2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
46 struct btrfs_root
*root
,
47 struct btrfs_device
*device
);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
49 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
53 DEFINE_MUTEX(uuid_mutex
);
54 static LIST_HEAD(fs_uuids
);
56 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
58 struct btrfs_fs_devices
*fs_devs
;
60 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_NOFS
);
62 return ERR_PTR(-ENOMEM
);
64 mutex_init(&fs_devs
->device_list_mutex
);
66 INIT_LIST_HEAD(&fs_devs
->devices
);
67 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
68 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
69 INIT_LIST_HEAD(&fs_devs
->list
);
75 * alloc_fs_devices - allocate struct btrfs_fs_devices
76 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
79 * Return: a pointer to a new &struct btrfs_fs_devices on success;
80 * ERR_PTR() on error. Returned struct is not linked onto any lists and
81 * can be destroyed with kfree() right away.
83 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
85 struct btrfs_fs_devices
*fs_devs
;
87 fs_devs
= __alloc_fs_devices();
92 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
94 generate_random_uuid(fs_devs
->fsid
);
99 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
101 struct btrfs_device
*device
;
102 WARN_ON(fs_devices
->opened
);
103 while (!list_empty(&fs_devices
->devices
)) {
104 device
= list_entry(fs_devices
->devices
.next
,
105 struct btrfs_device
, dev_list
);
106 list_del(&device
->dev_list
);
107 rcu_string_free(device
->name
);
113 static void btrfs_kobject_uevent(struct block_device
*bdev
,
114 enum kobject_action action
)
118 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
120 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
122 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
123 &disk_to_dev(bdev
->bd_disk
)->kobj
);
126 void btrfs_cleanup_fs_uuids(void)
128 struct btrfs_fs_devices
*fs_devices
;
130 while (!list_empty(&fs_uuids
)) {
131 fs_devices
= list_entry(fs_uuids
.next
,
132 struct btrfs_fs_devices
, list
);
133 list_del(&fs_devices
->list
);
134 free_fs_devices(fs_devices
);
138 static struct btrfs_device
*__alloc_device(void)
140 struct btrfs_device
*dev
;
142 dev
= kzalloc(sizeof(*dev
), GFP_NOFS
);
144 return ERR_PTR(-ENOMEM
);
146 INIT_LIST_HEAD(&dev
->dev_list
);
147 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
148 INIT_LIST_HEAD(&dev
->resized_list
);
150 spin_lock_init(&dev
->io_lock
);
152 spin_lock_init(&dev
->reada_lock
);
153 atomic_set(&dev
->reada_in_flight
, 0);
154 atomic_set(&dev
->dev_stats_ccnt
, 0);
155 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_WAIT
);
156 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_WAIT
);
161 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
164 struct btrfs_device
*dev
;
166 list_for_each_entry(dev
, head
, dev_list
) {
167 if (dev
->devid
== devid
&&
168 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
175 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
177 struct btrfs_fs_devices
*fs_devices
;
179 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
180 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
187 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
188 int flush
, struct block_device
**bdev
,
189 struct buffer_head
**bh
)
193 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
196 ret
= PTR_ERR(*bdev
);
197 printk(KERN_INFO
"BTRFS: open %s failed\n", device_path
);
202 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
203 ret
= set_blocksize(*bdev
, 4096);
205 blkdev_put(*bdev
, flags
);
208 invalidate_bdev(*bdev
);
209 *bh
= btrfs_read_dev_super(*bdev
);
212 blkdev_put(*bdev
, flags
);
224 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
225 struct bio
*head
, struct bio
*tail
)
228 struct bio
*old_head
;
230 old_head
= pending_bios
->head
;
231 pending_bios
->head
= head
;
232 if (pending_bios
->tail
)
233 tail
->bi_next
= old_head
;
235 pending_bios
->tail
= tail
;
239 * we try to collect pending bios for a device so we don't get a large
240 * number of procs sending bios down to the same device. This greatly
241 * improves the schedulers ability to collect and merge the bios.
243 * But, it also turns into a long list of bios to process and that is sure
244 * to eventually make the worker thread block. The solution here is to
245 * make some progress and then put this work struct back at the end of
246 * the list if the block device is congested. This way, multiple devices
247 * can make progress from a single worker thread.
249 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
252 struct backing_dev_info
*bdi
;
253 struct btrfs_fs_info
*fs_info
;
254 struct btrfs_pending_bios
*pending_bios
;
258 unsigned long num_run
;
259 unsigned long batch_run
= 0;
261 unsigned long last_waited
= 0;
263 int sync_pending
= 0;
264 struct blk_plug plug
;
267 * this function runs all the bios we've collected for
268 * a particular device. We don't want to wander off to
269 * another device without first sending all of these down.
270 * So, setup a plug here and finish it off before we return
272 blk_start_plug(&plug
);
274 bdi
= blk_get_backing_dev_info(device
->bdev
);
275 fs_info
= device
->dev_root
->fs_info
;
276 limit
= btrfs_async_submit_limit(fs_info
);
277 limit
= limit
* 2 / 3;
280 spin_lock(&device
->io_lock
);
285 /* take all the bios off the list at once and process them
286 * later on (without the lock held). But, remember the
287 * tail and other pointers so the bios can be properly reinserted
288 * into the list if we hit congestion
290 if (!force_reg
&& device
->pending_sync_bios
.head
) {
291 pending_bios
= &device
->pending_sync_bios
;
294 pending_bios
= &device
->pending_bios
;
298 pending
= pending_bios
->head
;
299 tail
= pending_bios
->tail
;
300 WARN_ON(pending
&& !tail
);
303 * if pending was null this time around, no bios need processing
304 * at all and we can stop. Otherwise it'll loop back up again
305 * and do an additional check so no bios are missed.
307 * device->running_pending is used to synchronize with the
310 if (device
->pending_sync_bios
.head
== NULL
&&
311 device
->pending_bios
.head
== NULL
) {
313 device
->running_pending
= 0;
316 device
->running_pending
= 1;
319 pending_bios
->head
= NULL
;
320 pending_bios
->tail
= NULL
;
322 spin_unlock(&device
->io_lock
);
327 /* we want to work on both lists, but do more bios on the
328 * sync list than the regular list
331 pending_bios
!= &device
->pending_sync_bios
&&
332 device
->pending_sync_bios
.head
) ||
333 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
334 device
->pending_bios
.head
)) {
335 spin_lock(&device
->io_lock
);
336 requeue_list(pending_bios
, pending
, tail
);
341 pending
= pending
->bi_next
;
344 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
345 waitqueue_active(&fs_info
->async_submit_wait
))
346 wake_up(&fs_info
->async_submit_wait
);
348 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
351 * if we're doing the sync list, record that our
352 * plug has some sync requests on it
354 * If we're doing the regular list and there are
355 * sync requests sitting around, unplug before
358 if (pending_bios
== &device
->pending_sync_bios
) {
360 } else if (sync_pending
) {
361 blk_finish_plug(&plug
);
362 blk_start_plug(&plug
);
366 btrfsic_submit_bio(cur
->bi_rw
, cur
);
373 * we made progress, there is more work to do and the bdi
374 * is now congested. Back off and let other work structs
377 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
378 fs_info
->fs_devices
->open_devices
> 1) {
379 struct io_context
*ioc
;
381 ioc
= current
->io_context
;
384 * the main goal here is that we don't want to
385 * block if we're going to be able to submit
386 * more requests without blocking.
388 * This code does two great things, it pokes into
389 * the elevator code from a filesystem _and_
390 * it makes assumptions about how batching works.
392 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
393 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
395 ioc
->last_waited
== last_waited
)) {
397 * we want to go through our batch of
398 * requests and stop. So, we copy out
399 * the ioc->last_waited time and test
400 * against it before looping
402 last_waited
= ioc
->last_waited
;
407 spin_lock(&device
->io_lock
);
408 requeue_list(pending_bios
, pending
, tail
);
409 device
->running_pending
= 1;
411 spin_unlock(&device
->io_lock
);
412 btrfs_queue_work(fs_info
->submit_workers
,
416 /* unplug every 64 requests just for good measure */
417 if (batch_run
% 64 == 0) {
418 blk_finish_plug(&plug
);
419 blk_start_plug(&plug
);
428 spin_lock(&device
->io_lock
);
429 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
431 spin_unlock(&device
->io_lock
);
434 blk_finish_plug(&plug
);
437 static void pending_bios_fn(struct btrfs_work
*work
)
439 struct btrfs_device
*device
;
441 device
= container_of(work
, struct btrfs_device
, work
);
442 run_scheduled_bios(device
);
446 * Add new device to list of registered devices
449 * 1 - first time device is seen
450 * 0 - device already known
453 static noinline
int device_list_add(const char *path
,
454 struct btrfs_super_block
*disk_super
,
455 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
457 struct btrfs_device
*device
;
458 struct btrfs_fs_devices
*fs_devices
;
459 struct rcu_string
*name
;
461 u64 found_transid
= btrfs_super_generation(disk_super
);
463 fs_devices
= find_fsid(disk_super
->fsid
);
465 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
466 if (IS_ERR(fs_devices
))
467 return PTR_ERR(fs_devices
);
469 list_add(&fs_devices
->list
, &fs_uuids
);
473 device
= __find_device(&fs_devices
->devices
, devid
,
474 disk_super
->dev_item
.uuid
);
478 if (fs_devices
->opened
)
481 device
= btrfs_alloc_device(NULL
, &devid
,
482 disk_super
->dev_item
.uuid
);
483 if (IS_ERR(device
)) {
484 /* we can safely leave the fs_devices entry around */
485 return PTR_ERR(device
);
488 name
= rcu_string_strdup(path
, GFP_NOFS
);
493 rcu_assign_pointer(device
->name
, name
);
495 mutex_lock(&fs_devices
->device_list_mutex
);
496 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
497 fs_devices
->num_devices
++;
498 mutex_unlock(&fs_devices
->device_list_mutex
);
501 device
->fs_devices
= fs_devices
;
502 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
504 * When FS is already mounted.
505 * 1. If you are here and if the device->name is NULL that
506 * means this device was missing at time of FS mount.
507 * 2. If you are here and if the device->name is different
508 * from 'path' that means either
509 * a. The same device disappeared and reappeared with
511 * b. The missing-disk-which-was-replaced, has
514 * We must allow 1 and 2a above. But 2b would be a spurious
517 * Further in case of 1 and 2a above, the disk at 'path'
518 * would have missed some transaction when it was away and
519 * in case of 2a the stale bdev has to be updated as well.
520 * 2b must not be allowed at all time.
524 * For now, we do allow update to btrfs_fs_device through the
525 * btrfs dev scan cli after FS has been mounted. We're still
526 * tracking a problem where systems fail mount by subvolume id
527 * when we reject replacement on a mounted FS.
529 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
531 * That is if the FS is _not_ mounted and if you
532 * are here, that means there is more than one
533 * disk with same uuid and devid.We keep the one
534 * with larger generation number or the last-in if
535 * generation are equal.
540 name
= rcu_string_strdup(path
, GFP_NOFS
);
543 rcu_string_free(device
->name
);
544 rcu_assign_pointer(device
->name
, name
);
545 if (device
->missing
) {
546 fs_devices
->missing_devices
--;
552 * Unmount does not free the btrfs_device struct but would zero
553 * generation along with most of the other members. So just update
554 * it back. We need it to pick the disk with largest generation
557 if (!fs_devices
->opened
)
558 device
->generation
= found_transid
;
560 *fs_devices_ret
= fs_devices
;
565 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
567 struct btrfs_fs_devices
*fs_devices
;
568 struct btrfs_device
*device
;
569 struct btrfs_device
*orig_dev
;
571 fs_devices
= alloc_fs_devices(orig
->fsid
);
572 if (IS_ERR(fs_devices
))
575 mutex_lock(&orig
->device_list_mutex
);
576 fs_devices
->total_devices
= orig
->total_devices
;
578 /* We have held the volume lock, it is safe to get the devices. */
579 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
580 struct rcu_string
*name
;
582 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
588 * This is ok to do without rcu read locked because we hold the
589 * uuid mutex so nothing we touch in here is going to disappear.
591 if (orig_dev
->name
) {
592 name
= rcu_string_strdup(orig_dev
->name
->str
, GFP_NOFS
);
597 rcu_assign_pointer(device
->name
, name
);
600 list_add(&device
->dev_list
, &fs_devices
->devices
);
601 device
->fs_devices
= fs_devices
;
602 fs_devices
->num_devices
++;
604 mutex_unlock(&orig
->device_list_mutex
);
607 mutex_unlock(&orig
->device_list_mutex
);
608 free_fs_devices(fs_devices
);
609 return ERR_PTR(-ENOMEM
);
612 void btrfs_close_extra_devices(struct btrfs_fs_info
*fs_info
,
613 struct btrfs_fs_devices
*fs_devices
, int step
)
615 struct btrfs_device
*device
, *next
;
616 struct btrfs_device
*latest_dev
= NULL
;
618 mutex_lock(&uuid_mutex
);
620 /* This is the initialized path, it is safe to release the devices. */
621 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
622 if (device
->in_fs_metadata
) {
623 if (!device
->is_tgtdev_for_dev_replace
&&
625 device
->generation
> latest_dev
->generation
)) {
631 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
633 * In the first step, keep the device which has
634 * the correct fsid and the devid that is used
635 * for the dev_replace procedure.
636 * In the second step, the dev_replace state is
637 * read from the device tree and it is known
638 * whether the procedure is really active or
639 * not, which means whether this device is
640 * used or whether it should be removed.
642 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
647 blkdev_put(device
->bdev
, device
->mode
);
649 fs_devices
->open_devices
--;
651 if (device
->writeable
) {
652 list_del_init(&device
->dev_alloc_list
);
653 device
->writeable
= 0;
654 if (!device
->is_tgtdev_for_dev_replace
)
655 fs_devices
->rw_devices
--;
657 list_del_init(&device
->dev_list
);
658 fs_devices
->num_devices
--;
659 rcu_string_free(device
->name
);
663 if (fs_devices
->seed
) {
664 fs_devices
= fs_devices
->seed
;
668 fs_devices
->latest_bdev
= latest_dev
->bdev
;
670 mutex_unlock(&uuid_mutex
);
673 static void __free_device(struct work_struct
*work
)
675 struct btrfs_device
*device
;
677 device
= container_of(work
, struct btrfs_device
, rcu_work
);
680 blkdev_put(device
->bdev
, device
->mode
);
682 rcu_string_free(device
->name
);
686 static void free_device(struct rcu_head
*head
)
688 struct btrfs_device
*device
;
690 device
= container_of(head
, struct btrfs_device
, rcu
);
692 INIT_WORK(&device
->rcu_work
, __free_device
);
693 schedule_work(&device
->rcu_work
);
696 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
698 struct btrfs_device
*device
;
700 if (--fs_devices
->opened
> 0)
703 mutex_lock(&fs_devices
->device_list_mutex
);
704 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
705 struct btrfs_device
*new_device
;
706 struct rcu_string
*name
;
709 fs_devices
->open_devices
--;
711 if (device
->writeable
&&
712 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
713 list_del_init(&device
->dev_alloc_list
);
714 fs_devices
->rw_devices
--;
718 fs_devices
->missing_devices
--;
720 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
722 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
724 /* Safe because we are under uuid_mutex */
726 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
727 BUG_ON(!name
); /* -ENOMEM */
728 rcu_assign_pointer(new_device
->name
, name
);
731 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
732 new_device
->fs_devices
= device
->fs_devices
;
734 call_rcu(&device
->rcu
, free_device
);
736 mutex_unlock(&fs_devices
->device_list_mutex
);
738 WARN_ON(fs_devices
->open_devices
);
739 WARN_ON(fs_devices
->rw_devices
);
740 fs_devices
->opened
= 0;
741 fs_devices
->seeding
= 0;
746 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
748 struct btrfs_fs_devices
*seed_devices
= NULL
;
751 mutex_lock(&uuid_mutex
);
752 ret
= __btrfs_close_devices(fs_devices
);
753 if (!fs_devices
->opened
) {
754 seed_devices
= fs_devices
->seed
;
755 fs_devices
->seed
= NULL
;
757 mutex_unlock(&uuid_mutex
);
759 while (seed_devices
) {
760 fs_devices
= seed_devices
;
761 seed_devices
= fs_devices
->seed
;
762 __btrfs_close_devices(fs_devices
);
763 free_fs_devices(fs_devices
);
766 * Wait for rcu kworkers under __btrfs_close_devices
767 * to finish all blkdev_puts so device is really
768 * free when umount is done.
774 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
775 fmode_t flags
, void *holder
)
777 struct request_queue
*q
;
778 struct block_device
*bdev
;
779 struct list_head
*head
= &fs_devices
->devices
;
780 struct btrfs_device
*device
;
781 struct btrfs_device
*latest_dev
= NULL
;
782 struct buffer_head
*bh
;
783 struct btrfs_super_block
*disk_super
;
790 list_for_each_entry(device
, head
, dev_list
) {
796 /* Just open everything we can; ignore failures here */
797 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
801 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
802 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
803 if (devid
!= device
->devid
)
806 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
810 device
->generation
= btrfs_super_generation(disk_super
);
812 device
->generation
> latest_dev
->generation
)
815 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
816 device
->writeable
= 0;
818 device
->writeable
= !bdev_read_only(bdev
);
822 q
= bdev_get_queue(bdev
);
823 if (blk_queue_discard(q
))
824 device
->can_discard
= 1;
827 device
->in_fs_metadata
= 0;
828 device
->mode
= flags
;
830 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
831 fs_devices
->rotating
= 1;
833 fs_devices
->open_devices
++;
834 if (device
->writeable
&&
835 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
836 fs_devices
->rw_devices
++;
837 list_add(&device
->dev_alloc_list
,
838 &fs_devices
->alloc_list
);
845 blkdev_put(bdev
, flags
);
848 if (fs_devices
->open_devices
== 0) {
852 fs_devices
->seeding
= seeding
;
853 fs_devices
->opened
= 1;
854 fs_devices
->latest_bdev
= latest_dev
->bdev
;
855 fs_devices
->total_rw_bytes
= 0;
860 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
861 fmode_t flags
, void *holder
)
865 mutex_lock(&uuid_mutex
);
866 if (fs_devices
->opened
) {
867 fs_devices
->opened
++;
870 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
872 mutex_unlock(&uuid_mutex
);
877 * Look for a btrfs signature on a device. This may be called out of the mount path
878 * and we are not allowed to call set_blocksize during the scan. The superblock
879 * is read via pagecache
881 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
882 struct btrfs_fs_devices
**fs_devices_ret
)
884 struct btrfs_super_block
*disk_super
;
885 struct block_device
*bdev
;
896 * we would like to check all the supers, but that would make
897 * a btrfs mount succeed after a mkfs from a different FS.
