)
2703 ref
->dir_path_len
= 0;
2705 ref
->dir_path_len
= ref
->full_path
->end
-
2706 ref
->full_path
->start
- 1 - ref
->name_len
;
2708 list_add_tail(&ref
->list
, head
);
2712 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2714 struct recorded_ref
*new;
2716 new = kmalloc(sizeof(*ref
), GFP_NOFS
);
2720 new->dir
= ref
->dir
;
2721 new->dir_gen
= ref
->dir_gen
;
2722 new->full_path
= NULL
;
2723 INIT_LIST_HEAD(&new->list
);
2724 list_add_tail(&new->list
, list
);
2728 static void __free_recorded_refs(struct list_head
*head
)
2730 struct recorded_ref
*cur
;
2732 while (!list_empty(head
)) {
2733 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2734 fs_path_free(cur
->full_path
);
2735 list_del(&cur
->list
);
2740 static void free_recorded_refs(struct send_ctx
*sctx
)
2742 __free_recorded_refs(&sctx
->new_refs
);
2743 __free_recorded_refs(&sctx
->deleted_refs
);
2747 * Renames/moves a file/dir to its orphan name. Used when the first
2748 * ref of an unprocessed inode gets overwritten and for all non empty
2751 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2752 struct fs_path
*path
)
2755 struct fs_path
*orphan
;
2757 orphan
= fs_path_alloc();
2761 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2765 ret
= send_rename(sctx
, path
, orphan
);
2768 fs_path_free(orphan
);
2772 static struct orphan_dir_info
*
2773 add_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2775 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2776 struct rb_node
*parent
= NULL
;
2777 struct orphan_dir_info
*entry
, *odi
;
2779 odi
= kmalloc(sizeof(*odi
), GFP_NOFS
);
2781 return ERR_PTR(-ENOMEM
);
2787 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2788 if (dir_ino
< entry
->ino
) {
2790 } else if (dir_ino
> entry
->ino
) {
2791 p
= &(*p
)->rb_right
;
2798 rb_link_node(&odi
->node
, parent
, p
);
2799 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2803 static struct orphan_dir_info
*
2804 get_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2806 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2807 struct orphan_dir_info
*entry
;
2810 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2811 if (dir_ino
< entry
->ino
)
2813 else if (dir_ino
> entry
->ino
)
2821 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
)
2823 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
);
2828 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2829 struct orphan_dir_info
*odi
)
2833 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2838 * Returns 1 if a directory can be removed at this point in time.
2839 * We check this by iterating all dir items and checking if the inode behind
2840 * the dir item was already processed.
2842 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2846 struct btrfs_root
*root
= sctx
->parent_root
;
2847 struct btrfs_path
*path
;
2848 struct btrfs_key key
;
2849 struct btrfs_key found_key
;
2850 struct btrfs_key loc
;
2851 struct btrfs_dir_item
*di
;
2854 * Don't try to rmdir the top/root subvolume dir.
2856 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2859 path
= alloc_path_for_send();
2864 key
.type
= BTRFS_DIR_INDEX_KEY
;
2866 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2871 struct waiting_dir_move
*dm
;
2873 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2874 ret
= btrfs_next_leaf(root
, path
);
2881 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2883 if (found_key
.objectid
!= key
.objectid
||
2884 found_key
.type
!= key
.type
)
2887 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2888 struct btrfs_dir_item
);
2889 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2891 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2893 struct orphan_dir_info
*odi
;
2895 odi
= add_orphan_dir_info(sctx
, dir
);
2901 dm
->rmdir_ino
= dir
;
2906 if (loc
.objectid
> send_progress
) {
2917 btrfs_free_path(path
);
2921 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
2923 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
2925 return entry
!= NULL
;
2928 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
2930 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
2931 struct rb_node
*parent
= NULL
;
2932 struct waiting_dir_move
*entry
, *dm
;
2934 dm
= kmalloc(sizeof(*dm
), GFP_NOFS
);
2942 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
2943 if (ino
< entry
->ino
) {
2945 } else if (ino
> entry
->ino
) {
2946 p
= &(*p
)->rb_right
;
2953 rb_link_node(&dm
->node
, parent
, p
);
2954 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
2958 static struct waiting_dir_move
*
2959 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
2961 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
2962 struct waiting_dir_move
*entry
;
2965 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
2966 if (ino
< entry
->ino
)
2968 else if (ino
> entry
->ino
)
2976 static void free_waiting_dir_move(struct send_ctx
*sctx
,
2977 struct waiting_dir_move
*dm
)
2981 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
2985 static int add_pending_dir_move(struct send_ctx
*sctx
,
2989 struct list_head
*new_refs
,
2990 struct list_head
*deleted_refs
)
2992 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
2993 struct rb_node
*parent
= NULL
;
2994 struct pending_dir_move
*entry
= NULL
, *pm
;
2995 struct recorded_ref
*cur
;
2999 pm
= kmalloc(sizeof(*pm
), GFP_NOFS
);
3002 pm
->parent_ino
= parent_ino
;
3005 INIT_LIST_HEAD(&pm
->list
);
3006 INIT_LIST_HEAD(&pm
->update_refs
);
3007 RB_CLEAR_NODE(&pm
->node
);
3011 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3012 if (parent_ino
< entry
->parent_ino
) {
3014 } else if (parent_ino
> entry
->parent_ino
) {
3015 p
= &(*p
)->rb_right
;
3022 list_for_each_entry(cur
, deleted_refs
, list
) {
3023 ret
= dup_ref(cur
, &pm
->update_refs
);
3027 list_for_each_entry(cur
, new_refs
, list
) {
3028 ret
= dup_ref(cur
, &pm
->update_refs
);
3033 ret
= add_waiting_dir_move(sctx
, pm
->ino
);
3038 list_add_tail(&pm
->list
, &entry
->list
);
3040 rb_link_node(&pm
->node
, parent
, p
);
3041 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3046 __free_recorded_refs(&pm
->update_refs
);
3052 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3055 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3056 struct pending_dir_move
*entry
;
3059 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3060 if (parent_ino
< entry
->parent_ino
)
3062 else if (parent_ino
> entry
->parent_ino
)
3070 static int path_loop(struct send_ctx
*sctx
, struct fs_path
*name
,
3071 u64 ino
, u64 gen
, u64
*ancestor_ino
)
3074 u64 parent_inode
= 0;
3076 u64 start_ino
= ino
;
3079 while (ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
3080 fs_path_reset(name
);
3082 if (is_waiting_for_rm(sctx
, ino
))
3084 if (is_waiting_for_move(sctx
, ino
)) {
3085 if (*ancestor_ino
== 0)
3086 *ancestor_ino
= ino
;
3087 ret
= get_first_ref(sctx
->parent_root
, ino
,
3088 &parent_inode
, &parent_gen
, name
);
3090 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
3100 if (parent_inode
== start_ino
) {
3102 if (*ancestor_ino
== 0)
3103 *ancestor_ino
= ino
;
3112 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3114 struct fs_path
*from_path
= NULL
;
3115 struct fs_path
*to_path
= NULL
;
3116 struct fs_path
*name
= NULL
;
3117 u64 orig_progress
= sctx
->send_progress
;
3118 struct recorded_ref
*cur
;
3119 u64 parent_ino
, parent_gen
;
3120 struct waiting_dir_move
*dm
= NULL
;
3125 name
= fs_path_alloc();
3126 from_path
= fs_path_alloc();
3127 if (!name
|| !from_path
) {
3132 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3134 rmdir_ino
= dm
->rmdir_ino
;
3135 free_waiting_dir_move(sctx
, dm
);
3137 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3138 &parent_ino
, &parent_gen
, name
);
3142 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3146 ret
= fs_path_add_path(from_path
, name
);
3150 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3151 ret
= path_loop(sctx
, name
, pm
->ino
, pm
->gen
, &ancestor
);
3153 LIST_HEAD(deleted_refs
);
3154 ASSERT(ancestor
> BTRFS_FIRST_FREE_OBJECTID
);
3155 ret
= add_pending_dir_move(sctx
, pm
->ino
, pm
->gen
, ancestor
,
3156 &pm
->update_refs
, &deleted_refs
);
3160 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3162 dm
->rmdir_ino
= rmdir_ino
;
3166 fs_path_reset(name
);
3169 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3173 ret
= send_rename(sctx
, from_path
, to_path
);
3178 struct orphan_dir_info
*odi
;
3180 odi
= get_orphan_dir_info(sctx
, rmdir_ino
);
3182 /* already deleted */
3185 ret
= can_rmdir(sctx
, rmdir_ino
, odi
->gen
, sctx
->cur_ino
+ 1);
3191 name
= fs_path_alloc();
3196 ret
= get_cur_path(sctx
, rmdir_ino
, odi
->gen
, name
);
3199 ret
= send_rmdir(sctx
, name
);
3202 free_orphan_dir_info(sctx
, odi
);
3206 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3211 * After rename/move, need to update the utimes of both new parent(s)
3212 * and old parent(s).
