2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
32 #include "xfs_attr_sf.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
50 #include "xfs_bmap_btree.h"
52 kmem_zone_t
*xfs_inode_zone
;
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
62 STATIC
int xfs_iunlink_remove(xfs_trans_t
*, xfs_inode_t
*);
65 * helper function to extract extent size hint from inode
71 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
72 return ip
->i_d
.di_extsize
;
73 if (XFS_IS_REALTIME_INODE(ip
))
74 return ip
->i_mount
->m_sb
.sb_rextsize
;
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
90 * The functions return a value which should be given to the corresponding
94 xfs_ilock_data_map_shared(
97 uint lock_mode
= XFS_ILOCK_SHARED
;
99 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
100 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
101 lock_mode
= XFS_ILOCK_EXCL
;
102 xfs_ilock(ip
, lock_mode
);
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode
*ip
)
110 uint lock_mode
= XFS_ILOCK_SHARED
;
112 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
113 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
114 lock_mode
= XFS_ILOCK_EXCL
;
115 xfs_ilock(ip
, lock_mode
);
120 * The xfs inode contains 2 locks: a multi-reader lock called the
121 * i_iolock and a multi-reader lock called the i_lock. This routine
122 * allows either or both of the locks to be obtained.
124 * The 2 locks should always be ordered so that the IO lock is
125 * obtained first in order to prevent deadlock.
127 * ip -- the inode being locked
128 * lock_flags -- this parameter indicates the inode's locks
129 * to be locked. It can be:
134 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
135 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
144 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
147 * You can't set both SHARED and EXCL for the same lock,
148 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
149 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
151 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
152 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
153 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
154 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
155 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_DEP_MASK
)) == 0);
157 if (lock_flags
& XFS_IOLOCK_EXCL
)
158 mrupdate_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
159 else if (lock_flags
& XFS_IOLOCK_SHARED
)
160 mraccess_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
162 if (lock_flags
& XFS_ILOCK_EXCL
)
163 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
164 else if (lock_flags
& XFS_ILOCK_SHARED
)
165 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
169 * This is just like xfs_ilock(), except that the caller
170 * is guaranteed not to sleep. It returns 1 if it gets
171 * the requested locks and 0 otherwise. If the IO lock is
172 * obtained but the inode lock cannot be, then the IO lock
173 * is dropped before returning.
175 * ip -- the inode being locked
176 * lock_flags -- this parameter indicates the inode's locks to be
177 * to be locked. See the comment for xfs_ilock() for a list
185 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
188 * You can't set both SHARED and EXCL for the same lock,
189 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
190 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
192 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
193 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
194 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
195 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
196 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_DEP_MASK
)) == 0);
198 if (lock_flags
& XFS_IOLOCK_EXCL
) {
199 if (!mrtryupdate(&ip
->i_iolock
))
201 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
202 if (!mrtryaccess(&ip
->i_iolock
))
205 if (lock_flags
& XFS_ILOCK_EXCL
) {
206 if (!mrtryupdate(&ip
->i_lock
))
207 goto out_undo_iolock
;
208 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
209 if (!mrtryaccess(&ip
->i_lock
))
210 goto out_undo_iolock
;
215 if (lock_flags
& XFS_IOLOCK_EXCL
)
216 mrunlock_excl(&ip
->i_iolock
);
217 else if (lock_flags
& XFS_IOLOCK_SHARED
)
218 mrunlock_shared(&ip
->i_iolock
);
224 * xfs_iunlock() is used to drop the inode locks acquired with
225 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
226 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
227 * that we know which locks to drop.
229 * ip -- the inode being unlocked
230 * lock_flags -- this parameter indicates the inode's locks to be
231 * to be unlocked. See the comment for xfs_ilock() for a list
232 * of valid values for this parameter.
241 * You can't set both SHARED and EXCL for the same lock,
242 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
243 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
245 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
246 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
247 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
248 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
249 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_DEP_MASK
)) == 0);
250 ASSERT(lock_flags
!= 0);
252 if (lock_flags
& XFS_IOLOCK_EXCL
)
253 mrunlock_excl(&ip
->i_iolock
);
254 else if (lock_flags
& XFS_IOLOCK_SHARED
)
255 mrunlock_shared(&ip
->i_iolock
);
257 if (lock_flags
& XFS_ILOCK_EXCL
)
258 mrunlock_excl(&ip
->i_lock
);
259 else if (lock_flags
& XFS_ILOCK_SHARED
)
260 mrunlock_shared(&ip
->i_lock
);
262 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
266 * give up write locks. the i/o lock cannot be held nested
267 * if it is being demoted.
274 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
));
275 ASSERT((lock_flags
& ~(XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
277 if (lock_flags
& XFS_ILOCK_EXCL
)
278 mrdemote(&ip
->i_lock
);
279 if (lock_flags
& XFS_IOLOCK_EXCL
)
280 mrdemote(&ip
->i_iolock
);
282 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
285 #if defined(DEBUG) || defined(XFS_WARN)
291 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
292 if (!(lock_flags
& XFS_ILOCK_SHARED
))
293 return !!ip
->i_lock
.mr_writer
;
294 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
297 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
298 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
299 return !!ip
->i_iolock
.mr_writer
;
300 return rwsem_is_locked(&ip
->i_iolock
.mr_lock
);
310 int xfs_small_retries
;
311 int xfs_middle_retries
;
312 int xfs_lots_retries
;
317 * Bump the subclass so xfs_lock_inodes() acquires each lock with
321 xfs_lock_inumorder(int lock_mode
, int subclass
)
323 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
))
324 lock_mode
|= (subclass
+ XFS_LOCK_INUMORDER
) << XFS_IOLOCK_SHIFT
;
325 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
))
326 lock_mode
|= (subclass
+ XFS_LOCK_INUMORDER
) << XFS_ILOCK_SHIFT
;
332 * The following routine will lock n inodes in exclusive mode.
333 * We assume the caller calls us with the inodes in i_ino order.
335 * We need to detect deadlock where an inode that we lock
336 * is in the AIL and we start waiting for another inode that is locked
337 * by a thread in a long running transaction (such as truncate). This can
338 * result in deadlock since the long running trans might need to wait
339 * for the inode we just locked in order to push the tail and free space
348 int attempts
= 0, i
, j
, try_lock
;
351 ASSERT(ips
&& (inodes
>= 2)); /* we need at least two */
357 for (; i
< inodes
; i
++) {
360 if (i
&& (ips
[i
] == ips
[i
-1])) /* Already locked */
364 * If try_lock is not set yet, make sure all locked inodes
365 * are not in the AIL.
366 * If any are, set try_lock to be used later.
370 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
371 lp
= (xfs_log_item_t
*)ips
[j
]->i_itemp
;
372 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
)) {
379 * If any of the previous locks we have locked is in the AIL,
380 * we must TRY to get the second and subsequent locks. If
381 * we can't get any, we must release all we have
386 /* try_lock must be 0 if i is 0. */
388 * try_lock means we have an inode locked
389 * that is in the AIL.
392 if (!xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
))) {
396 * Unlock all previous guys and try again.
397 * xfs_iunlock will try to push the tail
398 * if the inode is in the AIL.
401 for(j
= i
- 1; j
>= 0; j
--) {
404 * Check to see if we've already
406 * Not the first one going back,
407 * and the inode ptr is the same.
409 if ((j
!= (i
- 1)) && ips
[j
] ==
413 xfs_iunlock(ips
[j
], lock_mode
);
416 if ((attempts
% 5) == 0) {
417 delay(1); /* Don't just spin the CPU */
427 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
433 if (attempts
< 5) xfs_small_retries
++;
434 else if (attempts
< 100) xfs_middle_retries
++;
435 else xfs_lots_retries
++;
443 * xfs_lock_two_inodes() can only be used to lock one type of lock
444 * at a time - the iolock or the ilock, but not both at once. If
445 * we lock both at once, lockdep will report false positives saying
446 * we have violated locking orders.
458 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
))
459 ASSERT((lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) == 0);
460 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
462 if (ip0
->i_ino
> ip1
->i_ino
) {
469 xfs_ilock(ip0
, xfs_lock_inumorder(lock_mode
, 0));
472 * If the first lock we have locked is in the AIL, we must TRY to get
473 * the second lock. If we can't get it, we must release the first one
476 lp
= (xfs_log_item_t
*)ip0
->i_itemp
;
477 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
)) {
478 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(lock_mode
, 1))) {
479 xfs_iunlock(ip0
, lock_mode
);
480 if ((++attempts
% 5) == 0)
481 delay(1); /* Don't just spin the CPU */
485 xfs_ilock(ip1
, xfs_lock_inumorder(lock_mode
, 1));
492 struct xfs_inode
*ip
)
494 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
495 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
498 prepare_to_wait_exclusive(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
499 if (xfs_isiflocked(ip
))
501 } while (!xfs_iflock_nowait(ip
));
503 finish_wait(wq
, &wait
.wait
);
512 if (di_flags
& XFS_DIFLAG_ANY
) {
513 if (di_flags
& XFS_DIFLAG_REALTIME
)
514 flags
|= XFS_XFLAG_REALTIME
;
515 if (di_flags
& XFS_DIFLAG_PREALLOC
)
516 flags
|= XFS_XFLAG_PREALLOC
;
517 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
518 flags
|= XFS_XFLAG_IMMUTABLE
;
519 if (di_flags
& XFS_DIFLAG_APPEND
)
520 flags
|= XFS_XFLAG_APPEND
;
521 if (di_flags
& XFS_DIFLAG_SYNC
)
522 flags
|= XFS_XFLAG_SYNC
;
523 if (di_flags
& XFS_DIFLAG_NOATIME
)
524 flags
|= XFS_XFLAG_NOATIME
;
525 if (di_flags
& XFS_DIFLAG_NODUMP
)
526 flags
|= XFS_XFLAG_NODUMP
;
527 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
528 flags
|= XFS_XFLAG_RTINHERIT
;
529 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
530 flags
|= XFS_XFLAG_PROJINHERIT
;
531 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
532 flags
|= XFS_XFLAG_NOSYMLINKS
;
533 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
534 flags
|= XFS_XFLAG_EXTSIZE
;
535 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
536 flags
|= XFS_XFLAG_EXTSZINHERIT
;
537 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
538 flags
|= XFS_XFLAG_NODEFRAG
;
539 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
540 flags
|= XFS_XFLAG_FILESTREAM
;
550 xfs_icdinode_t
*dic
= &ip
->i_d
;
552 return _xfs_dic2xflags(dic
->di_flags
) |
553 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
560 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
561 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
565 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
566 * is allowed, otherwise it has to be an exact match. If a CI match is found,
567 * ci_name->name will point to a the actual name (caller must free) or
568 * will be set to NULL if an exact match is found.