898 * So, we need to add a special mount option to scan for
899 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
901 bytenr
= btrfs_sb_offset(0);
903 mutex_lock(&uuid_mutex
);
905 bdev
= blkdev_get_by_path(path
, flags
, holder
);
912 /* make sure our super fits in the device */
913 if (bytenr
+ PAGE_CACHE_SIZE
>= i_size_read(bdev
->bd_inode
))
916 /* make sure our super fits in the page */
917 if (sizeof(*disk_super
) > PAGE_CACHE_SIZE
)
920 /* make sure our super doesn't straddle pages on disk */
921 index
= bytenr
>> PAGE_CACHE_SHIFT
;
922 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_CACHE_SHIFT
!= index
)
925 /* pull in the page with our super */
926 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
929 if (IS_ERR_OR_NULL(page
))
934 /* align our pointer to the offset of the super block */
935 disk_super
= p
+ (bytenr
& ~PAGE_CACHE_MASK
);
937 if (btrfs_super_bytenr(disk_super
) != bytenr
||
938 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
)
941 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
942 transid
= btrfs_super_generation(disk_super
);
943 total_devices
= btrfs_super_num_devices(disk_super
);
945 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
947 if (disk_super
->label
[0]) {
948 if (disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
949 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
950 printk(KERN_INFO
"BTRFS: device label %s ", disk_super
->label
);
952 printk(KERN_INFO
"BTRFS: device fsid %pU ", disk_super
->fsid
);
955 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
958 if (!ret
&& fs_devices_ret
)
959 (*fs_devices_ret
)->total_devices
= total_devices
;
963 page_cache_release(page
);
966 blkdev_put(bdev
, flags
);
968 mutex_unlock(&uuid_mutex
);
972 /* helper to account the used device space in the range */
973 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
974 u64 end
, u64
*length
)
976 struct btrfs_key key
;
977 struct btrfs_root
*root
= device
->dev_root
;
978 struct btrfs_dev_extent
*dev_extent
;
979 struct btrfs_path
*path
;
983 struct extent_buffer
*l
;
987 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
990 path
= btrfs_alloc_path();
995 key
.objectid
= device
->devid
;
997 key
.type
= BTRFS_DEV_EXTENT_KEY
;
999 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1003 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1010 slot
= path
->slots
[0];
1011 if (slot
>= btrfs_header_nritems(l
)) {
1012 ret
= btrfs_next_leaf(root
, path
);
1020 btrfs_item_key_to_cpu(l
, &key
, slot
);
1022 if (key
.objectid
< device
->devid
)
1025 if (key
.objectid
> device
->devid
)
1028 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1031 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1032 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1034 if (key
.offset
<= start
&& extent_end
> end
) {
1035 *length
= end
- start
+ 1;
1037 } else if (key
.offset
<= start
&& extent_end
> start
)
1038 *length
+= extent_end
- start
;
1039 else if (key
.offset
> start
&& extent_end
<= end
)
1040 *length
+= extent_end
- key
.offset
;
1041 else if (key
.offset
> start
&& key
.offset
<= end
) {
1042 *length
+= end
- key
.offset
+ 1;
1044 } else if (key
.offset
> end
)
1052 btrfs_free_path(path
);
1056 static int contains_pending_extent(struct btrfs_trans_handle
*trans
,
1057 struct btrfs_device
*device
,
1058 u64
*start
, u64 len
)
1060 struct extent_map
*em
;
1061 struct list_head
*search_list
= &trans
->transaction
->pending_chunks
;
1065 list_for_each_entry(em
, search_list
, list
) {
1066 struct map_lookup
*map
;
1069 map
= (struct map_lookup
*)em
->bdev
;
1070 for (i
= 0; i
< map
->num_stripes
; i
++) {
1071 if (map
->stripes
[i
].dev
!= device
)
1073 if (map
->stripes
[i
].physical
>= *start
+ len
||
1074 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1077 *start
= map
->stripes
[i
].physical
+
1082 if (search_list
== &trans
->transaction
->pending_chunks
) {
1083 search_list
= &trans
->root
->fs_info
->pinned_chunks
;
1092 * find_free_dev_extent - find free space in the specified device
1093 * @device: the device which we search the free space in
1094 * @num_bytes: the size of the free space that we need
1095 * @start: store the start of the free space.
1096 * @len: the size of the free space. that we find, or the size of the max
1097 * free space if we don't find suitable free space
1099 * this uses a pretty simple search, the expectation is that it is
1100 * called very infrequently and that a given device has a small number
1103 * @start is used to store the start of the free space if we find. But if we
1104 * don't find suitable free space, it will be used to store the start position
1105 * of the max free space.
1107 * @len is used to store the size of the free space that we find.
1108 * But if we don't find suitable free space, it is used to store the size of
1109 * the max free space.
1111 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1112 struct btrfs_device
*device
, u64 num_bytes
,
1113 u64
*start
, u64
*len
)
1115 struct btrfs_key key
;
1116 struct btrfs_root
*root
= device
->dev_root
;
1117 struct btrfs_dev_extent
*dev_extent
;
1118 struct btrfs_path
*path
;
1124 u64 search_end
= device
->total_bytes
;
1127 struct extent_buffer
*l
;
1129 /* FIXME use last free of some kind */
1131 /* we don't want to overwrite the superblock on the drive,
1132 * so we make sure to start at an offset of at least 1MB
1134 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1136 path
= btrfs_alloc_path();
1140 max_hole_start
= search_start
;
1144 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1150 path
->search_commit_root
= 1;
1151 path
->skip_locking
= 1;
1153 key
.objectid
= device
->devid
;
1154 key
.offset
= search_start
;
1155 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1157 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1161 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1168 slot
= path
->slots
[0];
1169 if (slot
>= btrfs_header_nritems(l
)) {
1170 ret
= btrfs_next_leaf(root
, path
);
1178 btrfs_item_key_to_cpu(l
, &key
, slot
);
1180 if (key
.objectid
< device
->devid
)
1183 if (key
.objectid
> device
->devid
)
1186 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1189 if (key
.offset
> search_start
) {
1190 hole_size
= key
.offset
- search_start
;
1193 * Have to check before we set max_hole_start, otherwise
1194 * we could end up sending back this offset anyway.
1196 if (contains_pending_extent(trans
, device
,
1201 if (hole_size
> max_hole_size
) {
1202 max_hole_start
= search_start
;
1203 max_hole_size
= hole_size
;
1207 * If this free space is greater than which we need,
1208 * it must be the max free space that we have found
1209 * until now, so max_hole_start must point to the start
1210 * of this free space and the length of this free space
1211 * is stored in max_hole_size. Thus, we return
1212 * max_hole_start and max_hole_size and go back to the
1215 if (hole_size
>= num_bytes
) {
1221 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1222 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1224 if (extent_end
> search_start
)
1225 search_start
= extent_end
;
1232 * At this point, search_start should be the end of
1233 * allocated dev extents, and when shrinking the device,
1234 * search_end may be smaller than search_start.
1236 if (search_end
> search_start
)
1237 hole_size
= search_end
- search_start
;
1239 if (hole_size
> max_hole_size
) {
1240 max_hole_start
= search_start
;
1241 max_hole_size
= hole_size
;
1244 if (contains_pending_extent(trans
, device
, &search_start
, hole_size
)) {
1245 btrfs_release_path(path
);
1250 if (hole_size
< num_bytes
)
1256 btrfs_free_path(path
);
1257 *start
= max_hole_start
;
1259 *len
= max_hole_size
;
1263 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1264 struct btrfs_device
*device
,
1265 u64 start
, u64
*dev_extent_len
)
1268 struct btrfs_path
*path
;
1269 struct btrfs_root
*root
= device
->dev_root
;
1270 struct btrfs_key key
;
1271 struct btrfs_key found_key
;
1272 struct extent_buffer
*leaf
= NULL
;
1273 struct btrfs_dev_extent
*extent
= NULL
;
1275 path
= btrfs_alloc_path();
1279 key
.objectid
= device
->devid
;
1281 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1283 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1285 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1286 BTRFS_DEV_EXTENT_KEY
);
1289 leaf
= path
->nodes
[0];
1290 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1291 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1292 struct btrfs_dev_extent
);
1293 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1294 btrfs_dev_extent_length(leaf
, extent
) < start
);
1296 btrfs_release_path(path
);
1298 } else if (ret
== 0) {
1299 leaf
= path
->nodes
[0];
1300 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1301 struct btrfs_dev_extent
);
1303 btrfs_error(root
->fs_info
, ret
, "Slot search failed");
1307 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1309 ret
= btrfs_del_item(trans
, root
, path
);
1311 btrfs_error(root
->fs_info
, ret
,
1312 "Failed to remove dev extent item");
1315 btrfs_free_path(path
);
1319 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1320 struct btrfs_device
*device
,
1321 u64 chunk_tree
, u64 chunk_objectid
,
1322 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1325 struct btrfs_path
*path
;
1326 struct btrfs_root
*root
= device
->dev_root
;
1327 struct btrfs_dev_extent
*extent
;
1328 struct extent_buffer
*leaf
;
1329 struct btrfs_key key
;
1331 WARN_ON(!device
->in_fs_metadata
);
1332 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1333 path
= btrfs_alloc_path();
1337 key
.objectid
= device
->devid
;
1339 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1340 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1345 leaf
= path
->nodes
[0];
1346 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1347 struct btrfs_dev_extent
);
1348 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1349 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1350 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1352 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1353 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1355 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1356 btrfs_mark_buffer_dirty(leaf
);
1358 btrfs_free_path(path
);
1362 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1364 struct extent_map_tree
*em_tree
;
1365 struct extent_map
*em
;
1369 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1370 read_lock(&em_tree
->lock
);
1371 n
= rb_last(&em_tree
->map
);
1373 em
= rb_entry(n
, struct extent_map
, rb_node
);
1374 ret
= em
->start
+ em
->len
;
1376 read_unlock(&em_tree
->lock
);
1381 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1385 struct btrfs_key key
;
1386 struct btrfs_key found_key
;
1387 struct btrfs_path
*path
;
1389 path
= btrfs_alloc_path();
1393 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1394 key
.type
= BTRFS_DEV_ITEM_KEY
;
1395 key
.offset
= (u64
)-1;
1397 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1401 BUG_ON(ret
== 0); /* Corruption */
1403 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1404 BTRFS_DEV_ITEMS_OBJECTID
,
1405 BTRFS_DEV_ITEM_KEY
);
1409 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1411 *devid_ret
= found_key
.offset
+ 1;
1415 btrfs_free_path(path
);
1420 * the device information is stored in the chunk root
1421 * the btrfs_device struct should be fully filled in
1423 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1424 struct btrfs_root
*root
,
1425 struct btrfs_device
*device
)
1428 struct btrfs_path
*path
;
1429 struct btrfs_dev_item
*dev_item
;
1430 struct extent_buffer
*leaf
;
1431 struct btrfs_key key
;
1434 root
= root
->fs_info
->chunk_root
;
1436 path
= btrfs_alloc_path();
1440 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1441 key
.type
= BTRFS_DEV_ITEM_KEY
;
1442 key
.offset
= device
->devid
;
1444 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1449 leaf
= path
->nodes
[0];
1450 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1452 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1453 btrfs_set_device_generation(leaf
, dev_item
, 0);
1454 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1455 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1456 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1457 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1458 btrfs_set_device_total_bytes(leaf
, dev_item
,
1459 btrfs_device_get_disk_total_bytes(device
));
1460 btrfs_set_device_bytes_used(leaf
, dev_item
,
1461 btrfs_device_get_bytes_used(device
));
1462 btrfs_set_device_group(leaf
, dev_item
, 0);
1463 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1464 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1465 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1467 ptr
= btrfs_device_uuid(dev_item
);
1468 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1469 ptr
= btrfs_device_fsid(dev_item
);
1470 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1471 btrfs_mark_buffer_dirty(leaf
);
1475 btrfs_free_path(path
);
1480 * Function to update ctime/mtime for a given device path.
1481 * Mainly used for ctime/mtime based probe like libblkid.
1483 static void update_dev_time(char *path_name
)
1487 filp
= filp_open(path_name
, O_RDWR
, 0);
1490 file_update_time(filp
);
1491 filp_close(filp
, NULL
);
1495 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1496 struct btrfs_device
*device
)
1499 struct btrfs_path
*path
;
1500 struct btrfs_key key
;
1501 struct btrfs_trans_handle
*trans
;
1503 root
= root
->fs_info
->chunk_root
;
1505 path
= btrfs_alloc_path();
1509 trans
= btrfs_start_transaction(root
, 0);
1510 if (IS_ERR(trans
)) {
1511 btrfs_free_path(path
);
1512 return PTR_ERR(trans
);
1514 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1515 key
.type
= BTRFS_DEV_ITEM_KEY
;
1516 key
.offset
= device
->devid
;
1518 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1527 ret
= btrfs_del_item(trans
, root
, path
);
1531 btrfs_free_path(path
);
1532 btrfs_commit_transaction(trans
, root
);
1536 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1538 struct btrfs_device
*device
;
1539 struct btrfs_device
*next_device
;
1540 struct block_device
*bdev
;
1541 struct buffer_head
*bh
= NULL
;
1542 struct btrfs_super_block
*disk_super
;
1543 struct btrfs_fs_devices
*cur_devices
;
1550 bool clear_super
= false;
1552 mutex_lock(&uuid_mutex
);
1555 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
1557 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1558 root
->fs_info
->avail_system_alloc_bits
|
1559 root
->fs_info
->avail_metadata_alloc_bits
;
1560 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
1562 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1563 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
);
1564 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1565 WARN_ON(num_devices
< 1);
1568 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
);
1570 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) && num_devices
<= 4) {
1571 ret
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
;
1575 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) && num_devices
<= 2) {
1576 ret
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
;
1580 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID5
) &&
1581 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1582 ret
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
;
1585 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID6
) &&
1586 root
->fs_info
->fs_devices
->rw_devices
<= 3) {
1587 ret
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
;
1591 if (strcmp(device_path
, "missing") == 0) {
1592 struct list_head
*devices
;
1593 struct btrfs_device
*tmp
;
1596 devices
= &root
->fs_info
->fs_devices
->devices
;
1598 * It is safe to read the devices since the volume_mutex
1601 list_for_each_entry(tmp
, devices
, dev_list
) {
1602 if (tmp
->in_fs_metadata
&&
1603 !tmp
->is_tgtdev_for_dev_replace
&&
1613 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
1617 ret
= btrfs_get_bdev_and_sb(device_path
,
1618 FMODE_WRITE
| FMODE_EXCL
,
1619 root
->fs_info
->bdev_holder
, 0,
1623 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1624 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1625 dev_uuid
= disk_super
->dev_item
.uuid
;
1626 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1634 if (device
->is_tgtdev_for_dev_replace
) {
1635 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1639 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1640 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1644 if (device
->writeable
) {
1646 list_del_init(&device
->dev_alloc_list
);
1647 device
->fs_devices
->rw_devices
--;
1648 unlock_chunks(root
);
1652 mutex_unlock(&uuid_mutex
);
1653 ret
= btrfs_shrink_device(device
, 0);
1654 mutex_lock(&uuid_mutex
);
1659 * TODO: the superblock still includes this device in its num_devices
1660 * counter although write_all_supers() is not locked out. This
1661 * could give a filesystem state which requires a degraded mount.
1663 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1667 device
->in_fs_metadata
= 0;
1668 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1671 * the device list mutex makes sure that we don't change
1672 * the device list while someone else is writing out all
1673 * the device supers. Whoever is writing all supers, should
1674 * lock the device list mutex before getting the number of
1675 * devices in the super block (super_copy). Conversely,
1676 * whoever updates the number of devices in the super block
1677 * (super_copy) should hold the device list mutex.
1680 cur_devices
= device
->fs_devices
;
1681 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1682 list_del_rcu(&device
->dev_list
);
1684 device
->fs_devices
->num_devices
--;
1685 device
->fs_devices
->total_devices
--;
1687 if (device
->missing
)
1688 device
->fs_devices
->missing_devices
--;
1690 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1691 struct btrfs_device
, dev_list
);
1692 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1693 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1694 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1695 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1698 device
->fs_devices
->open_devices
--;
1699 /* remove sysfs entry */
1700 btrfs_kobj_rm_device(root
->fs_info
, device
);
1703 call_rcu(&device
->rcu
, free_device
);
1705 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1706 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1707 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1709 if (cur_devices
->open_devices
== 0) {
1710 struct btrfs_fs_devices
*fs_devices
;
1711 fs_devices
= root
->fs_info
->fs_devices
;
1712 while (fs_devices
) {
1713 if (fs_devices
->seed
== cur_devices
) {
1714 fs_devices
->seed
= cur_devices
->seed
;
1717 fs_devices
= fs_devices
->seed
;
1719 cur_devices
->seed
= NULL
;
1720 __btrfs_close_devices(cur_devices
);
1721 free_fs_devices(cur_devices
);
1724 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1725 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1728 * at this point, the device is zero sized. We want to
1729 * remove it from the devices list and zero out the old super
1731 if (clear_super
&& disk_super
) {
1735 /* make sure this device isn't detected as part of
1738 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1739 set_buffer_dirty(bh
);
1740 sync_dirty_buffer(bh
);
1742 /* clear the mirror copies of super block on the disk
1743 * being removed, 0th copy is been taken care above and
1744 * the below would take of the rest
1746 for (i
= 1; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
1747 bytenr
= btrfs_sb_offset(i
);
1748 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
1749 i_size_read(bdev
->bd_inode
))
1753 bh
= __bread(bdev
, bytenr
/ 4096,
1754 BTRFS_SUPER_INFO_SIZE
);
1758 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1760 if (btrfs_super_bytenr(disk_super
) != bytenr
||
1761 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
1764 memset(&disk_super
->magic
, 0,
1765 sizeof(disk_super
->magic
));
1766 set_buffer_dirty(bh
);
1767 sync_dirty_buffer(bh
);
1774 /* Notify udev that device has changed */
1775 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
1777 /* Update ctime/mtime for device path for libblkid */
1778 update_dev_time(device_path
);
1784 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1786 mutex_unlock(&uuid_mutex
);
1789 if (device
->writeable
) {
1791 list_add(&device
->dev_alloc_list
,
1792 &root
->fs_info
->fs_devices
->alloc_list
);
1793 device
->fs_devices
->rw_devices
++;
1794 unlock_chunks(root
);
1799 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1800 struct btrfs_device
*srcdev
)
1802 struct btrfs_fs_devices
*fs_devices
;
1804 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1807 * in case of fs with no seed, srcdev->fs_devices will point
1808 * to fs_devices of fs_info. However when the dev being replaced is
1809 * a seed dev it will point to the seed's local fs_devices. In short
1810 * srcdev will have its correct fs_devices in both the cases.