3214 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3215 if (cur
->dir
== rmdir_ino
)
3217 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3224 fs_path_free(from_path
);
3225 fs_path_free(to_path
);
3226 sctx
->send_progress
= orig_progress
;
3231 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3233 if (!list_empty(&m
->list
))
3235 if (!RB_EMPTY_NODE(&m
->node
))
3236 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3237 __free_recorded_refs(&m
->update_refs
);
3241 static void tail_append_pending_moves(struct pending_dir_move
*moves
,
3242 struct list_head
*stack
)
3244 if (list_empty(&moves
->list
)) {
3245 list_add_tail(&moves
->list
, stack
);
3248 list_splice_init(&moves
->list
, &list
);
3249 list_add_tail(&moves
->list
, stack
);
3250 list_splice_tail(&list
, stack
);
3254 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3256 struct pending_dir_move
*pm
;
3257 struct list_head stack
;
3258 u64 parent_ino
= sctx
->cur_ino
;
3261 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3265 INIT_LIST_HEAD(&stack
);
3266 tail_append_pending_moves(pm
, &stack
);
3268 while (!list_empty(&stack
)) {
3269 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3270 parent_ino
= pm
->ino
;
3271 ret
= apply_dir_move(sctx
, pm
);
3272 free_pending_move(sctx
, pm
);
3275 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3277 tail_append_pending_moves(pm
, &stack
);
3282 while (!list_empty(&stack
)) {
3283 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3284 free_pending_move(sctx
, pm
);
3289 static int wait_for_parent_move(struct send_ctx
*sctx
,
3290 struct recorded_ref
*parent_ref
)
3293 u64 ino
= parent_ref
->dir
;
3294 u64 parent_ino_before
, parent_ino_after
;
3295 struct fs_path
*path_before
= NULL
;
3296 struct fs_path
*path_after
= NULL
;
3299 path_after
= fs_path_alloc();
3300 path_before
= fs_path_alloc();
3301 if (!path_after
|| !path_before
) {
3307 * Our current directory inode may not yet be renamed/moved because some
3308 * ancestor (immediate or not) has to be renamed/moved first. So find if
3309 * such ancestor exists and make sure our own rename/move happens after
3310 * that ancestor is processed.
3312 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3313 if (is_waiting_for_move(sctx
, ino
)) {
3318 fs_path_reset(path_before
);
3319 fs_path_reset(path_after
);
3321 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3325 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3327 if (ret
< 0 && ret
!= -ENOENT
) {
3329 } else if (ret
== -ENOENT
) {
3334 len1
= fs_path_len(path_before
);
3335 len2
= fs_path_len(path_after
);
3336 if (ino
> sctx
->cur_ino
&&
3337 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3338 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3342 ino
= parent_ino_after
;
3346 fs_path_free(path_before
);
3347 fs_path_free(path_after
);
3350 ret
= add_pending_dir_move(sctx
,
3352 sctx
->cur_inode_gen
,
3355 &sctx
->deleted_refs
);
3364 * This does all the move/link/unlink/rmdir magic.
3366 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3369 struct recorded_ref
*cur
;
3370 struct recorded_ref
*cur2
;
3371 struct list_head check_dirs
;
3372 struct fs_path
*valid_path
= NULL
;
3375 int did_overwrite
= 0;
3377 u64 last_dir_ino_rm
= 0;
3379 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx
->cur_ino
);
3382 * This should never happen as the root dir always has the same ref
3383 * which is always '..'
3385 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3386 INIT_LIST_HEAD(&check_dirs
);
3388 valid_path
= fs_path_alloc();
3395 * First, check if the first ref of the current inode was overwritten
3396 * before. If yes, we know that the current inode was already orphanized
3397 * and thus use the orphan name. If not, we can use get_cur_path to
3398 * get the path of the first ref as it would like while receiving at
3399 * this point in time.
3400 * New inodes are always orphan at the beginning, so force to use the
3401 * orphan name in this case.
3402 * The first ref is stored in valid_path and will be updated if it
3403 * gets moved around.
3405 if (!sctx
->cur_inode_new
) {
3406 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3407 sctx
->cur_inode_gen
);
3413 if (sctx
->cur_inode_new
|| did_overwrite
) {
3414 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3415 sctx
->cur_inode_gen
, valid_path
);
3420 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3426 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3428 * We may have refs where the parent directory does not exist
3429 * yet. This happens if the parent directories inum is higher
3430 * the the current inum. To handle this case, we create the
3431 * parent directory out of order. But we need to check if this
3432 * did already happen before due to other refs in the same dir.
3434 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3437 if (ret
== inode_state_will_create
) {
3440 * First check if any of the current inodes refs did
3441 * already create the dir.
3443 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
3446 if (cur2
->dir
== cur
->dir
) {
3453 * If that did not happen, check if a previous inode
3454 * did already create the dir.
3457 ret
= did_create_dir(sctx
, cur
->dir
);
3461 ret
= send_create_inode(sctx
, cur
->dir
);
3468 * Check if this new ref would overwrite the first ref of
3469 * another unprocessed inode. If yes, orphanize the
3470 * overwritten inode. If we find an overwritten ref that is
3471 * not the first ref, simply unlink it.
3473 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3474 cur
->name
, cur
->name_len
,
3475 &ow_inode
, &ow_gen
);
3479 ret
= is_first_ref(sctx
->parent_root
,
3480 ow_inode
, cur
->dir
, cur
->name
,
3485 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
3490 ret
= send_unlink(sctx
, cur
->full_path
);
3497 * link/move the ref to the new place. If we have an orphan
3498 * inode, move it and update valid_path. If not, link or move
3499 * it depending on the inode mode.
3502 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
3506 ret
= fs_path_copy(valid_path
, cur
->full_path
);
3510 if (S_ISDIR(sctx
->cur_inode_mode
)) {
3512 * Dirs can't be linked, so move it. For moved
3513 * dirs, we always have one new and one deleted
3514 * ref. The deleted ref is ignored later.
3516 ret
= wait_for_parent_move(sctx
, cur
);
3522 ret
= send_rename(sctx
, valid_path
,
3525 ret
= fs_path_copy(valid_path
,
3531 ret
= send_link(sctx
, cur
->full_path
,
3537 ret
= dup_ref(cur
, &check_dirs
);
3542 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
3544 * Check if we can already rmdir the directory. If not,
3545 * orphanize it. For every dir item inside that gets deleted
3546 * later, we do this check again and rmdir it then if possible.