573 struct xfs_name
*name
,
575 struct xfs_name
*ci_name
)
581 trace_xfs_lookup(dp
, name
);
583 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
586 lock_mode
= xfs_ilock_data_map_shared(dp
);
587 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
588 xfs_iunlock(dp
, lock_mode
);
593 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
601 kmem_free(ci_name
->name
);
608 * Allocate an inode on disk and return a copy of its in-core version.
609 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
610 * appropriately within the inode. The uid and gid for the inode are
611 * set according to the contents of the given cred structure.
613 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
614 * has a free inode available, call xfs_iget() to obtain the in-core
615 * version of the allocated inode. Finally, fill in the inode and
616 * log its initial contents. In this case, ialloc_context would be
619 * If xfs_dialloc() does not have an available inode, it will replenish
620 * its supply by doing an allocation. Since we can only do one
621 * allocation within a transaction without deadlocks, we must commit
622 * the current transaction before returning the inode itself.
623 * In this case, therefore, we will set ialloc_context and return.
624 * The caller should then commit the current transaction, start a new
625 * transaction, and call xfs_ialloc() again to actually get the inode.
627 * To ensure that some other process does not grab the inode that
628 * was allocated during the first call to xfs_ialloc(), this routine
629 * also returns the [locked] bp pointing to the head of the freelist
630 * as ialloc_context. The caller should hold this buffer across
631 * the commit and pass it back into this routine on the second call.
633 * If we are allocating quota inodes, we do not have a parent inode
634 * to attach to or associate with (i.e. pip == NULL) because they
635 * are not linked into the directory structure - they are attached
636 * directly to the superblock - and so have no parent.
647 xfs_buf_t
**ialloc_context
,
650 struct xfs_mount
*mp
= tp
->t_mountp
;
658 * Call the space management code to pick
659 * the on-disk inode to be allocated.
661 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
662 ialloc_context
, &ino
);
665 if (*ialloc_context
|| ino
== NULLFSINO
) {
669 ASSERT(*ialloc_context
== NULL
);
672 * Get the in-core inode with the lock held exclusively.
673 * This is because we're setting fields here we need
674 * to prevent others from looking at until we're done.
676 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
677 XFS_ILOCK_EXCL
, &ip
);
683 * We always convert v1 inodes to v2 now - we only support filesystems
684 * with >= v2 inode capability, so there is no reason for ever leaving
685 * an inode in v1 format.
687 if (ip
->i_d
.di_version
== 1)
688 ip
->i_d
.di_version
= 2;
690 ip
->i_d
.di_mode
= mode
;
691 ip
->i_d
.di_onlink
= 0;
692 ip
->i_d
.di_nlink
= nlink
;
693 ASSERT(ip
->i_d
.di_nlink
== nlink
);
694 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
695 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
696 xfs_set_projid(ip
, prid
);
697 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
699 if (pip
&& XFS_INHERIT_GID(pip
)) {
700 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
701 if ((pip
->i_d
.di_mode
& S_ISGID
) && S_ISDIR(mode
)) {
702 ip
->i_d
.di_mode
|= S_ISGID
;
707 * If the group ID of the new file does not match the effective group
708 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
709 * (and only if the irix_sgid_inherit compatibility variable is set).
711 if ((irix_sgid_inherit
) &&
712 (ip
->i_d
.di_mode
& S_ISGID
) &&
713 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
)))) {
714 ip
->i_d
.di_mode
&= ~S_ISGID
;
718 ip
->i_d
.di_nextents
= 0;
719 ASSERT(ip
->i_d
.di_nblocks
== 0);
721 tv
= current_fs_time(mp
->m_super
);
722 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
723 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
724 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
725 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
728 * di_gen will have been taken care of in xfs_iread.
730 ip
->i_d
.di_extsize
= 0;
731 ip
->i_d
.di_dmevmask
= 0;
732 ip
->i_d
.di_dmstate
= 0;
733 ip
->i_d
.di_flags
= 0;
735 if (ip
->i_d
.di_version
== 3) {
736 ASSERT(ip
->i_d
.di_ino
== ino
);
737 ASSERT(uuid_equal(&ip
->i_d
.di_uuid
, &mp
->m_sb
.sb_uuid
));
739 ip
->i_d
.di_changecount
= 1;
741 ip
->i_d
.di_flags2
= 0;
742 memset(&(ip
->i_d
.di_pad2
[0]), 0, sizeof(ip
->i_d
.di_pad2
));
743 ip
->i_d
.di_crtime
= ip
->i_d
.di_mtime
;
747 flags
= XFS_ILOG_CORE
;
748 switch (mode
& S_IFMT
) {
753 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
754 ip
->i_df
.if_u2
.if_rdev
= rdev
;
755 ip
->i_df
.if_flags
= 0;
756 flags
|= XFS_ILOG_DEV
;
760 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
764 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
765 di_flags
|= XFS_DIFLAG_RTINHERIT
;
766 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
767 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
768 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
770 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
771 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
772 } else if (S_ISREG(mode
)) {
773 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
774 di_flags
|= XFS_DIFLAG_REALTIME
;
775 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
776 di_flags
|= XFS_DIFLAG_EXTSIZE
;
777 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
780 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
782 di_flags
|= XFS_DIFLAG_NOATIME
;
783 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
785 di_flags
|= XFS_DIFLAG_NODUMP
;
786 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
788 di_flags
|= XFS_DIFLAG_SYNC
;
789 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
790 xfs_inherit_nosymlinks
)
791 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
792 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
793 xfs_inherit_nodefrag
)
794 di_flags
|= XFS_DIFLAG_NODEFRAG
;
795 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
796 di_flags
|= XFS_DIFLAG_FILESTREAM
;
797 ip
->i_d
.di_flags
|= di_flags
;
801 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
802 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
803 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
804 ip
->i_df
.if_u1
.if_extents
= NULL
;
810 * Attribute fork settings for new inode.
812 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
813 ip
->i_d
.di_anextents
= 0;
816 * Log the new values stuffed into the inode.
818 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
819 xfs_trans_log_inode(tp
, ip
, flags
);
821 /* now that we have an i_mode we can setup inode ops and unlock */
829 * Allocates a new inode from disk and return a pointer to the
830 * incore copy. This routine will internally commit the current
831 * transaction and allocate a new one if the Space Manager needed
832 * to do an allocation to replenish the inode free-list.
834 * This routine is designed to be called from xfs_create and
840 xfs_trans_t
**tpp
, /* input: current transaction;
841 output: may be a new transaction. */
842 xfs_inode_t
*dp
, /* directory within whose allocate
847 prid_t prid
, /* project id */
848 int okalloc
, /* ok to allocate new space */
849 xfs_inode_t
**ipp
, /* pointer to inode; it will be
857 xfs_buf_t
*ialloc_context
= NULL
;
863 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
866 * xfs_ialloc will return a pointer to an incore inode if
867 * the Space Manager has an available inode on the free
868 * list. Otherwise, it will do an allocation and replenish
869 * the freelist. Since we can only do one allocation per
870 * transaction without deadlocks, we will need to commit the
871 * current transaction and start a new one. We will then
872 * need to call xfs_ialloc again to get the inode.
874 * If xfs_ialloc did an allocation to replenish the freelist,
875 * it returns the bp containing the head of the freelist as
876 * ialloc_context. We will hold a lock on it across the
877 * transaction commit so that no other process can steal
878 * the inode(s) that we've just allocated.
880 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, okalloc
,
881 &ialloc_context
, &ip
);
884 * Return an error if we were unable to allocate a new inode.
885 * This should only happen if we run out of space on disk or
886 * encounter a disk error.
892 if (!ialloc_context
&& !ip
) {
898 * If the AGI buffer is non-NULL, then we were unable to get an
899 * inode in one operation. We need to commit the current
900 * transaction and call xfs_ialloc() again. It is guaranteed
901 * to succeed the second time.
903 if (ialloc_context
) {
904 struct xfs_trans_res tres
;
907 * Normally, xfs_trans_commit releases all the locks.