1812 fs_devices
= srcdev
->fs_devices
;
1814 list_del_rcu(&srcdev
->dev_list
);
1815 list_del_rcu(&srcdev
->dev_alloc_list
);
1816 fs_devices
->num_devices
--;
1817 if (srcdev
->missing
)
1818 fs_devices
->missing_devices
--;
1820 if (srcdev
->writeable
) {
1821 fs_devices
->rw_devices
--;
1822 /* zero out the old super if it is writable */
1823 btrfs_scratch_superblock(srcdev
);
1827 fs_devices
->open_devices
--;
1830 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
1831 struct btrfs_device
*srcdev
)
1833 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
1835 call_rcu(&srcdev
->rcu
, free_device
);
1838 * unless fs_devices is seed fs, num_devices shouldn't go
1841 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
1843 /* if this is no devs we rather delete the fs_devices */
1844 if (!fs_devices
->num_devices
) {
1845 struct btrfs_fs_devices
*tmp_fs_devices
;
1847 tmp_fs_devices
= fs_info
->fs_devices
;
1848 while (tmp_fs_devices
) {
1849 if (tmp_fs_devices
->seed
== fs_devices
) {
1850 tmp_fs_devices
->seed
= fs_devices
->seed
;
1853 tmp_fs_devices
= tmp_fs_devices
->seed
;
1855 fs_devices
->seed
= NULL
;
1856 __btrfs_close_devices(fs_devices
);
1857 free_fs_devices(fs_devices
);
1861 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
1862 struct btrfs_device
*tgtdev
)
1864 struct btrfs_device
*next_device
;
1866 mutex_lock(&uuid_mutex
);
1868 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1870 btrfs_scratch_superblock(tgtdev
);
1871 fs_info
->fs_devices
->open_devices
--;
1873 fs_info
->fs_devices
->num_devices
--;
1875 next_device
= list_entry(fs_info
->fs_devices
->devices
.next
,
1876 struct btrfs_device
, dev_list
);
1877 if (tgtdev
->bdev
== fs_info
->sb
->s_bdev
)
1878 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1879 if (tgtdev
->bdev
== fs_info
->fs_devices
->latest_bdev
)
1880 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1881 list_del_rcu(&tgtdev
->dev_list
);
1883 call_rcu(&tgtdev
->rcu
, free_device
);
1885 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1886 mutex_unlock(&uuid_mutex
);
1889 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
1890 struct btrfs_device
**device
)
1893 struct btrfs_super_block
*disk_super
;
1896 struct block_device
*bdev
;
1897 struct buffer_head
*bh
;
1900 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
1901 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
1904 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1905 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1906 dev_uuid
= disk_super
->dev_item
.uuid
;
1907 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1912 blkdev_put(bdev
, FMODE_READ
);
1916 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
1918 struct btrfs_device
**device
)
1921 if (strcmp(device_path
, "missing") == 0) {
1922 struct list_head
*devices
;
1923 struct btrfs_device
*tmp
;
1925 devices
= &root
->fs_info
->fs_devices
->devices
;
1927 * It is safe to read the devices since the volume_mutex
1928 * is held by the caller.
1930 list_for_each_entry(tmp
, devices
, dev_list
) {
1931 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1938 btrfs_err(root
->fs_info
, "no missing device found");
1944 return btrfs_find_device_by_path(root
, device_path
, device
);
1949 * does all the dirty work required for changing file system's UUID.
1951 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
1953 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1954 struct btrfs_fs_devices
*old_devices
;
1955 struct btrfs_fs_devices
*seed_devices
;
1956 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
1957 struct btrfs_device
*device
;
1960 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1961 if (!fs_devices
->seeding
)
1964 seed_devices
= __alloc_fs_devices();
1965 if (IS_ERR(seed_devices
))
1966 return PTR_ERR(seed_devices
);
1968 old_devices
= clone_fs_devices(fs_devices
);
1969 if (IS_ERR(old_devices
)) {
1970 kfree(seed_devices
);
1971 return PTR_ERR(old_devices
);
1974 list_add(&old_devices
->list
, &fs_uuids
);
1976 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1977 seed_devices
->opened
= 1;
1978 INIT_LIST_HEAD(&seed_devices
->devices
);
1979 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1980 mutex_init(&seed_devices
->device_list_mutex
);
1982 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1983 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
1985 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
1986 device
->fs_devices
= seed_devices
;
1989 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1990 unlock_chunks(root
);
1992 fs_devices
->seeding
= 0;
1993 fs_devices
->num_devices
= 0;
1994 fs_devices
->open_devices
= 0;
1995 fs_devices
->missing_devices
= 0;
1996 fs_devices
->rotating
= 0;
1997 fs_devices
->seed
= seed_devices
;
1999 generate_random_uuid(fs_devices
->fsid
);
2000 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2001 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2002 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2004 super_flags
= btrfs_super_flags(disk_super
) &
2005 ~BTRFS_SUPER_FLAG_SEEDING
;
2006 btrfs_set_super_flags(disk_super
, super_flags
);
2012 * strore the expected generation for seed devices in device items.
2014 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2015 struct btrfs_root
*root
)
2017 struct btrfs_path
*path
;
2018 struct extent_buffer
*leaf
;
2019 struct btrfs_dev_item
*dev_item
;
2020 struct btrfs_device
*device
;
2021 struct btrfs_key key
;
2022 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2023 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2027 path
= btrfs_alloc_path();
2031 root
= root
->fs_info
->chunk_root
;
2032 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2034 key
.type
= BTRFS_DEV_ITEM_KEY
;
2037 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2041 leaf
= path
->nodes
[0];
2043 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2044 ret
= btrfs_next_leaf(root
, path
);
2049 leaf
= path
->nodes
[0];
2050 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2051 btrfs_release_path(path
);
2055 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2056 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2057 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2060 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2061 struct btrfs_dev_item
);
2062 devid
= btrfs_device_id(leaf
, dev_item
);
2063 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2065 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2067 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2069 BUG_ON(!device
); /* Logic error */
2071 if (device
->fs_devices
->seeding
) {
2072 btrfs_set_device_generation(leaf
, dev_item
,
2073 device
->generation
);
2074 btrfs_mark_buffer_dirty(leaf
);
2082 btrfs_free_path(path
);
2086 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2088 struct request_queue
*q
;
2089 struct btrfs_trans_handle
*trans
;
2090 struct btrfs_device
*device
;
2091 struct block_device
*bdev
;
2092 struct list_head
*devices
;
2093 struct super_block
*sb
= root
->fs_info
->sb
;
2094 struct rcu_string
*name
;
2096 int seeding_dev
= 0;
2099 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2102 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2103 root
->fs_info
->bdev_holder
);
2105 return PTR_ERR(bdev
);
2107 if (root
->fs_info
->fs_devices
->seeding
) {
2109 down_write(&sb
->s_umount
);
2110 mutex_lock(&uuid_mutex
);
2113 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2115 devices
= &root
->fs_info
->fs_devices
->devices
;
2117 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2118 list_for_each_entry(device
, devices
, dev_list
) {
2119 if (device
->bdev
== bdev
) {
2122 &root
->fs_info
->fs_devices
->device_list_mutex
);
2126 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2128 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2129 if (IS_ERR(device
)) {
2130 /* we can safely leave the fs_devices entry around */
2131 ret
= PTR_ERR(device
);
2135 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2141 rcu_assign_pointer(device
->name
, name
);
2143 trans
= btrfs_start_transaction(root
, 0);
2144 if (IS_ERR(trans
)) {
2145 rcu_string_free(device
->name
);
2147 ret
= PTR_ERR(trans
);
2151 q
= bdev_get_queue(bdev
);
2152 if (blk_queue_discard(q
))
2153 device
->can_discard
= 1;
2154 device
->writeable
= 1;
2155 device
->generation
= trans
->transid
;
2156 device
->io_width
= root
->sectorsize
;
2157 device
->io_align
= root
->sectorsize
;
2158 device
->sector_size
= root
->sectorsize
;
2159 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2160 device
->disk_total_bytes
= device
->total_bytes
;
2161 device
->commit_total_bytes
= device
->total_bytes
;
2162 device
->dev_root
= root
->fs_info
->dev_root
;
2163 device
->bdev
= bdev
;
2164 device
->in_fs_metadata
= 1;
2165 device
->is_tgtdev_for_dev_replace
= 0;
2166 device
->mode
= FMODE_EXCL
;
2167 device
->dev_stats_valid
= 1;
2168 set_blocksize(device
->bdev
, 4096);
2171 sb
->s_flags
&= ~MS_RDONLY
;
2172 ret
= btrfs_prepare_sprout(root
);
2173 BUG_ON(ret
); /* -ENOMEM */
2176 device
->fs_devices
= root
->fs_info
->fs_devices
;
2178 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2180 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2181 list_add(&device
->dev_alloc_list
,
2182 &root
->fs_info
->fs_devices
->alloc_list
);
2183 root
->fs_info
->fs_devices
->num_devices
++;
2184 root
->fs_info
->fs_devices
->open_devices
++;
2185 root
->fs_info
->fs_devices
->rw_devices
++;
2186 root
->fs_info
->fs_devices
->total_devices
++;
2187 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2189 spin_lock(&root
->fs_info
->free_chunk_lock
);
2190 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2191 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2193 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2194 root
->fs_info
->fs_devices
->rotating
= 1;
2196 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2197 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2198 tmp
+ device
->total_bytes
);
2200 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2201 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2204 /* add sysfs device entry */
2205 btrfs_kobj_add_device(root
->fs_info
, device
);
2208 * we've got more storage, clear any full flags on the space
2211 btrfs_clear_space_info_full(root
->fs_info
);
2213 unlock_chunks(root
);
2214 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2218 ret
= init_first_rw_device(trans
, root
, device
);
2219 unlock_chunks(root
);
2221 btrfs_abort_transaction(trans
, root
, ret
);
2226 ret
= btrfs_add_device(trans
, root
, device
);
2228 btrfs_abort_transaction(trans
, root
, ret
);
2233 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2235 ret
= btrfs_finish_sprout(trans
, root
);
2237 btrfs_abort_transaction(trans
, root
, ret
);
2241 /* Sprouting would change fsid of the mounted root,
2242 * so rename the fsid on the sysfs
2244 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2245 root
->fs_info
->fsid
);
2246 if (kobject_rename(&root
->fs_info
->super_kobj
, fsid_buf
))
2250 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2251 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2252 ret
= btrfs_commit_transaction(trans
, root
);
2255 mutex_unlock(&uuid_mutex
);
2256 up_write(&sb
->s_umount
);
2258 if (ret
) /* transaction commit */
2261 ret
= btrfs_relocate_sys_chunks(root
);
2263 btrfs_error(root
->fs_info
, ret
,
2264 "Failed to relocate sys chunks after "
2265 "device initialization. This can be fixed "
2266 "using the \"btrfs balance\" command.");
2267 trans
= btrfs_attach_transaction(root
);
2268 if (IS_ERR(trans
)) {
2269 if (PTR_ERR(trans
) == -ENOENT
)
2271 return PTR_ERR(trans
);
2273 ret
= btrfs_commit_transaction(trans
, root
);
2276 /* Update ctime/mtime for libblkid */
2277 update_dev_time(device_path
);
2281 btrfs_end_transaction(trans
, root
);
2282 rcu_string_free(device
->name
);
2283 btrfs_kobj_rm_device(root
->fs_info
, device
);
2286 blkdev_put(bdev
, FMODE_EXCL
);
2288 mutex_unlock(&uuid_mutex
);
2289 up_write(&sb
->s_umount
);
2294 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2295 struct btrfs_device
*srcdev
,
2296 struct btrfs_device
**device_out
)
2298 struct request_queue
*q
;
2299 struct btrfs_device
*device
;
2300 struct block_device
*bdev
;
2301 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2302 struct list_head
*devices
;
2303 struct rcu_string
*name
;
2304 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2308 if (fs_info
->fs_devices
->seeding
) {
2309 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2313 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2314 fs_info
->bdev_holder
);
2316 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2317 return PTR_ERR(bdev
);
2320 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2322 devices
= &fs_info
->fs_devices
->devices
;
2323 list_for_each_entry(device
, devices
, dev_list
) {
2324 if (device
->bdev
== bdev
) {
2325 btrfs_err(fs_info
, "target device is in the filesystem!");
2332 if (i_size_read(bdev
->bd_inode
) <
2333 btrfs_device_get_total_bytes(srcdev
)) {
2334 btrfs_err(fs_info
, "target device is smaller than source device!");
2340 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2341 if (IS_ERR(device
)) {
2342 ret
= PTR_ERR(device
);
2346 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2352 rcu_assign_pointer(device
->name
, name
);
2354 q
= bdev_get_queue(bdev
);
2355 if (blk_queue_discard(q
))
2356 device
->can_discard
= 1;
2357 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2358 device
->writeable
= 1;
2359 device
->generation
= 0;
2360 device
->io_width
= root
->sectorsize
;
2361 device
->io_align
= root
->sectorsize
;
2362 device
->sector_size
= root
->sectorsize
;
2363 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2364 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2365 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2366 ASSERT(list_empty(&srcdev
->resized_list
));
2367 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2368 device
->commit_bytes_used
= device
->bytes_used
;
2369 device
->dev_root
= fs_info
->dev_root
;
2370 device
->bdev
= bdev
;
2371 device
->in_fs_metadata
= 1;
2372 device
->is_tgtdev_for_dev_replace
= 1;
2373 device
->mode
= FMODE_EXCL
;
2374 device
->dev_stats_valid
= 1;
2375 set_blocksize(device
->bdev
, 4096);
2376 device
->fs_devices
= fs_info
->fs_devices
;
2377 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2378 fs_info
->fs_devices
->num_devices
++;
2379 fs_info
->fs_devices
->open_devices
++;
2380 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2382 *device_out
= device
;
2386 blkdev_put(bdev
, FMODE_EXCL
);
2390 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2391 struct btrfs_device
*tgtdev
)
2393 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2394 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2395 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2396 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2397 tgtdev
->dev_root
= fs_info
->dev_root
;
2398 tgtdev
->in_fs_metadata
= 1;
2401 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2402 struct btrfs_device
*device
)
2405 struct btrfs_path
*path
;
2406 struct btrfs_root
*root
;
2407 struct btrfs_dev_item
*dev_item
;
2408 struct extent_buffer
*leaf
;
2409 struct btrfs_key key
;
2411 root
= device
->dev_root
->fs_info
->chunk_root
;
2413 path
= btrfs_alloc_path();
2417 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2418 key
.type
= BTRFS_DEV_ITEM_KEY
;
2419 key
.offset
= device
->devid
;
2421 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2430 leaf
= path
->nodes
[0];
2431 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2433 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2434 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2435 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2436 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2437 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2438 btrfs_set_device_total_bytes(leaf
, dev_item
,
2439 btrfs_device_get_disk_total_bytes(device
));
2440 btrfs_set_device_bytes_used(leaf
, dev_item
,
2441 btrfs_device_get_bytes_used(device
));
2442 btrfs_mark_buffer_dirty(leaf
);
2445 btrfs_free_path(path
);
2449 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2450 struct btrfs_device
*device
, u64 new_size
)
2452 struct btrfs_super_block
*super_copy
=
2453 device
->dev_root
->fs_info
->super_copy
;
2454 struct btrfs_fs_devices
*fs_devices
;
2458 if (!device
->writeable
)
2461 lock_chunks(device
->dev_root
);
2462 old_total
= btrfs_super_total_bytes(super_copy
);
2463 diff
= new_size
- device
->total_bytes
;
2465 if (new_size
<= device
->total_bytes
||
2466 device
->is_tgtdev_for_dev_replace
) {
2467 unlock_chunks(device
->dev_root
);
2471 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2473 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2474 device
->fs_devices
->total_rw_bytes
+= diff
;
2476 btrfs_device_set_total_bytes(device
, new_size
);
2477 btrfs_device_set_disk_total_bytes(device
, new_size
);
2478 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2479 if (list_empty(&device
->resized_list
))
2480 list_add_tail(&device
->resized_list
,
2481 &fs_devices
->resized_devices
);
2482 unlock_chunks(device
->dev_root
);
2484 return btrfs_update_device(trans
, device
);
2487 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2488 struct btrfs_root
*root
,
2489 u64 chunk_tree
, u64 chunk_objectid
,
2493 struct btrfs_path
*path
;
2494 struct btrfs_key key
;
2496 root
= root
->fs_info
->chunk_root
;
2497 path
= btrfs_alloc_path();
2501 key
.objectid
= chunk_objectid
;
2502 key
.offset
= chunk_offset
;
2503 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2505 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2508 else if (ret
> 0) { /* Logic error or corruption */
2509 btrfs_error(root
->fs_info
, -ENOENT
,
2510 "Failed lookup while freeing chunk.");
2515 ret
= btrfs_del_item(trans
, root
, path
);
2517 btrfs_error(root
->fs_info
, ret
,
2518 "Failed to delete chunk item.");
2520 btrfs_free_path(path
);
2524 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2527 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2528 struct btrfs_disk_key
*disk_key
;
2529 struct btrfs_chunk
*chunk
;
2536 struct btrfs_key key
;
2539 array_size
= btrfs_super_sys_array_size(super_copy
);
2541 ptr
= super_copy
->sys_chunk_array
;
2544 while (cur
< array_size
) {
2545 disk_key
= (struct btrfs_disk_key
*)ptr
;
2546 btrfs_disk_key_to_cpu(&key
, disk_key
);
2548 len
= sizeof(*disk_key
);
2550 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2551 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2552 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2553 len
+= btrfs_chunk_item_size(num_stripes
);
2558 if (key
.objectid
== chunk_objectid
&&
2559 key
.offset
== chunk_offset
) {
2560 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2562 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2568 unlock_chunks(root
);
2572 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2573 struct btrfs_root
*root
, u64 chunk_offset
)
2575 struct extent_map_tree
*em_tree
;
2576 struct extent_map
*em
;
2577 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2578 struct map_lookup
*map
;
2579 u64 dev_extent_len
= 0;
2580 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2581 u64 chunk_tree
= root
->fs_info
->chunk_root
->objectid
;
2585 root
= root
->fs_info
->chunk_root
;
2586 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2588 read_lock(&em_tree
->lock
);
2589 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2590 read_unlock(&em_tree
->lock
);
2592 if (!em
|| em
->start
> chunk_offset
||
2593 em
->start
+ em
->len
< chunk_offset
) {
2595 * This is a logic error, but we don't want to just rely on the
2596 * user having built with ASSERT enabled, so if ASSERT doens't
2597 * do anything we still error out.