3547 * See the use of check_dirs for more details.
3549 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3554 ret
= send_rmdir(sctx
, valid_path
);
3557 } else if (!is_orphan
) {
3558 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
3559 sctx
->cur_inode_gen
, valid_path
);
3565 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3566 ret
= dup_ref(cur
, &check_dirs
);
3570 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
3571 !list_empty(&sctx
->deleted_refs
)) {
3573 * We have a moved dir. Add the old parent to check_dirs
3575 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
3577 ret
= dup_ref(cur
, &check_dirs
);
3580 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
3582 * We have a non dir inode. Go through all deleted refs and
3583 * unlink them if they were not already overwritten by other
3586 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3587 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3588 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3589 cur
->name
, cur
->name_len
);
3593 ret
= send_unlink(sctx
, cur
->full_path
);
3597 ret
= dup_ref(cur
, &check_dirs
);
3602 * If the inode is still orphan, unlink the orphan. This may
3603 * happen when a previous inode did overwrite the first ref
3604 * of this inode and no new refs were added for the current
3605 * inode. Unlinking does not mean that the inode is deleted in
3606 * all cases. There may still be links to this inode in other
3610 ret
= send_unlink(sctx
, valid_path
);
3617 * We did collect all parent dirs where cur_inode was once located. We
3618 * now go through all these dirs and check if they are pending for
3619 * deletion and if it's finally possible to perform the rmdir now.
3620 * We also update the inode stats of the parent dirs here.
3622 list_for_each_entry(cur
, &check_dirs
, list
) {
3624 * In case we had refs into dirs that were not processed yet,
3625 * we don't need to do the utime and rmdir logic for these dirs.
3626 * The dir will be processed later.
3628 if (cur
->dir
> sctx
->cur_ino
)
3631 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3635 if (ret
== inode_state_did_create
||
3636 ret
== inode_state_no_change
) {
3637 /* TODO delayed utimes */
3638 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3641 } else if (ret
== inode_state_did_delete
&&
3642 cur
->dir
!= last_dir_ino_rm
) {
3643 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
3648 ret
= get_cur_path(sctx
, cur
->dir
,
3649 cur
->dir_gen
, valid_path
);
3652 ret
= send_rmdir(sctx
, valid_path
);
3655 last_dir_ino_rm
= cur
->dir
;
3663 __free_recorded_refs(&check_dirs
);
3664 free_recorded_refs(sctx
);
3665 fs_path_free(valid_path
);
3669 static int record_ref(struct btrfs_root
*root
, int num
, u64 dir
, int index
,
3670 struct fs_path
*name
, void *ctx
, struct list_head
*refs
)
3673 struct send_ctx
*sctx
= ctx
;
3677 p
= fs_path_alloc();
3681 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
3686 ret
= get_cur_path(sctx
, dir
, gen
, p
);
3689 ret
= fs_path_add_path(p
, name
);
3693 ret
= __record_ref(refs
, dir
, gen
, p
);
3701 static int __record_new_ref(int num
, u64 dir
, int index
,
3702 struct fs_path
*name
,
3705 struct send_ctx
*sctx
= ctx
;
3706 return record_ref(sctx
->send_root
, num
, dir
, index
, name
,
3707 ctx
, &sctx
->new_refs
);
3711 static int __record_deleted_ref(int num
, u64 dir
, int index
,
3712 struct fs_path
*name
,
3715 struct send_ctx
*sctx
= ctx
;
3716 return record_ref(sctx
->parent_root
, num
, dir
, index
, name
,
3717 ctx
, &sctx
->deleted_refs
);
3720 static int record_new_ref(struct send_ctx
*sctx
)
3724 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
3725 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
3734 static int record_deleted_ref(struct send_ctx
*sctx
)
3738 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
3739 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
3748 struct find_ref_ctx
{
3751 struct btrfs_root
*root
;
3752 struct fs_path
*name
;
3756 static int __find_iref(int num
, u64 dir
, int index
,
3757 struct fs_path
*name
,
3760 struct find_ref_ctx
*ctx
= ctx_
;
3764 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
3765 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
3767 * To avoid doing extra lookups we'll only do this if everything
3770 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
3774 if (dir_gen
!= ctx
->dir_gen
)
3776 ctx
->found_idx
= num
;
3782 static int find_iref(struct btrfs_root
*root
,
3783 struct btrfs_path
*path
,
3784 struct btrfs_key
*key
,
3785 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
3788 struct find_ref_ctx ctx
;
3792 ctx
.dir_gen
= dir_gen
;
3796 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
3800 if (ctx
.found_idx
== -1)
3803 return ctx
.found_idx
;
3806 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
3807 struct fs_path
*name
,
3812 struct send_ctx
*sctx
= ctx
;
3814 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
3819 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
3820 sctx
->cmp_key
, dir
, dir_gen
, name
);
3822 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
3829 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
3830 struct fs_path
*name
,
3835 struct send_ctx
*sctx
= ctx
;
3837 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
3842 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
3843 dir
, dir_gen
, name
);
3845 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
3852 static int record_changed_ref(struct send_ctx
*sctx
)
3856 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
3857 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
3860 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
3861 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
3871 * Record and process all refs at once. Needed when an inode changes the
3872 * generation number, which means that it was deleted and recreated.
3874 static int process_all_refs(struct send_ctx
*sctx
,
3875 enum btrfs_compare_tree_result cmd
)
3878 struct btrfs_root
*root
;
3879 struct btrfs_path
*path
;
3880 struct btrfs_key key
;
3881 struct btrfs_key found_key
;
3882 struct extent_buffer
*eb
;
3884 iterate_inode_ref_t cb
;
3885 int pending_move
= 0;
3887 path
= alloc_path_for_send();
3891 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
3892 root
= sctx
->send_root
;
3893 cb
= __record_new_ref
;
3894 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
3895 root
= sctx
->parent_root
;
3896 cb
= __record_deleted_ref
;
3898 btrfs_err(sctx
->send_root
->fs_info
,
3899 "Wrong command %d in process_all_refs", cmd
);
3904 key
.objectid
= sctx
->cmp_key
->objectid
;
3905 key
.type
= BTRFS_INODE_REF_KEY
;
3907 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3912 eb
= path
->nodes
[0];
3913 slot
= path
->slots
[0];
3914 if (slot
>= btrfs_header_nritems(eb
)) {
3915 ret
= btrfs_next_leaf(root
, path
);
3923 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3925 if (found_key
.objectid
!= key
.objectid
||
3926 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
3927 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
3930 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
3936 btrfs_release_path(path
);
3938 ret
= process_recorded_refs(sctx
, &pending_move
);
3939 /* Only applicable to an incremental send. */
3940 ASSERT(pending_move
== 0);
3943 btrfs_free_path(path
);
3947 static int send_set_xattr(struct send_ctx
*sctx
,
3948 struct fs_path
*path
,
3949 const char *name
, int name_len
,
3950 const char *data
, int data_len
)
3954 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
3958 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
3959 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
3960 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
3962 ret
= send_cmd(sctx
);
3969 static int send_remove_xattr(struct send_ctx
*sctx
,
3970 struct fs_path
*path
,
3971 const char *name
, int name_len
)
3975 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
3979 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
3980 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
3982 ret
= send_cmd(sctx
);
3989 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
3990 const char *name
, int name_len
,
3991 const char *data
, int data_len
,
3995 struct send_ctx
*sctx
= ctx
;
3997 posix_acl_xattr_header dummy_acl
;
3999 p
= fs_path_alloc();
4004 * This hack is needed because empty acl's are stored as zero byte
4005 * data in xattrs. Problem with that is, that receiving these zero byte
4006 * acl's will fail later. To fix this, we send a dummy acl list that
4007 * only contains the version number and no entries.