908 * We call bhold to hang on to the ialloc_context across
909 * the commit. Holding this buffer prevents any other
910 * processes from doing any allocations in this
913 xfs_trans_bhold(tp
, ialloc_context
);
915 * Save the log reservation so we can use
916 * them in the next transaction.
918 tres
.tr_logres
= xfs_trans_get_log_res(tp
);
919 tres
.tr_logcount
= xfs_trans_get_log_count(tp
);
922 * We want the quota changes to be associated with the next
923 * transaction, NOT this one. So, detach the dqinfo from this
924 * and attach it to the next transaction.
929 dqinfo
= (void *)tp
->t_dqinfo
;
931 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
932 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
935 ntp
= xfs_trans_dup(tp
);
936 code
= xfs_trans_commit(tp
, 0);
938 if (committed
!= NULL
) {
942 * If we get an error during the commit processing,
943 * release the buffer that is still held and return
947 xfs_buf_relse(ialloc_context
);
949 tp
->t_dqinfo
= dqinfo
;
950 xfs_trans_free_dqinfo(tp
);
958 * transaction commit worked ok so we can drop the extra ticket
959 * reference that we gained in xfs_trans_dup()
961 xfs_log_ticket_put(tp
->t_ticket
);
962 tres
.tr_logflags
= XFS_TRANS_PERM_LOG_RES
;
963 code
= xfs_trans_reserve(tp
, &tres
, 0, 0);
966 * Re-attach the quota info that we detached from prev trx.
969 tp
->t_dqinfo
= dqinfo
;
970 tp
->t_flags
|= tflags
;
974 xfs_buf_relse(ialloc_context
);
979 xfs_trans_bjoin(tp
, ialloc_context
);
982 * Call ialloc again. Since we've locked out all
983 * other allocations in this allocation group,
984 * this call should always succeed.
986 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
987 okalloc
, &ialloc_context
, &ip
);
990 * If we get an error at this point, return to the caller
991 * so that the current transaction can be aborted.
998 ASSERT(!ialloc_context
&& ip
);
1001 if (committed
!= NULL
)
1012 * Decrement the link count on an inode & log the change.
1013 * If this causes the link count to go to zero, initiate the
1014 * logging activity required to truncate a file.
1023 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1025 ASSERT (ip
->i_d
.di_nlink
> 0);
1027 drop_nlink(VFS_I(ip
));
1028 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1031 if (ip
->i_d
.di_nlink
== 0) {
1033 * We're dropping the last link to this file.
1034 * Move the on-disk inode to the AGI unlinked list.
1035 * From xfs_inactive() we will pull the inode from
1036 * the list and free it.
1038 error
= xfs_iunlink(tp
, ip
);
1044 * Increment the link count on an inode & log the change.
1051 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1053 ASSERT(ip
->i_d
.di_version
> 1);
1054 ASSERT(ip
->i_d
.di_nlink
> 0 || (VFS_I(ip
)->i_state
& I_LINKABLE
));
1056 inc_nlink(VFS_I(ip
));
1057 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1064 struct xfs_name
*name
,
1069 int is_dir
= S_ISDIR(mode
);
1070 struct xfs_mount
*mp
= dp
->i_mount
;
1071 struct xfs_inode
*ip
= NULL
;
1072 struct xfs_trans
*tp
= NULL
;
1074 xfs_bmap_free_t free_list
;
1075 xfs_fsblock_t first_block
;
1076 bool unlock_dp_on_error
= false;
1080 struct xfs_dquot
*udqp
= NULL
;
1081 struct xfs_dquot
*gdqp
= NULL
;
1082 struct xfs_dquot
*pdqp
= NULL
;
1083 struct xfs_trans_res
*tres
;
1086 trace_xfs_create(dp
, name
);
1088 if (XFS_FORCED_SHUTDOWN(mp
))
1091 prid
= xfs_get_initial_prid(dp
);
1094 * Make sure that we have allocated dquot(s) on disk.
1096 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1097 xfs_kgid_to_gid(current_fsgid()), prid
,
1098 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1099 &udqp
, &gdqp
, &pdqp
);
1105 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1106 tres
= &M_RES(mp
)->tr_mkdir
;
1107 tp
= xfs_trans_alloc(mp
, XFS_TRANS_MKDIR
);
1109 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1110 tres
= &M_RES(mp
)->tr_create
;
1111 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CREATE
);
1114 cancel_flags
= XFS_TRANS_RELEASE_LOG_RES
;
1117 * Initially assume that the file does not exist and
1118 * reserve the resources for that case. If that is not
1119 * the case we'll drop the one we have and get a more
1120 * appropriate transaction later.
1122 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1123 if (error
== -ENOSPC
) {
1124 /* flush outstanding delalloc blocks and retry */
1125 xfs_flush_inodes(mp
);
1126 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1128 if (error
== -ENOSPC
) {
1129 /* No space at all so try a "no-allocation" reservation */
1131 error
= xfs_trans_reserve(tp
, tres
, 0, 0);
1135 goto out_trans_cancel
;
1138 xfs_ilock(dp
, XFS_ILOCK_EXCL
| XFS_ILOCK_PARENT
);
1139 unlock_dp_on_error
= true;
1141 xfs_bmap_init(&free_list
, &first_block
);
1144 * Reserve disk quota and the inode.
1146 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1147 pdqp
, resblks
, 1, 0);
1149 goto out_trans_cancel
;
1152 error
= xfs_dir_canenter(tp
, dp
, name
);
1154 goto out_trans_cancel
;
1158 * A newly created regular or special file just has one directory
1159 * entry pointing to them, but a directory also the "." entry
1160 * pointing to itself.
1162 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
,
1163 prid
, resblks
> 0, &ip
, &committed
);
1165 if (error
== -ENOSPC
)
1166 goto out_trans_cancel
;
1167 goto out_trans_abort
;
1171 * Now we join the directory inode to the transaction. We do not do it
1172 * earlier because xfs_dir_ialloc might commit the previous transaction
1173 * (and release all the locks). An error from here on will result in
1174 * the transaction cancel unlocking dp so don't do it explicitly in the
1177 xfs_trans_ijoin(tp
, dp
, XFS_ILOCK_EXCL
);
1178 unlock_dp_on_error
= false;
1180 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1181 &first_block
, &free_list
, resblks
?
1182 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1184 ASSERT(error
!= -ENOSPC
);
1185 goto out_trans_abort
;
1187 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1188 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1191 error
= xfs_dir_init(tp
, ip
, dp
);
1193 goto out_bmap_cancel
;
1195 error
= xfs_bumplink(tp
, dp
);
1197 goto out_bmap_cancel
;
1201 * If this is a synchronous mount, make sure that the
1202 * create transaction goes to disk before returning to
1205 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1206 xfs_trans_set_sync(tp
);
1209 * Attach the dquot(s) to the inodes and modify them incore.
1210 * These ids of the inode couldn't have changed since the new
1211 * inode has been locked ever since it was created.
1213 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1215 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1217 goto out_bmap_cancel
;
1219 error
= xfs_trans_commit(tp
, XFS_TRANS_RELEASE_LOG_RES
);
1221 goto out_release_inode
;
1223 xfs_qm_dqrele(udqp
);
1224 xfs_qm_dqrele(gdqp
);
1225 xfs_qm_dqrele(pdqp
);
1231 xfs_bmap_cancel(&free_list
);
1233 cancel_flags
|= XFS_TRANS_ABORT
;
1235 xfs_trans_cancel(tp
, cancel_flags
);
1238 * Wait until after the current transaction is aborted to
1239 * release the inode. This prevents recursive transactions
1240 * and deadlocks from xfs_inactive.
1245 xfs_qm_dqrele(udqp
);
1246 xfs_qm_dqrele(gdqp
);
1247 xfs_qm_dqrele(pdqp
);
1249 if (unlock_dp_on_error
)
1250 xfs_iunlock(dp
, XFS_ILOCK_EXCL
);
1256 struct xfs_inode
*dp
,
1257 struct dentry
*dentry
,
1259 struct xfs_inode
**ipp
)
1261 struct xfs_mount
*mp
= dp
->i_mount
;
1262 struct xfs_inode
*ip
= NULL
;
1263 struct xfs_trans
*tp
= NULL
;
1265 uint cancel_flags
= XFS_TRANS_RELEASE_LOG_RES
;
1267 struct xfs_dquot
*udqp
= NULL
;
1268 struct xfs_dquot
*gdqp
= NULL
;
1269 struct xfs_dquot
*pdqp
= NULL
;
1270 struct xfs_trans_res
*tres
;
1273 if (XFS_FORCED_SHUTDOWN(mp
))
1276 prid
= xfs_get_initial_prid(dp
);
1279 * Make sure that we have allocated dquot(s) on disk.
1281 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1282 xfs_kgid_to_gid(current_fsgid()), prid
,
1283 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1284 &udqp
, &gdqp
, &pdqp
);
1288 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1289 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CREATE_TMPFILE
);
1291 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1292 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1293 if (error
== -ENOSPC
) {
1294 /* No space at all so try a "no-allocation" reservation */
1296 error
= xfs_trans_reserve(tp
, tres
, 0, 0);
1300 goto out_trans_cancel
;
1303 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1304 pdqp
, resblks
, 1, 0);
1306 goto out_trans_cancel
;
1308 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 1, 0,
1309 prid
, resblks
> 0, &ip
, NULL
);
1311 if (error
== -ENOSPC
)
1312 goto out_trans_cancel
;
1313 goto out_trans_abort
;
1316 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1317 xfs_trans_set_sync(tp
);
1320 * Attach the dquot(s) to the inodes and modify them incore.
