2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
67 #include <net/protocol.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
78 struct kmem_cache
*skbuff_head_cache __read_mostly
;
79 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
82 * skb_panic - private function for out-of-line support
86 * @msg: skb_over_panic or skb_under_panic
88 * Out-of-line support for skb_put() and skb_push().
89 * Called via the wrapper skb_over_panic() or skb_under_panic().
90 * Keep out of line to prevent kernel bloat.
91 * __builtin_return_address is not used because it is not always reliable.
93 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
96 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
97 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
98 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
99 skb
->dev
? skb
->dev
->name
: "<NULL>");
103 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
105 skb_panic(skb
, sz
, addr
, __func__
);
108 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
110 skb_panic(skb
, sz
, addr
, __func__
);
114 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
115 * the caller if emergency pfmemalloc reserves are being used. If it is and
116 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
117 * may be used. Otherwise, the packet data may be discarded until enough
120 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
121 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
123 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
124 unsigned long ip
, bool *pfmemalloc
)
127 bool ret_pfmemalloc
= false;
130 * Try a regular allocation, when that fails and we're not entitled
131 * to the reserves, fail.
133 obj
= kmalloc_node_track_caller(size
,
134 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
136 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
139 /* Try again but now we are using pfmemalloc reserves */
140 ret_pfmemalloc
= true;
141 obj
= kmalloc_node_track_caller(size
, flags
, node
);
145 *pfmemalloc
= ret_pfmemalloc
;
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
156 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
161 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
162 gfp_mask
& ~__GFP_DMA
, node
);
167 * Only clear those fields we need to clear, not those that we will
168 * actually initialise below. Hence, don't put any more fields after
169 * the tail pointer in struct sk_buff!
171 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
173 skb
->truesize
= sizeof(struct sk_buff
);
174 atomic_set(&skb
->users
, 1);
176 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
182 * __alloc_skb - allocate a network buffer
183 * @size: size to allocate
184 * @gfp_mask: allocation mask
185 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
186 * instead of head cache and allocate a cloned (child) skb.
187 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
188 * allocations in case the data is required for writeback
189 * @node: numa node to allocate memory on
191 * Allocate a new &sk_buff. The returned buffer has no headroom and a
192 * tail room of at least size bytes. The object has a reference count
193 * of one. The return is the buffer. On a failure the return is %NULL.
195 * Buffers may only be allocated from interrupts using a @gfp_mask of
198 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
201 struct kmem_cache
*cache
;
202 struct skb_shared_info
*shinfo
;
207 cache
= (flags
& SKB_ALLOC_FCLONE
)
208 ? skbuff_fclone_cache
: skbuff_head_cache
;
210 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
211 gfp_mask
|= __GFP_MEMALLOC
;
214 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
219 /* We do our best to align skb_shared_info on a separate cache
220 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
221 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
222 * Both skb->head and skb_shared_info are cache line aligned.
224 size
= SKB_DATA_ALIGN(size
);
225 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
226 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
229 /* kmalloc(size) might give us more room than requested.
230 * Put skb_shared_info exactly at the end of allocated zone,
231 * to allow max possible filling before reallocation.
233 size
= SKB_WITH_OVERHEAD(ksize(data
));
234 prefetchw(data
+ size
);
237 * Only clear those fields we need to clear, not those that we will
238 * actually initialise below. Hence, don't put any more fields after
239 * the tail pointer in struct sk_buff!
241 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
242 /* Account for allocated memory : skb + skb->head */
243 skb
->truesize
= SKB_TRUESIZE(size
);
244 skb
->pfmemalloc
= pfmemalloc
;
245 atomic_set(&skb
->users
, 1);
248 skb_reset_tail_pointer(skb
);
249 skb
->end
= skb
->tail
+ size
;
250 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
251 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
253 /* make sure we initialize shinfo sequentially */
254 shinfo
= skb_shinfo(skb
);
255 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
256 atomic_set(&shinfo
->dataref
, 1);
257 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
259 if (flags
& SKB_ALLOC_FCLONE
) {
260 struct sk_buff_fclones
*fclones
;
262 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
264 kmemcheck_annotate_bitfield(&fclones
->skb2
, flags1
);
265 skb
->fclone
= SKB_FCLONE_ORIG
;
266 atomic_set(&fclones
->fclone_ref
, 1);
268 fclones
->skb2
.fclone
= SKB_FCLONE_CLONE
;
269 fclones
->skb2
.pfmemalloc
= pfmemalloc
;
274 kmem_cache_free(cache
, skb
);
278 EXPORT_SYMBOL(__alloc_skb
);
281 * build_skb - build a network buffer
282 * @data: data buffer provided by caller
283 * @frag_size: size of fragment, or 0 if head was kmalloced
285 * Allocate a new &sk_buff. Caller provides space holding head and
286 * skb_shared_info. @data must have been allocated by kmalloc() only if
287 * @frag_size is 0, otherwise data should come from the page allocator.
288 * The return is the new skb buffer.
289 * On a failure the return is %NULL, and @data is not freed.
291 * Before IO, driver allocates only data buffer where NIC put incoming frame
292 * Driver should add room at head (NET_SKB_PAD) and
293 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
294 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
295 * before giving packet to stack.
296 * RX rings only contains data buffers, not full skbs.
298 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
300 struct skb_shared_info
*shinfo
;
302 unsigned int size
= frag_size
? : ksize(data
);
304 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
308 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
310 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
311 skb
->truesize
= SKB_TRUESIZE(size
);
312 skb
->head_frag
= frag_size
!= 0;
313 atomic_set(&skb
->users
, 1);
316 skb_reset_tail_pointer(skb
);
317 skb
->end
= skb
->tail
+ size
;
318 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
319 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
321 /* make sure we initialize shinfo sequentially */
322 shinfo
= skb_shinfo(skb
);
323 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
324 atomic_set(&shinfo
->dataref
, 1);
325 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
329 EXPORT_SYMBOL(build_skb
);
331 struct netdev_alloc_cache
{
332 struct page_frag frag
;
333 /* we maintain a pagecount bias, so that we dont dirty cache line
334 * containing page->_count every time we allocate a fragment.
336 unsigned int pagecnt_bias
;
338 static DEFINE_PER_CPU(struct netdev_alloc_cache
, netdev_alloc_cache
);
339 static DEFINE_PER_CPU(struct netdev_alloc_cache
, napi_alloc_cache
);
341 static struct page
*__page_frag_refill(struct netdev_alloc_cache
*nc
,
344 const unsigned int order
= NETDEV_FRAG_PAGE_MAX_ORDER
;
345 struct page
*page
= NULL
;
346 gfp_t gfp
= gfp_mask
;
349 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
;
350 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
, order
);
351 nc
->frag
.size
= PAGE_SIZE
<< (page
? order
: 0);
355 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
357 nc
->frag
.page
= page
;
362 static void *__alloc_page_frag(struct netdev_alloc_cache __percpu
*cache
,
363 unsigned int fragsz
, gfp_t gfp_mask
)
365 struct netdev_alloc_cache
*nc
= this_cpu_ptr(cache
);
366 struct page
*page
= nc
->frag
.page
;
370 if (unlikely(!page
)) {
372 page
= __page_frag_refill(nc
, gfp_mask
);
376 /* if size can vary use frag.size else just use PAGE_SIZE */
377 size
= NETDEV_FRAG_PAGE_MAX_ORDER
? nc
->frag
.size
: PAGE_SIZE
;
379 /* Even if we own the page, we do not use atomic_set().
380 * This would break get_page_unless_zero() users.
382 atomic_add(size
- 1, &page
->_count
);
384 /* reset page count bias and offset to start of new frag */
385 nc
->pagecnt_bias
= size
;
386 nc
->frag
.offset
= size
;
389 offset
= nc
->frag
.offset
- fragsz
;
390 if (unlikely(offset
< 0)) {
391 if (!atomic_sub_and_test(nc
->pagecnt_bias
, &page
->_count
))
394 /* if size can vary use frag.size else just use PAGE_SIZE */
395 size
= NETDEV_FRAG_PAGE_MAX_ORDER
? nc
->frag
.size
: PAGE_SIZE
;
397 /* OK, page count is 0, we can safely set it */
398 atomic_set(&page
->_count
, size
);
400 /* reset page count bias and offset to start of new frag */
401 nc
->pagecnt_bias
= size
;
402 offset
= size
- fragsz
;
406 nc
->frag
.offset
= offset
;
408 return page_address(page
) + offset
;
411 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
416 local_irq_save(flags
);
417 data
= __alloc_page_frag(&netdev_alloc_cache
, fragsz
, gfp_mask
);
418 local_irq_restore(flags
);
423 * netdev_alloc_frag - allocate a page fragment
424 * @fragsz: fragment size
426 * Allocates a frag from a page for receive buffer.
427 * Uses GFP_ATOMIC allocations.
429 void *netdev_alloc_frag(unsigned int fragsz
)
431 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
433 EXPORT_SYMBOL(netdev_alloc_frag
);
435 static void *__napi_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
437 return __alloc_page_frag(&napi_alloc_cache
, fragsz
, gfp_mask
);
440 void *napi_alloc_frag(unsigned int fragsz
)
442 return __napi_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
444 EXPORT_SYMBOL(napi_alloc_frag
);
447 * __alloc_rx_skb - allocate an skbuff for rx
448 * @length: length to allocate
449 * @gfp_mask: get_free_pages mask, passed to alloc_skb
450 * @flags: If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
451 * allocations in case we have to fallback to __alloc_skb()
452 * If SKB_ALLOC_NAPI is set, page fragment will be allocated
453 * from napi_cache instead of netdev_cache.
455 * Allocate a new &sk_buff and assign it a usage count of one. The
456 * buffer has unspecified headroom built in. Users should allocate
457 * the headroom they think they need without accounting for the
458 * built in space. The built in space is used for optimisations.
460 * %NULL is returned if there is no free memory.
462 static struct sk_buff
*__alloc_rx_skb(unsigned int length
, gfp_t gfp_mask
,
465 struct sk_buff
*skb
= NULL
;
466 unsigned int fragsz
= SKB_DATA_ALIGN(length
) +
467 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
469 if (fragsz
<= PAGE_SIZE
&& !(gfp_mask
& (__GFP_WAIT
| GFP_DMA
))) {
472 if (sk_memalloc_socks())
473 gfp_mask
|= __GFP_MEMALLOC
;
475 data
= (flags
& SKB_ALLOC_NAPI
) ?
476 __napi_alloc_frag(fragsz
, gfp_mask
) :
477 __netdev_alloc_frag(fragsz
, gfp_mask
);
480 skb
= build_skb(data
, fragsz
);
482 put_page(virt_to_head_page(data
));
485 skb
= __alloc_skb(length
, gfp_mask
,
486 SKB_ALLOC_RX
, NUMA_NO_NODE
);
492 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
493 * @dev: network device to receive on
494 * @length: length to allocate
495 * @gfp_mask: get_free_pages mask, passed to alloc_skb
497 * Allocate a new &sk_buff and assign it a usage count of one. The
498 * buffer has NET_SKB_PAD headroom built in. Users should allocate
499 * the headroom they think they need without accounting for the
500 * built in space. The built in space is used for optimisations.