4009 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4010 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4011 if (data_len
== 0) {
4012 dummy_acl
.a_version
=
4013 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4014 data
= (char *)&dummy_acl
;
4015 data_len
= sizeof(dummy_acl
);
4019 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4023 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4030 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4031 const char *name
, int name_len
,
4032 const char *data
, int data_len
,
4036 struct send_ctx
*sctx
= ctx
;
4039 p
= fs_path_alloc();
4043 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4047 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4054 static int process_new_xattr(struct send_ctx
*sctx
)
4058 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4059 sctx
->cmp_key
, __process_new_xattr
, sctx
);
4064 static int process_deleted_xattr(struct send_ctx
*sctx
)
4068 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4069 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
4074 struct find_xattr_ctx
{
4082 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4083 const char *name
, int name_len
,
4084 const char *data
, int data_len
,
4085 u8 type
, void *vctx
)
4087 struct find_xattr_ctx
*ctx
= vctx
;
4089 if (name_len
== ctx
->name_len
&&
4090 strncmp(name
, ctx
->name
, name_len
) == 0) {
4091 ctx
->found_idx
= num
;
4092 ctx
->found_data_len
= data_len
;
4093 ctx
->found_data
= kmemdup(data
, data_len
, GFP_NOFS
);
4094 if (!ctx
->found_data
)
4101 static int find_xattr(struct btrfs_root
*root
,
4102 struct btrfs_path
*path
,
4103 struct btrfs_key
*key
,
4104 const char *name
, int name_len
,
4105 char **data
, int *data_len
)
4108 struct find_xattr_ctx ctx
;
4111 ctx
.name_len
= name_len
;
4113 ctx
.found_data
= NULL
;
4114 ctx
.found_data_len
= 0;
4116 ret
= iterate_dir_item(root
, path
, key
, __find_xattr
, &ctx
);
4120 if (ctx
.found_idx
== -1)
4123 *data
= ctx
.found_data
;
4124 *data_len
= ctx
.found_data_len
;
4126 kfree(ctx
.found_data
);
4128 return ctx
.found_idx
;
4132 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4133 const char *name
, int name_len
,
4134 const char *data
, int data_len
,
4138 struct send_ctx
*sctx
= ctx
;
4139 char *found_data
= NULL
;
4140 int found_data_len
= 0;
4142 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4143 sctx
->cmp_key
, name
, name_len
, &found_data
,
4145 if (ret
== -ENOENT
) {
4146 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4147 data_len
, type
, ctx
);
4148 } else if (ret
>= 0) {
4149 if (data_len
!= found_data_len
||
4150 memcmp(data
, found_data
, data_len
)) {
4151 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4152 data
, data_len
, type
, ctx
);
4162 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4163 const char *name
, int name_len
,
4164 const char *data
, int data_len
,
4168 struct send_ctx
*sctx
= ctx
;
4170 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4171 name
, name_len
, NULL
, NULL
);
4173 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4174 data_len
, type
, ctx
);
4181 static int process_changed_xattr(struct send_ctx
*sctx
)
4185 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4186 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
4189 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4190 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
4196 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4199 struct btrfs_root
*root
;
4200 struct btrfs_path
*path
;
4201 struct btrfs_key key
;
4202 struct btrfs_key found_key
;
4203 struct extent_buffer
*eb
;
4206 path
= alloc_path_for_send();
4210 root
= sctx
->send_root
;
4212 key
.objectid
= sctx
->cmp_key
->objectid
;
4213 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4215 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4220 eb
= path
->nodes
[0];
4221 slot
= path
->slots
[0];
4222 if (slot
>= btrfs_header_nritems(eb
)) {
4223 ret
= btrfs_next_leaf(root
, path
);
4226 } else if (ret
> 0) {
4233 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4234 if (found_key
.objectid
!= key
.objectid
||
4235 found_key
.type
!= key
.type
) {
4240 ret
= iterate_dir_item(root
, path
, &found_key
,
4241 __process_new_xattr
, sctx
);
4249 btrfs_free_path(path
);
4253 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4255 struct btrfs_root
*root
= sctx
->send_root
;
4256 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4257 struct inode
*inode
;
4260 struct btrfs_key key
;
4261 pgoff_t index
= offset
>> PAGE_CACHE_SHIFT
;
4263 unsigned pg_offset
= offset
& ~PAGE_CACHE_MASK
;
4266 key
.objectid
= sctx
->cur_ino
;
4267 key
.type
= BTRFS_INODE_ITEM_KEY
;
4270 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
4272 return PTR_ERR(inode
);
4274 if (offset
+ len
> i_size_read(inode
)) {
4275 if (offset
> i_size_read(inode
))
4278 len
= offset
- i_size_read(inode
);
4283 last_index
= (offset
+ len
- 1) >> PAGE_CACHE_SHIFT
;
4285 /* initial readahead */
4286 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4287 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4288 btrfs_force_ra(inode
->i_mapping
, &sctx
->ra
, NULL
, index
,
4289 last_index
- index
+ 1);
4291 while (index
<= last_index
) {
4292 unsigned cur_len
= min_t(unsigned, len
,
4293 PAGE_CACHE_SIZE
- pg_offset
);
4294 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
4300 if (!PageUptodate(page
)) {
4301 btrfs_readpage(NULL
, page
);
4303 if (!PageUptodate(page
)) {
4305 page_cache_release(page
);
4312 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
4315 page_cache_release(page
);
4327 * Read some bytes from the current inode/file and send a write command to
4330 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4334 ssize_t num_read
= 0;
4336 p
= fs_path_alloc();
4340 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset
, len
);
4342 num_read
= fill_read_buf(sctx
, offset
, len
);
4343 if (num_read
<= 0) {
4349 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4353 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4357 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4358 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4359 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
4361 ret
= send_cmd(sctx
);
4372 * Send a clone command to user space.
4374 static int send_clone(struct send_ctx
*sctx
,
4375 u64 offset
, u32 len
,
4376 struct clone_root
*clone_root
)
4382 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4383 "clone_inode=%llu, clone_offset=%llu\n", offset
, len
,
4384 clone_root
->root
->objectid
, clone_root
->ino
,
4385 clone_root
->offset
);
4387 p
= fs_path_alloc();
4391 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
4395 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4399 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4400 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
4401 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4403 if (clone_root
->root
== sctx
->send_root
) {
4404 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
4405 &gen
, NULL
, NULL
, NULL
, NULL
);
4408 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
4410 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
4415 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4416 clone_root
->root
->root_item
.uuid
);
4417 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
4418 le64_to_cpu(clone_root
->root
->root_item
.ctransid
));
4419 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
4420 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
4421 clone_root
->offset
);
4423 ret
= send_cmd(sctx
);
4432 * Send an update extent command to user space.