1321 * These ids of the inode couldn't have changed since the new
1322 * inode has been locked ever since it was created.
1324 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1327 error
= xfs_iunlink(tp
, ip
);
1329 goto out_trans_abort
;
1331 error
= xfs_trans_commit(tp
, XFS_TRANS_RELEASE_LOG_RES
);
1333 goto out_release_inode
;
1335 xfs_qm_dqrele(udqp
);
1336 xfs_qm_dqrele(gdqp
);
1337 xfs_qm_dqrele(pdqp
);
1343 cancel_flags
|= XFS_TRANS_ABORT
;
1345 xfs_trans_cancel(tp
, cancel_flags
);
1348 * Wait until after the current transaction is aborted to
1349 * release the inode. This prevents recursive transactions
1350 * and deadlocks from xfs_inactive.
1355 xfs_qm_dqrele(udqp
);
1356 xfs_qm_dqrele(gdqp
);
1357 xfs_qm_dqrele(pdqp
);
1366 struct xfs_name
*target_name
)
1368 xfs_mount_t
*mp
= tdp
->i_mount
;
1371 xfs_bmap_free_t free_list
;
1372 xfs_fsblock_t first_block
;
1377 trace_xfs_link(tdp
, target_name
);
1379 ASSERT(!S_ISDIR(sip
->i_d
.di_mode
));
1381 if (XFS_FORCED_SHUTDOWN(mp
))
1384 error
= xfs_qm_dqattach(sip
, 0);
1388 error
= xfs_qm_dqattach(tdp
, 0);
1392 tp
= xfs_trans_alloc(mp
, XFS_TRANS_LINK
);
1393 cancel_flags
= XFS_TRANS_RELEASE_LOG_RES
;
1394 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1395 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_link
, resblks
, 0);
1396 if (error
== -ENOSPC
) {
1398 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_link
, 0, 0);
1405 xfs_lock_two_inodes(sip
, tdp
, XFS_ILOCK_EXCL
);
1407 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1408 xfs_trans_ijoin(tp
, tdp
, XFS_ILOCK_EXCL
);
1411 * If we are using project inheritance, we only allow hard link
1412 * creation in our tree when the project IDs are the same; else
1413 * the tree quota mechanism could be circumvented.
1415 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1416 (xfs_get_projid(tdp
) != xfs_get_projid(sip
)))) {
1422 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1427 xfs_bmap_init(&free_list
, &first_block
);
1429 if (sip
->i_d
.di_nlink
== 0) {
1430 error
= xfs_iunlink_remove(tp
, sip
);
1435 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1436 &first_block
, &free_list
, resblks
);
1439 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1440 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1442 error
= xfs_bumplink(tp
, sip
);
1447 * If this is a synchronous mount, make sure that the
1448 * link transaction goes to disk before returning to
1451 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
)) {
1452 xfs_trans_set_sync(tp
);
1455 error
= xfs_bmap_finish (&tp
, &free_list
, &committed
);
1457 xfs_bmap_cancel(&free_list
);
1461 return xfs_trans_commit(tp
, XFS_TRANS_RELEASE_LOG_RES
);
1464 cancel_flags
|= XFS_TRANS_ABORT
;
1466 xfs_trans_cancel(tp
, cancel_flags
);
1472 * Free up the underlying blocks past new_size. The new size must be smaller
1473 * than the current size. This routine can be used both for the attribute and
1474 * data fork, and does not modify the inode size, which is left to the caller.
1476 * The transaction passed to this routine must have made a permanent log
1477 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1478 * given transaction and start new ones, so make sure everything involved in
1479 * the transaction is tidy before calling here. Some transaction will be
1480 * returned to the caller to be committed. The incoming transaction must
1481 * already include the inode, and both inode locks must be held exclusively.
1482 * The inode must also be "held" within the transaction. On return the inode
1483 * will be "held" within the returned transaction. This routine does NOT
1484 * require any disk space to be reserved for it within the transaction.
1486 * If we get an error, we must return with the inode locked and linked into the
1487 * current transaction. This keeps things simple for the higher level code,
1488 * because it always knows that the inode is locked and held in the transaction
1489 * that returns to it whether errors occur or not. We don't mark the inode
1490 * dirty on error so that transactions can be easily aborted if possible.
1493 xfs_itruncate_extents(
1494 struct xfs_trans
**tpp
,
1495 struct xfs_inode
*ip
,
1497 xfs_fsize_t new_size
)
1499 struct xfs_mount
*mp
= ip
->i_mount
;
1500 struct xfs_trans
*tp
= *tpp
;
1501 struct xfs_trans
*ntp
;
1502 xfs_bmap_free_t free_list
;
1503 xfs_fsblock_t first_block
;
1504 xfs_fileoff_t first_unmap_block
;
1505 xfs_fileoff_t last_block
;
1506 xfs_filblks_t unmap_len
;
1511 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1512 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1513 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1514 ASSERT(new_size
<= XFS_ISIZE(ip
));
1515 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1516 ASSERT(ip
->i_itemp
!= NULL
);
1517 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1518 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1520 trace_xfs_itruncate_extents_start(ip
, new_size
);
1523 * Since it is possible for space to become allocated beyond
1524 * the end of the file (in a crash where the space is allocated
1525 * but the inode size is not yet updated), simply remove any
1526 * blocks which show up between the new EOF and the maximum
1527 * possible file size. If the first block to be removed is
1528 * beyond the maximum file size (ie it is the same as last_block),
1529 * then there is nothing to do.
1531 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1532 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1533 if (first_unmap_block
== last_block
)
1536 ASSERT(first_unmap_block
< last_block
);
1537 unmap_len
= last_block
- first_unmap_block
+ 1;
1539 xfs_bmap_init(&free_list
, &first_block
);
1540 error
= xfs_bunmapi(tp
, ip
,
1541 first_unmap_block
, unmap_len
,
1542 xfs_bmapi_aflag(whichfork
),
1543 XFS_ITRUNC_MAX_EXTENTS
,
1544 &first_block
, &free_list
,
1547 goto out_bmap_cancel
;
1550 * Duplicate the transaction that has the permanent
1551 * reservation and commit the old transaction.
1553 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1555 xfs_trans_ijoin(tp
, ip
, 0);
1557 goto out_bmap_cancel
;
1561 * Mark the inode dirty so it will be logged and
1562 * moved forward in the log as part of every commit.
1564 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1567 ntp
= xfs_trans_dup(tp
);
1568 error
= xfs_trans_commit(tp
, 0);
1571 xfs_trans_ijoin(tp
, ip
, 0);
1577 * Transaction commit worked ok so we can drop the extra ticket
1578 * reference that we gained in xfs_trans_dup()
1580 xfs_log_ticket_put(tp
->t_ticket
);
1581 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_itruncate
, 0, 0);
1587 * Always re-log the inode so that our permanent transaction can keep
1588 * on rolling it forward in the log.
1590 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1592 trace_xfs_itruncate_extents_end(ip
, new_size
);
1599 * If the bunmapi call encounters an error, return to the caller where
1600 * the transaction can be properly aborted. We just need to make sure
1601 * we're not holding any resources that we were not when we came in.
1603 xfs_bmap_cancel(&free_list
);
1611 xfs_mount_t
*mp
= ip
->i_mount
;
1614 if (!S_ISREG(ip
->i_d
.di_mode
) || (ip
->i_d
.di_mode
== 0))
1617 /* If this is a read-only mount, don't do this (would generate I/O) */
1618 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1621 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1625 * If we previously truncated this file and removed old data
1626 * in the process, we want to initiate "early" writeout on
1627 * the last close. This is an attempt to combat the notorious
1628 * NULL files problem which is particularly noticeable from a
1629 * truncate down, buffered (re-)write (delalloc), followed by
1630 * a crash. What we are effectively doing here is
1631 * significantly reducing the time window where we'd otherwise
1632 * be exposed to that problem.
1634 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1636 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1637 if (ip
->i_delayed_blks
> 0) {
1638 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1645 if (ip
->i_d
.di_nlink
== 0)
1648 if (xfs_can_free_eofblocks(ip
, false)) {
1651 * If we can't get the iolock just skip truncating the blocks
1652 * past EOF because we could deadlock with the mmap_sem
1653 * otherwise. We'll get another chance to drop them once the
1654 * last reference to the inode is dropped, so we'll never leak
1655 * blocks permanently.
1657 * Further, check if the inode is being opened, written and
1658 * closed frequently and we have delayed allocation blocks
1659 * outstanding (e.g. streaming writes from the NFS server),
1660 * truncating the blocks past EOF will cause fragmentation to
1663 * In this case don't do the truncation, either, but we have to
1664 * be careful how we detect this case. Blocks beyond EOF show
1665 * up as i_delayed_blks even when the inode is clean, so we
1666 * need to truncate them away first before checking for a dirty
1667 * release. Hence on the first dirty close we will still remove
1668 * the speculative allocation, but after that we will leave it
1671 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1674 error
= xfs_free_eofblocks(mp
, ip
, true);
1675 if (error
&& error
!= -EAGAIN
)
1678 /* delalloc blocks after truncation means it really is dirty */
1679 if (ip
->i_delayed_blks
)
1680 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1686 * xfs_inactive_truncate
1688 * Called to perform a truncate when an inode becomes unlinked.