502 * %NULL is returned if there is no free memory.
504 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
505 unsigned int length
, gfp_t gfp_mask
)
509 length
+= NET_SKB_PAD
;
510 skb
= __alloc_rx_skb(length
, gfp_mask
, 0);
513 skb_reserve(skb
, NET_SKB_PAD
);
519 EXPORT_SYMBOL(__netdev_alloc_skb
);
522 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
523 * @napi: napi instance this buffer was allocated for
524 * @length: length to allocate
525 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
527 * Allocate a new sk_buff for use in NAPI receive. This buffer will
528 * attempt to allocate the head from a special reserved region used
529 * only for NAPI Rx allocation. By doing this we can save several
530 * CPU cycles by avoiding having to disable and re-enable IRQs.
532 * %NULL is returned if there is no free memory.
534 struct sk_buff
*__napi_alloc_skb(struct napi_struct
*napi
,
535 unsigned int length
, gfp_t gfp_mask
)
539 length
+= NET_SKB_PAD
+ NET_IP_ALIGN
;
540 skb
= __alloc_rx_skb(length
, gfp_mask
, SKB_ALLOC_NAPI
);
543 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
);
544 skb
->dev
= napi
->dev
;
549 EXPORT_SYMBOL(__napi_alloc_skb
);
551 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
552 int size
, unsigned int truesize
)
554 skb_fill_page_desc(skb
, i
, page
, off
, size
);
556 skb
->data_len
+= size
;
557 skb
->truesize
+= truesize
;
559 EXPORT_SYMBOL(skb_add_rx_frag
);
561 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
562 unsigned int truesize
)
564 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
566 skb_frag_size_add(frag
, size
);
568 skb
->data_len
+= size
;
569 skb
->truesize
+= truesize
;
571 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
573 static void skb_drop_list(struct sk_buff
**listp
)
575 kfree_skb_list(*listp
);
579 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
581 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
584 static void skb_clone_fraglist(struct sk_buff
*skb
)
586 struct sk_buff
*list
;
588 skb_walk_frags(skb
, list
)
592 static void skb_free_head(struct sk_buff
*skb
)
595 put_page(virt_to_head_page(skb
->head
));
600 static void skb_release_data(struct sk_buff
*skb
)
602 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
606 atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
610 for (i
= 0; i
< shinfo
->nr_frags
; i
++)
611 __skb_frag_unref(&shinfo
->frags
[i
]);
614 * If skb buf is from userspace, we need to notify the caller
615 * the lower device DMA has done;
617 if (shinfo
->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
618 struct ubuf_info
*uarg
;
620 uarg
= shinfo
->destructor_arg
;
622 uarg
->callback(uarg
, true);
625 if (shinfo
->frag_list
)
626 kfree_skb_list(shinfo
->frag_list
);
632 * Free an skbuff by memory without cleaning the state.
634 static void kfree_skbmem(struct sk_buff
*skb
)
636 struct sk_buff_fclones
*fclones
;
638 switch (skb
->fclone
) {
639 case SKB_FCLONE_UNAVAILABLE
:
640 kmem_cache_free(skbuff_head_cache
, skb
);
643 case SKB_FCLONE_ORIG
:
644 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
646 /* We usually free the clone (TX completion) before original skb
647 * This test would have no chance to be true for the clone,
648 * while here, branch prediction will be good.
650 if (atomic_read(&fclones
->fclone_ref
) == 1)
654 default: /* SKB_FCLONE_CLONE */
655 fclones
= container_of(skb
, struct sk_buff_fclones
, skb2
);
658 if (!atomic_dec_and_test(&fclones
->fclone_ref
))
661 kmem_cache_free(skbuff_fclone_cache
, fclones
);
664 static void skb_release_head_state(struct sk_buff
*skb
)
668 secpath_put(skb
->sp
);
670 if (skb
->destructor
) {
672 skb
->destructor(skb
);
674 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
675 nf_conntrack_put(skb
->nfct
);
677 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
678 nf_bridge_put(skb
->nf_bridge
);
680 /* XXX: IS this still necessary? - JHS */
681 #ifdef CONFIG_NET_SCHED
683 #ifdef CONFIG_NET_CLS_ACT
689 /* Free everything but the sk_buff shell. */
690 static void skb_release_all(struct sk_buff
*skb
)
692 skb_release_head_state(skb
);
693 if (likely(skb
->head
))
694 skb_release_data(skb
);
698 * __kfree_skb - private function
701 * Free an sk_buff. Release anything attached to the buffer.
702 * Clean the state. This is an internal helper function. Users should
703 * always call kfree_skb
706 void __kfree_skb(struct sk_buff
*skb
)
708 skb_release_all(skb
);
711 EXPORT_SYMBOL(__kfree_skb
);
714 * kfree_skb - free an sk_buff
715 * @skb: buffer to free
717 * Drop a reference to the buffer and free it if the usage count has
720 void kfree_skb(struct sk_buff
*skb
)
724 if (likely(atomic_read(&skb
->users
) == 1))
726 else if (likely(!atomic_dec_and_test(&skb
->users
)))
728 trace_kfree_skb(skb
, __builtin_return_address(0));
731 EXPORT_SYMBOL(kfree_skb
);
733 void kfree_skb_list(struct sk_buff
*segs
)
736 struct sk_buff
*next
= segs
->next
;
742 EXPORT_SYMBOL(kfree_skb_list
);
745 * skb_tx_error - report an sk_buff xmit error
746 * @skb: buffer that triggered an error
748 * Report xmit error if a device callback is tracking this skb.
749 * skb must be freed afterwards.
751 void skb_tx_error(struct sk_buff
*skb
)
753 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
754 struct ubuf_info
*uarg
;
756 uarg
= skb_shinfo(skb
)->destructor_arg
;
758 uarg
->callback(uarg
, false);
759 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
762 EXPORT_SYMBOL(skb_tx_error
);
765 * consume_skb - free an skbuff
766 * @skb: buffer to free
768 * Drop a ref to the buffer and free it if the usage count has hit zero
769 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
770 * is being dropped after a failure and notes that
772 void consume_skb(struct sk_buff
*skb
)
776 if (likely(atomic_read(&skb
->users
) == 1))
778 else if (likely(!atomic_dec_and_test(&skb
->users
)))
780 trace_consume_skb(skb
);
783 EXPORT_SYMBOL(consume_skb
);
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
794 new->tstamp
= old
->tstamp
;
795 /* We do not copy old->sk */
797 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
798 skb_dst_copy(new, old
);
800 new->sp
= secpath_get(old
->sp
);
802 __nf_copy(new, old
, false);
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
807 new->queue_mapping
= old
->queue_mapping
;
809 memcpy(&new->headers_start
, &old
->headers_start
,
810 offsetof(struct sk_buff
, headers_end
) -
811 offsetof(struct sk_buff
, headers_start
));
812 CHECK_SKB_FIELD(protocol
);
813 CHECK_SKB_FIELD(csum
);
814 CHECK_SKB_FIELD(hash
);
815 CHECK_SKB_FIELD(priority
);
816 CHECK_SKB_FIELD(skb_iif
);
817 CHECK_SKB_FIELD(vlan_proto
);
818 CHECK_SKB_FIELD(vlan_tci
);
819 CHECK_SKB_FIELD(transport_header
);
820 CHECK_SKB_FIELD(network_header
);
821 CHECK_SKB_FIELD(mac_header
);
822 CHECK_SKB_FIELD(inner_protocol
);
823 CHECK_SKB_FIELD(inner_transport_header
);
824 CHECK_SKB_FIELD(inner_network_header
);
825 CHECK_SKB_FIELD(inner_mac_header
);
826 CHECK_SKB_FIELD(mark
);
827 #ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark
);
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id
);
833 #ifdef CONFIG_NET_SCHED
834 CHECK_SKB_FIELD(tc_index
);
835 #ifdef CONFIG_NET_CLS_ACT
836 CHECK_SKB_FIELD(tc_verd
);
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
846 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
848 #define C(x) n->x = skb->x
850 n
->next
= n
->prev
= NULL
;
852 __copy_skb_header(n
, skb
);
857 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
860 n
->destructor
= NULL
;
867 atomic_set(&n
->users
, 1);
869 atomic_inc(&(skb_shinfo(skb
)->dataref
));
877 * skb_morph - morph one skb into another
878 * @dst: the skb to receive the contents
879 * @src: the skb to supply the contents
881 * This is identical to skb_clone except that the target skb is
882 * supplied by the user.
884 * The target skb is returned upon exit.
886 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
888 skb_release_all(dst
);
889 return __skb_clone(dst
, src
);
891 EXPORT_SYMBOL_GPL(skb_morph
);
894 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
895 * @skb: the skb to modify
896 * @gfp_mask: allocation priority
898 * This must be called on SKBTX_DEV_ZEROCOPY skb.
899 * It will copy all frags into kernel and drop the reference
900 * to userspace pages.
902 * If this function is called from an interrupt gfp_mask() must be
905 * Returns 0 on success or a negative error code on failure
906 * to allocate kernel memory to copy to.
908 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
911 int num_frags
= skb_shinfo(skb
)->nr_frags
;
912 struct page
*page
, *head
= NULL
;
913 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
915 for (i
= 0; i
< num_frags
; i
++) {
917 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
919 page
= alloc_page(gfp_mask
);
922 struct page
*next
= (struct page
*)page_private(head
);
928 vaddr
= kmap_atomic(skb_frag_page(f
));
929 memcpy(page_address(page
),
930 vaddr
+ f
->page_offset
, skb_frag_size(f
));
931 kunmap_atomic(vaddr
);
932 set_page_private(page
, (unsigned long)head
);
936 /* skb frags release userspace buffers */
937 for (i
= 0; i
< num_frags
; i
++)
938 skb_frag_unref(skb
, i
);
940 uarg
->callback(uarg
, false);
942 /* skb frags point to kernel buffers */
943 for (i
= num_frags
- 1; i
>= 0; i
--) {
944 __skb_fill_page_desc(skb
, i
, head
, 0,
945 skb_shinfo(skb
)->frags
[i
].size
);
946 head
= (struct page
*)page_private(head
);
949 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
952 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
955 * skb_clone - duplicate an sk_buff
956 * @skb: buffer to clone
957 * @gfp_mask: allocation priority
959 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
960 * copies share the same packet data but not structure. The new
961 * buffer has a reference count of 1. If the allocation fails the
962 * function returns %NULL otherwise the new buffer is returned.