4434 static int send_update_extent(struct send_ctx
*sctx
,
4435 u64 offset
, u32 len
)
4440 p
= fs_path_alloc();
4444 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
4448 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4452 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4453 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4454 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
4456 ret
= send_cmd(sctx
);
4464 static int send_hole(struct send_ctx
*sctx
, u64 end
)
4466 struct fs_path
*p
= NULL
;
4467 u64 offset
= sctx
->cur_inode_last_extent
;
4471 p
= fs_path_alloc();
4474 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4476 goto tlv_put_failure
;
4477 memset(sctx
->read_buf
, 0, BTRFS_SEND_READ_SIZE
);
4478 while (offset
< end
) {
4479 len
= min_t(u64
, end
- offset
, BTRFS_SEND_READ_SIZE
);
4481 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4484 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4485 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4486 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, len
);
4487 ret
= send_cmd(sctx
);
4497 static int send_write_or_clone(struct send_ctx
*sctx
,
4498 struct btrfs_path
*path
,
4499 struct btrfs_key
*key
,
4500 struct clone_root
*clone_root
)
4503 struct btrfs_file_extent_item
*ei
;
4504 u64 offset
= key
->offset
;
4509 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
4511 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4512 struct btrfs_file_extent_item
);
4513 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
4514 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
4515 len
= btrfs_file_extent_inline_len(path
->nodes
[0],
4516 path
->slots
[0], ei
);
4518 * it is possible the inline item won't cover the whole page,
4519 * but there may be items after this page. Make
4520 * sure to send the whole thing
4522 len
= PAGE_CACHE_ALIGN(len
);
4524 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
4527 if (offset
+ len
> sctx
->cur_inode_size
)
4528 len
= sctx
->cur_inode_size
- offset
;
4534 if (clone_root
&& IS_ALIGNED(offset
+ len
, bs
)) {
4535 ret
= send_clone(sctx
, offset
, len
, clone_root
);
4536 } else if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
) {
4537 ret
= send_update_extent(sctx
, offset
, len
);
4541 if (l
> BTRFS_SEND_READ_SIZE
)
4542 l
= BTRFS_SEND_READ_SIZE
;
4543 ret
= send_write(sctx
, pos
+ offset
, l
);
4556 static int is_extent_unchanged(struct send_ctx
*sctx
,
4557 struct btrfs_path
*left_path
,
4558 struct btrfs_key
*ekey
)
4561 struct btrfs_key key
;
4562 struct btrfs_path
*path
= NULL
;
4563 struct extent_buffer
*eb
;
4565 struct btrfs_key found_key
;
4566 struct btrfs_file_extent_item
*ei
;
4571 u64 left_offset_fixed
;
4579 path
= alloc_path_for_send();
4583 eb
= left_path
->nodes
[0];
4584 slot
= left_path
->slots
[0];
4585 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
4586 left_type
= btrfs_file_extent_type(eb
, ei
);
4588 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
4592 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
4593 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
4594 left_offset
= btrfs_file_extent_offset(eb
, ei
);
4595 left_gen
= btrfs_file_extent_generation(eb
, ei
);
4598 * Following comments will refer to these graphics. L is the left
4599 * extents which we are checking at the moment. 1-8 are the right
4600 * extents that we iterate.
4603 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4606 * |--1--|-2b-|...(same as above)
4608 * Alternative situation. Happens on files where extents got split.
4610 * |-----------7-----------|-6-|
4612 * Alternative situation. Happens on files which got larger.
4615 * Nothing follows after 8.
4618 key
.objectid
= ekey
->objectid
;
4619 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4620 key
.offset
= ekey
->offset
;
4621 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
4630 * Handle special case where the right side has no extents at all.
4632 eb
= path
->nodes
[0];
4633 slot
= path
->slots
[0];
4634 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4635 if (found_key
.objectid
!= key
.objectid
||
4636 found_key
.type
!= key
.type
) {
4637 /* If we're a hole then just pretend nothing changed */
4638 ret
= (left_disknr
) ? 0 : 1;
4643 * We're now on 2a, 2b or 7.
4646 while (key
.offset
< ekey
->offset
+ left_len
) {
4647 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
4648 right_type
= btrfs_file_extent_type(eb
, ei
);
4649 if (right_type
!= BTRFS_FILE_EXTENT_REG
) {
4654 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
4655 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
4656 right_offset
= btrfs_file_extent_offset(eb
, ei
);
4657 right_gen
= btrfs_file_extent_generation(eb
, ei
);
4660 * Are we at extent 8? If yes, we know the extent is changed.
4661 * This may only happen on the first iteration.
4663 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
4664 /* If we're a hole just pretend nothing changed */
4665 ret
= (left_disknr
) ? 0 : 1;
4669 left_offset_fixed
= left_offset
;
4670 if (key
.offset
< ekey
->offset
) {
4671 /* Fix the right offset for 2a and 7. */
4672 right_offset
+= ekey
->offset
- key
.offset
;
4674 /* Fix the left offset for all behind 2a and 2b */
4675 left_offset_fixed
+= key
.offset
- ekey
->offset
;
4679 * Check if we have the same extent.
4681 if (left_disknr
!= right_disknr
||
4682 left_offset_fixed
!= right_offset
||
4683 left_gen
!= right_gen
) {
4689 * Go to the next extent.
4691 ret
= btrfs_next_item(sctx
->parent_root
, path
);
4695 eb
= path
->nodes
[0];
4696 slot
= path
->slots
[0];
4697 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4699 if (ret
|| found_key
.objectid
!= key
.objectid
||
4700 found_key
.type
!= key
.type
) {
4701 key
.offset
+= right_len
;
4704 if (found_key
.offset
!= key
.offset
+ right_len
) {
4712 * We're now behind the left extent (treat as unchanged) or at the end
4713 * of the right side (treat as changed).
4715 if (key
.offset
>= ekey
->offset
+ left_len
)
4722 btrfs_free_path(path
);
4726 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
4728 struct btrfs_path
*path
;
4729 struct btrfs_root
*root
= sctx
->send_root
;
4730 struct btrfs_file_extent_item
*fi
;
4731 struct btrfs_key key
;
4736 path
= alloc_path_for_send();
4740 sctx
->cur_inode_last_extent
= 0;
4742 key
.objectid
= sctx
->cur_ino
;
4743 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4744 key
.offset
= offset
;
4745 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
4749 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
4750 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4753 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4754 struct btrfs_file_extent_item
);
4755 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
4756 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
4757 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
4758 path
->slots
[0], fi
);
4759 extent_end
= ALIGN(key
.offset
+ size
,
4760 sctx
->send_root
->sectorsize
);
4762 extent_end
= key
.offset
+
4763 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
4765 sctx
->cur_inode_last_extent
= extent_end
;
4767 btrfs_free_path(path
);
4771 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
4772 struct btrfs_key
*key
)
4774 struct btrfs_file_extent_item
*fi
;
4779 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
4782 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
4783 ret
= get_last_extent(sctx
, key
->offset
- 1);
4788 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4789 struct btrfs_file_extent_item
);
4790 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
4791 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
4792 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
4793 path
->slots
[0], fi
);
4794 extent_end
= ALIGN(key
->offset
+ size
,
4795 sctx
->send_root
->sectorsize
);
4797 extent_end
= key
->offset
+
4798 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
4801 if (path
->slots
[0] == 0 &&
4802 sctx
->cur_inode_last_extent
< key
->offset
) {
4804 * We might have skipped entire leafs that contained only
4805 * file extent items for our current inode. These leafs have
4806 * a generation number smaller (older) than the one in the
4807 * current leaf and the leaf our last extent came from, and
4808 * are located between these 2 leafs.