1691 xfs_inactive_truncate(
1692 struct xfs_inode
*ip
)
1694 struct xfs_mount
*mp
= ip
->i_mount
;
1695 struct xfs_trans
*tp
;
1698 tp
= xfs_trans_alloc(mp
, XFS_TRANS_INACTIVE
);
1699 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_itruncate
, 0, 0);
1701 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1702 xfs_trans_cancel(tp
, 0);
1706 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1707 xfs_trans_ijoin(tp
, ip
, 0);
1710 * Log the inode size first to prevent stale data exposure in the event
1711 * of a system crash before the truncate completes. See the related
1712 * comment in xfs_setattr_size() for details.
1714 ip
->i_d
.di_size
= 0;
1715 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1717 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1719 goto error_trans_cancel
;
1721 ASSERT(ip
->i_d
.di_nextents
== 0);
1723 error
= xfs_trans_commit(tp
, XFS_TRANS_RELEASE_LOG_RES
);
1727 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1731 xfs_trans_cancel(tp
, XFS_TRANS_RELEASE_LOG_RES
| XFS_TRANS_ABORT
);
1733 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1738 * xfs_inactive_ifree()
1740 * Perform the inode free when an inode is unlinked.
1744 struct xfs_inode
*ip
)
1746 xfs_bmap_free_t free_list
;
1747 xfs_fsblock_t first_block
;
1749 struct xfs_mount
*mp
= ip
->i_mount
;
1750 struct xfs_trans
*tp
;
1753 tp
= xfs_trans_alloc(mp
, XFS_TRANS_INACTIVE
);
1756 * The ifree transaction might need to allocate blocks for record
1757 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1758 * allow ifree to dip into the reserved block pool if necessary.
1760 * Freeing large sets of inodes generally means freeing inode chunks,
1761 * directory and file data blocks, so this should be relatively safe.
1762 * Only under severe circumstances should it be possible to free enough
1763 * inodes to exhaust the reserve block pool via finobt expansion while
1764 * at the same time not creating free space in the filesystem.
1766 * Send a warning if the reservation does happen to fail, as the inode
1767 * now remains allocated and sits on the unlinked list until the fs is
1770 tp
->t_flags
|= XFS_TRANS_RESERVE
;
1771 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_ifree
,
1772 XFS_IFREE_SPACE_RES(mp
), 0);
1774 if (error
== -ENOSPC
) {
1775 xfs_warn_ratelimited(mp
,
1776 "Failed to remove inode(s) from unlinked list. "
1777 "Please free space, unmount and run xfs_repair.");
1779 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1781 xfs_trans_cancel(tp
, XFS_TRANS_RELEASE_LOG_RES
);
1785 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1786 xfs_trans_ijoin(tp
, ip
, 0);
1788 xfs_bmap_init(&free_list
, &first_block
);
1789 error
= xfs_ifree(tp
, ip
, &free_list
);
1792 * If we fail to free the inode, shut down. The cancel
1793 * might do that, we need to make sure. Otherwise the
1794 * inode might be lost for a long time or forever.
1796 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1797 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1799 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1801 xfs_trans_cancel(tp
, XFS_TRANS_RELEASE_LOG_RES
|XFS_TRANS_ABORT
);
1802 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1807 * Credit the quota account(s). The inode is gone.
1809 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1812 * Just ignore errors at this point. There is nothing we can
1813 * do except to try to keep going. Make sure it's not a silent
1816 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1818 xfs_notice(mp
, "%s: xfs_bmap_finish returned error %d",
1820 error
= xfs_trans_commit(tp
, XFS_TRANS_RELEASE_LOG_RES
);
1822 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1825 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1832 * This is called when the vnode reference count for the vnode
1833 * goes to zero. If the file has been unlinked, then it must
1834 * now be truncated. Also, we clear all of the read-ahead state
1835 * kept for the inode here since the file is now closed.
1841 struct xfs_mount
*mp
;
1846 * If the inode is already free, then there can be nothing
1849 if (ip
->i_d
.di_mode
== 0) {
1850 ASSERT(ip
->i_df
.if_real_bytes
== 0);
1851 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1857 /* If this is a read-only mount, don't do this (would generate I/O) */
1858 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1861 if (ip
->i_d
.di_nlink
!= 0) {
1863 * force is true because we are evicting an inode from the
1864 * cache. Post-eof blocks must be freed, lest we end up with
1865 * broken free space accounting.
1867 if (xfs_can_free_eofblocks(ip
, true))
1868 xfs_free_eofblocks(mp
, ip
, false);
1873 if (S_ISREG(ip
->i_d
.di_mode
) &&
1874 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1875 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1878 error
= xfs_qm_dqattach(ip
, 0);
1882 if (S_ISLNK(ip
->i_d
.di_mode
))
1883 error
= xfs_inactive_symlink(ip
);
1885 error
= xfs_inactive_truncate(ip
);
1890 * If there are attributes associated with the file then blow them away
1891 * now. The code calls a routine that recursively deconstructs the
1892 * attribute fork. We need to just commit the current transaction
1893 * because we can't use it for xfs_attr_inactive().
1895 if (ip
->i_d
.di_anextents
> 0) {
1896 ASSERT(ip
->i_d
.di_forkoff
!= 0);
1898 error
= xfs_attr_inactive(ip
);
1904 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
1906 ASSERT(ip
->i_d
.di_anextents
== 0);
1911 error
= xfs_inactive_ifree(ip
);
1916 * Release the dquots held by inode, if any.
1918 xfs_qm_dqdetach(ip
);
1922 * This is called when the inode's link count goes to 0.
1923 * We place the on-disk inode on a list in the AGI. It
1924 * will be pulled from this list when the inode is freed.
1941 ASSERT(ip
->i_d
.di_nlink
== 0);
1942 ASSERT(ip
->i_d
.di_mode
!= 0);
1947 * Get the agi buffer first. It ensures lock ordering
1950 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1953 agi
= XFS_BUF_TO_AGI(agibp
);
1956 * Get the index into the agi hash table for the
1957 * list this inode will go on.
1959 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1961 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1962 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1963 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1965 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
1967 * There is already another inode in the bucket we need
1968 * to add ourselves to. Add us at the front of the list.
1969 * Here we put the head pointer into our next pointer,
1970 * and then we fall through to point the head at us.
1972 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1977 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
1978 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1979 offset
= ip
->i_imap
.im_boffset
+
1980 offsetof(xfs_dinode_t
, di_next_unlinked
);
1982 /* need to recalc the inode CRC if appropriate */
1983 xfs_dinode_calc_crc(mp
, dip
);
1985 xfs_trans_inode_buf(tp
, ibp
);
1986 xfs_trans_log_buf(tp
, ibp
, offset
,
1987 (offset
+ sizeof(xfs_agino_t
) - 1));
1988 xfs_inobp_check(mp
, ibp
);
1992 * Point the bucket head pointer at the inode being inserted.
1995 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1996 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1997 (sizeof(xfs_agino_t
) * bucket_index
);
1998 xfs_trans_log_buf(tp
, agibp
, offset
,
1999 (offset
+ sizeof(xfs_agino_t
) - 1));
2004 * Pull the on-disk inode from the AGI unlinked list.
2017 xfs_agnumber_t agno
;
2019 xfs_agino_t next_agino
;
2020 xfs_buf_t
*last_ibp
;
2021 xfs_dinode_t
*last_dip
= NULL
;
2023 int offset
, last_offset
= 0;
2027 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2030 * Get the agi buffer first. It ensures lock ordering
2033 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2037 agi
= XFS_BUF_TO_AGI(agibp
);
2040 * Get the index into the agi hash table for the
2041 * list this inode will go on.
2043 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2045 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2046 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
2047 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2049 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2051 * We're at the head of the list. Get the inode's on-disk
2052 * buffer to see if there is anyone after us on the list.
2053 * Only modify our next pointer if it is not already NULLAGINO.
2054 * This saves us the overhead of dealing with the buffer when
2055 * there is no need to change it.
2057 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2060 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2064 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2065 ASSERT(next_agino
!= 0);
2066 if (next_agino
!= NULLAGINO
) {
2067 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2068 offset
= ip
->i_imap
.im_boffset
+
2069 offsetof(xfs_dinode_t
, di_next_unlinked
);
2071 /* need to recalc the inode CRC if appropriate */
2072 xfs_dinode_calc_crc(mp
, dip
);
2074 xfs_trans_inode_buf(tp
, ibp
);
2075 xfs_trans_log_buf(tp
, ibp
, offset
,
2076 (offset
+ sizeof(xfs_agino_t
) - 1));
2077 xfs_inobp_check(mp
, ibp
);
2079 xfs_trans_brelse(tp
, ibp
);
2082 * Point the bucket head pointer at the next inode.
2084 ASSERT(next_agino
!= 0);
2085 ASSERT(next_agino
!= agino
);
2086 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2087 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2088 (sizeof(xfs_agino_t
) * bucket_index
);
2089 xfs_trans_log_buf(tp
, agibp
, offset
,
2090 (offset
+ sizeof(xfs_agino_t
) - 1));
2093 * We need to search the list for the inode being freed.