964 * If this function is called from an interrupt gfp_mask() must be
968 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
970 struct sk_buff_fclones
*fclones
= container_of(skb
,
971 struct sk_buff_fclones
,
975 if (skb_orphan_frags(skb
, gfp_mask
))
978 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
979 atomic_read(&fclones
->fclone_ref
) == 1) {
981 atomic_set(&fclones
->fclone_ref
, 2);
983 if (skb_pfmemalloc(skb
))
984 gfp_mask
|= __GFP_MEMALLOC
;
986 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
990 kmemcheck_annotate_bitfield(n
, flags1
);
991 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
994 return __skb_clone(n
, skb
);
996 EXPORT_SYMBOL(skb_clone
);
998 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
1000 /* Only adjust this if it actually is csum_start rather than csum */
1001 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1002 skb
->csum_start
+= off
;
1003 /* {transport,network,mac}_header and tail are relative to skb->head */
1004 skb
->transport_header
+= off
;
1005 skb
->network_header
+= off
;
1006 if (skb_mac_header_was_set(skb
))
1007 skb
->mac_header
+= off
;
1008 skb
->inner_transport_header
+= off
;
1009 skb
->inner_network_header
+= off
;
1010 skb
->inner_mac_header
+= off
;
1013 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
1015 __copy_skb_header(new, old
);
1017 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
1018 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
1019 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
1022 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
1024 if (skb_pfmemalloc(skb
))
1025 return SKB_ALLOC_RX
;
1030 * skb_copy - create private copy of an sk_buff
1031 * @skb: buffer to copy
1032 * @gfp_mask: allocation priority
1034 * Make a copy of both an &sk_buff and its data. This is used when the
1035 * caller wishes to modify the data and needs a private copy of the
1036 * data to alter. Returns %NULL on failure or the pointer to the buffer
1037 * on success. The returned buffer has a reference count of 1.
1039 * As by-product this function converts non-linear &sk_buff to linear
1040 * one, so that &sk_buff becomes completely private and caller is allowed
1041 * to modify all the data of returned buffer. This means that this
1042 * function is not recommended for use in circumstances when only
1043 * header is going to be modified. Use pskb_copy() instead.
1046 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
1048 int headerlen
= skb_headroom(skb
);
1049 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
1050 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
1051 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
1056 /* Set the data pointer */
1057 skb_reserve(n
, headerlen
);
1058 /* Set the tail pointer and length */
1059 skb_put(n
, skb
->len
);
1061 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
1064 copy_skb_header(n
, skb
);
1067 EXPORT_SYMBOL(skb_copy
);
1070 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1071 * @skb: buffer to copy
1072 * @headroom: headroom of new skb
1073 * @gfp_mask: allocation priority
1074 * @fclone: if true allocate the copy of the skb from the fclone
1075 * cache instead of the head cache; it is recommended to set this
1076 * to true for the cases where the copy will likely be cloned
1078 * Make a copy of both an &sk_buff and part of its data, located
1079 * in header. Fragmented data remain shared. This is used when
1080 * the caller wishes to modify only header of &sk_buff and needs
1081 * private copy of the header to alter. Returns %NULL on failure
1082 * or the pointer to the buffer on success.
1083 * The returned buffer has a reference count of 1.
1086 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
1087 gfp_t gfp_mask
, bool fclone
)
1089 unsigned int size
= skb_headlen(skb
) + headroom
;
1090 int flags
= skb_alloc_rx_flag(skb
) | (fclone
? SKB_ALLOC_FCLONE
: 0);
1091 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
, flags
, NUMA_NO_NODE
);
1096 /* Set the data pointer */
1097 skb_reserve(n
, headroom
);
1098 /* Set the tail pointer and length */
1099 skb_put(n
, skb_headlen(skb
));
1100 /* Copy the bytes */
1101 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1103 n
->truesize
+= skb
->data_len
;
1104 n
->data_len
= skb
->data_len
;
1107 if (skb_shinfo(skb
)->nr_frags
) {
1110 if (skb_orphan_frags(skb
, gfp_mask
)) {
1115 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1116 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1117 skb_frag_ref(skb
, i
);
1119 skb_shinfo(n
)->nr_frags
= i
;
1122 if (skb_has_frag_list(skb
)) {
1123 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1124 skb_clone_fraglist(n
);
1127 copy_skb_header(n
, skb
);
1131 EXPORT_SYMBOL(__pskb_copy_fclone
);
1134 * pskb_expand_head - reallocate header of &sk_buff
1135 * @skb: buffer to reallocate
1136 * @nhead: room to add at head
1137 * @ntail: room to add at tail
1138 * @gfp_mask: allocation priority
1140 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1141 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1142 * reference count of 1. Returns zero in the case of success or error,
1143 * if expansion failed. In the last case, &sk_buff is not changed.
1145 * All the pointers pointing into skb header may change and must be
1146 * reloaded after call to this function.
1149 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1154 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1159 if (skb_shared(skb
))
1162 size
= SKB_DATA_ALIGN(size
);
1164 if (skb_pfmemalloc(skb
))
1165 gfp_mask
|= __GFP_MEMALLOC
;
1166 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1167 gfp_mask
, NUMA_NO_NODE
, NULL
);
1170 size
= SKB_WITH_OVERHEAD(ksize(data
));
1172 /* Copy only real data... and, alas, header. This should be
1173 * optimized for the cases when header is void.
1175 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1177 memcpy((struct skb_shared_info
*)(data
+ size
),
1179 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1182 * if shinfo is shared we must drop the old head gracefully, but if it
1183 * is not we can just drop the old head and let the existing refcount
1184 * be since all we did is relocate the values
1186 if (skb_cloned(skb
)) {
1187 /* copy this zero copy skb frags */
1188 if (skb_orphan_frags(skb
, gfp_mask
))
1190 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1191 skb_frag_ref(skb
, i
);
1193 if (skb_has_frag_list(skb
))
1194 skb_clone_fraglist(skb
);
1196 skb_release_data(skb
);
1200 off
= (data
+ nhead
) - skb
->head
;
1205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1209 skb
->end
= skb
->head
+ size
;
1212 skb_headers_offset_update(skb
, nhead
);
1216 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1224 EXPORT_SYMBOL(pskb_expand_head
);
1226 /* Make private copy of skb with writable head and some headroom */
1228 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1230 struct sk_buff
*skb2
;
1231 int delta
= headroom
- skb_headroom(skb
);
1234 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1236 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1237 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1245 EXPORT_SYMBOL(skb_realloc_headroom
);
1248 * skb_copy_expand - copy and expand sk_buff
1249 * @skb: buffer to copy
1250 * @newheadroom: new free bytes at head
1251 * @newtailroom: new free bytes at tail
1252 * @gfp_mask: allocation priority
1254 * Make a copy of both an &sk_buff and its data and while doing so
1255 * allocate additional space.
1257 * This is used when the caller wishes to modify the data and needs a
1258 * private copy of the data to alter as well as more space for new fields.
1259 * Returns %NULL on failure or the pointer to the buffer
1260 * on success. The returned buffer has a reference count of 1.
1262 * You must pass %GFP_ATOMIC as the allocation priority if this function
1263 * is called from an interrupt.
1265 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1266 int newheadroom
, int newtailroom
,
1270 * Allocate the copy buffer
1272 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1273 gfp_mask
, skb_alloc_rx_flag(skb
),
1275 int oldheadroom
= skb_headroom(skb
);
1276 int head_copy_len
, head_copy_off
;
1281 skb_reserve(n
, newheadroom
);
1283 /* Set the tail pointer and length */
1284 skb_put(n
, skb
->len
);
1286 head_copy_len
= oldheadroom
;
1288 if (newheadroom
<= head_copy_len
)
1289 head_copy_len
= newheadroom
;
1291 head_copy_off
= newheadroom
- head_copy_len
;
1293 /* Copy the linear header and data. */
1294 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1295 skb
->len
+ head_copy_len
))
1298 copy_skb_header(n
, skb
);
1300 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1304 EXPORT_SYMBOL(skb_copy_expand
);
1307 * skb_pad - zero pad the tail of an skb
1308 * @skb: buffer to pad
1309 * @pad: space to pad
1311 * Ensure that a buffer is followed by a padding area that is zero
1312 * filled. Used by network drivers which may DMA or transfer data
1313 * beyond the buffer end onto the wire.
1315 * May return error in out of memory cases. The skb is freed on error.
1318 int skb_pad(struct sk_buff
*skb
, int pad
)
1323 /* If the skbuff is non linear tailroom is always zero.. */
1324 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1325 memset(skb
->data
+skb
->len
, 0, pad
);
1329 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1330 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1331 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1336 /* FIXME: The use of this function with non-linear skb's really needs
1339 err
= skb_linearize(skb
);
1343 memset(skb
->data
+ skb
->len
, 0, pad
);
1350 EXPORT_SYMBOL(skb_pad
);
1353 * pskb_put - add data to the tail of a potentially fragmented buffer
1354 * @skb: start of the buffer to use
1355 * @tail: tail fragment of the buffer to use
1356 * @len: amount of data to add
1358 * This function extends the used data area of the potentially
1359 * fragmented buffer. @tail must be the last fragment of @skb -- or
1360 * @skb itself. If this would exceed the total buffer size the kernel
1361 * will panic. A pointer to the first byte of the extra data is
1365 unsigned char *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1368 skb
->data_len
+= len
;
1371 return skb_put(tail
, len
);
1373 EXPORT_SYMBOL_GPL(pskb_put
);
1376 * skb_put - add data to a buffer
1377 * @skb: buffer to use
1378 * @len: amount of data to add
1380 * This function extends the used data area of the buffer. If this would
1381 * exceed the total buffer size the kernel will panic. A pointer to the
1382 * first byte of the extra data is returned.
1384 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1386 unsigned char *tmp
= skb_tail_pointer(skb
);
1387 SKB_LINEAR_ASSERT(skb
);
1390 if (unlikely(skb
->tail
> skb
->end
))
1391 skb_over_panic(skb
, len
, __builtin_return_address(0));
1394 EXPORT_SYMBOL(skb_put
);
1397 * skb_push - add data to the start of a buffer
1398 * @skb: buffer to use
1399 * @len: amount of data to add
1401 * This function extends the used data area of the buffer at the buffer
1402 * start. If this would exceed the total buffer headroom the kernel will
1403 * panic. A pointer to the first byte of the extra data is returned.
1405 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1409 if (unlikely(skb
->data
<skb
->head
))
1410 skb_under_panic(skb
, len
, __builtin_return_address(0));
1413 EXPORT_SYMBOL(skb_push
);
1416 * skb_pull - remove data from the start of a buffer
1417 * @skb: buffer to use
1418 * @len: amount of data to remove
1420 * This function removes data from the start of a buffer, returning
1421 * the memory to the headroom. A pointer to the next data in the buffer
1422 * is returned. Once the data has been pulled future pushes will overwrite
1425 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1427 return skb_pull_inline(skb
, len
);
1429 EXPORT_SYMBOL(skb_pull
);
1432 * skb_trim - remove end from a buffer
1433 * @skb: buffer to alter
1436 * Cut the length of a buffer down by removing data from the tail. If
1437 * the buffer is already under the length specified it is not modified.
1438 * The skb must be linear.
1440 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1443 __skb_trim(skb
, len
);
1445 EXPORT_SYMBOL(skb_trim
);
1447 /* Trims skb to length len. It can change skb pointers.