2601 free_extent_map(em
);
2604 map
= (struct map_lookup
*)em
->bdev
;
2606 for (i
= 0; i
< map
->num_stripes
; i
++) {
2607 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2608 ret
= btrfs_free_dev_extent(trans
, device
,
2609 map
->stripes
[i
].physical
,
2612 btrfs_abort_transaction(trans
, root
, ret
);
2616 if (device
->bytes_used
> 0) {
2618 btrfs_device_set_bytes_used(device
,
2619 device
->bytes_used
- dev_extent_len
);
2620 spin_lock(&root
->fs_info
->free_chunk_lock
);
2621 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2622 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2623 btrfs_clear_space_info_full(root
->fs_info
);
2624 unlock_chunks(root
);
2627 if (map
->stripes
[i
].dev
) {
2628 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2630 btrfs_abort_transaction(trans
, root
, ret
);
2635 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
2638 btrfs_abort_transaction(trans
, root
, ret
);
2642 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2644 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2645 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2647 btrfs_abort_transaction(trans
, root
, ret
);
2652 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2654 btrfs_abort_transaction(trans
, extent_root
, ret
);
2660 free_extent_map(em
);
2664 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
2665 u64 chunk_tree
, u64 chunk_objectid
,
2668 struct btrfs_root
*extent_root
;
2669 struct btrfs_trans_handle
*trans
;
2672 root
= root
->fs_info
->chunk_root
;
2673 extent_root
= root
->fs_info
->extent_root
;
2675 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2679 /* step one, relocate all the extents inside this chunk */
2680 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2684 trans
= btrfs_start_transaction(root
, 0);
2685 if (IS_ERR(trans
)) {
2686 ret
= PTR_ERR(trans
);
2687 btrfs_std_error(root
->fs_info
, ret
);
2692 * step two, delete the device extents and the
2693 * chunk tree entries
2695 ret
= btrfs_remove_chunk(trans
, root
, chunk_offset
);
2696 btrfs_end_transaction(trans
, root
);
2700 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2702 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2703 struct btrfs_path
*path
;
2704 struct extent_buffer
*leaf
;
2705 struct btrfs_chunk
*chunk
;
2706 struct btrfs_key key
;
2707 struct btrfs_key found_key
;
2708 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
2710 bool retried
= false;
2714 path
= btrfs_alloc_path();
2719 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2720 key
.offset
= (u64
)-1;
2721 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2724 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2727 BUG_ON(ret
== 0); /* Corruption */
2729 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2736 leaf
= path
->nodes
[0];
2737 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2739 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2740 struct btrfs_chunk
);
2741 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2742 btrfs_release_path(path
);
2744 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2745 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
2754 if (found_key
.offset
== 0)
2756 key
.offset
= found_key
.offset
- 1;
2759 if (failed
&& !retried
) {
2763 } else if (WARN_ON(failed
&& retried
)) {
2767 btrfs_free_path(path
);
2771 static int insert_balance_item(struct btrfs_root
*root
,
2772 struct btrfs_balance_control
*bctl
)
2774 struct btrfs_trans_handle
*trans
;
2775 struct btrfs_balance_item
*item
;
2776 struct btrfs_disk_balance_args disk_bargs
;
2777 struct btrfs_path
*path
;
2778 struct extent_buffer
*leaf
;
2779 struct btrfs_key key
;
2782 path
= btrfs_alloc_path();
2786 trans
= btrfs_start_transaction(root
, 0);
2787 if (IS_ERR(trans
)) {
2788 btrfs_free_path(path
);
2789 return PTR_ERR(trans
);
2792 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2793 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2796 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2801 leaf
= path
->nodes
[0];
2802 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
2804 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
2806 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
2807 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
2808 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
2809 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
2810 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
2811 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
2813 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
2815 btrfs_mark_buffer_dirty(leaf
);
2817 btrfs_free_path(path
);
2818 err
= btrfs_commit_transaction(trans
, root
);
2824 static int del_balance_item(struct btrfs_root
*root
)
2826 struct btrfs_trans_handle
*trans
;
2827 struct btrfs_path
*path
;
2828 struct btrfs_key key
;
2831 path
= btrfs_alloc_path();
2835 trans
= btrfs_start_transaction(root
, 0);
2836 if (IS_ERR(trans
)) {
2837 btrfs_free_path(path
);
2838 return PTR_ERR(trans
);
2841 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2842 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2845 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2853 ret
= btrfs_del_item(trans
, root
, path
);
2855 btrfs_free_path(path
);
2856 err
= btrfs_commit_transaction(trans
, root
);
2863 * This is a heuristic used to reduce the number of chunks balanced on
2864 * resume after balance was interrupted.
2866 static void update_balance_args(struct btrfs_balance_control
*bctl
)
2869 * Turn on soft mode for chunk types that were being converted.
2871 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2872 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2873 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2874 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2875 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2876 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2879 * Turn on usage filter if is not already used. The idea is
2880 * that chunks that we have already balanced should be
2881 * reasonably full. Don't do it for chunks that are being
2882 * converted - that will keep us from relocating unconverted
2883 * (albeit full) chunks.
2885 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2886 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2887 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2888 bctl
->data
.usage
= 90;
2890 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2891 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2892 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2893 bctl
->sys
.usage
= 90;
2895 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2896 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2897 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2898 bctl
->meta
.usage
= 90;
2903 * Should be called with both balance and volume mutexes held to
2904 * serialize other volume operations (add_dev/rm_dev/resize) with
2905 * restriper. Same goes for unset_balance_control.
2907 static void set_balance_control(struct btrfs_balance_control
*bctl
)
2909 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
2911 BUG_ON(fs_info
->balance_ctl
);
2913 spin_lock(&fs_info
->balance_lock
);
2914 fs_info
->balance_ctl
= bctl
;
2915 spin_unlock(&fs_info
->balance_lock
);
2918 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
2920 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2922 BUG_ON(!fs_info
->balance_ctl
);
2924 spin_lock(&fs_info
->balance_lock
);
2925 fs_info
->balance_ctl
= NULL
;
2926 spin_unlock(&fs_info
->balance_lock
);
2932 * Balance filters. Return 1 if chunk should be filtered out
2933 * (should not be balanced).
2935 static int chunk_profiles_filter(u64 chunk_type
,
2936 struct btrfs_balance_args
*bargs
)
2938 chunk_type
= chunk_to_extended(chunk_type
) &
2939 BTRFS_EXTENDED_PROFILE_MASK
;
2941 if (bargs
->profiles
& chunk_type
)
2947 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
2948 struct btrfs_balance_args
*bargs
)
2950 struct btrfs_block_group_cache
*cache
;
2951 u64 chunk_used
, user_thresh
;
2954 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2955 chunk_used
= btrfs_block_group_used(&cache
->item
);
2957 if (bargs
->usage
== 0)
2959 else if (bargs
->usage
> 100)
2960 user_thresh
= cache
->key
.offset
;
2962 user_thresh
= div_factor_fine(cache
->key
.offset
,
2965 if (chunk_used
< user_thresh
)
2968 btrfs_put_block_group(cache
);
2972 static int chunk_devid_filter(struct extent_buffer
*leaf
,
2973 struct btrfs_chunk
*chunk
,
2974 struct btrfs_balance_args
*bargs
)
2976 struct btrfs_stripe
*stripe
;
2977 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2980 for (i
= 0; i
< num_stripes
; i
++) {
2981 stripe
= btrfs_stripe_nr(chunk
, i
);
2982 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
2989 /* [pstart, pend) */
2990 static int chunk_drange_filter(struct extent_buffer
*leaf
,
2991 struct btrfs_chunk
*chunk
,
2993 struct btrfs_balance_args
*bargs
)
2995 struct btrfs_stripe
*stripe
;
2996 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3002 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3005 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3006 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3007 factor
= num_stripes
/ 2;
3008 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3009 factor
= num_stripes
- 1;
3010 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3011 factor
= num_stripes
- 2;
3013 factor
= num_stripes
;
3016 for (i
= 0; i
< num_stripes
; i
++) {
3017 stripe
= btrfs_stripe_nr(chunk
, i
);
3018 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3021 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3022 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3023 do_div(stripe_length
, factor
);
3025 if (stripe_offset
< bargs
->pend
&&
3026 stripe_offset
+ stripe_length
> bargs
->pstart
)
3033 /* [vstart, vend) */
3034 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3035 struct btrfs_chunk
*chunk
,
3037 struct btrfs_balance_args
*bargs
)
3039 if (chunk_offset
< bargs
->vend
&&
3040 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3041 /* at least part of the chunk is inside this vrange */
3047 static int chunk_soft_convert_filter(u64 chunk_type
,
3048 struct btrfs_balance_args
*bargs
)
3050 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3053 chunk_type
= chunk_to_extended(chunk_type
) &
3054 BTRFS_EXTENDED_PROFILE_MASK
;
3056 if (bargs
->target
== chunk_type
)
3062 static int should_balance_chunk(struct btrfs_root
*root
,
3063 struct extent_buffer
*leaf
,
3064 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3066 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3067 struct btrfs_balance_args
*bargs
= NULL
;
3068 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3071 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3072 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3076 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3077 bargs
= &bctl
->data
;
3078 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3080 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3081 bargs
= &bctl
->meta
;
3083 /* profiles filter */
3084 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3085 chunk_profiles_filter(chunk_type
, bargs
)) {
3090 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3091 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3096 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3097 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3101 /* drange filter, makes sense only with devid filter */
3102 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3103 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3108 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3109 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3113 /* soft profile changing mode */
3114 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3115 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3120 * limited by count, must be the last filter
3122 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3123 if (bargs
->limit
== 0)
3132 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3134 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3135 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3136 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3137 struct list_head
*devices
;
3138 struct btrfs_device
*device
;
3141 struct btrfs_chunk
*chunk
;
3142 struct btrfs_path
*path
;
3143 struct btrfs_key key
;
3144 struct btrfs_key found_key
;
3145 struct btrfs_trans_handle
*trans
;
3146 struct extent_buffer
*leaf
;
3149 int enospc_errors
= 0;
3150 bool counting
= true;
3151 u64 limit_data
= bctl
->data
.limit
;
3152 u64 limit_meta
= bctl
->meta
.limit
;
3153 u64 limit_sys
= bctl
->sys
.limit
;
3155 /* step one make some room on all the devices */
3156 devices
= &fs_info
->fs_devices
->devices
;
3157 list_for_each_entry(device
, devices
, dev_list
) {
3158 old_size
= btrfs_device_get_total_bytes(device
);
3159 size_to_free
= div_factor(old_size
, 1);
3160 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
3161 if (!device
->writeable
||
3162 btrfs_device_get_total_bytes(device
) -
3163 btrfs_device_get_bytes_used(device
) > size_to_free
||
3164 device
->is_tgtdev_for_dev_replace
)
3167 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3172 trans
= btrfs_start_transaction(dev_root
, 0);
3173 BUG_ON(IS_ERR(trans
));
3175 ret
= btrfs_grow_device(trans
, device
, old_size
);
3178 btrfs_end_transaction(trans
, dev_root
);
3181 /* step two, relocate all the chunks */
3182 path
= btrfs_alloc_path();
3188 /* zero out stat counters */
3189 spin_lock(&fs_info
->balance_lock
);
3190 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3191 spin_unlock(&fs_info
->balance_lock
);
3194 bctl
->data
.limit
= limit_data
;
3195 bctl
->meta
.limit
= limit_meta
;
3196 bctl
->sys
.limit
= limit_sys
;
3198 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3199 key
.offset
= (u64
)-1;
3200 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3203 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3204 atomic_read(&fs_info
->balance_cancel_req
)) {
3209 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3214 * this shouldn't happen, it means the last relocate
3218 BUG(); /* FIXME break ? */
3220 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3221 BTRFS_CHUNK_ITEM_KEY
);
3227 leaf
= path
->nodes
[0];
3228 slot
= path
->slots
[0];
3229 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3231 if (found_key
.objectid
!= key
.objectid
)
3234 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3237 spin_lock(&fs_info
->balance_lock
);
3238 bctl
->stat
.considered
++;
3239 spin_unlock(&fs_info
->balance_lock
);
3242 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3244 btrfs_release_path(path
);
3249 spin_lock(&fs_info
->balance_lock
);
3250 bctl
->stat
.expected
++;
3251 spin_unlock(&fs_info
->balance_lock
);
3255 ret
= btrfs_relocate_chunk(chunk_root
,
3256 chunk_root
->root_key
.objectid
,
3259 if (ret
&& ret
!= -ENOSPC
)
3261 if (ret
== -ENOSPC
) {
3264 spin_lock(&fs_info
->balance_lock
);
3265 bctl
->stat
.completed
++;
3266 spin_unlock(&fs_info
->balance_lock
);
3269 if (found_key
.offset
== 0)
3271 key
.offset
= found_key
.offset
- 1;
3275 btrfs_release_path(path
);
3280 btrfs_free_path(path
);
3281 if (enospc_errors
) {
3282 btrfs_info(fs_info
, "%d enospc errors during balance",
3292 * alloc_profile_is_valid - see if a given profile is valid and reduced
3293 * @flags: profile to validate
3294 * @extended: if true @flags is treated as an extended profile
3296 static int alloc_profile_is_valid(u64 flags
, int extended
)
3298 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3299 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3301 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3303 /* 1) check that all other bits are zeroed */
3307 /* 2) see if profile is reduced */
3309 return !extended
; /* "0" is valid for usual profiles */
3311 /* true if exactly one bit set */
3312 return (flags
& (flags
- 1)) == 0;
3315 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3317 /* cancel requested || normal exit path */
3318 return atomic_read(&fs_info
->balance_cancel_req
) ||
3319 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3320 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3323 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3327 unset_balance_control(fs_info
);
3328 ret
= del_balance_item(fs_info
->tree_root
);
3330 btrfs_std_error(fs_info
, ret
);
3332 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3336 * Should be called with both balance and volume mutexes held
3338 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3339 struct btrfs_ioctl_balance_args
*bargs
)
3341 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3348 if (btrfs_fs_closing(fs_info
) ||
3349 atomic_read(&fs_info
->balance_pause_req
) ||
3350 atomic_read(&fs_info
->balance_cancel_req
)) {
3355 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3356 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3360 * In case of mixed groups both data and meta should be picked,
3361 * and identical options should be given for both of them.