2095 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2097 while (next_agino
!= agino
) {
2098 struct xfs_imap imap
;
2101 xfs_trans_brelse(tp
, last_ibp
);
2104 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2106 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
2109 "%s: xfs_imap returned error %d.",
2114 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
2118 "%s: xfs_imap_to_bp returned error %d.",
2123 last_offset
= imap
.im_boffset
;
2124 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2125 ASSERT(next_agino
!= NULLAGINO
);
2126 ASSERT(next_agino
!= 0);
2130 * Now last_ibp points to the buffer previous to us on the
2131 * unlinked list. Pull us from the list.
2133 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2136 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
2140 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2141 ASSERT(next_agino
!= 0);
2142 ASSERT(next_agino
!= agino
);
2143 if (next_agino
!= NULLAGINO
) {
2144 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2145 offset
= ip
->i_imap
.im_boffset
+
2146 offsetof(xfs_dinode_t
, di_next_unlinked
);
2148 /* need to recalc the inode CRC if appropriate */
2149 xfs_dinode_calc_crc(mp
, dip
);
2151 xfs_trans_inode_buf(tp
, ibp
);
2152 xfs_trans_log_buf(tp
, ibp
, offset
,
2153 (offset
+ sizeof(xfs_agino_t
) - 1));
2154 xfs_inobp_check(mp
, ibp
);
2156 xfs_trans_brelse(tp
, ibp
);
2159 * Point the previous inode on the list to the next inode.
2161 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2162 ASSERT(next_agino
!= 0);
2163 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2165 /* need to recalc the inode CRC if appropriate */
2166 xfs_dinode_calc_crc(mp
, last_dip
);
2168 xfs_trans_inode_buf(tp
, last_ibp
);
2169 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2170 (offset
+ sizeof(xfs_agino_t
) - 1));
2171 xfs_inobp_check(mp
, last_ibp
);
2177 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2178 * inodes that are in memory - they all must be marked stale and attached to
2179 * the cluster buffer.
2183 xfs_inode_t
*free_ip
,
2187 xfs_mount_t
*mp
= free_ip
->i_mount
;
2188 int blks_per_cluster
;
2189 int inodes_per_cluster
;
2195 xfs_inode_log_item_t
*iip
;
2196 xfs_log_item_t
*lip
;
2197 struct xfs_perag
*pag
;
2199 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2200 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2201 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
2202 nbufs
= mp
->m_ialloc_blks
/ blks_per_cluster
;
2204 for (j
= 0; j
< nbufs
; j
++, inum
+= inodes_per_cluster
) {
2205 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2206 XFS_INO_TO_AGBNO(mp
, inum
));
2209 * We obtain and lock the backing buffer first in the process
2210 * here, as we have to ensure that any dirty inode that we
2211 * can't get the flush lock on is attached to the buffer.
2212 * If we scan the in-memory inodes first, then buffer IO can
2213 * complete before we get a lock on it, and hence we may fail
2214 * to mark all the active inodes on the buffer stale.
2216 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2217 mp
->m_bsize
* blks_per_cluster
,
2224 * This buffer may not have been correctly initialised as we
2225 * didn't read it from disk. That's not important because we are
2226 * only using to mark the buffer as stale in the log, and to
2227 * attach stale cached inodes on it. That means it will never be
2228 * dispatched for IO. If it is, we want to know about it, and we
2229 * want it to fail. We can acheive this by adding a write
2230 * verifier to the buffer.
2232 bp
->b_ops
= &xfs_inode_buf_ops
;
2235 * Walk the inodes already attached to the buffer and mark them
2236 * stale. These will all have the flush locks held, so an
2237 * in-memory inode walk can't lock them. By marking them all
2238 * stale first, we will not attempt to lock them in the loop
2239 * below as the XFS_ISTALE flag will be set.
2243 if (lip
->li_type
== XFS_LI_INODE
) {
2244 iip
= (xfs_inode_log_item_t
*)lip
;
2245 ASSERT(iip
->ili_logged
== 1);
2246 lip
->li_cb
= xfs_istale_done
;
2247 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2248 &iip
->ili_flush_lsn
,
2249 &iip
->ili_item
.li_lsn
);
2250 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2252 lip
= lip
->li_bio_list
;
2257 * For each inode in memory attempt to add it to the inode
2258 * buffer and set it up for being staled on buffer IO
2259 * completion. This is safe as we've locked out tail pushing
2260 * and flushing by locking the buffer.
2262 * We have already marked every inode that was part of a
2263 * transaction stale above, which means there is no point in
2264 * even trying to lock them.
2266 for (i
= 0; i
< inodes_per_cluster
; i
++) {
2269 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2270 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2272 /* Inode not in memory, nothing to do */
2279 * because this is an RCU protected lookup, we could
2280 * find a recently freed or even reallocated inode
2281 * during the lookup. We need to check under the
2282 * i_flags_lock for a valid inode here. Skip it if it
2283 * is not valid, the wrong inode or stale.
2285 spin_lock(&ip
->i_flags_lock
);
2286 if (ip
->i_ino
!= inum
+ i
||
2287 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2288 spin_unlock(&ip
->i_flags_lock
);
2292 spin_unlock(&ip
->i_flags_lock
);
2295 * Don't try to lock/unlock the current inode, but we
2296 * _cannot_ skip the other inodes that we did not find
2297 * in the list attached to the buffer and are not
2298 * already marked stale. If we can't lock it, back off
2301 if (ip
!= free_ip
&&
2302 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2310 xfs_iflags_set(ip
, XFS_ISTALE
);
2313 * we don't need to attach clean inodes or those only
2314 * with unlogged changes (which we throw away, anyway).
2317 if (!iip
|| xfs_inode_clean(ip
)) {
2318 ASSERT(ip
!= free_ip
);
2320 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2324 iip
->ili_last_fields
= iip
->ili_fields
;
2325 iip
->ili_fields
= 0;
2326 iip
->ili_logged
= 1;
2327 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2328 &iip
->ili_item
.li_lsn
);
2330 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2334 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2337 xfs_trans_stale_inode_buf(tp
, bp
);
2338 xfs_trans_binval(tp
, bp
);
2346 * This is called to return an inode to the inode free list.
2347 * The inode should already be truncated to 0 length and have
2348 * no pages associated with it. This routine also assumes that
2349 * the inode is already a part of the transaction.
2351 * The on-disk copy of the inode will have been added to the list
2352 * of unlinked inodes in the AGI. We need to remove the inode from
2353 * that list atomically with respect to freeing it here.
2359 xfs_bmap_free_t
*flist
)
2363 xfs_ino_t first_ino
;
2365 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2366 ASSERT(ip
->i_d
.di_nlink
== 0);
2367 ASSERT(ip
->i_d
.di_nextents
== 0);
2368 ASSERT(ip
->i_d
.di_anextents
== 0);
2369 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(ip
->i_d
.di_mode
));
2370 ASSERT(ip
->i_d
.di_nblocks
== 0);
2373 * Pull the on-disk inode from the AGI unlinked list.
2375 error
= xfs_iunlink_remove(tp
, ip
);
2379 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2383 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2384 ip
->i_d
.di_flags
= 0;
2385 ip
->i_d
.di_dmevmask
= 0;
2386 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2387 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2388 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2390 * Bump the generation count so no one will be confused
2391 * by reincarnations of this inode.
2394 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2397 error
= xfs_ifree_cluster(ip
, tp
, first_ino
);
2403 * This is called to unpin an inode. The caller must have the inode locked
2404 * in at least shared mode so that the buffer cannot be subsequently pinned
2405 * once someone is waiting for it to be unpinned.
2409 struct xfs_inode
*ip
)
2411 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2413 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2415 /* Give the log a push to start the unpinning I/O */
2416 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2422 struct xfs_inode
*ip
)
2424 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2425 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2430 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2431 if (xfs_ipincount(ip
))
2433 } while (xfs_ipincount(ip
));
2434 finish_wait(wq
, &wait
.wait
);
2439 struct xfs_inode
*ip
)
2441 if (xfs_ipincount(ip
))
2442 __xfs_iunpin_wait(ip
);
2446 * Removing an inode from the namespace involves removing the directory entry
2447 * and dropping the link count on the inode. Removing the directory entry can
2448 * result in locking an AGF (directory blocks were freed) and removing a link
2449 * count can result in placing the inode on an unlinked list which results in
2452 * The big problem here is that we have an ordering constraint on AGF and AGI
2453 * locking - inode allocation locks the AGI, then can allocate a new extent for
2454 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2455 * removes the inode from the unlinked list, requiring that we lock the AGI
2456 * first, and then freeing the inode can result in an inode chunk being freed
2457 * and hence freeing disk space requiring that we lock an AGF.
2459 * Hence the ordering that is imposed by other parts of the code is AGI before
2460 * AGF. This means we cannot remove the directory entry before we drop the inode
2461 * reference count and put it on the unlinked list as this results in a lock
2462 * order of AGF then AGI, and this can deadlock against inode allocation and
2463 * freeing. Therefore we must drop the link counts before we remove the
2466 * This is still safe from a transactional point of view - it is not until we
2467 * get to xfs_bmap_finish() that we have the possibility of multiple
2468 * transactions in this operation. Hence as long as we remove the directory
2469 * entry and drop the link count in the first transaction of the remove
2470 * operation, there are no transactional constraints on the ordering here.