1450 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1452 struct sk_buff
**fragp
;
1453 struct sk_buff
*frag
;
1454 int offset
= skb_headlen(skb
);
1455 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1459 if (skb_cloned(skb
) &&
1460 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1467 for (; i
< nfrags
; i
++) {
1468 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1475 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1478 skb_shinfo(skb
)->nr_frags
= i
;
1480 for (; i
< nfrags
; i
++)
1481 skb_frag_unref(skb
, i
);
1483 if (skb_has_frag_list(skb
))
1484 skb_drop_fraglist(skb
);
1488 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1489 fragp
= &frag
->next
) {
1490 int end
= offset
+ frag
->len
;
1492 if (skb_shared(frag
)) {
1493 struct sk_buff
*nfrag
;
1495 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1496 if (unlikely(!nfrag
))
1499 nfrag
->next
= frag
->next
;
1511 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1515 skb_drop_list(&frag
->next
);
1520 if (len
> skb_headlen(skb
)) {
1521 skb
->data_len
-= skb
->len
- len
;
1526 skb_set_tail_pointer(skb
, len
);
1531 EXPORT_SYMBOL(___pskb_trim
);
1534 * __pskb_pull_tail - advance tail of skb header
1535 * @skb: buffer to reallocate
1536 * @delta: number of bytes to advance tail
1538 * The function makes a sense only on a fragmented &sk_buff,
1539 * it expands header moving its tail forward and copying necessary
1540 * data from fragmented part.
1542 * &sk_buff MUST have reference count of 1.
1544 * Returns %NULL (and &sk_buff does not change) if pull failed
1545 * or value of new tail of skb in the case of success.
1547 * All the pointers pointing into skb header may change and must be
1548 * reloaded after call to this function.
1551 /* Moves tail of skb head forward, copying data from fragmented part,
1552 * when it is necessary.
1553 * 1. It may fail due to malloc failure.
1554 * 2. It may change skb pointers.
1556 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1558 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1560 /* If skb has not enough free space at tail, get new one
1561 * plus 128 bytes for future expansions. If we have enough
1562 * room at tail, reallocate without expansion only if skb is cloned.
1564 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1566 if (eat
> 0 || skb_cloned(skb
)) {
1567 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1572 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1575 /* Optimization: no fragments, no reasons to preestimate
1576 * size of pulled pages. Superb.
1578 if (!skb_has_frag_list(skb
))
1581 /* Estimate size of pulled pages. */
1583 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1584 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1591 /* If we need update frag list, we are in troubles.
1592 * Certainly, it possible to add an offset to skb data,
1593 * but taking into account that pulling is expected to
1594 * be very rare operation, it is worth to fight against
1595 * further bloating skb head and crucify ourselves here instead.
1596 * Pure masohism, indeed. 8)8)
1599 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1600 struct sk_buff
*clone
= NULL
;
1601 struct sk_buff
*insp
= NULL
;
1606 if (list
->len
<= eat
) {
1607 /* Eaten as whole. */
1612 /* Eaten partially. */
1614 if (skb_shared(list
)) {
1615 /* Sucks! We need to fork list. :-( */
1616 clone
= skb_clone(list
, GFP_ATOMIC
);
1622 /* This may be pulled without
1626 if (!pskb_pull(list
, eat
)) {
1634 /* Free pulled out fragments. */
1635 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1636 skb_shinfo(skb
)->frag_list
= list
->next
;
1639 /* And insert new clone at head. */
1642 skb_shinfo(skb
)->frag_list
= clone
;
1645 /* Success! Now we may commit changes to skb data. */
1650 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1651 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1654 skb_frag_unref(skb
, i
);
1657 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1659 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1660 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1666 skb_shinfo(skb
)->nr_frags
= k
;
1669 skb
->data_len
-= delta
;
1671 return skb_tail_pointer(skb
);
1673 EXPORT_SYMBOL(__pskb_pull_tail
);
1676 * skb_copy_bits - copy bits from skb to kernel buffer
1678 * @offset: offset in source
1679 * @to: destination buffer
1680 * @len: number of bytes to copy
1682 * Copy the specified number of bytes from the source skb to the
1683 * destination buffer.
1686 * If its prototype is ever changed,
1687 * check arch/{*}/net/{*}.S files,
1688 * since it is called from BPF assembly code.
1690 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1692 int start
= skb_headlen(skb
);
1693 struct sk_buff
*frag_iter
;
1696 if (offset
> (int)skb
->len
- len
)
1700 if ((copy
= start
- offset
) > 0) {
1703 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1704 if ((len
-= copy
) == 0)
1710 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1712 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1714 WARN_ON(start
> offset
+ len
);
1716 end
= start
+ skb_frag_size(f
);
1717 if ((copy
= end
- offset
) > 0) {
1723 vaddr
= kmap_atomic(skb_frag_page(f
));
1725 vaddr
+ f
->page_offset
+ offset
- start
,
1727 kunmap_atomic(vaddr
);
1729 if ((len
-= copy
) == 0)
1737 skb_walk_frags(skb
, frag_iter
) {
1740 WARN_ON(start
> offset
+ len
);
1742 end
= start
+ frag_iter
->len
;
1743 if ((copy
= end
- offset
) > 0) {
1746 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1748 if ((len
-= copy
) == 0)
1762 EXPORT_SYMBOL(skb_copy_bits
);
1765 * Callback from splice_to_pipe(), if we need to release some pages
1766 * at the end of the spd in case we error'ed out in filling the pipe.
1768 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1770 put_page(spd
->pages
[i
]);
1773 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1774 unsigned int *offset
,
1777 struct page_frag
*pfrag
= sk_page_frag(sk
);
1779 if (!sk_page_frag_refill(sk
, pfrag
))
1782 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1784 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1785 page_address(page
) + *offset
, *len
);
1786 *offset
= pfrag
->offset
;
1787 pfrag
->offset
+= *len
;
1792 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1794 unsigned int offset
)
1796 return spd
->nr_pages
&&
1797 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1798 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1799 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1803 * Fill page/offset/length into spd, if it can hold more pages.
1805 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1806 struct pipe_inode_info
*pipe
, struct page
*page
,
1807 unsigned int *len
, unsigned int offset
,
1811 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1815 page
= linear_to_page(page
, len
, &offset
, sk
);
1819 if (spd_can_coalesce(spd
, page
, offset
)) {
1820 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1824 spd
->pages
[spd
->nr_pages
] = page
;
1825 spd
->partial
[spd
->nr_pages
].len
= *len
;
1826 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1832 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1833 unsigned int plen
, unsigned int *off
,
1835 struct splice_pipe_desc
*spd
, bool linear
,
1837 struct pipe_inode_info
*pipe
)
1842 /* skip this segment if already processed */
1848 /* ignore any bits we already processed */
1854 unsigned int flen
= min(*len
, plen
);
1856 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1862 } while (*len
&& plen
);
1868 * Map linear and fragment data from the skb to spd. It reports true if the
1869 * pipe is full or if we already spliced the requested length.
1871 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1872 unsigned int *offset
, unsigned int *len
,
1873 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1877 /* map the linear part :
1878 * If skb->head_frag is set, this 'linear' part is backed by a
1879 * fragment, and if the head is not shared with any clones then
1880 * we can avoid a copy since we own the head portion of this page.
1882 if (__splice_segment(virt_to_page(skb
->data
),
1883 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1886 skb_head_is_locked(skb
),
1891 * then map the fragments
1893 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1894 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1896 if (__splice_segment(skb_frag_page(f
),
1897 f
->page_offset
, skb_frag_size(f
),
1898 offset
, len
, spd
, false, sk
, pipe
))
1906 * Map data from the skb to a pipe. Should handle both the linear part,
1907 * the fragments, and the frag list. It does NOT handle frag lists within
1908 * the frag list, if such a thing exists. We'd probably need to recurse to
1909 * handle that cleanly.
1911 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1912 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1915 struct partial_page partial
[MAX_SKB_FRAGS
];
1916 struct page
*pages
[MAX_SKB_FRAGS
];
1917 struct splice_pipe_desc spd
= {
1920 .nr_pages_max
= MAX_SKB_FRAGS
,
1922 .ops
= &nosteal_pipe_buf_ops
,
1923 .spd_release
= sock_spd_release
,
1925 struct sk_buff
*frag_iter
;
1926 struct sock
*sk
= skb
->sk
;
1930 * __skb_splice_bits() only fails if the output has no room left,
1931 * so no point in going over the frag_list for the error case.
1933 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1939 * now see if we have a frag_list to map
1941 skb_walk_frags(skb
, frag_iter
) {
1944 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1951 * Drop the socket lock, otherwise we have reverse
1952 * locking dependencies between sk_lock and i_mutex
1953 * here as compared to sendfile(). We enter here
1954 * with the socket lock held, and splice_to_pipe() will
1955 * grab the pipe inode lock. For sendfile() emulation,
1956 * we call into ->sendpage() with the i_mutex lock held
1957 * and networking will grab the socket lock.
1960 ret
= splice_to_pipe(pipe
, &spd
);
1968 * skb_store_bits - store bits from kernel buffer to skb
1969 * @skb: destination buffer
1970 * @offset: offset in destination
1971 * @from: source buffer
1972 * @len: number of bytes to copy
1974 * Copy the specified number of bytes from the source buffer to the
1975 * destination skb. This function handles all the messy bits of
1976 * traversing fragment lists and such.
1979 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1981 int start
= skb_headlen(skb
);
1982 struct sk_buff
*frag_iter
;
1985 if (offset
> (int)skb
->len
- len
)
1988 if ((copy
= start
- offset
) > 0) {
1991 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1992 if ((len
-= copy
) == 0)
1998 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1999 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2002 WARN_ON(start
> offset
+ len
);
2004 end
= start
+ skb_frag_size(frag
);
2005 if ((copy
= end
- offset
) > 0) {
2011 vaddr
= kmap_atomic(skb_frag_page(frag
));
2012 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
2014 kunmap_atomic(vaddr
);
2016 if ((len
-= copy
) == 0)
2024 skb_walk_frags(skb
, frag_iter
) {
2027 WARN_ON(start
> offset
+ len
);
2029 end
= start
+ frag_iter
->len
;
2030 if ((copy
= end
- offset
) > 0) {
2033 if (skb_store_bits(frag_iter
, offset
- start
,
2036 if ((len
-= copy
) == 0)
2049 EXPORT_SYMBOL(skb_store_bits
);
2051 /* Checksum skb data. */
2052 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
2053 __wsum csum
, const struct skb_checksum_ops
*ops
)
2055 int start
= skb_headlen(skb
);
2056 int i
, copy
= start
- offset
;
2057 struct sk_buff
*frag_iter
;
2060 /* Checksum header. */
2064 csum
= ops
->update(skb
->data
+ offset
, copy
, csum
);
2065 if ((len
-= copy
) == 0)
2071 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2073 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2075 WARN_ON(start
> offset
+ len
);
2077 end
= start
+ skb_frag_size(frag
);
2078 if ((copy
= end
- offset
) > 0) {
2084 vaddr
= kmap_atomic(skb_frag_page(frag
));
2085 csum2
= ops
->update(vaddr
+ frag
->page_offset
+
2086 offset
- start
, copy
, 0);
2087 kunmap_atomic(vaddr
);
2088 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2097 skb_walk_frags(skb
, frag_iter
) {
2100 WARN_ON(start
> offset
+ len
);
2102 end
= start
+ frag_iter
->len
;
2103 if ((copy
= end
- offset
) > 0) {
2107 csum2
= __skb_checksum(frag_iter
, offset
- start
,
2109 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2110 if ((len
-= copy
) == 0)
2121 EXPORT_SYMBOL(__skb_checksum
);
2123 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2124 int len
, __wsum csum
)
2126 const struct skb_checksum_ops ops
= {
2127 .update
= csum_partial_ext
,
2128 .combine
= csum_block_add_ext
,
2131 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2133 EXPORT_SYMBOL(skb_checksum
);
2135 /* Both of above in one bottle. */
2137 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2138 u8
*to
, int len
, __wsum csum
)
2140 int start
= skb_headlen(skb
);
2141 int i
, copy
= start
- offset
;
2142 struct sk_buff
*frag_iter
;
2149 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2151 if ((len
-= copy
) == 0)
2158 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2161 WARN_ON(start
> offset
+ len
);
2163 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2164 if ((copy
= end
- offset
) > 0) {
2167 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2171 vaddr
= kmap_atomic(skb_frag_page(frag
));
2172 csum2
= csum_partial_copy_nocheck(vaddr
+
2176 kunmap_atomic(vaddr
);
2177 csum
= csum_block_add(csum
, csum2
, pos
);
2187 skb_walk_frags(skb
, frag_iter
) {
2191 WARN_ON(start
> offset
+ len
);
2193 end
= start
+ frag_iter
->len
;
2194 if ((copy
= end
- offset
) > 0) {
2197 csum2
= skb_copy_and_csum_bits(frag_iter
,
2200 csum
= csum_block_add(csum
, csum2
, pos
);
2201 if ((len
-= copy
) == 0)
2212 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2215 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2216 * @from: source buffer
2218 * Calculates the amount of linear headroom needed in the 'to' skb passed
2219 * into skb_zerocopy().