3363 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3364 if (mixed
&& (bctl
->flags
& allowed
)) {
3365 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3366 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3367 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3368 btrfs_err(fs_info
, "with mixed groups data and "
3369 "metadata balance options must be the same");
3375 num_devices
= fs_info
->fs_devices
->num_devices
;
3376 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
3377 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3378 BUG_ON(num_devices
< 1);
3381 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
3382 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3383 if (num_devices
== 1)
3384 allowed
|= BTRFS_BLOCK_GROUP_DUP
;
3385 else if (num_devices
> 1)
3386 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3387 if (num_devices
> 2)
3388 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3389 if (num_devices
> 3)
3390 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3391 BTRFS_BLOCK_GROUP_RAID6
);
3392 if ((bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3393 (!alloc_profile_is_valid(bctl
->data
.target
, 1) ||
3394 (bctl
->data
.target
& ~allowed
))) {
3395 btrfs_err(fs_info
, "unable to start balance with target "
3396 "data profile %llu",
3401 if ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3402 (!alloc_profile_is_valid(bctl
->meta
.target
, 1) ||
3403 (bctl
->meta
.target
& ~allowed
))) {
3405 "unable to start balance with target metadata profile %llu",
3410 if ((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3411 (!alloc_profile_is_valid(bctl
->sys
.target
, 1) ||
3412 (bctl
->sys
.target
& ~allowed
))) {
3414 "unable to start balance with target system profile %llu",
3420 /* allow dup'ed data chunks only in mixed mode */
3421 if (!mixed
&& (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3422 (bctl
->data
.target
& BTRFS_BLOCK_GROUP_DUP
)) {
3423 btrfs_err(fs_info
, "dup for data is not allowed");
3428 /* allow to reduce meta or sys integrity only if force set */
3429 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3430 BTRFS_BLOCK_GROUP_RAID10
|
3431 BTRFS_BLOCK_GROUP_RAID5
|
3432 BTRFS_BLOCK_GROUP_RAID6
;
3434 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3436 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3437 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3438 !(bctl
->sys
.target
& allowed
)) ||
3439 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3440 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3441 !(bctl
->meta
.target
& allowed
))) {
3442 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3443 btrfs_info(fs_info
, "force reducing metadata integrity");
3445 btrfs_err(fs_info
, "balance will reduce metadata "
3446 "integrity, use force if you want this");
3451 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3453 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3454 int num_tolerated_disk_barrier_failures
;
3455 u64 target
= bctl
->sys
.target
;
3457 num_tolerated_disk_barrier_failures
=
3458 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3459 if (num_tolerated_disk_barrier_failures
> 0 &&
3461 (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3462 BTRFS_AVAIL_ALLOC_BIT_SINGLE
)))
3463 num_tolerated_disk_barrier_failures
= 0;
3464 else if (num_tolerated_disk_barrier_failures
> 1 &&
3466 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)))
3467 num_tolerated_disk_barrier_failures
= 1;
3469 fs_info
->num_tolerated_disk_barrier_failures
=
3470 num_tolerated_disk_barrier_failures
;
3473 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3474 if (ret
&& ret
!= -EEXIST
)
3477 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3478 BUG_ON(ret
== -EEXIST
);
3479 set_balance_control(bctl
);
3481 BUG_ON(ret
!= -EEXIST
);
3482 spin_lock(&fs_info
->balance_lock
);
3483 update_balance_args(bctl
);
3484 spin_unlock(&fs_info
->balance_lock
);
3487 atomic_inc(&fs_info
->balance_running
);
3488 mutex_unlock(&fs_info
->balance_mutex
);
3490 ret
= __btrfs_balance(fs_info
);
3492 mutex_lock(&fs_info
->balance_mutex
);
3493 atomic_dec(&fs_info
->balance_running
);
3495 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3496 fs_info
->num_tolerated_disk_barrier_failures
=
3497 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3501 memset(bargs
, 0, sizeof(*bargs
));
3502 update_ioctl_balance_args(fs_info
, 0, bargs
);
3505 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3506 balance_need_close(fs_info
)) {
3507 __cancel_balance(fs_info
);
3510 wake_up(&fs_info
->balance_wait_q
);
3514 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3515 __cancel_balance(fs_info
);
3518 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3523 static int balance_kthread(void *data
)
3525 struct btrfs_fs_info
*fs_info
= data
;
3528 mutex_lock(&fs_info
->volume_mutex
);
3529 mutex_lock(&fs_info
->balance_mutex
);
3531 if (fs_info
->balance_ctl
) {
3532 btrfs_info(fs_info
, "continuing balance");
3533 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3536 mutex_unlock(&fs_info
->balance_mutex
);
3537 mutex_unlock(&fs_info
->volume_mutex
);
3542 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3544 struct task_struct
*tsk
;
3546 spin_lock(&fs_info
->balance_lock
);
3547 if (!fs_info
->balance_ctl
) {
3548 spin_unlock(&fs_info
->balance_lock
);
3551 spin_unlock(&fs_info
->balance_lock
);
3553 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3554 btrfs_info(fs_info
, "force skipping balance");
3558 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3559 return PTR_ERR_OR_ZERO(tsk
);
3562 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3564 struct btrfs_balance_control
*bctl
;
3565 struct btrfs_balance_item
*item
;
3566 struct btrfs_disk_balance_args disk_bargs
;
3567 struct btrfs_path
*path
;
3568 struct extent_buffer
*leaf
;
3569 struct btrfs_key key
;
3572 path
= btrfs_alloc_path();
3576 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3577 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3580 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3583 if (ret
> 0) { /* ret = -ENOENT; */
3588 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3594 leaf
= path
->nodes
[0];
3595 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3597 bctl
->fs_info
= fs_info
;
3598 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3599 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3601 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3602 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3603 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3604 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3605 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3606 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3608 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3610 mutex_lock(&fs_info
->volume_mutex
);
3611 mutex_lock(&fs_info
->balance_mutex
);
3613 set_balance_control(bctl
);
3615 mutex_unlock(&fs_info
->balance_mutex
);
3616 mutex_unlock(&fs_info
->volume_mutex
);
3618 btrfs_free_path(path
);
3622 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3626 mutex_lock(&fs_info
->balance_mutex
);
3627 if (!fs_info
->balance_ctl
) {
3628 mutex_unlock(&fs_info
->balance_mutex
);
3632 if (atomic_read(&fs_info
->balance_running
)) {
3633 atomic_inc(&fs_info
->balance_pause_req
);
3634 mutex_unlock(&fs_info
->balance_mutex
);
3636 wait_event(fs_info
->balance_wait_q
,
3637 atomic_read(&fs_info
->balance_running
) == 0);
3639 mutex_lock(&fs_info
->balance_mutex
);
3640 /* we are good with balance_ctl ripped off from under us */
3641 BUG_ON(atomic_read(&fs_info
->balance_running
));
3642 atomic_dec(&fs_info
->balance_pause_req
);
3647 mutex_unlock(&fs_info
->balance_mutex
);
3651 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3653 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
3656 mutex_lock(&fs_info
->balance_mutex
);
3657 if (!fs_info
->balance_ctl
) {
3658 mutex_unlock(&fs_info
->balance_mutex
);
3662 atomic_inc(&fs_info
->balance_cancel_req
);
3664 * if we are running just wait and return, balance item is
3665 * deleted in btrfs_balance in this case
3667 if (atomic_read(&fs_info
->balance_running
)) {
3668 mutex_unlock(&fs_info
->balance_mutex
);
3669 wait_event(fs_info
->balance_wait_q
,
3670 atomic_read(&fs_info
->balance_running
) == 0);
3671 mutex_lock(&fs_info
->balance_mutex
);
3673 /* __cancel_balance needs volume_mutex */
3674 mutex_unlock(&fs_info
->balance_mutex
);
3675 mutex_lock(&fs_info
->volume_mutex
);
3676 mutex_lock(&fs_info
->balance_mutex
);
3678 if (fs_info
->balance_ctl
)
3679 __cancel_balance(fs_info
);
3681 mutex_unlock(&fs_info
->volume_mutex
);
3684 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
3685 atomic_dec(&fs_info
->balance_cancel_req
);
3686 mutex_unlock(&fs_info
->balance_mutex
);
3690 static int btrfs_uuid_scan_kthread(void *data
)
3692 struct btrfs_fs_info
*fs_info
= data
;
3693 struct btrfs_root
*root
= fs_info
->tree_root
;
3694 struct btrfs_key key
;
3695 struct btrfs_key max_key
;
3696 struct btrfs_path
*path
= NULL
;
3698 struct extent_buffer
*eb
;
3700 struct btrfs_root_item root_item
;
3702 struct btrfs_trans_handle
*trans
= NULL
;
3704 path
= btrfs_alloc_path();
3711 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3714 max_key
.objectid
= (u64
)-1;
3715 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3716 max_key
.offset
= (u64
)-1;
3719 ret
= btrfs_search_forward(root
, &key
, path
, 0);
3726 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
3727 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3728 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
3729 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
3732 eb
= path
->nodes
[0];
3733 slot
= path
->slots
[0];
3734 item_size
= btrfs_item_size_nr(eb
, slot
);
3735 if (item_size
< sizeof(root_item
))
3738 read_extent_buffer(eb
, &root_item
,
3739 btrfs_item_ptr_offset(eb
, slot
),
3740 (int)sizeof(root_item
));
3741 if (btrfs_root_refs(&root_item
) == 0)
3744 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
3745 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3749 btrfs_release_path(path
);
3751 * 1 - subvol uuid item
3752 * 1 - received_subvol uuid item
3754 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
3755 if (IS_ERR(trans
)) {
3756 ret
= PTR_ERR(trans
);
3764 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
3765 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3767 BTRFS_UUID_KEY_SUBVOL
,
3770 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
3776 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3777 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3778 root_item
.received_uuid
,
3779 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
3782 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
3790 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3796 btrfs_release_path(path
);
3797 if (key
.offset
< (u64
)-1) {
3799 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
3801 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3802 } else if (key
.objectid
< (u64
)-1) {
3804 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3813 btrfs_free_path(path
);
3814 if (trans
&& !IS_ERR(trans
))
3815 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3817 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
3819 fs_info
->update_uuid_tree_gen
= 1;
3820 up(&fs_info
->uuid_tree_rescan_sem
);
3825 * Callback for btrfs_uuid_tree_iterate().
3827 * 0 check succeeded, the entry is not outdated.
3828 * < 0 if an error occured.
3829 * > 0 if the check failed, which means the caller shall remove the entry.
3831 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
3832 u8
*uuid
, u8 type
, u64 subid
)
3834 struct btrfs_key key
;
3836 struct btrfs_root
*subvol_root
;
3838 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
3839 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
3842 key
.objectid
= subid
;
3843 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3844 key
.offset
= (u64
)-1;
3845 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3846 if (IS_ERR(subvol_root
)) {
3847 ret
= PTR_ERR(subvol_root
);
3854 case BTRFS_UUID_KEY_SUBVOL
:
3855 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
3858 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
3859 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
3869 static int btrfs_uuid_rescan_kthread(void *data
)
3871 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
3875 * 1st step is to iterate through the existing UUID tree and
3876 * to delete all entries that contain outdated data.
3877 * 2nd step is to add all missing entries to the UUID tree.
3879 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
3881 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
3882 up(&fs_info
->uuid_tree_rescan_sem
);
3885 return btrfs_uuid_scan_kthread(data
);
3888 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
3890 struct btrfs_trans_handle
*trans
;
3891 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
3892 struct btrfs_root
*uuid_root
;
3893 struct task_struct
*task
;
3900 trans
= btrfs_start_transaction(tree_root
, 2);
3902 return PTR_ERR(trans
);
3904 uuid_root
= btrfs_create_tree(trans
, fs_info
,
3905 BTRFS_UUID_TREE_OBJECTID
);
3906 if (IS_ERR(uuid_root
)) {
3907 btrfs_abort_transaction(trans
, tree_root
,
3908 PTR_ERR(uuid_root
));
3909 return PTR_ERR(uuid_root
);
3912 fs_info
->uuid_root
= uuid_root
;
3914 ret
= btrfs_commit_transaction(trans
, tree_root
);
3918 down(&fs_info
->uuid_tree_rescan_sem
);
3919 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
3921 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3922 btrfs_warn(fs_info
, "failed to start uuid_scan task");
3923 up(&fs_info
->uuid_tree_rescan_sem
);
3924 return PTR_ERR(task
);
3930 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
3932 struct task_struct
*task
;
3934 down(&fs_info
->uuid_tree_rescan_sem
);
3935 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
3937 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3938 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
3939 up(&fs_info
->uuid_tree_rescan_sem
);
3940 return PTR_ERR(task
);
3947 * shrinking a device means finding all of the device extents past
3948 * the new size, and then following the back refs to the chunks.
3949 * The chunk relocation code actually frees the device extent
3951 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
3953 struct btrfs_trans_handle
*trans
;
3954 struct btrfs_root
*root
= device
->dev_root
;
3955 struct btrfs_dev_extent
*dev_extent
= NULL
;
3956 struct btrfs_path
*path
;
3964 bool retried
= false;
3965 struct extent_buffer
*l
;
3966 struct btrfs_key key
;
3967 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3968 u64 old_total
= btrfs_super_total_bytes(super_copy
);
3969 u64 old_size
= btrfs_device_get_total_bytes(device
);
3970 u64 diff
= old_size
- new_size
;
3972 if (device
->is_tgtdev_for_dev_replace
)
3975 path
= btrfs_alloc_path();
3983 btrfs_device_set_total_bytes(device
, new_size
);
3984 if (device
->writeable
) {
3985 device
->fs_devices
->total_rw_bytes
-= diff
;
3986 spin_lock(&root
->fs_info
->free_chunk_lock
);
3987 root
->fs_info
->free_chunk_space
-= diff
;
3988 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3990 unlock_chunks(root
);
3993 key
.objectid
= device
->devid
;
3994 key
.offset
= (u64
)-1;
3995 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3998 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4002 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4007 btrfs_release_path(path
);
4012 slot
= path
->slots
[0];
4013 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4015 if (key
.objectid
!= device
->devid
) {
4016 btrfs_release_path(path
);
4020 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4021 length
= btrfs_dev_extent_length(l
, dev_extent
);
4023 if (key
.offset
+ length
<= new_size
) {
4024 btrfs_release_path(path
);
4028 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
4029 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
4030 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4031 btrfs_release_path(path
);
4033 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
4035 if (ret
&& ret
!= -ENOSPC
)
4039 } while (key
.offset
-- > 0);
4041 if (failed
&& !retried
) {
4045 } else if (failed
&& retried
) {
4049 btrfs_device_set_total_bytes(device
, old_size
);
4050 if (device
->writeable
)
4051 device
->fs_devices
->total_rw_bytes
+= diff
;
4052 spin_lock(&root
->fs_info
->free_chunk_lock
);
4053 root
->fs_info
->free_chunk_space
+= diff
;
4054 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4055 unlock_chunks(root
);
4059 /* Shrinking succeeded, else we would be at "done". */
4060 trans
= btrfs_start_transaction(root
, 0);
4061 if (IS_ERR(trans
)) {
4062 ret
= PTR_ERR(trans
);
4067 btrfs_device_set_disk_total_bytes(device
, new_size
);
4068 if (list_empty(&device
->resized_list
))
4069 list_add_tail(&device
->resized_list
,
4070 &root
->fs_info
->fs_devices
->resized_devices
);
4072 WARN_ON(diff
> old_total
);
4073 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4074 unlock_chunks(root
);
4076 /* Now btrfs_update_device() will change the on-disk size. */
4077 ret
= btrfs_update_device(trans
, device
);
4078 btrfs_end_transaction(trans
, root
);
4080 btrfs_free_path(path
);
4084 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4085 struct btrfs_key
*key
,
4086 struct btrfs_chunk
*chunk
, int item_size
)
4088 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4089 struct btrfs_disk_key disk_key
;
4094 array_size
= btrfs_super_sys_array_size(super_copy
);
4095 if (array_size
+ item_size
+ sizeof(disk_key
)
4096 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4097 unlock_chunks(root
);
4101 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4102 btrfs_cpu_key_to_disk(&disk_key
, key
);
4103 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4104 ptr
+= sizeof(disk_key
);
4105 memcpy(ptr
, chunk
, item_size
);
4106 item_size
+= sizeof(disk_key
);
4107 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4108 unlock_chunks(root
);
4114 * sort the devices in descending order by max_avail, total_avail
4116 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4118 const struct btrfs_device_info
*di_a
= a
;
4119 const struct btrfs_device_info
*di_b
= b
;
4121 if (di_a
->max_avail
> di_b
->max_avail
)
4123 if (di_a
->max_avail
< di_b
->max_avail
)
4125 if (di_a
->total_avail
> di_b
->total_avail
)
4127 if (di_a
->total_avail
< di_b
->total_avail
)
4132 static struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
4133 [BTRFS_RAID_RAID10
] = {
4136 .devs_max
= 0, /* 0 == as many as possible */
4138 .devs_increment
= 2,
4141 [BTRFS_RAID_RAID1
] = {
4146 .devs_increment
= 2,
4149 [BTRFS_RAID_DUP
] = {
4154 .devs_increment
= 1,
4157 [BTRFS_RAID_RAID0
] = {
4162 .devs_increment
= 1,
4165 [BTRFS_RAID_SINGLE
] = {
4170 .devs_increment
= 1,
4173 [BTRFS_RAID_RAID5
] = {
4178 .devs_increment
= 1,
4181 [BTRFS_RAID_RAID6
] = {
4186 .devs_increment
= 1,
4191 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4193 /* TODO allow them to set a preferred stripe size */
4197 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4199 if (!(type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)))
4202 btrfs_set_fs_incompat(info
, RAID56
);
4205 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4206 - sizeof(struct btrfs_item) \
4207 - sizeof(struct btrfs_chunk)) \
4208 / sizeof(struct btrfs_stripe) + 1)
4210 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4211 - 2 * sizeof(struct btrfs_disk_key) \
4212 - 2 * sizeof(struct btrfs_chunk)) \
4213 / sizeof(struct btrfs_stripe) + 1)
4215 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4216 struct btrfs_root
*extent_root
, u64 start
,
4219 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4220 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4221 struct list_head
*cur
;
4222 struct map_lookup
*map
= NULL
;
4223 struct extent_map_tree
*em_tree
;
4224 struct extent_map
*em
;
4225 struct btrfs_device_info
*devices_info
= NULL
;
4227 int num_stripes
; /* total number of stripes to allocate */
4228 int data_stripes
; /* number of stripes that count for
4230 int sub_stripes
; /* sub_stripes info for map */
4231 int dev_stripes
; /* stripes per dev */
4232 int devs_max
; /* max devs to use */
4233 int devs_min
; /* min devs needed */
4234 int devs_increment
; /* ndevs has to be a multiple of this */
4235 int ncopies
; /* how many copies to data has */
4237 u64 max_stripe_size
;
4241 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4247 BUG_ON(!alloc_profile_is_valid(type
, 0));
4249 if (list_empty(&fs_devices
->alloc_list
))
4252 index
= __get_raid_index(type
);
4254 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4255 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4256 devs_max
= btrfs_raid_array
[index
].devs_max
;
4257 devs_min
= btrfs_raid_array
[index
].devs_min
;
4258 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4259 ncopies
= btrfs_raid_array
[index
].ncopies
;
4261 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4262 max_stripe_size
= 1024 * 1024 * 1024;
4263 max_chunk_size
= 10 * max_stripe_size
;
4265 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4266 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4267 /* for larger filesystems, use larger metadata chunks */
4268 if (fs_devices
->total_rw_bytes
> 50ULL * 1024 * 1024 * 1024)
4269 max_stripe_size
= 1024 * 1024 * 1024;
4271 max_stripe_size
= 256 * 1024 * 1024;
4272 max_chunk_size
= max_stripe_size
;
4274 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4275 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4276 max_stripe_size
= 32 * 1024 * 1024;
4277 max_chunk_size
= 2 * max_stripe_size
;
4279 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4281 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4286 /* we don't want a chunk larger than 10% of writeable space */
4287 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4290 devices_info
= kzalloc(sizeof(*devices_info
) * fs_devices
->rw_devices
,
4295 cur
= fs_devices
->alloc_list
.next
;
4298 * in the first pass through the devices list, we gather information
4299 * about the available holes on each device.