4810 ret
= get_last_extent(sctx
, key
->offset
- 1);
4815 if (sctx
->cur_inode_last_extent
< key
->offset
)
4816 ret
= send_hole(sctx
, key
->offset
);
4817 sctx
->cur_inode_last_extent
= extent_end
;
4821 static int process_extent(struct send_ctx
*sctx
,
4822 struct btrfs_path
*path
,
4823 struct btrfs_key
*key
)
4825 struct clone_root
*found_clone
= NULL
;
4828 if (S_ISLNK(sctx
->cur_inode_mode
))
4831 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
4832 ret
= is_extent_unchanged(sctx
, path
, key
);
4840 struct btrfs_file_extent_item
*ei
;
4843 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4844 struct btrfs_file_extent_item
);
4845 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
4846 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
4847 type
== BTRFS_FILE_EXTENT_REG
) {
4849 * The send spec does not have a prealloc command yet,
4850 * so just leave a hole for prealloc'ed extents until
4851 * we have enough commands queued up to justify rev'ing
4854 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4859 /* Have a hole, just skip it. */
4860 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
4867 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
4868 sctx
->cur_inode_size
, &found_clone
);
4869 if (ret
!= -ENOENT
&& ret
< 0)
4872 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
4876 ret
= maybe_send_hole(sctx
, path
, key
);
4881 static int process_all_extents(struct send_ctx
*sctx
)
4884 struct btrfs_root
*root
;
4885 struct btrfs_path
*path
;
4886 struct btrfs_key key
;
4887 struct btrfs_key found_key
;
4888 struct extent_buffer
*eb
;
4891 root
= sctx
->send_root
;
4892 path
= alloc_path_for_send();
4896 key
.objectid
= sctx
->cmp_key
->objectid
;
4897 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4899 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4904 eb
= path
->nodes
[0];
4905 slot
= path
->slots
[0];
4907 if (slot
>= btrfs_header_nritems(eb
)) {
4908 ret
= btrfs_next_leaf(root
, path
);
4911 } else if (ret
> 0) {
4918 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4920 if (found_key
.objectid
!= key
.objectid
||
4921 found_key
.type
!= key
.type
) {
4926 ret
= process_extent(sctx
, path
, &found_key
);
4934 btrfs_free_path(path
);
4938 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
4940 int *refs_processed
)
4944 if (sctx
->cur_ino
== 0)
4946 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
4947 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
4949 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
4952 ret
= process_recorded_refs(sctx
, pending_move
);
4956 *refs_processed
= 1;
4961 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
4972 int pending_move
= 0;
4973 int refs_processed
= 0;
4975 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
4981 * We have processed the refs and thus need to advance send_progress.
4982 * Now, calls to get_cur_xxx will take the updated refs of the current
4983 * inode into account.
4985 * On the other hand, if our current inode is a directory and couldn't
4986 * be moved/renamed because its parent was renamed/moved too and it has
4987 * a higher inode number, we can only move/rename our current inode
4988 * after we moved/renamed its parent. Therefore in this case operate on
4989 * the old path (pre move/rename) of our current inode, and the
4990 * move/rename will be performed later.
4992 if (refs_processed
&& !pending_move
)
4993 sctx
->send_progress
= sctx
->cur_ino
+ 1;
4995 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
4997 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
5000 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
5001 &left_mode
, &left_uid
, &left_gid
, NULL
);
5005 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
5007 if (!S_ISLNK(sctx
->cur_inode_mode
))
5010 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
5011 NULL
, NULL
, &right_mode
, &right_uid
,
5016 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
5018 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
5022 if (S_ISREG(sctx
->cur_inode_mode
)) {
5023 if (need_send_hole(sctx
)) {
5024 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
5025 sctx
->cur_inode_last_extent
<
5026 sctx
->cur_inode_size
) {
5027 ret
= get_last_extent(sctx
, (u64
)-1);
5031 if (sctx
->cur_inode_last_extent
<
5032 sctx
->cur_inode_size
) {
5033 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
5038 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5039 sctx
->cur_inode_size
);
5045 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5046 left_uid
, left_gid
);
5051 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5058 * If other directory inodes depended on our current directory
5059 * inode's move/rename, now do their move/rename operations.
5061 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
5062 ret
= apply_children_dir_moves(sctx
);
5066 * Need to send that every time, no matter if it actually
5067 * changed between the two trees as we have done changes to
5068 * the inode before. If our inode is a directory and it's
5069 * waiting to be moved/renamed, we will send its utimes when
5070 * it's moved/renamed, therefore we don't need to do it here.
5072 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5073 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
5082 static int changed_inode(struct send_ctx
*sctx
,
5083 enum btrfs_compare_tree_result result
)
5086 struct btrfs_key
*key
= sctx
->cmp_key
;
5087 struct btrfs_inode_item
*left_ii
= NULL
;
5088 struct btrfs_inode_item
*right_ii
= NULL
;
5092 sctx
->cur_ino
= key
->objectid
;
5093 sctx
->cur_inode_new_gen
= 0;
5094 sctx
->cur_inode_last_extent
= (u64
)-1;
5097 * Set send_progress to current inode. This will tell all get_cur_xxx
5098 * functions that the current inode's refs are not updated yet. Later,
5099 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5101 sctx
->send_progress
= sctx
->cur_ino
;
5103 if (result
== BTRFS_COMPARE_TREE_NEW
||
5104 result
== BTRFS_COMPARE_TREE_CHANGED
) {
5105 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
5106 sctx
->left_path
->slots
[0],
5107 struct btrfs_inode_item
);
5108 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
5111 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5112 sctx
->right_path
->slots
[0],
5113 struct btrfs_inode_item
);
5114 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5117 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5118 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5119 sctx
->right_path
->slots
[0],
5120 struct btrfs_inode_item
);
5122 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5126 * The cur_ino = root dir case is special here. We can't treat
5127 * the inode as deleted+reused because it would generate a
5128 * stream that tries to delete/mkdir the root dir.
5130 if (left_gen
!= right_gen
&&
5131 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5132 sctx
->cur_inode_new_gen
= 1;
5135 if (result
== BTRFS_COMPARE_TREE_NEW
) {
5136 sctx
->cur_inode_gen
= left_gen
;
5137 sctx
->cur_inode_new
= 1;
5138 sctx
->cur_inode_deleted
= 0;
5139 sctx
->cur_inode_size
= btrfs_inode_size(
5140 sctx
->left_path
->nodes
[0], left_ii
);
5141 sctx
->cur_inode_mode
= btrfs_inode_mode(
5142 sctx
->left_path
->nodes
[0], left_ii
);
5143 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5144 sctx
->left_path
->nodes
[0], left_ii
);
5145 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5146 ret
= send_create_inode_if_needed(sctx
);
5147 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
5148 sctx
->cur_inode_gen
= right_gen
;
5149 sctx
->cur_inode_new
= 0;
5150 sctx
->cur_inode_deleted
= 1;
5151 sctx
->cur_inode_size
= btrfs_inode_size(
5152 sctx
->right_path
->nodes
[0], right_ii
);
5153 sctx
->cur_inode_mode
= btrfs_inode_mode(
5154 sctx
->right_path
->nodes
[0], right_ii
);
5155 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5157 * We need to do some special handling in case the inode was
5158 * reported as changed with a changed generation number. This
5159 * means that the original inode was deleted and new inode
5160 * reused the same inum. So we have to treat the old inode as
5161 * deleted and the new one as new.
5163 if (sctx
->cur_inode_new_gen
) {
5165 * First, process the inode as if it was deleted.
5167 sctx
->cur_inode_gen
= right_gen
;
5168 sctx
->cur_inode_new
= 0;
5169 sctx
->cur_inode_deleted
= 1;
5170 sctx
->cur_inode_size
= btrfs_inode_size(
5171 sctx
->right_path
->nodes
[0], right_ii
);
5172 sctx
->cur_inode_mode
= btrfs_inode_mode(
5173 sctx
->right_path
->nodes
[0], right_ii
);
5174 ret
= process_all_refs(sctx
,
5175 BTRFS_COMPARE_TREE_DELETED
);
5180 * Now process the inode as if it was new.