2222 skb_zerocopy_headlen(const struct sk_buff
*from
)
2224 unsigned int hlen
= 0;
2226 if (!from
->head_frag
||
2227 skb_headlen(from
) < L1_CACHE_BYTES
||
2228 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2229 hlen
= skb_headlen(from
);
2231 if (skb_has_frag_list(from
))
2236 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2239 * skb_zerocopy - Zero copy skb to skb
2240 * @to: destination buffer
2241 * @from: source buffer
2242 * @len: number of bytes to copy from source buffer
2243 * @hlen: size of linear headroom in destination buffer
2245 * Copies up to `len` bytes from `from` to `to` by creating references
2246 * to the frags in the source buffer.
2248 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2249 * headroom in the `to` buffer.
2252 * 0: everything is OK
2253 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2254 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2257 skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
, int len
, int hlen
)
2260 int plen
= 0; /* length of skb->head fragment */
2263 unsigned int offset
;
2265 BUG_ON(!from
->head_frag
&& !hlen
);
2267 /* dont bother with small payloads */
2268 if (len
<= skb_tailroom(to
))
2269 return skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2272 ret
= skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2277 plen
= min_t(int, skb_headlen(from
), len
);
2279 page
= virt_to_head_page(from
->head
);
2280 offset
= from
->data
- (unsigned char *)page_address(page
);
2281 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2288 to
->truesize
+= len
+ plen
;
2289 to
->len
+= len
+ plen
;
2290 to
->data_len
+= len
+ plen
;
2292 if (unlikely(skb_orphan_frags(from
, GFP_ATOMIC
))) {
2297 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2300 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2301 skb_shinfo(to
)->frags
[j
].size
= min_t(int, skb_shinfo(to
)->frags
[j
].size
, len
);
2302 len
-= skb_shinfo(to
)->frags
[j
].size
;
2303 skb_frag_ref(to
, j
);
2306 skb_shinfo(to
)->nr_frags
= j
;
2310 EXPORT_SYMBOL_GPL(skb_zerocopy
);
2312 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2317 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2318 csstart
= skb_checksum_start_offset(skb
);
2320 csstart
= skb_headlen(skb
);
2322 BUG_ON(csstart
> skb_headlen(skb
));
2324 skb_copy_from_linear_data(skb
, to
, csstart
);
2327 if (csstart
!= skb
->len
)
2328 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2329 skb
->len
- csstart
, 0);
2331 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2332 long csstuff
= csstart
+ skb
->csum_offset
;
2334 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2337 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2340 * skb_dequeue - remove from the head of the queue
2341 * @list: list to dequeue from
2343 * Remove the head of the list. The list lock is taken so the function
2344 * may be used safely with other locking list functions. The head item is
2345 * returned or %NULL if the list is empty.
2348 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2350 unsigned long flags
;
2351 struct sk_buff
*result
;
2353 spin_lock_irqsave(&list
->lock
, flags
);
2354 result
= __skb_dequeue(list
);
2355 spin_unlock_irqrestore(&list
->lock
, flags
);
2358 EXPORT_SYMBOL(skb_dequeue
);
2361 * skb_dequeue_tail - remove from the tail of the queue
2362 * @list: list to dequeue from
2364 * Remove the tail of the list. The list lock is taken so the function
2365 * may be used safely with other locking list functions. The tail item is
2366 * returned or %NULL if the list is empty.
2368 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2370 unsigned long flags
;
2371 struct sk_buff
*result
;
2373 spin_lock_irqsave(&list
->lock
, flags
);
2374 result
= __skb_dequeue_tail(list
);
2375 spin_unlock_irqrestore(&list
->lock
, flags
);
2378 EXPORT_SYMBOL(skb_dequeue_tail
);
2381 * skb_queue_purge - empty a list
2382 * @list: list to empty
2384 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2385 * the list and one reference dropped. This function takes the list
2386 * lock and is atomic with respect to other list locking functions.
2388 void skb_queue_purge(struct sk_buff_head
*list
)
2390 struct sk_buff
*skb
;
2391 while ((skb
= skb_dequeue(list
)) != NULL
)
2394 EXPORT_SYMBOL(skb_queue_purge
);
2397 * skb_queue_head - queue a buffer at the list head
2398 * @list: list to use
2399 * @newsk: buffer to queue
2401 * Queue a buffer at the start of the list. This function takes the
2402 * list lock and can be used safely with other locking &sk_buff functions
2405 * A buffer cannot be placed on two lists at the same time.
2407 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2409 unsigned long flags
;
2411 spin_lock_irqsave(&list
->lock
, flags
);
2412 __skb_queue_head(list
, newsk
);
2413 spin_unlock_irqrestore(&list
->lock
, flags
);
2415 EXPORT_SYMBOL(skb_queue_head
);
2418 * skb_queue_tail - queue a buffer at the list tail
2419 * @list: list to use
2420 * @newsk: buffer to queue
2422 * Queue a buffer at the tail of the list. This function takes the
2423 * list lock and can be used safely with other locking &sk_buff functions
2426 * A buffer cannot be placed on two lists at the same time.
2428 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2430 unsigned long flags
;
2432 spin_lock_irqsave(&list
->lock
, flags
);
2433 __skb_queue_tail(list
, newsk
);
2434 spin_unlock_irqrestore(&list
->lock
, flags
);
2436 EXPORT_SYMBOL(skb_queue_tail
);
2439 * skb_unlink - remove a buffer from a list
2440 * @skb: buffer to remove
2441 * @list: list to use
2443 * Remove a packet from a list. The list locks are taken and this
2444 * function is atomic with respect to other list locked calls
2446 * You must know what list the SKB is on.
2448 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2450 unsigned long flags
;
2452 spin_lock_irqsave(&list
->lock
, flags
);
2453 __skb_unlink(skb
, list
);
2454 spin_unlock_irqrestore(&list
->lock
, flags
);
2456 EXPORT_SYMBOL(skb_unlink
);
2459 * skb_append - append a buffer
2460 * @old: buffer to insert after
2461 * @newsk: buffer to insert
2462 * @list: list to use
2464 * Place a packet after a given packet in a list. The list locks are taken
2465 * and this function is atomic with respect to other list locked calls.
2466 * A buffer cannot be placed on two lists at the same time.
2468 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2470 unsigned long flags
;
2472 spin_lock_irqsave(&list
->lock
, flags
);
2473 __skb_queue_after(list
, old
, newsk
);
2474 spin_unlock_irqrestore(&list
->lock
, flags
);
2476 EXPORT_SYMBOL(skb_append
);
2479 * skb_insert - insert a buffer
2480 * @old: buffer to insert before
2481 * @newsk: buffer to insert
2482 * @list: list to use
2484 * Place a packet before a given packet in a list. The list locks are
2485 * taken and this function is atomic with respect to other list locked
2488 * A buffer cannot be placed on two lists at the same time.
2490 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2492 unsigned long flags
;
2494 spin_lock_irqsave(&list
->lock
, flags
);
2495 __skb_insert(newsk
, old
->prev
, old
, list
);
2496 spin_unlock_irqrestore(&list
->lock
, flags
);
2498 EXPORT_SYMBOL(skb_insert
);
2500 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2501 struct sk_buff
* skb1
,
2502 const u32 len
, const int pos
)
2506 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2508 /* And move data appendix as is. */
2509 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2510 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2512 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2513 skb_shinfo(skb
)->nr_frags
= 0;
2514 skb1
->data_len
= skb
->data_len
;
2515 skb1
->len
+= skb1
->data_len
;
2518 skb_set_tail_pointer(skb
, len
);
2521 static inline void skb_split_no_header(struct sk_buff
*skb
,
2522 struct sk_buff
* skb1
,
2523 const u32 len
, int pos
)
2526 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2528 skb_shinfo(skb
)->nr_frags
= 0;
2529 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2531 skb
->data_len
= len
- pos
;
2533 for (i
= 0; i
< nfrags
; i
++) {
2534 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2536 if (pos
+ size
> len
) {
2537 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2541 * We have two variants in this case:
2542 * 1. Move all the frag to the second
2543 * part, if it is possible. F.e.
2544 * this approach is mandatory for TUX,
2545 * where splitting is expensive.
2546 * 2. Split is accurately. We make this.
2548 skb_frag_ref(skb
, i
);
2549 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2550 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2551 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2552 skb_shinfo(skb
)->nr_frags
++;
2556 skb_shinfo(skb
)->nr_frags
++;
2559 skb_shinfo(skb1
)->nr_frags
= k
;
2563 * skb_split - Split fragmented skb to two parts at length len.
2564 * @skb: the buffer to split
2565 * @skb1: the buffer to receive the second part
2566 * @len: new length for skb
2568 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2570 int pos
= skb_headlen(skb
);
2572 skb_shinfo(skb1
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2573 if (len
< pos
) /* Split line is inside header. */
2574 skb_split_inside_header(skb
, skb1
, len
, pos
);
2575 else /* Second chunk has no header, nothing to copy. */
2576 skb_split_no_header(skb
, skb1
, len
, pos
);
2578 EXPORT_SYMBOL(skb_split
);
2580 /* Shifting from/to a cloned skb is a no-go.
2582 * Caller cannot keep skb_shinfo related pointers past calling here!
2584 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2586 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2590 * skb_shift - Shifts paged data partially from skb to another
2591 * @tgt: buffer into which tail data gets added
2592 * @skb: buffer from which the paged data comes from
2593 * @shiftlen: shift up to this many bytes
2595 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2596 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2597 * It's up to caller to free skb if everything was shifted.