4302 while (cur
!= &fs_devices
->alloc_list
) {
4303 struct btrfs_device
*device
;
4307 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4311 if (!device
->writeable
) {
4313 "BTRFS: read-only device in alloc_list\n");
4317 if (!device
->in_fs_metadata
||
4318 device
->is_tgtdev_for_dev_replace
)
4321 if (device
->total_bytes
> device
->bytes_used
)
4322 total_avail
= device
->total_bytes
- device
->bytes_used
;
4326 /* If there is no space on this device, skip it. */
4327 if (total_avail
== 0)
4330 ret
= find_free_dev_extent(trans
, device
,
4331 max_stripe_size
* dev_stripes
,
4332 &dev_offset
, &max_avail
);
4333 if (ret
&& ret
!= -ENOSPC
)
4337 max_avail
= max_stripe_size
* dev_stripes
;
4339 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4342 if (ndevs
== fs_devices
->rw_devices
) {
4343 WARN(1, "%s: found more than %llu devices\n",
4344 __func__
, fs_devices
->rw_devices
);
4347 devices_info
[ndevs
].dev_offset
= dev_offset
;
4348 devices_info
[ndevs
].max_avail
= max_avail
;
4349 devices_info
[ndevs
].total_avail
= total_avail
;
4350 devices_info
[ndevs
].dev
= device
;
4355 * now sort the devices by hole size / available space
4357 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4358 btrfs_cmp_device_info
, NULL
);
4360 /* round down to number of usable stripes */
4361 ndevs
-= ndevs
% devs_increment
;
4363 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4368 if (devs_max
&& ndevs
> devs_max
)
4371 * the primary goal is to maximize the number of stripes, so use as many
4372 * devices as possible, even if the stripes are not maximum sized.
4374 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4375 num_stripes
= ndevs
* dev_stripes
;
4378 * this will have to be fixed for RAID1 and RAID10 over
4381 data_stripes
= num_stripes
/ ncopies
;
4383 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4384 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4385 btrfs_super_stripesize(info
->super_copy
));
4386 data_stripes
= num_stripes
- 1;
4388 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4389 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4390 btrfs_super_stripesize(info
->super_copy
));
4391 data_stripes
= num_stripes
- 2;
4395 * Use the number of data stripes to figure out how big this chunk
4396 * is really going to be in terms of logical address space,
4397 * and compare that answer with the max chunk size
4399 if (stripe_size
* data_stripes
> max_chunk_size
) {
4400 u64 mask
= (1ULL << 24) - 1;
4401 stripe_size
= max_chunk_size
;
4402 do_div(stripe_size
, data_stripes
);
4404 /* bump the answer up to a 16MB boundary */
4405 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4407 /* but don't go higher than the limits we found
4408 * while searching for free extents
4410 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4411 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4414 do_div(stripe_size
, dev_stripes
);
4416 /* align to BTRFS_STRIPE_LEN */
4417 do_div(stripe_size
, raid_stripe_len
);
4418 stripe_size
*= raid_stripe_len
;
4420 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4425 map
->num_stripes
= num_stripes
;
4427 for (i
= 0; i
< ndevs
; ++i
) {
4428 for (j
= 0; j
< dev_stripes
; ++j
) {
4429 int s
= i
* dev_stripes
+ j
;
4430 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4431 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4435 map
->sector_size
= extent_root
->sectorsize
;
4436 map
->stripe_len
= raid_stripe_len
;
4437 map
->io_align
= raid_stripe_len
;
4438 map
->io_width
= raid_stripe_len
;
4440 map
->sub_stripes
= sub_stripes
;
4442 num_bytes
= stripe_size
* data_stripes
;
4444 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4446 em
= alloc_extent_map();
4452 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4453 em
->bdev
= (struct block_device
*)map
;
4455 em
->len
= num_bytes
;
4456 em
->block_start
= 0;
4457 em
->block_len
= em
->len
;
4458 em
->orig_block_len
= stripe_size
;
4460 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4461 write_lock(&em_tree
->lock
);
4462 ret
= add_extent_mapping(em_tree
, em
, 0);
4464 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4465 atomic_inc(&em
->refs
);
4467 write_unlock(&em_tree
->lock
);
4469 free_extent_map(em
);
4473 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4474 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4477 goto error_del_extent
;
4479 for (i
= 0; i
< map
->num_stripes
; i
++) {
4480 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4481 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4484 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4485 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4487 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4489 free_extent_map(em
);
4490 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4492 kfree(devices_info
);
4496 write_lock(&em_tree
->lock
);
4497 remove_extent_mapping(em_tree
, em
);
4498 write_unlock(&em_tree
->lock
);
4500 /* One for our allocation */
4501 free_extent_map(em
);
4502 /* One for the tree reference */
4503 free_extent_map(em
);
4504 /* One for the pending_chunks list reference */
4505 free_extent_map(em
);
4507 kfree(devices_info
);
4511 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4512 struct btrfs_root
*extent_root
,
4513 u64 chunk_offset
, u64 chunk_size
)
4515 struct btrfs_key key
;
4516 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4517 struct btrfs_device
*device
;
4518 struct btrfs_chunk
*chunk
;
4519 struct btrfs_stripe
*stripe
;
4520 struct extent_map_tree
*em_tree
;
4521 struct extent_map
*em
;
4522 struct map_lookup
*map
;
4529 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4530 read_lock(&em_tree
->lock
);
4531 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4532 read_unlock(&em_tree
->lock
);
4535 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4536 "%Lu len %Lu", chunk_offset
, chunk_size
);
4540 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4541 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4542 " %Lu-%Lu, found %Lu-%Lu", chunk_offset
,
4543 chunk_size
, em
->start
, em
->len
);
4544 free_extent_map(em
);
4548 map
= (struct map_lookup
*)em
->bdev
;
4549 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4550 stripe_size
= em
->orig_block_len
;
4552 chunk
= kzalloc(item_size
, GFP_NOFS
);
4558 for (i
= 0; i
< map
->num_stripes
; i
++) {
4559 device
= map
->stripes
[i
].dev
;
4560 dev_offset
= map
->stripes
[i
].physical
;
4562 ret
= btrfs_update_device(trans
, device
);
4565 ret
= btrfs_alloc_dev_extent(trans
, device
,
4566 chunk_root
->root_key
.objectid
,
4567 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4568 chunk_offset
, dev_offset
,
4574 stripe
= &chunk
->stripe
;
4575 for (i
= 0; i
< map
->num_stripes
; i
++) {
4576 device
= map
->stripes
[i
].dev
;
4577 dev_offset
= map
->stripes
[i
].physical
;
4579 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4580 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4581 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4585 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4586 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4587 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4588 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4589 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4590 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4591 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4592 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4593 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4595 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4596 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4597 key
.offset
= chunk_offset
;
4599 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4600 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4602 * TODO: Cleanup of inserted chunk root in case of
4605 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4611 free_extent_map(em
);
4616 * Chunk allocation falls into two parts. The first part does works
4617 * that make the new allocated chunk useable, but not do any operation
4618 * that modifies the chunk tree. The second part does the works that
4619 * require modifying the chunk tree. This division is important for the
4620 * bootstrap process of adding storage to a seed btrfs.
4622 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4623 struct btrfs_root
*extent_root
, u64 type
)
4627 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4628 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4631 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4632 struct btrfs_root
*root
,
4633 struct btrfs_device
*device
)
4636 u64 sys_chunk_offset
;
4638 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4639 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4642 chunk_offset
= find_next_chunk(fs_info
);
4643 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4644 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4649 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4650 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4651 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4656 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
4660 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
4661 BTRFS_BLOCK_GROUP_RAID10
|
4662 BTRFS_BLOCK_GROUP_RAID5
|
4663 BTRFS_BLOCK_GROUP_DUP
)) {
4665 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
4674 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
4676 struct extent_map
*em
;
4677 struct map_lookup
*map
;
4678 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4683 read_lock(&map_tree
->map_tree
.lock
);
4684 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
4685 read_unlock(&map_tree
->map_tree
.lock
);
4689 map
= (struct map_lookup
*)em
->bdev
;
4690 for (i
= 0; i
< map
->num_stripes
; i
++) {
4691 if (map
->stripes
[i
].dev
->missing
) {
4696 if (!map
->stripes
[i
].dev
->writeable
) {
4703 * If the number of missing devices is larger than max errors,
4704 * we can not write the data into that chunk successfully, so
4707 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
4710 free_extent_map(em
);
4714 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
4716 extent_map_tree_init(&tree
->map_tree
);
4719 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
4721 struct extent_map
*em
;
4724 write_lock(&tree
->map_tree
.lock
);
4725 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
4727 remove_extent_mapping(&tree
->map_tree
, em
);
4728 write_unlock(&tree
->map_tree
.lock
);
4732 free_extent_map(em
);
4733 /* once for the tree */
4734 free_extent_map(em
);
4738 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
4740 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4741 struct extent_map
*em
;
4742 struct map_lookup
*map
;
4743 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4746 read_lock(&em_tree
->lock
);
4747 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4748 read_unlock(&em_tree
->lock
);
4751 * We could return errors for these cases, but that could get ugly and
4752 * we'd probably do the same thing which is just not do anything else
4753 * and exit, so return 1 so the callers don't try to use other copies.
4756 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
4761 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4762 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
4763 "%Lu-%Lu", logical
, logical
+len
, em
->start
,
4764 em
->start
+ em
->len
);
4765 free_extent_map(em
);
4769 map
= (struct map_lookup
*)em
->bdev
;
4770 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
4771 ret
= map
->num_stripes
;
4772 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
4773 ret
= map
->sub_stripes
;
4774 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
4776 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
4780 free_extent_map(em
);
4782 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
4783 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
4785 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
4790 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
4791 struct btrfs_mapping_tree
*map_tree
,
4794 struct extent_map
*em
;
4795 struct map_lookup
*map
;
4796 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4797 unsigned long len
= root
->sectorsize
;
4799 read_lock(&em_tree
->lock
);
4800 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4801 read_unlock(&em_tree
->lock
);
4804 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4805 map
= (struct map_lookup
*)em
->bdev
;
4806 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4807 BTRFS_BLOCK_GROUP_RAID6
)) {
4808 len
= map
->stripe_len
* nr_data_stripes(map
);
4810 free_extent_map(em
);
4814 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
4815 u64 logical
, u64 len
, int mirror_num
)
4817 struct extent_map
*em
;
4818 struct map_lookup
*map
;
4819 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4822 read_lock(&em_tree
->lock
);
4823 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4824 read_unlock(&em_tree
->lock
);
4827 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4828 map
= (struct map_lookup
*)em
->bdev
;
4829 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4830 BTRFS_BLOCK_GROUP_RAID6
))
4832 free_extent_map(em
);
4836 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
4837 struct map_lookup
*map
, int first
, int num
,
4838 int optimal
, int dev_replace_is_ongoing
)
4842 struct btrfs_device
*srcdev
;
4844 if (dev_replace_is_ongoing
&&
4845 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
4846 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
4847 srcdev
= fs_info
->dev_replace
.srcdev
;
4852 * try to avoid the drive that is the source drive for a
4853 * dev-replace procedure, only choose it if no other non-missing
4854 * mirror is available
4856 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
4857 if (map
->stripes
[optimal
].dev
->bdev
&&
4858 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
4860 for (i
= first
; i
< first
+ num
; i
++) {
4861 if (map
->stripes
[i
].dev
->bdev
&&
4862 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
4867 /* we couldn't find one that doesn't fail. Just return something
4868 * and the io error handling code will clean up eventually
4873 static inline int parity_smaller(u64 a
, u64 b
)
4878 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4879 static void sort_parity_stripes(struct btrfs_bio
*bbio
, u64
*raid_map
)
4881 struct btrfs_bio_stripe s
;
4882 int real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
4890 for (i
= 0; i
< real_stripes
- 1; i
++) {
4891 if (parity_smaller(raid_map
[i
], raid_map
[i
+1])) {
4892 s
= bbio
->stripes
[i
];
4894 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
4895 raid_map
[i
] = raid_map
[i
+1];
4896 bbio
->stripes
[i
+1] = s
;
4899 if (bbio
->tgtdev_map
) {
4900 m
= bbio
->tgtdev_map
[i
];
4901 bbio
->tgtdev_map
[i
] =
4902 bbio
->tgtdev_map
[i
+ 1];
4903 bbio
->tgtdev_map
[i
+ 1] = m
;
4912 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
4913 u64 logical
, u64
*length
,
4914 struct btrfs_bio
**bbio_ret
,
4915 int mirror_num
, u64
**raid_map_ret
)
4917 struct extent_map
*em
;
4918 struct map_lookup
*map
;
4919 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4920 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4923 u64 stripe_end_offset
;
4928 u64
*raid_map
= NULL
;
4934 int tgtdev_indexes
= 0;
4935 struct btrfs_bio
*bbio
= NULL
;
4936 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
4937 int dev_replace_is_ongoing
= 0;
4938 int num_alloc_stripes
;
4939 int patch_the_first_stripe_for_dev_replace
= 0;
4940 u64 physical_to_patch_in_first_stripe
= 0;
4941 u64 raid56_full_stripe_start
= (u64
)-1;
4943 read_lock(&em_tree
->lock
);
4944 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
4945 read_unlock(&em_tree
->lock
);
4948 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
4953 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4954 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
4955 "found %Lu-%Lu", logical
, em
->start
,
4956 em
->start
+ em
->len
);
4957 free_extent_map(em
);
4961 map
= (struct map_lookup
*)em
->bdev
;
4962 offset
= logical
- em
->start
;
4964 stripe_len
= map
->stripe_len
;
4967 * stripe_nr counts the total number of stripes we have to stride
4968 * to get to this block
4970 do_div(stripe_nr
, stripe_len
);
4972 stripe_offset
= stripe_nr
* stripe_len
;
4973 BUG_ON(offset
< stripe_offset
);
4975 /* stripe_offset is the offset of this block in its stripe*/
4976 stripe_offset
= offset
- stripe_offset
;
4978 /* if we're here for raid56, we need to know the stripe aligned start */
4979 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)) {
4980 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
4981 raid56_full_stripe_start
= offset
;
4983 /* allow a write of a full stripe, but make sure we don't
4984 * allow straddling of stripes
4986 do_div(raid56_full_stripe_start
, full_stripe_len
);
4987 raid56_full_stripe_start
*= full_stripe_len
;
4990 if (rw
& REQ_DISCARD
) {
4991 /* we don't discard raid56 yet */
4993 (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)) {
4997 *length
= min_t(u64
, em
->len
- offset
, *length
);
4998 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5000 /* For writes to RAID[56], allow a full stripeset across all disks.
5001 For other RAID types and for RAID[56] reads, just allow a single
5002 stripe (on a single disk). */
5003 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
) &&
5005 max_len
= stripe_len
* nr_data_stripes(map
) -
5006 (offset
- raid56_full_stripe_start
);
5008 /* we limit the length of each bio to what fits in a stripe */
5009 max_len
= stripe_len
- stripe_offset
;
5011 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5013 *length
= em
->len
- offset
;
5016 /* This is for when we're called from btrfs_merge_bio_hook() and all
5017 it cares about is the length */
5021 btrfs_dev_replace_lock(dev_replace
);
5022 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5023 if (!dev_replace_is_ongoing
)
5024 btrfs_dev_replace_unlock(dev_replace
);
5026 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5027 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
5028 dev_replace
->tgtdev
!= NULL
) {
5030 * in dev-replace case, for repair case (that's the only
5031 * case where the mirror is selected explicitly when
5032 * calling btrfs_map_block), blocks left of the left cursor
5033 * can also be read from the target drive.
5034 * For REQ_GET_READ_MIRRORS, the target drive is added as
5035 * the last one to the array of stripes. For READ, it also
5036 * needs to be supported using the same mirror number.
5037 * If the requested block is not left of the left cursor,
5038 * EIO is returned. This can happen because btrfs_num_copies()
5039 * returns one more in the dev-replace case.
5041 u64 tmp_length
= *length
;
5042 struct btrfs_bio
*tmp_bbio
= NULL
;
5043 int tmp_num_stripes
;
5044 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5045 int index_srcdev
= 0;
5047 u64 physical_of_found
= 0;
5049 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5050 logical
, &tmp_length
, &tmp_bbio
, 0, NULL
);
5052 WARN_ON(tmp_bbio
!= NULL
);
5056 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5057 if (mirror_num
> tmp_num_stripes
) {
5059 * REQ_GET_READ_MIRRORS does not contain this
5060 * mirror, that means that the requested area
5061 * is not left of the left cursor
5069 * process the rest of the function using the mirror_num
5070 * of the source drive. Therefore look it up first.