5182 sctx
->cur_inode_gen
= left_gen
;
5183 sctx
->cur_inode_new
= 1;
5184 sctx
->cur_inode_deleted
= 0;
5185 sctx
->cur_inode_size
= btrfs_inode_size(
5186 sctx
->left_path
->nodes
[0], left_ii
);
5187 sctx
->cur_inode_mode
= btrfs_inode_mode(
5188 sctx
->left_path
->nodes
[0], left_ii
);
5189 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5190 sctx
->left_path
->nodes
[0], left_ii
);
5191 ret
= send_create_inode_if_needed(sctx
);
5195 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
5199 * Advance send_progress now as we did not get into
5200 * process_recorded_refs_if_needed in the new_gen case.
5202 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5205 * Now process all extents and xattrs of the inode as if
5206 * they were all new.
5208 ret
= process_all_extents(sctx
);
5211 ret
= process_all_new_xattrs(sctx
);
5215 sctx
->cur_inode_gen
= left_gen
;
5216 sctx
->cur_inode_new
= 0;
5217 sctx
->cur_inode_new_gen
= 0;
5218 sctx
->cur_inode_deleted
= 0;
5219 sctx
->cur_inode_size
= btrfs_inode_size(
5220 sctx
->left_path
->nodes
[0], left_ii
);
5221 sctx
->cur_inode_mode
= btrfs_inode_mode(
5222 sctx
->left_path
->nodes
[0], left_ii
);
5231 * We have to process new refs before deleted refs, but compare_trees gives us
5232 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5233 * first and later process them in process_recorded_refs.
5234 * For the cur_inode_new_gen case, we skip recording completely because
5235 * changed_inode did already initiate processing of refs. The reason for this is
5236 * that in this case, compare_tree actually compares the refs of 2 different
5237 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5238 * refs of the right tree as deleted and all refs of the left tree as new.
5240 static int changed_ref(struct send_ctx
*sctx
,
5241 enum btrfs_compare_tree_result result
)
5245 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
5247 if (!sctx
->cur_inode_new_gen
&&
5248 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5249 if (result
== BTRFS_COMPARE_TREE_NEW
)
5250 ret
= record_new_ref(sctx
);
5251 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5252 ret
= record_deleted_ref(sctx
);
5253 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5254 ret
= record_changed_ref(sctx
);
5261 * Process new/deleted/changed xattrs. We skip processing in the
5262 * cur_inode_new_gen case because changed_inode did already initiate processing
5263 * of xattrs. The reason is the same as in changed_ref
5265 static int changed_xattr(struct send_ctx
*sctx
,
5266 enum btrfs_compare_tree_result result
)
5270 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
5272 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
5273 if (result
== BTRFS_COMPARE_TREE_NEW
)
5274 ret
= process_new_xattr(sctx
);
5275 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5276 ret
= process_deleted_xattr(sctx
);
5277 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5278 ret
= process_changed_xattr(sctx
);
5285 * Process new/deleted/changed extents. We skip processing in the
5286 * cur_inode_new_gen case because changed_inode did already initiate processing
5287 * of extents. The reason is the same as in changed_ref
5289 static int changed_extent(struct send_ctx
*sctx
,
5290 enum btrfs_compare_tree_result result
)
5294 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
5296 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
5297 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
5298 ret
= process_extent(sctx
, sctx
->left_path
,
5305 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
5307 u64 orig_gen
, new_gen
;
5310 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
5315 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
5320 return (orig_gen
!= new_gen
) ? 1 : 0;
5323 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5324 struct btrfs_key
*key
)
5326 struct btrfs_inode_extref
*extref
;
5327 struct extent_buffer
*leaf
;
5328 u64 dirid
= 0, last_dirid
= 0;
5335 /* Easy case, just check this one dirid */
5336 if (key
->type
== BTRFS_INODE_REF_KEY
) {
5337 dirid
= key
->offset
;
5339 ret
= dir_changed(sctx
, dirid
);
5343 leaf
= path
->nodes
[0];
5344 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
5345 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
5346 while (cur_offset
< item_size
) {
5347 extref
= (struct btrfs_inode_extref
*)(ptr
+
5349 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
5350 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
5351 cur_offset
+= ref_name_len
+ sizeof(*extref
);
5352 if (dirid
== last_dirid
)
5354 ret
= dir_changed(sctx
, dirid
);
5364 * Updates compare related fields in sctx and simply forwards to the actual
5365 * changed_xxx functions.
5367 static int changed_cb(struct btrfs_root
*left_root
,
5368 struct btrfs_root
*right_root
,
5369 struct btrfs_path
*left_path
,
5370 struct btrfs_path
*right_path
,
5371 struct btrfs_key
*key
,
5372 enum btrfs_compare_tree_result result
,
5376 struct send_ctx
*sctx
= ctx
;
5378 if (result
== BTRFS_COMPARE_TREE_SAME
) {
5379 if (key
->type
== BTRFS_INODE_REF_KEY
||
5380 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
5381 ret
= compare_refs(sctx
, left_path
, key
);
5386 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
5387 return maybe_send_hole(sctx
, left_path
, key
);
5391 result
= BTRFS_COMPARE_TREE_CHANGED
;
5395 sctx
->left_path
= left_path
;
5396 sctx
->right_path
= right_path
;
5397 sctx
->cmp_key
= key
;
5399 ret
= finish_inode_if_needed(sctx
, 0);
5403 /* Ignore non-FS objects */
5404 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
5405 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
5408 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
5409 ret
= changed_inode(sctx
, result
);
5410 else if (key
->type
== BTRFS_INODE_REF_KEY
||
5411 key
->type
== BTRFS_INODE_EXTREF_KEY
)
5412 ret
= changed_ref(sctx
, result
);
5413 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
5414 ret
= changed_xattr(sctx
, result
);
5415 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
5416 ret
= changed_extent(sctx
, result
);
5422 static int full_send_tree(struct send_ctx
*sctx
)
5425 struct btrfs_root
*send_root
= sctx
->send_root
;
5426 struct btrfs_key key
;
5427 struct btrfs_key found_key
;
5428 struct btrfs_path
*path
;
5429 struct extent_buffer
*eb
;
5432 path
= alloc_path_for_send();
5436 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
5437 key
.type
= BTRFS_INODE_ITEM_KEY
;
5440 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
5447 eb
= path
->nodes
[0];
5448 slot
= path
->slots
[0];
5449 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5451 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
5452 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
5456 key
.objectid
= found_key
.objectid
;
5457 key
.type
= found_key
.type
;
5458 key
.offset
= found_key
.offset
+ 1;
5460 ret
= btrfs_next_item(send_root
, path
);
5470 ret
= finish_inode_if_needed(sctx
, 1);
5473 btrfs_free_path(path
);
5477 static int send_subvol(struct send_ctx
*sctx
)
5481 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
5482 ret
= send_header(sctx
);
5487 ret
= send_subvol_begin(sctx
);
5491 if (sctx
->parent_root
) {
5492 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
5496 ret
= finish_inode_if_needed(sctx
, 1);
5500 ret
= full_send_tree(sctx
);
5506 free_recorded_refs(sctx
);
5511 * If orphan cleanup did remove any orphans from a root, it means the tree
5512 * was modified and therefore the commit root is not the same as the current
5513 * root anymore. This is a problem, because send uses the commit root and
5514 * therefore can see inode items that don't exist in the current root anymore,
5515 * and for example make calls to btrfs_iget, which will do tree lookups based
5516 * on the current root and not on the commit root. Those lookups will fail,
5517 * returning a -ESTALE error, and making send fail with that error. So make
5518 * sure a send does not see any orphans we have just removed, and that it will
5519 * see the same inodes regardless of whether a transaction commit happened
5520 * before it started (meaning that the commit root will be the same as the
5521 * current root) or not.