2599 * If @tgt runs out of frags, the whole operation is aborted.
2601 * Skb cannot include anything else but paged data while tgt is allowed
2602 * to have non-paged data as well.
2604 * TODO: full sized shift could be optimized but that would need
2605 * specialized skb free'er to handle frags without up-to-date nr_frags.
2607 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2609 int from
, to
, merge
, todo
;
2610 struct skb_frag_struct
*fragfrom
, *fragto
;
2612 BUG_ON(shiftlen
> skb
->len
);
2613 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2617 to
= skb_shinfo(tgt
)->nr_frags
;
2618 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2620 /* Actual merge is delayed until the point when we know we can
2621 * commit all, so that we don't have to undo partial changes
2624 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2625 fragfrom
->page_offset
)) {
2630 todo
-= skb_frag_size(fragfrom
);
2632 if (skb_prepare_for_shift(skb
) ||
2633 skb_prepare_for_shift(tgt
))
2636 /* All previous frag pointers might be stale! */
2637 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2638 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2640 skb_frag_size_add(fragto
, shiftlen
);
2641 skb_frag_size_sub(fragfrom
, shiftlen
);
2642 fragfrom
->page_offset
+= shiftlen
;
2650 /* Skip full, not-fitting skb to avoid expensive operations */
2651 if ((shiftlen
== skb
->len
) &&
2652 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2655 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2658 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2659 if (to
== MAX_SKB_FRAGS
)
2662 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2663 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2665 if (todo
>= skb_frag_size(fragfrom
)) {
2666 *fragto
= *fragfrom
;
2667 todo
-= skb_frag_size(fragfrom
);
2672 __skb_frag_ref(fragfrom
);
2673 fragto
->page
= fragfrom
->page
;
2674 fragto
->page_offset
= fragfrom
->page_offset
;
2675 skb_frag_size_set(fragto
, todo
);
2677 fragfrom
->page_offset
+= todo
;
2678 skb_frag_size_sub(fragfrom
, todo
);
2686 /* Ready to "commit" this state change to tgt */
2687 skb_shinfo(tgt
)->nr_frags
= to
;
2690 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2691 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2693 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2694 __skb_frag_unref(fragfrom
);
2697 /* Reposition in the original skb */
2699 while (from
< skb_shinfo(skb
)->nr_frags
)
2700 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2701 skb_shinfo(skb
)->nr_frags
= to
;
2703 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2706 /* Most likely the tgt won't ever need its checksum anymore, skb on
2707 * the other hand might need it if it needs to be resent
2709 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2710 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2712 /* Yak, is it really working this way? Some helper please? */
2713 skb
->len
-= shiftlen
;
2714 skb
->data_len
-= shiftlen
;
2715 skb
->truesize
-= shiftlen
;
2716 tgt
->len
+= shiftlen
;
2717 tgt
->data_len
+= shiftlen
;
2718 tgt
->truesize
+= shiftlen
;
2724 * skb_prepare_seq_read - Prepare a sequential read of skb data
2725 * @skb: the buffer to read
2726 * @from: lower offset of data to be read
2727 * @to: upper offset of data to be read
2728 * @st: state variable
2730 * Initializes the specified state variable. Must be called before
2731 * invoking skb_seq_read() for the first time.
2733 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2734 unsigned int to
, struct skb_seq_state
*st
)
2736 st
->lower_offset
= from
;
2737 st
->upper_offset
= to
;
2738 st
->root_skb
= st
->cur_skb
= skb
;
2739 st
->frag_idx
= st
->stepped_offset
= 0;
2740 st
->frag_data
= NULL
;
2742 EXPORT_SYMBOL(skb_prepare_seq_read
);
2745 * skb_seq_read - Sequentially read skb data
2746 * @consumed: number of bytes consumed by the caller so far
2747 * @data: destination pointer for data to be returned
2748 * @st: state variable
2750 * Reads a block of skb data at @consumed relative to the
2751 * lower offset specified to skb_prepare_seq_read(). Assigns
2752 * the head of the data block to @data and returns the length
2753 * of the block or 0 if the end of the skb data or the upper
2754 * offset has been reached.
2756 * The caller is not required to consume all of the data
2757 * returned, i.e. @consumed is typically set to the number
2758 * of bytes already consumed and the next call to
2759 * skb_seq_read() will return the remaining part of the block.
2761 * Note 1: The size of each block of data returned can be arbitrary,
2762 * this limitation is the cost for zerocopy sequential
2763 * reads of potentially non linear data.
2765 * Note 2: Fragment lists within fragments are not implemented
2766 * at the moment, state->root_skb could be replaced with
2767 * a stack for this purpose.
2769 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2770 struct skb_seq_state
*st
)
2772 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2775 if (unlikely(abs_offset
>= st
->upper_offset
)) {
2776 if (st
->frag_data
) {
2777 kunmap_atomic(st
->frag_data
);
2778 st
->frag_data
= NULL
;
2784 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2786 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2787 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2788 return block_limit
- abs_offset
;
2791 if (st
->frag_idx
== 0 && !st
->frag_data
)
2792 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2794 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2795 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2796 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2798 if (abs_offset
< block_limit
) {
2800 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2802 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2803 (abs_offset
- st
->stepped_offset
);
2805 return block_limit
- abs_offset
;
2808 if (st
->frag_data
) {
2809 kunmap_atomic(st
->frag_data
);
2810 st
->frag_data
= NULL
;
2814 st
->stepped_offset
+= skb_frag_size(frag
);
2817 if (st
->frag_data
) {
2818 kunmap_atomic(st
->frag_data
);
2819 st
->frag_data
= NULL
;
2822 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2823 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2826 } else if (st
->cur_skb
->next
) {
2827 st
->cur_skb
= st
->cur_skb
->next
;
2834 EXPORT_SYMBOL(skb_seq_read
);
2837 * skb_abort_seq_read - Abort a sequential read of skb data
2838 * @st: state variable
2840 * Must be called if skb_seq_read() was not called until it
2843 void skb_abort_seq_read(struct skb_seq_state
*st
)
2846 kunmap_atomic(st
->frag_data
);
2848 EXPORT_SYMBOL(skb_abort_seq_read
);
2850 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2852 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2853 struct ts_config
*conf
,
2854 struct ts_state
*state
)
2856 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2859 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2861 skb_abort_seq_read(TS_SKB_CB(state
));
2865 * skb_find_text - Find a text pattern in skb data
2866 * @skb: the buffer to look in
2867 * @from: search offset
2869 * @config: textsearch configuration
2870 * @state: uninitialized textsearch state variable
2872 * Finds a pattern in the skb data according to the specified
2873 * textsearch configuration. Use textsearch_next() to retrieve
2874 * subsequent occurrences of the pattern. Returns the offset
2875 * to the first occurrence or UINT_MAX if no match was found.
2877 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2878 unsigned int to
, struct ts_config
*config
,
2879 struct ts_state
*state
)
2883 config
->get_next_block
= skb_ts_get_next_block
;
2884 config
->finish
= skb_ts_finish
;
2886 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2888 ret
= textsearch_find(config
, state
);
2889 return (ret
<= to
- from
? ret
: UINT_MAX
);
2891 EXPORT_SYMBOL(skb_find_text
);
2894 * skb_append_datato_frags - append the user data to a skb
2895 * @sk: sock structure
2896 * @skb: skb structure to be appended with user data.
2897 * @getfrag: call back function to be used for getting the user data
2898 * @from: pointer to user message iov
2899 * @length: length of the iov message
2901 * Description: This procedure append the user data in the fragment part
2902 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2904 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2905 int (*getfrag
)(void *from
, char *to
, int offset
,
2906 int len
, int odd
, struct sk_buff
*skb
),
2907 void *from
, int length
)
2909 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2913 struct page_frag
*pfrag
= ¤t
->task_frag
;
2916 /* Return error if we don't have space for new frag */
2917 if (frg_cnt
>= MAX_SKB_FRAGS
)
2920 if (!sk_page_frag_refill(sk
, pfrag
))
2923 /* copy the user data to page */
2924 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
2926 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
2927 offset
, copy
, 0, skb
);
2931 /* copy was successful so update the size parameters */
2932 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
2935 pfrag
->offset
+= copy
;
2936 get_page(pfrag
->page
);
2938 skb
->truesize
+= copy
;
2939 atomic_add(copy
, &sk
->sk_wmem_alloc
);
2941 skb
->data_len
+= copy
;
2945 } while (length
> 0);
2949 EXPORT_SYMBOL(skb_append_datato_frags
);
2952 * skb_pull_rcsum - pull skb and update receive checksum
2953 * @skb: buffer to update
2954 * @len: length of data pulled
2956 * This function performs an skb_pull on the packet and updates
2957 * the CHECKSUM_COMPLETE checksum. It should be used on
2958 * receive path processing instead of skb_pull unless you know
2959 * that the checksum difference is zero (e.g., a valid IP header)
2960 * or you are setting ip_summed to CHECKSUM_NONE.
2962 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2964 BUG_ON(len
> skb
->len
);
2966 BUG_ON(skb
->len
< skb
->data_len
);
2967 skb_postpull_rcsum(skb
, skb
->data
, len
);
2968 return skb
->data
+= len
;
2970 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2973 * skb_segment - Perform protocol segmentation on skb.
2974 * @head_skb: buffer to segment
2975 * @features: features for the output path (see dev->features)
2977 * This function performs segmentation on the given skb. It returns
2978 * a pointer to the first in a list of new skbs for the segments.
2979 * In case of error it returns ERR_PTR(err).