2475 struct xfs_name
*name
,
2478 xfs_mount_t
*mp
= dp
->i_mount
;
2479 xfs_trans_t
*tp
= NULL
;
2480 int is_dir
= S_ISDIR(ip
->i_d
.di_mode
);
2482 xfs_bmap_free_t free_list
;
2483 xfs_fsblock_t first_block
;
2488 trace_xfs_remove(dp
, name
);
2490 if (XFS_FORCED_SHUTDOWN(mp
))
2493 error
= xfs_qm_dqattach(dp
, 0);
2497 error
= xfs_qm_dqattach(ip
, 0);
2502 tp
= xfs_trans_alloc(mp
, XFS_TRANS_RMDIR
);
2504 tp
= xfs_trans_alloc(mp
, XFS_TRANS_REMOVE
);
2505 cancel_flags
= XFS_TRANS_RELEASE_LOG_RES
;
2508 * We try to get the real space reservation first,
2509 * allowing for directory btree deletion(s) implying
2510 * possible bmap insert(s). If we can't get the space
2511 * reservation then we use 0 instead, and avoid the bmap
2512 * btree insert(s) in the directory code by, if the bmap
2513 * insert tries to happen, instead trimming the LAST
2514 * block from the directory.
2516 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2517 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_remove
, resblks
, 0);
2518 if (error
== -ENOSPC
) {
2520 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_remove
, 0, 0);
2523 ASSERT(error
!= -ENOSPC
);
2525 goto out_trans_cancel
;
2528 xfs_lock_two_inodes(dp
, ip
, XFS_ILOCK_EXCL
);
2530 xfs_trans_ijoin(tp
, dp
, XFS_ILOCK_EXCL
);
2531 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2534 * If we're removing a directory perform some additional validation.
2536 cancel_flags
|= XFS_TRANS_ABORT
;
2538 ASSERT(ip
->i_d
.di_nlink
>= 2);
2539 if (ip
->i_d
.di_nlink
!= 2) {
2541 goto out_trans_cancel
;
2543 if (!xfs_dir_isempty(ip
)) {
2545 goto out_trans_cancel
;
2548 /* Drop the link from ip's "..". */
2549 error
= xfs_droplink(tp
, dp
);
2551 goto out_trans_cancel
;
2553 /* Drop the "." link from ip to self. */
2554 error
= xfs_droplink(tp
, ip
);
2556 goto out_trans_cancel
;
2559 * When removing a non-directory we need to log the parent
2560 * inode here. For a directory this is done implicitly
2561 * by the xfs_droplink call for the ".." entry.
2563 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2565 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2567 /* Drop the link from dp to ip. */
2568 error
= xfs_droplink(tp
, ip
);
2570 goto out_trans_cancel
;
2572 xfs_bmap_init(&free_list
, &first_block
);
2573 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
,
2574 &first_block
, &free_list
, resblks
);
2576 ASSERT(error
!= -ENOENT
);
2577 goto out_bmap_cancel
;
2581 * If this is a synchronous mount, make sure that the
2582 * remove transaction goes to disk before returning to
2585 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2586 xfs_trans_set_sync(tp
);
2588 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
2590 goto out_bmap_cancel
;
2592 error
= xfs_trans_commit(tp
, XFS_TRANS_RELEASE_LOG_RES
);
2596 if (is_dir
&& xfs_inode_is_filestream(ip
))
2597 xfs_filestream_deassociate(ip
);
2602 xfs_bmap_cancel(&free_list
);
2604 xfs_trans_cancel(tp
, cancel_flags
);
2610 * Enter all inodes for a rename transaction into a sorted array.
2613 xfs_sort_for_rename(
2614 xfs_inode_t
*dp1
, /* in: old (source) directory inode */
2615 xfs_inode_t
*dp2
, /* in: new (target) directory inode */
2616 xfs_inode_t
*ip1
, /* in: inode of old entry */
2617 xfs_inode_t
*ip2
, /* in: inode of new entry, if it
2618 already exists, NULL otherwise. */
2619 xfs_inode_t
**i_tab
,/* out: array of inode returned, sorted */
2620 int *num_inodes
) /* out: number of inodes in array */
2626 * i_tab contains a list of pointers to inodes. We initialize
2627 * the table here & we'll sort it. We will then use it to
2628 * order the acquisition of the inode locks.
2630 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2644 * Sort the elements via bubble sort. (Remember, there are at
2645 * most 4 elements to sort, so this is adequate.)
2647 for (i
= 0; i
< *num_inodes
; i
++) {
2648 for (j
= 1; j
< *num_inodes
; j
++) {
2649 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
2651 i_tab
[j
] = i_tab
[j
-1];
2663 xfs_inode_t
*src_dp
,
2664 struct xfs_name
*src_name
,
2665 xfs_inode_t
*src_ip
,
2666 xfs_inode_t
*target_dp
,
2667 struct xfs_name
*target_name
,
2668 xfs_inode_t
*target_ip
)
2670 xfs_trans_t
*tp
= NULL
;
2671 xfs_mount_t
*mp
= src_dp
->i_mount
;
2672 int new_parent
; /* moving to a new dir */
2673 int src_is_directory
; /* src_name is a directory */
2675 xfs_bmap_free_t free_list
;
2676 xfs_fsblock_t first_block
;
2679 xfs_inode_t
*inodes
[4];
2683 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
2685 new_parent
= (src_dp
!= target_dp
);
2686 src_is_directory
= S_ISDIR(src_ip
->i_d
.di_mode
);
2688 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
,
2689 inodes
, &num_inodes
);
2691 xfs_bmap_init(&free_list
, &first_block
);
2692 tp
= xfs_trans_alloc(mp
, XFS_TRANS_RENAME
);
2693 cancel_flags
= XFS_TRANS_RELEASE_LOG_RES
;
2694 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
2695 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_rename
, spaceres
, 0);
2696 if (error
== -ENOSPC
) {
2698 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_rename
, 0, 0);
2701 xfs_trans_cancel(tp
, 0);
2706 * Attach the dquots to the inodes
2708 error
= xfs_qm_vop_rename_dqattach(inodes
);
2710 xfs_trans_cancel(tp
, cancel_flags
);
2715 * Lock all the participating inodes. Depending upon whether
2716 * the target_name exists in the target directory, and
2717 * whether the target directory is the same as the source
2718 * directory, we can lock from 2 to 4 inodes.
2720 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
2723 * Join all the inodes to the transaction. From this point on,
2724 * we can rely on either trans_commit or trans_cancel to unlock
2727 xfs_trans_ijoin(tp
, src_dp
, XFS_ILOCK_EXCL
);
2729 xfs_trans_ijoin(tp
, target_dp
, XFS_ILOCK_EXCL
);
2730 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
2732 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
2735 * If we are using project inheritance, we only allow renames
2736 * into our tree when the project IDs are the same; else the
2737 * tree quota mechanism would be circumvented.
2739 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
2740 (xfs_get_projid(target_dp
) != xfs_get_projid(src_ip
)))) {
2746 * Set up the target.
2748 if (target_ip
== NULL
) {
2750 * If there's no space reservation, check the entry will
2751 * fit before actually inserting it.
2754 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
2759 * If target does not exist and the rename crosses
2760 * directories, adjust the target directory link count
2761 * to account for the ".." reference from the new entry.
2763 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
2764 src_ip
->i_ino
, &first_block
,
2765 &free_list
, spaceres
);
2766 if (error
== -ENOSPC
)
2771 xfs_trans_ichgtime(tp
, target_dp
,
2772 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2774 if (new_parent
&& src_is_directory
) {
2775 error
= xfs_bumplink(tp
, target_dp
);
2779 } else { /* target_ip != NULL */
2781 * If target exists and it's a directory, check that both
2782 * target and source are directories and that target can be
2783 * destroyed, or that neither is a directory.
2785 if (S_ISDIR(target_ip
->i_d
.di_mode
)) {
2787 * Make sure target dir is empty.
2789 if (!(xfs_dir_isempty(target_ip
)) ||
2790 (target_ip
->i_d
.di_nlink
> 2)) {
2797 * Link the source inode under the target name.
2798 * If the source inode is a directory and we are moving
2799 * it across directories, its ".." entry will be
2800 * inconsistent until we replace that down below.
2802 * In case there is already an entry with the same
2803 * name at the destination directory, remove it first.
2805 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
2807 &first_block
, &free_list
, spaceres
);
2811 xfs_trans_ichgtime(tp
, target_dp
,
2812 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2815 * Decrement the link count on the target since the target
2816 * dir no longer points to it.
2818 error
= xfs_droplink(tp
, target_ip
);
2822 if (src_is_directory
) {
2824 * Drop the link from the old "." entry.
2826 error
= xfs_droplink(tp
, target_ip
);
2830 } /* target_ip != NULL */
2833 * Remove the source.
2835 if (new_parent
&& src_is_directory
) {
2837 * Rewrite the ".." entry to point to the new
2840 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
2842 &first_block
, &free_list
, spaceres
);
2843 ASSERT(error
!= -EEXIST
);
2849 * We always want to hit the ctime on the source inode.
2851 * This isn't strictly required by the standards since the source
2852 * inode isn't really being changed, but old unix file systems did
2853 * it and some incremental backup programs won't work without it.
2855 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
2856 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
2859 * Adjust the link count on src_dp. This is necessary when
2860 * renaming a directory, either within one parent when
2861 * the target existed, or across two parent directories.
2863 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
2866 * Decrement link count on src_directory since the
2867 * entry that's moved no longer points to it.