5071 * At the end, patch the device pointer to the one of the
5074 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5075 if (tmp_bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5077 * In case of DUP, in order to keep it
5078 * simple, only add the mirror with the
5079 * lowest physical address
5082 physical_of_found
<=
5083 tmp_bbio
->stripes
[i
].physical
)
5088 tmp_bbio
->stripes
[i
].physical
;
5093 mirror_num
= index_srcdev
+ 1;
5094 patch_the_first_stripe_for_dev_replace
= 1;
5095 physical_to_patch_in_first_stripe
= physical_of_found
;
5104 } else if (mirror_num
> map
->num_stripes
) {
5110 stripe_nr_orig
= stripe_nr
;
5111 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5112 do_div(stripe_nr_end
, map
->stripe_len
);
5113 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5116 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5117 if (rw
& REQ_DISCARD
)
5118 num_stripes
= min_t(u64
, map
->num_stripes
,
5119 stripe_nr_end
- stripe_nr_orig
);
5120 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
5121 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)))
5123 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5124 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
5125 num_stripes
= map
->num_stripes
;
5126 else if (mirror_num
)
5127 stripe_index
= mirror_num
- 1;
5129 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5131 current
->pid
% map
->num_stripes
,
5132 dev_replace_is_ongoing
);
5133 mirror_num
= stripe_index
+ 1;
5136 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5137 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
5138 num_stripes
= map
->num_stripes
;
5139 } else if (mirror_num
) {
5140 stripe_index
= mirror_num
- 1;
5145 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5146 int factor
= map
->num_stripes
/ map
->sub_stripes
;
5148 stripe_index
= do_div(stripe_nr
, factor
);
5149 stripe_index
*= map
->sub_stripes
;
5151 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5152 num_stripes
= map
->sub_stripes
;
5153 else if (rw
& REQ_DISCARD
)
5154 num_stripes
= min_t(u64
, map
->sub_stripes
*
5155 (stripe_nr_end
- stripe_nr_orig
),
5157 else if (mirror_num
)
5158 stripe_index
+= mirror_num
- 1;
5160 int old_stripe_index
= stripe_index
;
5161 stripe_index
= find_live_mirror(fs_info
, map
,
5163 map
->sub_stripes
, stripe_index
+
5164 current
->pid
% map
->sub_stripes
,
5165 dev_replace_is_ongoing
);
5166 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5169 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
5170 BTRFS_BLOCK_GROUP_RAID6
)) {
5174 ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5178 /* push stripe_nr back to the start of the full stripe */
5179 stripe_nr
= raid56_full_stripe_start
;
5180 do_div(stripe_nr
, stripe_len
* nr_data_stripes(map
));
5182 /* RAID[56] write or recovery. Return all stripes */
5183 num_stripes
= map
->num_stripes
;
5184 max_errors
= nr_parity_stripes(map
);
5186 raid_map
= kmalloc_array(num_stripes
, sizeof(u64
),
5193 /* Work out the disk rotation on this stripe-set */
5195 rot
= do_div(tmp
, num_stripes
);
5197 /* Fill in the logical address of each stripe */
5198 tmp
= stripe_nr
* nr_data_stripes(map
);
5199 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5200 raid_map
[(i
+rot
) % num_stripes
] =
5201 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5203 raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5204 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5205 raid_map
[(i
+rot
+1) % num_stripes
] =
5208 *length
= map
->stripe_len
;
5213 * Mirror #0 or #1 means the original data block.
5214 * Mirror #2 is RAID5 parity block.
5215 * Mirror #3 is RAID6 Q block.
5217 stripe_index
= do_div(stripe_nr
, nr_data_stripes(map
));
5219 stripe_index
= nr_data_stripes(map
) +
5222 /* We distribute the parity blocks across stripes */
5223 tmp
= stripe_nr
+ stripe_index
;
5224 stripe_index
= do_div(tmp
, map
->num_stripes
);
5225 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
|
5226 REQ_GET_READ_MIRRORS
)) && mirror_num
<= 1)
5231 * after this do_div call, stripe_nr is the number of stripes
5232 * on this device we have to walk to find the data, and
5233 * stripe_index is the number of our device in the stripe array
5235 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
5236 mirror_num
= stripe_index
+ 1;
5238 BUG_ON(stripe_index
>= map
->num_stripes
);
5240 num_alloc_stripes
= num_stripes
;
5241 if (dev_replace_is_ongoing
) {
5242 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
5243 num_alloc_stripes
<<= 1;
5244 if (rw
& REQ_GET_READ_MIRRORS
)
5245 num_alloc_stripes
++;
5246 tgtdev_indexes
= num_stripes
;
5249 bbio
= kzalloc(btrfs_bio_size(num_alloc_stripes
, tgtdev_indexes
),
5256 atomic_set(&bbio
->error
, 0);
5257 if (dev_replace_is_ongoing
)
5258 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5260 if (rw
& REQ_DISCARD
) {
5262 int sub_stripes
= 0;
5263 u64 stripes_per_dev
= 0;
5264 u32 remaining_stripes
= 0;
5265 u32 last_stripe
= 0;
5268 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5269 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5272 sub_stripes
= map
->sub_stripes
;
5274 factor
= map
->num_stripes
/ sub_stripes
;
5275 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5278 &remaining_stripes
);
5279 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5280 last_stripe
*= sub_stripes
;
5283 for (i
= 0; i
< num_stripes
; i
++) {
5284 bbio
->stripes
[i
].physical
=
5285 map
->stripes
[stripe_index
].physical
+
5286 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5287 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5289 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5290 BTRFS_BLOCK_GROUP_RAID10
)) {
5291 bbio
->stripes
[i
].length
= stripes_per_dev
*
5294 if (i
/ sub_stripes
< remaining_stripes
)
5295 bbio
->stripes
[i
].length
+=
5299 * Special for the first stripe and
5302 * |-------|...|-------|
5306 if (i
< sub_stripes
)
5307 bbio
->stripes
[i
].length
-=
5310 if (stripe_index
>= last_stripe
&&
5311 stripe_index
<= (last_stripe
+
5313 bbio
->stripes
[i
].length
-=
5316 if (i
== sub_stripes
- 1)
5319 bbio
->stripes
[i
].length
= *length
;
5322 if (stripe_index
== map
->num_stripes
) {
5323 /* This could only happen for RAID0/10 */
5329 for (i
= 0; i
< num_stripes
; i
++) {
5330 bbio
->stripes
[i
].physical
=
5331 map
->stripes
[stripe_index
].physical
+
5333 stripe_nr
* map
->stripe_len
;
5334 bbio
->stripes
[i
].dev
=
5335 map
->stripes
[stripe_index
].dev
;
5340 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5341 max_errors
= btrfs_chunk_max_errors(map
);
5344 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5345 dev_replace
->tgtdev
!= NULL
) {
5346 int index_where_to_add
;
5347 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5350 * duplicate the write operations while the dev replace
5351 * procedure is running. Since the copying of the old disk
5352 * to the new disk takes place at run time while the
5353 * filesystem is mounted writable, the regular write
5354 * operations to the old disk have to be duplicated to go
5355 * to the new disk as well.
5356 * Note that device->missing is handled by the caller, and
5357 * that the write to the old disk is already set up in the
5360 index_where_to_add
= num_stripes
;
5361 for (i
= 0; i
< num_stripes
; i
++) {
5362 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5363 /* write to new disk, too */
5364 struct btrfs_bio_stripe
*new =
5365 bbio
->stripes
+ index_where_to_add
;
5366 struct btrfs_bio_stripe
*old
=
5369 new->physical
= old
->physical
;
5370 new->length
= old
->length
;
5371 new->dev
= dev_replace
->tgtdev
;
5372 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5373 index_where_to_add
++;
5378 num_stripes
= index_where_to_add
;
5379 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5380 dev_replace
->tgtdev
!= NULL
) {
5381 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5382 int index_srcdev
= 0;
5384 u64 physical_of_found
= 0;
5387 * During the dev-replace procedure, the target drive can
5388 * also be used to read data in case it is needed to repair
5389 * a corrupt block elsewhere. This is possible if the
5390 * requested area is left of the left cursor. In this area,
5391 * the target drive is a full copy of the source drive.
5393 for (i
= 0; i
< num_stripes
; i
++) {
5394 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5396 * In case of DUP, in order to keep it
5397 * simple, only add the mirror with the
5398 * lowest physical address
5401 physical_of_found
<=
5402 bbio
->stripes
[i
].physical
)
5406 physical_of_found
= bbio
->stripes
[i
].physical
;
5410 u64 length
= map
->stripe_len
;
5412 if (physical_of_found
+ length
<=
5413 dev_replace
->cursor_left
) {
5414 struct btrfs_bio_stripe
*tgtdev_stripe
=
5415 bbio
->stripes
+ num_stripes
;
5417 tgtdev_stripe
->physical
= physical_of_found
;
5418 tgtdev_stripe
->length
=
5419 bbio
->stripes
[index_srcdev
].length
;
5420 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5421 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5430 bbio
->num_stripes
= num_stripes
;
5431 bbio
->max_errors
= max_errors
;
5432 bbio
->mirror_num
= mirror_num
;
5433 bbio
->num_tgtdevs
= tgtdev_indexes
;
5436 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5437 * mirror_num == num_stripes + 1 && dev_replace target drive is
5438 * available as a mirror
5440 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5441 WARN_ON(num_stripes
> 1);
5442 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5443 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5444 bbio
->mirror_num
= map
->num_stripes
+ 1;
5447 sort_parity_stripes(bbio
, raid_map
);
5448 *raid_map_ret
= raid_map
;
5451 if (dev_replace_is_ongoing
)
5452 btrfs_dev_replace_unlock(dev_replace
);
5453 free_extent_map(em
);
5457 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5458 u64 logical
, u64
*length
,
5459 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5461 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5465 /* For Scrub/replace */
5466 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int rw
,
5467 u64 logical
, u64
*length
,
5468 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5471 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5472 mirror_num
, raid_map_ret
);
5475 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5476 u64 chunk_start
, u64 physical
, u64 devid
,
5477 u64
**logical
, int *naddrs
, int *stripe_len
)
5479 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5480 struct extent_map
*em
;
5481 struct map_lookup
*map
;
5489 read_lock(&em_tree
->lock
);
5490 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5491 read_unlock(&em_tree
->lock
);
5494 printk(KERN_ERR
"BTRFS: couldn't find em for chunk %Lu\n",
5499 if (em
->start
!= chunk_start
) {
5500 printk(KERN_ERR
"BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5501 em
->start
, chunk_start
);
5502 free_extent_map(em
);
5505 map
= (struct map_lookup
*)em
->bdev
;
5508 rmap_len
= map
->stripe_len
;
5510 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5511 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
5512 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5513 do_div(length
, map
->num_stripes
);
5514 else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
5515 BTRFS_BLOCK_GROUP_RAID6
)) {
5516 do_div(length
, nr_data_stripes(map
));
5517 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5520 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
5521 BUG_ON(!buf
); /* -ENOMEM */
5523 for (i
= 0; i
< map
->num_stripes
; i
++) {
5524 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5526 if (map
->stripes
[i
].physical
> physical
||
5527 map
->stripes
[i
].physical
+ length
<= physical
)
5530 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5531 do_div(stripe_nr
, map
->stripe_len
);
5533 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5534 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5535 do_div(stripe_nr
, map
->sub_stripes
);
5536 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5537 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5538 } /* else if RAID[56], multiply by nr_data_stripes().
5539 * Alternatively, just use rmap_len below instead of
5540 * map->stripe_len */
5542 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5543 WARN_ON(nr
>= map
->num_stripes
);
5544 for (j
= 0; j
< nr
; j
++) {
5545 if (buf
[j
] == bytenr
)
5549 WARN_ON(nr
>= map
->num_stripes
);
5556 *stripe_len
= rmap_len
;
5558 free_extent_map(em
);
5562 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
, int err
)
5564 if (likely(bbio
->flags
& BTRFS_BIO_ORIG_BIO_SUBMITTED
))
5565 bio_endio_nodec(bio
, err
);
5567 bio_endio(bio
, err
);
5571 static void btrfs_end_bio(struct bio
*bio
, int err
)
5573 struct btrfs_bio
*bbio
= bio
->bi_private
;
5574 struct btrfs_device
*dev
= bbio
->stripes
[0].dev
;
5575 int is_orig_bio
= 0;
5578 atomic_inc(&bbio
->error
);
5579 if (err
== -EIO
|| err
== -EREMOTEIO
) {
5580 unsigned int stripe_index
=
5581 btrfs_io_bio(bio
)->stripe_index
;
5583 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5584 dev
= bbio
->stripes
[stripe_index
].dev
;
5586 if (bio
->bi_rw
& WRITE
)
5587 btrfs_dev_stat_inc(dev
,
5588 BTRFS_DEV_STAT_WRITE_ERRS
);
5590 btrfs_dev_stat_inc(dev
,
5591 BTRFS_DEV_STAT_READ_ERRS
);
5592 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5593 btrfs_dev_stat_inc(dev
,
5594 BTRFS_DEV_STAT_FLUSH_ERRS
);
5595 btrfs_dev_stat_print_on_error(dev
);
5600 if (bio
== bbio
->orig_bio
)
5603 btrfs_bio_counter_dec(bbio
->fs_info
);
5605 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5608 bio
= bbio
->orig_bio
;
5611 bio
->bi_private
= bbio
->private;
5612 bio
->bi_end_io
= bbio
->end_io
;
5613 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5614 /* only send an error to the higher layers if it is
5615 * beyond the tolerance of the btrfs bio
5617 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5621 * this bio is actually up to date, we didn't
5622 * go over the max number of errors
5624 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5628 btrfs_end_bbio(bbio
, bio
, err
);
5629 } else if (!is_orig_bio
) {
5635 * see run_scheduled_bios for a description of why bios are collected for
5638 * This will add one bio to the pending list for a device and make sure
5639 * the work struct is scheduled.
5641 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5642 struct btrfs_device
*device
,
5643 int rw
, struct bio
*bio
)
5645 int should_queue
= 1;
5646 struct btrfs_pending_bios
*pending_bios
;
5648 if (device
->missing
|| !device
->bdev
) {
5649 bio_endio(bio
, -EIO
);
5653 /* don't bother with additional async steps for reads, right now */
5654 if (!(rw
& REQ_WRITE
)) {
5656 btrfsic_submit_bio(rw
, bio
);
5662 * nr_async_bios allows us to reliably return congestion to the
5663 * higher layers. Otherwise, the async bio makes it appear we have
5664 * made progress against dirty pages when we've really just put it
5665 * on a queue for later
5667 atomic_inc(&root
->fs_info
->nr_async_bios
);
5668 WARN_ON(bio
->bi_next
);
5669 bio
->bi_next
= NULL
;
5672 spin_lock(&device
->io_lock
);
5673 if (bio
->bi_rw
& REQ_SYNC
)
5674 pending_bios
= &device
->pending_sync_bios
;
5676 pending_bios
= &device
->pending_bios
;
5678 if (pending_bios
->tail
)
5679 pending_bios
->tail
->bi_next
= bio
;
5681 pending_bios
->tail
= bio
;
5682 if (!pending_bios
->head
)
5683 pending_bios
->head
= bio
;
5684 if (device
->running_pending
)
5687 spin_unlock(&device
->io_lock
);
5690 btrfs_queue_work(root
->fs_info
->submit_workers
,
5694 static int bio_size_ok(struct block_device
*bdev
, struct bio
*bio
,
5697 struct bio_vec
*prev
;
5698 struct request_queue
*q
= bdev_get_queue(bdev
);
5699 unsigned int max_sectors
= queue_max_sectors(q
);
5700 struct bvec_merge_data bvm
= {
5702 .bi_sector
= sector
,
5703 .bi_rw
= bio
->bi_rw
,
5706 if (WARN_ON(bio
->bi_vcnt
== 0))
5709 prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
5710 if (bio_sectors(bio
) > max_sectors
)
5713 if (!q
->merge_bvec_fn
)
5716 bvm
.bi_size
= bio
->bi_iter
.bi_size
- prev
->bv_len
;
5717 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < prev
->bv_len
)
5722 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5723 struct bio
*bio
, u64 physical
, int dev_nr
,
5726 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
5728 bio
->bi_private
= bbio
;
5729 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
5730 bio
->bi_end_io
= btrfs_end_bio
;
5731 bio
->bi_iter
.bi_sector
= physical
>> 9;
5734 struct rcu_string
*name
;
5737 name
= rcu_dereference(dev
->name
);
5738 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5739 "(%s id %llu), size=%u\n", rw
,
5740 (u64
)bio
->bi_iter
.bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
5741 name
->str
, dev
->devid
, bio
->bi_iter
.bi_size
);
5745 bio
->bi_bdev
= dev
->bdev
;
5747 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
5750 btrfs_schedule_bio(root
, dev
, rw
, bio
);
5752 btrfsic_submit_bio(rw
, bio
);
5755 static int breakup_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5756 struct bio
*first_bio
, struct btrfs_device
*dev
,
5757 int dev_nr
, int rw
, int async
)
5759 struct bio_vec
*bvec
= first_bio
->bi_io_vec
;
5761 int nr_vecs
= bio_get_nr_vecs(dev
->bdev
);
5762 u64 physical
= bbio
->stripes
[dev_nr
].physical
;
5765 bio
= btrfs_bio_alloc(dev
->bdev
, physical
>> 9, nr_vecs
, GFP_NOFS
);
5769 while (bvec
<= (first_bio
->bi_io_vec
+ first_bio
->bi_vcnt
- 1)) {
5770 if (bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5771 bvec
->bv_offset
) < bvec
->bv_len
) {
5772 u64 len
= bio
->bi_iter
.bi_size
;
5774 atomic_inc(&bbio
->stripes_pending
);
5775 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
,
5783 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
, rw
, async
);
5787 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
5789 atomic_inc(&bbio
->error
);
5790 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5791 /* Shoud be the original bio. */
5792 WARN_ON(bio
!= bbio
->orig_bio
);
5794 bio
->bi_private
= bbio
->private;
5795 bio
->bi_end_io
= bbio
->end_io
;
5796 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5797 bio
->bi_iter
.bi_sector
= logical
>> 9;
5799 btrfs_end_bbio(bbio
, bio
, -EIO
);
5803 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
5804 int mirror_num
, int async_submit
)
5806 struct btrfs_device
*dev
;
5807 struct bio
*first_bio
= bio
;
5808 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
5811 u64
*raid_map
= NULL
;
5815 struct btrfs_bio
*bbio
= NULL
;
5817 length
= bio
->bi_iter
.bi_size
;
5818 map_length
= length
;
5820 btrfs_bio_counter_inc_blocked(root
->fs_info
);
5821 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
5822 mirror_num
, &raid_map
);
5824 btrfs_bio_counter_dec(root
->fs_info
);
5828 total_devs
= bbio
->num_stripes
;
5829 bbio
->orig_bio
= first_bio
;
5830 bbio
->private = first_bio
->bi_private
;
5831 bbio
->end_io
= first_bio
->bi_end_io
;
5832 bbio
->fs_info
= root
->fs_info
;
5833 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
5836 /* In this case, map_length has been set to the length of
5837 a single stripe; not the whole write */
5839 ret
= raid56_parity_write(root
, bio
, bbio
,
5840 raid_map
, map_length
);
5842 ret
= raid56_parity_recover(root
, bio
, bbio
,
5843 raid_map
, map_length
,
5847 btrfs_bio_counter_dec(root
->fs_info
);
5851 if (map_length
< length
) {
5852 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
5853 logical
, length
, map_length
);
5857 while (dev_nr
< total_devs
) {
5858 dev
= bbio
->stripes
[dev_nr
].dev
;
5859 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
5860 bbio_error(bbio
, first_bio
, logical
);
5866 * Check and see if we're ok with this bio based on it's size
5867 * and offset with the given device.