2981 struct sk_buff
*skb_segment(struct sk_buff
*head_skb
,
2982 netdev_features_t features
)
2984 struct sk_buff
*segs
= NULL
;
2985 struct sk_buff
*tail
= NULL
;
2986 struct sk_buff
*list_skb
= skb_shinfo(head_skb
)->frag_list
;
2987 skb_frag_t
*frag
= skb_shinfo(head_skb
)->frags
;
2988 unsigned int mss
= skb_shinfo(head_skb
)->gso_size
;
2989 unsigned int doffset
= head_skb
->data
- skb_mac_header(head_skb
);
2990 struct sk_buff
*frag_skb
= head_skb
;
2991 unsigned int offset
= doffset
;
2992 unsigned int tnl_hlen
= skb_tnl_header_len(head_skb
);
2993 unsigned int headroom
;
2997 int sg
= !!(features
& NETIF_F_SG
);
2998 int nfrags
= skb_shinfo(head_skb
)->nr_frags
;
3004 __skb_push(head_skb
, doffset
);
3005 proto
= skb_network_protocol(head_skb
, &dummy
);
3006 if (unlikely(!proto
))
3007 return ERR_PTR(-EINVAL
);
3009 csum
= !head_skb
->encap_hdr_csum
&&
3010 !!can_checksum_protocol(features
, proto
);
3012 headroom
= skb_headroom(head_skb
);
3013 pos
= skb_headlen(head_skb
);
3016 struct sk_buff
*nskb
;
3017 skb_frag_t
*nskb_frag
;
3021 len
= head_skb
->len
- offset
;
3025 hsize
= skb_headlen(head_skb
) - offset
;
3028 if (hsize
> len
|| !sg
)
3031 if (!hsize
&& i
>= nfrags
&& skb_headlen(list_skb
) &&
3032 (skb_headlen(list_skb
) == len
|| sg
)) {
3033 BUG_ON(skb_headlen(list_skb
) > len
);
3036 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3037 frag
= skb_shinfo(list_skb
)->frags
;
3038 frag_skb
= list_skb
;
3039 pos
+= skb_headlen(list_skb
);
3041 while (pos
< offset
+ len
) {
3042 BUG_ON(i
>= nfrags
);
3044 size
= skb_frag_size(frag
);
3045 if (pos
+ size
> offset
+ len
)
3053 nskb
= skb_clone(list_skb
, GFP_ATOMIC
);
3054 list_skb
= list_skb
->next
;
3056 if (unlikely(!nskb
))
3059 if (unlikely(pskb_trim(nskb
, len
))) {
3064 hsize
= skb_end_offset(nskb
);
3065 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
3070 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
3071 skb_release_head_state(nskb
);
3072 __skb_push(nskb
, doffset
);
3074 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
3075 GFP_ATOMIC
, skb_alloc_rx_flag(head_skb
),
3078 if (unlikely(!nskb
))
3081 skb_reserve(nskb
, headroom
);
3082 __skb_put(nskb
, doffset
);
3091 __copy_skb_header(nskb
, head_skb
);
3093 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
3094 skb_reset_mac_len(nskb
);
3096 skb_copy_from_linear_data_offset(head_skb
, -tnl_hlen
,
3097 nskb
->data
- tnl_hlen
,
3098 doffset
+ tnl_hlen
);
3100 if (nskb
->len
== len
+ doffset
)
3101 goto perform_csum_check
;
3103 if (!sg
&& !nskb
->remcsum_offload
) {
3104 nskb
->ip_summed
= CHECKSUM_NONE
;
3105 nskb
->csum
= skb_copy_and_csum_bits(head_skb
, offset
,
3108 SKB_GSO_CB(nskb
)->csum_start
=
3109 skb_headroom(nskb
) + doffset
;
3113 nskb_frag
= skb_shinfo(nskb
)->frags
;
3115 skb_copy_from_linear_data_offset(head_skb
, offset
,
3116 skb_put(nskb
, hsize
), hsize
);
3118 skb_shinfo(nskb
)->tx_flags
= skb_shinfo(head_skb
)->tx_flags
&
3121 while (pos
< offset
+ len
) {
3123 BUG_ON(skb_headlen(list_skb
));
3126 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3127 frag
= skb_shinfo(list_skb
)->frags
;
3128 frag_skb
= list_skb
;
3132 list_skb
= list_skb
->next
;
3135 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
3137 net_warn_ratelimited(
3138 "skb_segment: too many frags: %u %u\n",
3143 if (unlikely(skb_orphan_frags(frag_skb
, GFP_ATOMIC
)))
3147 __skb_frag_ref(nskb_frag
);
3148 size
= skb_frag_size(nskb_frag
);
3151 nskb_frag
->page_offset
+= offset
- pos
;
3152 skb_frag_size_sub(nskb_frag
, offset
- pos
);
3155 skb_shinfo(nskb
)->nr_frags
++;
3157 if (pos
+ size
<= offset
+ len
) {
3162 skb_frag_size_sub(nskb_frag
, pos
+ size
- (offset
+ len
));
3170 nskb
->data_len
= len
- hsize
;
3171 nskb
->len
+= nskb
->data_len
;
3172 nskb
->truesize
+= nskb
->data_len
;
3175 if (!csum
&& !nskb
->remcsum_offload
) {
3176 nskb
->csum
= skb_checksum(nskb
, doffset
,
3177 nskb
->len
- doffset
, 0);
3178 nskb
->ip_summed
= CHECKSUM_NONE
;
3179 SKB_GSO_CB(nskb
)->csum_start
=
3180 skb_headroom(nskb
) + doffset
;
3182 } while ((offset
+= len
) < head_skb
->len
);
3184 /* Some callers want to get the end of the list.
3185 * Put it in segs->prev to avoid walking the list.
3186 * (see validate_xmit_skb_list() for example)
3190 /* Following permits correct backpressure, for protocols
3191 * using skb_set_owner_w().
3192 * Idea is to tranfert ownership from head_skb to last segment.
3194 if (head_skb
->destructor
== sock_wfree
) {
3195 swap(tail
->truesize
, head_skb
->truesize
);
3196 swap(tail
->destructor
, head_skb
->destructor
);
3197 swap(tail
->sk
, head_skb
->sk
);
3202 kfree_skb_list(segs
);
3203 return ERR_PTR(err
);
3205 EXPORT_SYMBOL_GPL(skb_segment
);
3207 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
3209 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
3210 unsigned int offset
= skb_gro_offset(skb
);
3211 unsigned int headlen
= skb_headlen(skb
);
3212 struct sk_buff
*nskb
, *lp
, *p
= *head
;
3213 unsigned int len
= skb_gro_len(skb
);
3214 unsigned int delta_truesize
;
3215 unsigned int headroom
;
3217 if (unlikely(p
->len
+ len
>= 65536))
3220 lp
= NAPI_GRO_CB(p
)->last
;
3221 pinfo
= skb_shinfo(lp
);
3223 if (headlen
<= offset
) {
3226 int i
= skbinfo
->nr_frags
;
3227 int nr_frags
= pinfo
->nr_frags
+ i
;
3229 if (nr_frags
> MAX_SKB_FRAGS
)
3233 pinfo
->nr_frags
= nr_frags
;
3234 skbinfo
->nr_frags
= 0;
3236 frag
= pinfo
->frags
+ nr_frags
;
3237 frag2
= skbinfo
->frags
+ i
;
3242 frag
->page_offset
+= offset
;
3243 skb_frag_size_sub(frag
, offset
);
3245 /* all fragments truesize : remove (head size + sk_buff) */
3246 delta_truesize
= skb
->truesize
-
3247 SKB_TRUESIZE(skb_end_offset(skb
));
3249 skb
->truesize
-= skb
->data_len
;
3250 skb
->len
-= skb
->data_len
;
3253 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
3255 } else if (skb
->head_frag
) {
3256 int nr_frags
= pinfo
->nr_frags
;
3257 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
3258 struct page
*page
= virt_to_head_page(skb
->head
);
3259 unsigned int first_size
= headlen
- offset
;
3260 unsigned int first_offset
;
3262 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
3265 first_offset
= skb
->data
-
3266 (unsigned char *)page_address(page
) +
3269 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
3271 frag
->page
.p
= page
;
3272 frag
->page_offset
= first_offset
;
3273 skb_frag_size_set(frag
, first_size
);
3275 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
3276 /* We dont need to clear skbinfo->nr_frags here */
3278 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3279 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
3282 /* switch back to head shinfo */
3283 pinfo
= skb_shinfo(p
);
3285 if (pinfo
->frag_list
)
3287 if (skb_gro_len(p
) != pinfo
->gso_size
)
3290 headroom
= skb_headroom(p
);
3291 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
3292 if (unlikely(!nskb
))
3295 __copy_skb_header(nskb
, p
);
3296 nskb
->mac_len
= p
->mac_len
;
3298 skb_reserve(nskb
, headroom
);
3299 __skb_put(nskb
, skb_gro_offset(p
));
3301 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
3302 skb_set_network_header(nskb
, skb_network_offset(p
));
3303 skb_set_transport_header(nskb
, skb_transport_offset(p
));
3305 __skb_pull(p
, skb_gro_offset(p
));
3306 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
3307 p
->data
- skb_mac_header(p
));
3309 skb_shinfo(nskb
)->frag_list
= p
;
3310 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
3311 pinfo
->gso_size
= 0;
3312 __skb_header_release(p
);
3313 NAPI_GRO_CB(nskb
)->last
= p
;
3315 nskb
->data_len
+= p
->len
;
3316 nskb
->truesize
+= p
->truesize
;
3317 nskb
->len
+= p
->len
;
3320 nskb
->next
= p
->next
;
3326 delta_truesize
= skb
->truesize
;
3327 if (offset
> headlen
) {
3328 unsigned int eat
= offset
- headlen
;
3330 skbinfo
->frags
[0].page_offset
+= eat
;
3331 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3332 skb
->data_len
-= eat
;
3337 __skb_pull(skb
, offset
);
3339 if (NAPI_GRO_CB(p
)->last
== p
)
3340 skb_shinfo(p
)->frag_list
= skb
;
3342 NAPI_GRO_CB(p
)->last
->next
= skb
;
3343 NAPI_GRO_CB(p
)->last
= skb
;
3344 __skb_header_release(skb
);
3348 NAPI_GRO_CB(p
)->count
++;
3350 p
->truesize
+= delta_truesize
;
3353 lp
->data_len
+= len
;
3354 lp
->truesize
+= delta_truesize
;
3357 NAPI_GRO_CB(skb
)->same_flow
= 1;
3361 void __init
skb_init(void)
3363 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3364 sizeof(struct sk_buff
),
3366 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3368 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3369 sizeof(struct sk_buff_fclones
),
3371 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3376 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3377 * @skb: Socket buffer containing the buffers to be mapped
3378 * @sg: The scatter-gather list to map into
3379 * @offset: The offset into the buffer's contents to start mapping
3380 * @len: Length of buffer space to be mapped
3382 * Fill the specified scatter-gather list with mappings/pointers into a
3383 * region of the buffer space attached to a socket buffer.
3386 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3388 int start
= skb_headlen(skb
);
3389 int i
, copy
= start
- offset
;
3390 struct sk_buff
*frag_iter
;
3396 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3398 if ((len
-= copy
) == 0)
3403 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3406 WARN_ON(start
> offset
+ len
);
3408 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3409 if ((copy
= end
- offset
) > 0) {
3410 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3414 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3415 frag
->page_offset
+offset
-start
);
3424 skb_walk_frags(skb
, frag_iter
) {
3427 WARN_ON(start
> offset
+ len
);
3429 end
= start
+ frag_iter
->len
;
3430 if ((copy
= end
- offset
) > 0) {
3433 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3435 if ((len
-= copy
) == 0)
3445 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3446 * sglist without mark the sg which contain last skb data as the end.
3447 * So the caller can mannipulate sg list as will when padding new data after
3448 * the first call without calling sg_unmark_end to expend sg list.
3450 * Scenario to use skb_to_sgvec_nomark:
3452 * 2. skb_to_sgvec_nomark(payload1)
3453 * 3. skb_to_sgvec_nomark(payload2)
3455 * This is equivalent to:
3457 * 2. skb_to_sgvec(payload1)
3459 * 4. skb_to_sgvec(payload2)
3461 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3462 * is more preferable.
3464 int skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
3465 int offset
, int len
)
3467 return __skb_to_sgvec(skb
, sg
, offset
, len
);
3469 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark
);
3471 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3473 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
3475 sg_mark_end(&sg
[nsg
- 1]);
3479 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3482 * skb_cow_data - Check that a socket buffer's data buffers are writable
3483 * @skb: The socket buffer to check.