5523 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
5526 struct btrfs_trans_handle
*trans
= NULL
;
5529 if (sctx
->parent_root
&&
5530 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
5533 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
5534 if (sctx
->clone_roots
[i
].root
->node
!=
5535 sctx
->clone_roots
[i
].root
->commit_root
)
5539 return btrfs_end_transaction(trans
, sctx
->send_root
);
5544 /* Use any root, all fs roots will get their commit roots updated. */
5546 trans
= btrfs_join_transaction(sctx
->send_root
);
5548 return PTR_ERR(trans
);
5552 return btrfs_commit_transaction(trans
, sctx
->send_root
);
5555 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
5557 spin_lock(&root
->root_item_lock
);
5558 root
->send_in_progress
--;
5560 * Not much left to do, we don't know why it's unbalanced and
5561 * can't blindly reset it to 0.
5563 if (root
->send_in_progress
< 0)
5564 btrfs_err(root
->fs_info
,
5565 "send_in_progres unbalanced %d root %llu",
5566 root
->send_in_progress
, root
->root_key
.objectid
);
5567 spin_unlock(&root
->root_item_lock
);
5570 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
5573 struct btrfs_root
*send_root
;
5574 struct btrfs_root
*clone_root
;
5575 struct btrfs_fs_info
*fs_info
;
5576 struct btrfs_ioctl_send_args
*arg
= NULL
;
5577 struct btrfs_key key
;
5578 struct send_ctx
*sctx
= NULL
;
5580 u64
*clone_sources_tmp
= NULL
;
5581 int clone_sources_to_rollback
= 0;
5582 int sort_clone_roots
= 0;
5585 if (!capable(CAP_SYS_ADMIN
))
5588 send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
5589 fs_info
= send_root
->fs_info
;
5592 * The subvolume must remain read-only during send, protect against
5593 * making it RW. This also protects against deletion.
5595 spin_lock(&send_root
->root_item_lock
);
5596 send_root
->send_in_progress
++;
5597 spin_unlock(&send_root
->root_item_lock
);
5600 * This is done when we lookup the root, it should already be complete
5601 * by the time we get here.
5603 WARN_ON(send_root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
);
5606 * Userspace tools do the checks and warn the user if it's
5609 if (!btrfs_root_readonly(send_root
)) {
5614 arg
= memdup_user(arg_
, sizeof(*arg
));
5621 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
5622 sizeof(*arg
->clone_sources
) *
5623 arg
->clone_sources_count
)) {
5628 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
5633 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_NOFS
);
5639 INIT_LIST_HEAD(&sctx
->new_refs
);
5640 INIT_LIST_HEAD(&sctx
->deleted_refs
);
5641 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_NOFS
);
5642 INIT_LIST_HEAD(&sctx
->name_cache_list
);
5644 sctx
->flags
= arg
->flags
;
5646 sctx
->send_filp
= fget(arg
->send_fd
);
5647 if (!sctx
->send_filp
) {
5652 sctx
->send_root
= send_root
;
5654 * Unlikely but possible, if the subvolume is marked for deletion but
5655 * is slow to remove the directory entry, send can still be started
5657 if (btrfs_root_dead(sctx
->send_root
)) {
5662 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
5664 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
5665 sctx
->send_buf
= vmalloc(sctx
->send_max_size
);
5666 if (!sctx
->send_buf
) {
5671 sctx
->read_buf
= vmalloc(BTRFS_SEND_READ_SIZE
);
5672 if (!sctx
->read_buf
) {
5677 sctx
->pending_dir_moves
= RB_ROOT
;
5678 sctx
->waiting_dir_moves
= RB_ROOT
;
5679 sctx
->orphan_dirs
= RB_ROOT
;
5681 sctx
->clone_roots
= vzalloc(sizeof(struct clone_root
) *
5682 (arg
->clone_sources_count
+ 1));
5683 if (!sctx
->clone_roots
) {
5688 if (arg
->clone_sources_count
) {
5689 clone_sources_tmp
= vmalloc(arg
->clone_sources_count
*
5690 sizeof(*arg
->clone_sources
));
5691 if (!clone_sources_tmp
) {
5696 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
5697 arg
->clone_sources_count
*
5698 sizeof(*arg
->clone_sources
));
5704 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
5705 key
.objectid
= clone_sources_tmp
[i
];
5706 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5707 key
.offset
= (u64
)-1;
5709 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5711 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
5712 if (IS_ERR(clone_root
)) {
5713 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5714 ret
= PTR_ERR(clone_root
);
5717 clone_sources_to_rollback
= i
+ 1;
5718 spin_lock(&clone_root
->root_item_lock
);
5719 clone_root
->send_in_progress
++;
5720 if (!btrfs_root_readonly(clone_root
)) {
5721 spin_unlock(&clone_root
->root_item_lock
);
5722 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5726 spin_unlock(&clone_root
->root_item_lock
);
5727 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5729 sctx
->clone_roots
[i
].root
= clone_root
;
5731 vfree(clone_sources_tmp
);
5732 clone_sources_tmp
= NULL
;
5735 if (arg
->parent_root
) {
5736 key
.objectid
= arg
->parent_root
;
5737 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5738 key
.offset
= (u64
)-1;
5740 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5742 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
5743 if (IS_ERR(sctx
->parent_root
)) {
5744 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5745 ret
= PTR_ERR(sctx
->parent_root
);
5749 spin_lock(&sctx
->parent_root
->root_item_lock
);
5750 sctx
->parent_root
->send_in_progress
++;
5751 if (!btrfs_root_readonly(sctx
->parent_root
) ||
5752 btrfs_root_dead(sctx
->parent_root
)) {
5753 spin_unlock(&sctx
->parent_root
->root_item_lock
);
5754 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5758 spin_unlock(&sctx
->parent_root
->root_item_lock
);
5760 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5764 * Clones from send_root are allowed, but only if the clone source
5765 * is behind the current send position. This is checked while searching
5766 * for possible clone sources.
5768 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
5770 /* We do a bsearch later */
5771 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
5772 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
5774 sort_clone_roots
= 1;
5776 ret
= ensure_commit_roots_uptodate(sctx
);
5780 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
5781 ret
= send_subvol(sctx
);
5782 current
->journal_info
= NULL
;
5786 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
5787 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
5790 ret
= send_cmd(sctx
);
5796 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
5797 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
5799 struct pending_dir_move
*pm
;
5801 n
= rb_first(&sctx
->pending_dir_moves
);
5802 pm
= rb_entry(n
, struct pending_dir_move
, node
);
5803 while (!list_empty(&pm
->list
)) {
5804 struct pending_dir_move
*pm2
;
5806 pm2
= list_first_entry(&pm
->list
,
5807 struct pending_dir_move
, list
);
5808 free_pending_move(sctx
, pm2
);
5810 free_pending_move(sctx
, pm
);
5813 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
5814 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
5816 struct waiting_dir_move
*dm
;
5818 n
= rb_first(&sctx
->waiting_dir_moves
);
5819 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
5820 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
5824 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
5825 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
5827 struct orphan_dir_info
*odi
;
5829 n
= rb_first(&sctx
->orphan_dirs
);
5830 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
5831 free_orphan_dir_info(sctx
, odi
);
5834 if (sort_clone_roots
) {
5835 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
5836 btrfs_root_dec_send_in_progress(
5837 sctx
->clone_roots
[i
].root
);
5839 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++)
5840 btrfs_root_dec_send_in_progress(
5841 sctx
->clone_roots
[i
].root
);
5843 btrfs_root_dec_send_in_progress(send_root
);
5845 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
))
5846 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
5849 vfree(clone_sources_tmp
);
5852 if (sctx
->send_filp
)
5853 fput(sctx
->send_filp
);
5855 vfree(sctx
->clone_roots
);
5856 vfree(sctx
->send_buf
);
5857 vfree(sctx
->read_buf
);
5859 name_cache_free(sctx
);