2869 error
= xfs_droplink(tp
, src_dp
);
2874 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
2875 &first_block
, &free_list
, spaceres
);
2879 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2880 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
2882 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
2885 * If this is a synchronous mount, make sure that the
2886 * rename transaction goes to disk before returning to
2889 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
)) {
2890 xfs_trans_set_sync(tp
);
2893 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
2895 xfs_bmap_cancel(&free_list
);
2896 xfs_trans_cancel(tp
, (XFS_TRANS_RELEASE_LOG_RES
|
2902 * trans_commit will unlock src_ip, target_ip & decrement
2903 * the vnode references.
2905 return xfs_trans_commit(tp
, XFS_TRANS_RELEASE_LOG_RES
);
2908 cancel_flags
|= XFS_TRANS_ABORT
;
2910 xfs_bmap_cancel(&free_list
);
2911 xfs_trans_cancel(tp
, cancel_flags
);
2921 xfs_mount_t
*mp
= ip
->i_mount
;
2922 struct xfs_perag
*pag
;
2923 unsigned long first_index
, mask
;
2924 unsigned long inodes_per_cluster
;
2926 xfs_inode_t
**ilist
;
2933 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2935 inodes_per_cluster
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
2936 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2937 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2941 mask
= ~(((mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
)) - 1);
2942 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2944 /* really need a gang lookup range call here */
2945 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2946 first_index
, inodes_per_cluster
);
2950 for (i
= 0; i
< nr_found
; i
++) {
2956 * because this is an RCU protected lookup, we could find a
2957 * recently freed or even reallocated inode during the lookup.
2958 * We need to check under the i_flags_lock for a valid inode
2959 * here. Skip it if it is not valid or the wrong inode.
2961 spin_lock(&ip
->i_flags_lock
);
2963 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
2964 spin_unlock(&ip
->i_flags_lock
);
2967 spin_unlock(&ip
->i_flags_lock
);
2970 * Do an un-protected check to see if the inode is dirty and
2971 * is a candidate for flushing. These checks will be repeated
2972 * later after the appropriate locks are acquired.
2974 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2978 * Try to get locks. If any are unavailable or it is pinned,
2979 * then this inode cannot be flushed and is skipped.
2982 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2984 if (!xfs_iflock_nowait(iq
)) {
2985 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2988 if (xfs_ipincount(iq
)) {
2990 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2995 * arriving here means that this inode can be flushed. First
2996 * re-check that it's dirty before flushing.
2998 if (!xfs_inode_clean(iq
)) {
3000 error
= xfs_iflush_int(iq
, bp
);
3002 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3003 goto cluster_corrupt_out
;
3009 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3013 XFS_STATS_INC(xs_icluster_flushcnt
);
3014 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3025 cluster_corrupt_out
:
3027 * Corruption detected in the clustering loop. Invalidate the
3028 * inode buffer and shut down the filesystem.
3032 * Clean up the buffer. If it was delwri, just release it --
3033 * brelse can handle it with no problems. If not, shut down the
3034 * filesystem before releasing the buffer.
3036 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
3040 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3042 if (!bufwasdelwri
) {
3044 * Just like incore_relse: if we have b_iodone functions,
3045 * mark the buffer as an error and call them. Otherwise
3046 * mark it as stale and brelse.
3051 xfs_buf_ioerror(bp
, -EIO
);
3060 * Unlocks the flush lock
3062 xfs_iflush_abort(iq
, false);
3065 return -EFSCORRUPTED
;
3069 * Flush dirty inode metadata into the backing buffer.
3071 * The caller must have the inode lock and the inode flush lock held. The
3072 * inode lock will still be held upon return to the caller, and the inode
3073 * flush lock will be released after the inode has reached the disk.
3075 * The caller must write out the buffer returned in *bpp and release it.
3079 struct xfs_inode
*ip
,
3080 struct xfs_buf
**bpp
)
3082 struct xfs_mount
*mp
= ip
->i_mount
;
3084 struct xfs_dinode
*dip
;
3087 XFS_STATS_INC(xs_iflush_count
);
3089 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3090 ASSERT(xfs_isiflocked(ip
));
3091 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3092 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3096 xfs_iunpin_wait(ip
);
3099 * For stale inodes we cannot rely on the backing buffer remaining
3100 * stale in cache for the remaining life of the stale inode and so
3101 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3102 * inodes below. We have to check this after ensuring the inode is
3103 * unpinned so that it is safe to reclaim the stale inode after the
3106 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3112 * This may have been unpinned because the filesystem is shutting
3113 * down forcibly. If that's the case we must not write this inode
3114 * to disk, because the log record didn't make it to disk.
3116 * We also have to remove the log item from the AIL in this case,
3117 * as we wait for an empty AIL as part of the unmount process.
3119 if (XFS_FORCED_SHUTDOWN(mp
)) {
3125 * Get the buffer containing the on-disk inode.
3127 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3135 * First flush out the inode that xfs_iflush was called with.
3137 error
= xfs_iflush_int(ip
, bp
);
3142 * If the buffer is pinned then push on the log now so we won't
3143 * get stuck waiting in the write for too long.
3145 if (xfs_buf_ispinned(bp
))
3146 xfs_log_force(mp
, 0);
3150 * see if other inodes can be gathered into this write
3152 error
= xfs_iflush_cluster(ip
, bp
);
3154 goto cluster_corrupt_out
;
3161 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3162 cluster_corrupt_out
:
3163 error
= -EFSCORRUPTED
;
3166 * Unlocks the flush lock
3168 xfs_iflush_abort(ip
, false);
3174 struct xfs_inode
*ip
,
3177 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3178 struct xfs_dinode
*dip
;
3179 struct xfs_mount
*mp
= ip
->i_mount
;
3181 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3182 ASSERT(xfs_isiflocked(ip
));
3183 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3184 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3185 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3186 ASSERT(ip
->i_d
.di_version
> 1);
3188 /* set *dip = inode's place in the buffer */
3189 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3191 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3192 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3193 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3194 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3195 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3198 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3199 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3200 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3201 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3202 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3205 if (S_ISREG(ip
->i_d
.di_mode
)) {
3207 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3208 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3209 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3210 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3211 "%s: Bad regular inode %Lu, ptr 0x%p",
3212 __func__
, ip
->i_ino
, ip
);
3215 } else if (S_ISDIR(ip
->i_d
.di_mode
)) {
3217 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3218 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3219 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3220 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3221 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3222 "%s: Bad directory inode %Lu, ptr 0x%p",
3223 __func__
, ip
->i_ino
, ip
);
3227 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3228 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3229 XFS_RANDOM_IFLUSH_5
)) {
3230 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3231 "%s: detected corrupt incore inode %Lu, "
3232 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3233 __func__
, ip
->i_ino
,
3234 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3235 ip
->i_d
.di_nblocks
, ip
);
3238 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3239 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3240 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3241 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3242 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3247 * Inode item log recovery for v2 inodes are dependent on the
3248 * di_flushiter count for correct sequencing. We bump the flush
3249 * iteration count so we can detect flushes which postdate a log record
3250 * during recovery. This is redundant as we now log every change and
3251 * hence this can't happen but we need to still do it to ensure
3252 * backwards compatibility with old kernels that predate logging all
3255 if (ip
->i_d
.di_version
< 3)
3256 ip
->i_d
.di_flushiter
++;
3259 * Copy the dirty parts of the inode into the on-disk
3260 * inode. We always copy out the core of the inode,
3261 * because if the inode is dirty at all the core must
3264 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3266 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3267 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3268 ip
->i_d
.di_flushiter
= 0;
3270 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3271 if (XFS_IFORK_Q(ip
))
3272 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3273 xfs_inobp_check(mp
, bp
);
3276 * We've recorded everything logged in the inode, so we'd like to clear
3277 * the ili_fields bits so we don't log and flush things unnecessarily.
3278 * However, we can't stop logging all this information until the data
3279 * we've copied into the disk buffer is written to disk. If we did we
3280 * might overwrite the copy of the inode in the log with all the data
3281 * after re-logging only part of it, and in the face of a crash we
3282 * wouldn't have all the data we need to recover.
3284 * What we do is move the bits to the ili_last_fields field. When
3285 * logging the inode, these bits are moved back to the ili_fields field.
3286 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3287 * know that the information those bits represent is permanently on
3288 * disk. As long as the flush completes before the inode is logged
3289 * again, then both ili_fields and ili_last_fields will be cleared.
3291 * We can play with the ili_fields bits here, because the inode lock
3292 * must be held exclusively in order to set bits there and the flush
3293 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3294 * done routine can tell whether or not to look in the AIL. Also, store
3295 * the current LSN of the inode so that we can tell whether the item has
3296 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3297 * need the AIL lock, because it is a 64 bit value that cannot be read
3300 iip
->ili_last_fields
= iip
->ili_fields
;
3301 iip
->ili_fields
= 0;
3302 iip
->ili_logged
= 1;
3304 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3305 &iip
->ili_item
.li_lsn
);
3308 * Attach the function xfs_iflush_done to the inode's
3309 * buffer. This will remove the inode from the AIL
3310 * and unlock the inode's flush lock when the inode is
3311 * completely written to disk.
3313 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3315 /* update the lsn in the on disk inode if required */
3316 if (ip
->i_d
.di_version
== 3)
3317 dip
->di_lsn
= cpu_to_be64(iip
->ili_item
.li_lsn
);
3319 /* generate the checksum. */
3320 xfs_dinode_calc_crc(mp
, dip
);
3322 ASSERT(bp
->b_fspriv
!= NULL
);
3323 ASSERT(bp
->b_iodone
!= NULL
);
3327 return -EFSCORRUPTED
;