5869 if (!bio_size_ok(dev
->bdev
, first_bio
,
5870 bbio
->stripes
[dev_nr
].physical
>> 9)) {
5871 ret
= breakup_stripe_bio(root
, bbio
, first_bio
, dev
,
5872 dev_nr
, rw
, async_submit
);
5878 if (dev_nr
< total_devs
- 1) {
5879 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
5880 BUG_ON(!bio
); /* -ENOMEM */
5883 bbio
->flags
|= BTRFS_BIO_ORIG_BIO_SUBMITTED
;
5886 submit_stripe_bio(root
, bbio
, bio
,
5887 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
5891 btrfs_bio_counter_dec(root
->fs_info
);
5895 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
5898 struct btrfs_device
*device
;
5899 struct btrfs_fs_devices
*cur_devices
;
5901 cur_devices
= fs_info
->fs_devices
;
5902 while (cur_devices
) {
5904 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5905 device
= __find_device(&cur_devices
->devices
,
5910 cur_devices
= cur_devices
->seed
;
5915 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
5916 struct btrfs_fs_devices
*fs_devices
,
5917 u64 devid
, u8
*dev_uuid
)
5919 struct btrfs_device
*device
;
5921 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
5925 list_add(&device
->dev_list
, &fs_devices
->devices
);
5926 device
->fs_devices
= fs_devices
;
5927 fs_devices
->num_devices
++;
5929 device
->missing
= 1;
5930 fs_devices
->missing_devices
++;
5936 * btrfs_alloc_device - allocate struct btrfs_device
5937 * @fs_info: used only for generating a new devid, can be NULL if
5938 * devid is provided (i.e. @devid != NULL).
5939 * @devid: a pointer to devid for this device. If NULL a new devid
5941 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5944 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5945 * on error. Returned struct is not linked onto any lists and can be
5946 * destroyed with kfree() right away.
5948 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
5952 struct btrfs_device
*dev
;
5955 if (WARN_ON(!devid
&& !fs_info
))
5956 return ERR_PTR(-EINVAL
);
5958 dev
= __alloc_device();
5967 ret
= find_next_devid(fs_info
, &tmp
);
5970 return ERR_PTR(ret
);
5976 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
5978 generate_random_uuid(dev
->uuid
);
5980 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
5981 pending_bios_fn
, NULL
, NULL
);
5986 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
5987 struct extent_buffer
*leaf
,
5988 struct btrfs_chunk
*chunk
)
5990 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5991 struct map_lookup
*map
;
5992 struct extent_map
*em
;
5996 u8 uuid
[BTRFS_UUID_SIZE
];
6001 logical
= key
->offset
;
6002 length
= btrfs_chunk_length(leaf
, chunk
);
6004 read_lock(&map_tree
->map_tree
.lock
);
6005 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6006 read_unlock(&map_tree
->map_tree
.lock
);
6008 /* already mapped? */
6009 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6010 free_extent_map(em
);
6013 free_extent_map(em
);
6016 em
= alloc_extent_map();
6019 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6020 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6022 free_extent_map(em
);
6026 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6027 em
->bdev
= (struct block_device
*)map
;
6028 em
->start
= logical
;
6031 em
->block_start
= 0;
6032 em
->block_len
= em
->len
;
6034 map
->num_stripes
= num_stripes
;
6035 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6036 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6037 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6038 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6039 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6040 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6041 for (i
= 0; i
< num_stripes
; i
++) {
6042 map
->stripes
[i
].physical
=
6043 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6044 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6045 read_extent_buffer(leaf
, uuid
, (unsigned long)
6046 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6048 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6050 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
6051 free_extent_map(em
);
6054 if (!map
->stripes
[i
].dev
) {
6055 map
->stripes
[i
].dev
=
6056 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6058 if (!map
->stripes
[i
].dev
) {
6059 free_extent_map(em
);
6063 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6066 write_lock(&map_tree
->map_tree
.lock
);
6067 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6068 write_unlock(&map_tree
->map_tree
.lock
);
6069 BUG_ON(ret
); /* Tree corruption */
6070 free_extent_map(em
);
6075 static void fill_device_from_item(struct extent_buffer
*leaf
,
6076 struct btrfs_dev_item
*dev_item
,
6077 struct btrfs_device
*device
)
6081 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6082 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6083 device
->total_bytes
= device
->disk_total_bytes
;
6084 device
->commit_total_bytes
= device
->disk_total_bytes
;
6085 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6086 device
->commit_bytes_used
= device
->bytes_used
;
6087 device
->type
= btrfs_device_type(leaf
, dev_item
);
6088 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6089 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6090 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6091 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6092 device
->is_tgtdev_for_dev_replace
= 0;
6094 ptr
= btrfs_device_uuid(dev_item
);
6095 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6098 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6101 struct btrfs_fs_devices
*fs_devices
;
6104 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6106 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6107 while (fs_devices
) {
6108 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6111 fs_devices
= fs_devices
->seed
;
6114 fs_devices
= find_fsid(fsid
);
6116 if (!btrfs_test_opt(root
, DEGRADED
))
6117 return ERR_PTR(-ENOENT
);
6119 fs_devices
= alloc_fs_devices(fsid
);
6120 if (IS_ERR(fs_devices
))
6123 fs_devices
->seeding
= 1;
6124 fs_devices
->opened
= 1;
6128 fs_devices
= clone_fs_devices(fs_devices
);
6129 if (IS_ERR(fs_devices
))
6132 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6133 root
->fs_info
->bdev_holder
);
6135 free_fs_devices(fs_devices
);
6136 fs_devices
= ERR_PTR(ret
);
6140 if (!fs_devices
->seeding
) {
6141 __btrfs_close_devices(fs_devices
);
6142 free_fs_devices(fs_devices
);
6143 fs_devices
= ERR_PTR(-EINVAL
);
6147 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6148 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6153 static int read_one_dev(struct btrfs_root
*root
,
6154 struct extent_buffer
*leaf
,
6155 struct btrfs_dev_item
*dev_item
)
6157 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6158 struct btrfs_device
*device
;
6161 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6162 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6164 devid
= btrfs_device_id(leaf
, dev_item
);
6165 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6167 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6170 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6171 fs_devices
= open_seed_devices(root
, fs_uuid
);
6172 if (IS_ERR(fs_devices
))
6173 return PTR_ERR(fs_devices
);
6176 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6178 if (!btrfs_test_opt(root
, DEGRADED
))
6181 btrfs_warn(root
->fs_info
, "devid %llu missing", devid
);
6182 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6186 if (!device
->bdev
&& !btrfs_test_opt(root
, DEGRADED
))
6189 if(!device
->bdev
&& !device
->missing
) {
6191 * this happens when a device that was properly setup
6192 * in the device info lists suddenly goes bad.
6193 * device->bdev is NULL, and so we have to set
6194 * device->missing to one here
6196 device
->fs_devices
->missing_devices
++;
6197 device
->missing
= 1;
6200 /* Move the device to its own fs_devices */
6201 if (device
->fs_devices
!= fs_devices
) {
6202 ASSERT(device
->missing
);
6204 list_move(&device
->dev_list
, &fs_devices
->devices
);
6205 device
->fs_devices
->num_devices
--;
6206 fs_devices
->num_devices
++;
6208 device
->fs_devices
->missing_devices
--;
6209 fs_devices
->missing_devices
++;
6211 device
->fs_devices
= fs_devices
;
6215 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6216 BUG_ON(device
->writeable
);
6217 if (device
->generation
!=
6218 btrfs_device_generation(leaf
, dev_item
))
6222 fill_device_from_item(leaf
, dev_item
, device
);
6223 device
->in_fs_metadata
= 1;
6224 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6225 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6226 spin_lock(&root
->fs_info
->free_chunk_lock
);
6227 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6229 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6235 int btrfs_read_sys_array(struct btrfs_root
*root
)
6237 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6238 struct extent_buffer
*sb
;
6239 struct btrfs_disk_key
*disk_key
;
6240 struct btrfs_chunk
*chunk
;
6242 unsigned long sb_ptr
;
6248 struct btrfs_key key
;
6250 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
6251 BTRFS_SUPER_INFO_SIZE
);
6254 btrfs_set_buffer_uptodate(sb
);
6255 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6257 * The sb extent buffer is artifical and just used to read the system array.
6258 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6259 * pages up-to-date when the page is larger: extent does not cover the
6260 * whole page and consequently check_page_uptodate does not find all
6261 * the page's extents up-to-date (the hole beyond sb),
6262 * write_extent_buffer then triggers a WARN_ON.
6264 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6265 * but sb spans only this function. Add an explicit SetPageUptodate call
6266 * to silence the warning eg. on PowerPC 64.
6268 if (PAGE_CACHE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6269 SetPageUptodate(sb
->pages
[0]);
6271 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6272 array_size
= btrfs_super_sys_array_size(super_copy
);
6274 ptr
= super_copy
->sys_chunk_array
;
6275 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6278 while (cur
< array_size
) {
6279 disk_key
= (struct btrfs_disk_key
*)ptr
;
6280 btrfs_disk_key_to_cpu(&key
, disk_key
);
6282 len
= sizeof(*disk_key
); ptr
+= len
;
6286 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6287 chunk
= (struct btrfs_chunk
*)sb_ptr
;
6288 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6291 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6292 len
= btrfs_chunk_item_size(num_stripes
);
6301 free_extent_buffer(sb
);
6305 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6307 struct btrfs_path
*path
;
6308 struct extent_buffer
*leaf
;
6309 struct btrfs_key key
;
6310 struct btrfs_key found_key
;
6314 root
= root
->fs_info
->chunk_root
;
6316 path
= btrfs_alloc_path();
6320 mutex_lock(&uuid_mutex
);
6324 * Read all device items, and then all the chunk items. All
6325 * device items are found before any chunk item (their object id
6326 * is smaller than the lowest possible object id for a chunk
6327 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6329 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6332 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6336 leaf
= path
->nodes
[0];
6337 slot
= path
->slots
[0];
6338 if (slot
>= btrfs_header_nritems(leaf
)) {
6339 ret
= btrfs_next_leaf(root
, path
);
6346 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6347 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6348 struct btrfs_dev_item
*dev_item
;
6349 dev_item
= btrfs_item_ptr(leaf
, slot
,
6350 struct btrfs_dev_item
);
6351 ret
= read_one_dev(root
, leaf
, dev_item
);
6354 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6355 struct btrfs_chunk
*chunk
;
6356 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6357 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6365 unlock_chunks(root
);
6366 mutex_unlock(&uuid_mutex
);
6368 btrfs_free_path(path
);
6372 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6374 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6375 struct btrfs_device
*device
;
6377 while (fs_devices
) {
6378 mutex_lock(&fs_devices
->device_list_mutex
);
6379 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6380 device
->dev_root
= fs_info
->dev_root
;
6381 mutex_unlock(&fs_devices
->device_list_mutex
);
6383 fs_devices
= fs_devices
->seed
;
6387 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6391 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6392 btrfs_dev_stat_reset(dev
, i
);
6395 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6397 struct btrfs_key key
;
6398 struct btrfs_key found_key
;
6399 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6400 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6401 struct extent_buffer
*eb
;
6404 struct btrfs_device
*device
;
6405 struct btrfs_path
*path
= NULL
;
6408 path
= btrfs_alloc_path();
6414 mutex_lock(&fs_devices
->device_list_mutex
);
6415 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6417 struct btrfs_dev_stats_item
*ptr
;
6420 key
.type
= BTRFS_DEV_STATS_KEY
;
6421 key
.offset
= device
->devid
;
6422 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6424 __btrfs_reset_dev_stats(device
);
6425 device
->dev_stats_valid
= 1;
6426 btrfs_release_path(path
);
6429 slot
= path
->slots
[0];
6430 eb
= path
->nodes
[0];
6431 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6432 item_size
= btrfs_item_size_nr(eb
, slot
);
6434 ptr
= btrfs_item_ptr(eb
, slot
,
6435 struct btrfs_dev_stats_item
);
6437 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6438 if (item_size
>= (1 + i
) * sizeof(__le64
))
6439 btrfs_dev_stat_set(device
, i
,
6440 btrfs_dev_stats_value(eb
, ptr
, i
));
6442 btrfs_dev_stat_reset(device
, i
);
6445 device
->dev_stats_valid
= 1;
6446 btrfs_dev_stat_print_on_load(device
);
6447 btrfs_release_path(path
);
6449 mutex_unlock(&fs_devices
->device_list_mutex
);
6452 btrfs_free_path(path
);
6453 return ret
< 0 ? ret
: 0;
6456 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6457 struct btrfs_root
*dev_root
,
6458 struct btrfs_device
*device
)
6460 struct btrfs_path
*path
;
6461 struct btrfs_key key
;
6462 struct extent_buffer
*eb
;
6463 struct btrfs_dev_stats_item
*ptr
;
6468 key
.type
= BTRFS_DEV_STATS_KEY
;
6469 key
.offset
= device
->devid
;
6471 path
= btrfs_alloc_path();
6473 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6475 printk_in_rcu(KERN_WARNING
"BTRFS: "
6476 "error %d while searching for dev_stats item for device %s!\n",
6477 ret
, rcu_str_deref(device
->name
));
6482 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6483 /* need to delete old one and insert a new one */
6484 ret
= btrfs_del_item(trans
, dev_root
, path
);
6486 printk_in_rcu(KERN_WARNING
"BTRFS: "
6487 "delete too small dev_stats item for device %s failed %d!\n",
6488 rcu_str_deref(device
->name
), ret
);
6495 /* need to insert a new item */
6496 btrfs_release_path(path
);
6497 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6498 &key
, sizeof(*ptr
));
6500 printk_in_rcu(KERN_WARNING
"BTRFS: "
6501 "insert dev_stats item for device %s failed %d!\n",
6502 rcu_str_deref(device
->name
), ret
);
6507 eb
= path
->nodes
[0];
6508 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6509 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6510 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6511 btrfs_dev_stat_read(device
, i
));
6512 btrfs_mark_buffer_dirty(eb
);
6515 btrfs_free_path(path
);
6520 * called from commit_transaction. Writes all changed device stats to disk.
6522 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6523 struct btrfs_fs_info
*fs_info
)
6525 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6526 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6527 struct btrfs_device
*device
;
6531 mutex_lock(&fs_devices
->device_list_mutex
);
6532 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6533 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
6536 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
6537 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6539 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
6541 mutex_unlock(&fs_devices
->device_list_mutex
);
6546 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6548 btrfs_dev_stat_inc(dev
, index
);
6549 btrfs_dev_stat_print_on_error(dev
);
6552 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6554 if (!dev
->dev_stats_valid
)
6556 printk_ratelimited_in_rcu(KERN_ERR
"BTRFS: "
6557 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6558 rcu_str_deref(dev
->name
),
6559 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6560 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6561 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6562 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6563 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6566 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6570 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6571 if (btrfs_dev_stat_read(dev
, i
) != 0)
6573 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6574 return; /* all values == 0, suppress message */
6576 printk_in_rcu(KERN_INFO
"BTRFS: "
6577 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6578 rcu_str_deref(dev
->name
),
6579 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6580 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6581 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6582 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6583 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6586 int btrfs_get_dev_stats(struct btrfs_root
*root
,
6587 struct btrfs_ioctl_get_dev_stats
*stats
)
6589 struct btrfs_device
*dev
;
6590 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6593 mutex_lock(&fs_devices
->device_list_mutex
);
6594 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
6595 mutex_unlock(&fs_devices
->device_list_mutex
);
6598 btrfs_warn(root
->fs_info
, "get dev_stats failed, device not found");
6600 } else if (!dev
->dev_stats_valid
) {
6601 btrfs_warn(root
->fs_info
, "get dev_stats failed, not yet valid");
6603 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
6604 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6605 if (stats
->nr_items
> i
)
6607 btrfs_dev_stat_read_and_reset(dev
, i
);
6609 btrfs_dev_stat_reset(dev
, i
);
6612 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6613 if (stats
->nr_items
> i
)
6614 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
6616 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
6617 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
6621 int btrfs_scratch_superblock(struct btrfs_device
*device
)
6623 struct buffer_head
*bh
;
6624 struct btrfs_super_block
*disk_super
;
6626 bh
= btrfs_read_dev_super(device
->bdev
);
6629 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
6631 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
6632 set_buffer_dirty(bh
);
6633 sync_dirty_buffer(bh
);
6640 * Update the size of all devices, which is used for writing out the
6643 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
6645 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6646 struct btrfs_device
*curr
, *next
;
6648 if (list_empty(&fs_devices
->resized_devices
))
6651 mutex_lock(&fs_devices
->device_list_mutex
);
6652 lock_chunks(fs_info
->dev_root
);
6653 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
6655 list_del_init(&curr
->resized_list
);
6656 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
6658 unlock_chunks(fs_info
->dev_root
);
6659 mutex_unlock(&fs_devices
->device_list_mutex
);
6662 /* Must be invoked during the transaction commit */
6663 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
6664 struct btrfs_transaction
*transaction
)
6666 struct extent_map
*em
;
6667 struct map_lookup
*map
;
6668 struct btrfs_device
*dev
;
6671 if (list_empty(&transaction
->pending_chunks
))
6674 /* In order to kick the device replace finish process */
6676 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
6677 map
= (struct map_lookup
*)em
->bdev
;
6679 for (i
= 0; i
< map
->num_stripes
; i
++) {
6680 dev
= map
->stripes
[i
].dev
;
6681 dev
->commit_bytes_used
= dev
->bytes_used
;
6684 unlock_chunks(root
);