3484 * @tailbits: Amount of trailing space to be added
3485 * @trailer: Returned pointer to the skb where the @tailbits space begins
3487 * Make sure that the data buffers attached to a socket buffer are
3488 * writable. If they are not, private copies are made of the data buffers
3489 * and the socket buffer is set to use these instead.
3491 * If @tailbits is given, make sure that there is space to write @tailbits
3492 * bytes of data beyond current end of socket buffer. @trailer will be
3493 * set to point to the skb in which this space begins.
3495 * The number of scatterlist elements required to completely map the
3496 * COW'd and extended socket buffer will be returned.
3498 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3502 struct sk_buff
*skb1
, **skb_p
;
3504 /* If skb is cloned or its head is paged, reallocate
3505 * head pulling out all the pages (pages are considered not writable
3506 * at the moment even if they are anonymous).
3508 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3509 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3512 /* Easy case. Most of packets will go this way. */
3513 if (!skb_has_frag_list(skb
)) {
3514 /* A little of trouble, not enough of space for trailer.
3515 * This should not happen, when stack is tuned to generate
3516 * good frames. OK, on miss we reallocate and reserve even more
3517 * space, 128 bytes is fair. */
3519 if (skb_tailroom(skb
) < tailbits
&&
3520 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3528 /* Misery. We are in troubles, going to mincer fragments... */
3531 skb_p
= &skb_shinfo(skb
)->frag_list
;
3534 while ((skb1
= *skb_p
) != NULL
) {
3537 /* The fragment is partially pulled by someone,
3538 * this can happen on input. Copy it and everything
3541 if (skb_shared(skb1
))
3544 /* If the skb is the last, worry about trailer. */
3546 if (skb1
->next
== NULL
&& tailbits
) {
3547 if (skb_shinfo(skb1
)->nr_frags
||
3548 skb_has_frag_list(skb1
) ||
3549 skb_tailroom(skb1
) < tailbits
)
3550 ntail
= tailbits
+ 128;
3556 skb_shinfo(skb1
)->nr_frags
||
3557 skb_has_frag_list(skb1
)) {
3558 struct sk_buff
*skb2
;
3560 /* Fuck, we are miserable poor guys... */
3562 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3564 skb2
= skb_copy_expand(skb1
,
3568 if (unlikely(skb2
== NULL
))
3572 skb_set_owner_w(skb2
, skb1
->sk
);
3574 /* Looking around. Are we still alive?
3575 * OK, link new skb, drop old one */
3577 skb2
->next
= skb1
->next
;
3584 skb_p
= &skb1
->next
;
3589 EXPORT_SYMBOL_GPL(skb_cow_data
);
3591 static void sock_rmem_free(struct sk_buff
*skb
)
3593 struct sock
*sk
= skb
->sk
;
3595 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3599 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3601 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3603 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3604 (unsigned int)sk
->sk_rcvbuf
)
3609 skb
->destructor
= sock_rmem_free
;
3610 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3612 /* before exiting rcu section, make sure dst is refcounted */
3615 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3616 if (!sock_flag(sk
, SOCK_DEAD
))
3617 sk
->sk_data_ready(sk
);
3620 EXPORT_SYMBOL(sock_queue_err_skb
);
3622 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
)
3624 struct sk_buff_head
*q
= &sk
->sk_error_queue
;
3625 struct sk_buff
*skb
, *skb_next
;
3628 spin_lock_bh(&q
->lock
);
3629 skb
= __skb_dequeue(q
);
3630 if (skb
&& (skb_next
= skb_peek(q
)))
3631 err
= SKB_EXT_ERR(skb_next
)->ee
.ee_errno
;
3632 spin_unlock_bh(&q
->lock
);
3636 sk
->sk_error_report(sk
);
3640 EXPORT_SYMBOL(sock_dequeue_err_skb
);
3643 * skb_clone_sk - create clone of skb, and take reference to socket
3644 * @skb: the skb to clone
3646 * This function creates a clone of a buffer that holds a reference on
3647 * sk_refcnt. Buffers created via this function are meant to be
3648 * returned using sock_queue_err_skb, or free via kfree_skb.
3650 * When passing buffers allocated with this function to sock_queue_err_skb
3651 * it is necessary to wrap the call with sock_hold/sock_put in order to
3652 * prevent the socket from being released prior to being enqueued on
3653 * the sk_error_queue.
3655 struct sk_buff
*skb_clone_sk(struct sk_buff
*skb
)
3657 struct sock
*sk
= skb
->sk
;
3658 struct sk_buff
*clone
;
3660 if (!sk
|| !atomic_inc_not_zero(&sk
->sk_refcnt
))
3663 clone
= skb_clone(skb
, GFP_ATOMIC
);
3670 clone
->destructor
= sock_efree
;
3674 EXPORT_SYMBOL(skb_clone_sk
);
3676 static void __skb_complete_tx_timestamp(struct sk_buff
*skb
,
3680 struct sock_exterr_skb
*serr
;
3683 serr
= SKB_EXT_ERR(skb
);
3684 memset(serr
, 0, sizeof(*serr
));
3685 serr
->ee
.ee_errno
= ENOMSG
;
3686 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3687 serr
->ee
.ee_info
= tstype
;
3688 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
) {
3689 serr
->ee
.ee_data
= skb_shinfo(skb
)->tskey
;
3690 if (sk
->sk_protocol
== IPPROTO_TCP
)
3691 serr
->ee
.ee_data
-= sk
->sk_tskey
;
3694 err
= sock_queue_err_skb(sk
, skb
);
3700 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
3701 struct skb_shared_hwtstamps
*hwtstamps
)
3703 struct sock
*sk
= skb
->sk
;
3705 /* take a reference to prevent skb_orphan() from freeing the socket */
3708 *skb_hwtstamps(skb
) = *hwtstamps
;
3709 __skb_complete_tx_timestamp(skb
, sk
, SCM_TSTAMP_SND
);
3713 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp
);
3715 void __skb_tstamp_tx(struct sk_buff
*orig_skb
,
3716 struct skb_shared_hwtstamps
*hwtstamps
,
3717 struct sock
*sk
, int tstype
)
3719 struct sk_buff
*skb
;
3725 *skb_hwtstamps(orig_skb
) = *hwtstamps
;
3727 orig_skb
->tstamp
= ktime_get_real();
3729 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3733 __skb_complete_tx_timestamp(skb
, sk
, tstype
);
3735 EXPORT_SYMBOL_GPL(__skb_tstamp_tx
);
3737 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3738 struct skb_shared_hwtstamps
*hwtstamps
)
3740 return __skb_tstamp_tx(orig_skb
, hwtstamps
, orig_skb
->sk
,
3743 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3745 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3747 struct sock
*sk
= skb
->sk
;
3748 struct sock_exterr_skb
*serr
;
3751 skb
->wifi_acked_valid
= 1;
3752 skb
->wifi_acked
= acked
;
3754 serr
= SKB_EXT_ERR(skb
);
3755 memset(serr
, 0, sizeof(*serr
));
3756 serr
->ee
.ee_errno
= ENOMSG
;
3757 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3759 /* take a reference to prevent skb_orphan() from freeing the socket */
3762 err
= sock_queue_err_skb(sk
, skb
);
3768 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3772 * skb_partial_csum_set - set up and verify partial csum values for packet
3773 * @skb: the skb to set
3774 * @start: the number of bytes after skb->data to start checksumming.
3775 * @off: the offset from start to place the checksum.
3777 * For untrusted partially-checksummed packets, we need to make sure the values
3778 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3780 * This function checks and sets those values and skb->ip_summed: if this
3781 * returns false you should drop the packet.
3783 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3785 if (unlikely(start
> skb_headlen(skb
)) ||
3786 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3787 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3788 start
, off
, skb_headlen(skb
));
3791 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3792 skb
->csum_start
= skb_headroom(skb
) + start
;
3793 skb
->csum_offset
= off
;
3794 skb_set_transport_header(skb
, start
);
3797 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3799 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
3802 if (skb_headlen(skb
) >= len
)
3805 /* If we need to pullup then pullup to the max, so we
3806 * won't need to do it again.
3811 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
3814 if (skb_headlen(skb
) < len
)
3820 #define MAX_TCP_HDR_LEN (15 * 4)
3822 static __sum16
*skb_checksum_setup_ip(struct sk_buff
*skb
,
3823 typeof(IPPROTO_IP
) proto
,
3830 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct tcphdr
),
3831 off
+ MAX_TCP_HDR_LEN
);
3832 if (!err
&& !skb_partial_csum_set(skb
, off
,
3833 offsetof(struct tcphdr
,
3836 return err
? ERR_PTR(err
) : &tcp_hdr(skb
)->check
;
3839 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct udphdr
),
3840 off
+ sizeof(struct udphdr
));
3841 if (!err
&& !skb_partial_csum_set(skb
, off
,
3842 offsetof(struct udphdr
,
3845 return err
? ERR_PTR(err
) : &udp_hdr(skb
)->check
;
3848 return ERR_PTR(-EPROTO
);
3851 /* This value should be large enough to cover a tagged ethernet header plus
3852 * maximally sized IP and TCP or UDP headers.
3854 #define MAX_IP_HDR_LEN 128
3856 static int skb_checksum_setup_ipv4(struct sk_buff
*skb
, bool recalculate
)
3865 err
= skb_maybe_pull_tail(skb
,
3866 sizeof(struct iphdr
),
3871 if (ip_hdr(skb
)->frag_off
& htons(IP_OFFSET
| IP_MF
))
3874 off
= ip_hdrlen(skb
);
3881 csum
= skb_checksum_setup_ip(skb
, ip_hdr(skb
)->protocol
, off
);
3883 return PTR_ERR(csum
);
3886 *csum
= ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3889 ip_hdr(skb
)->protocol
, 0);
3896 /* This value should be large enough to cover a tagged ethernet header plus
3897 * an IPv6 header, all options, and a maximal TCP or UDP header.
3899 #define MAX_IPV6_HDR_LEN 256
3901 #define OPT_HDR(type, skb, off) \
3902 (type *)(skb_network_header(skb) + (off))
3904 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
3917 off
= sizeof(struct ipv6hdr
);
3919 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
3923 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
3925 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
3926 while (off
<= len
&& !done
) {
3928 case IPPROTO_DSTOPTS
:
3929 case IPPROTO_HOPOPTS
:
3930 case IPPROTO_ROUTING
: {
3931 struct ipv6_opt_hdr
*hp
;
3933 err
= skb_maybe_pull_tail(skb
,
3935 sizeof(struct ipv6_opt_hdr
),
3940 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
3941 nexthdr
= hp
->nexthdr
;
3942 off
+= ipv6_optlen(hp
);
3946 struct ip_auth_hdr
*hp
;
3948 err
= skb_maybe_pull_tail(skb
,
3950 sizeof(struct ip_auth_hdr
),
3955 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
3956 nexthdr
= hp
->nexthdr
;
3957 off
+= ipv6_authlen(hp
);
3960 case IPPROTO_FRAGMENT
: {
3961 struct frag_hdr
*hp
;
3963 err
= skb_maybe_pull_tail(skb
,
3965 sizeof(struct frag_hdr
),
3970 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
3972 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
3975 nexthdr
= hp
->nexthdr
;
3976 off
+= sizeof(struct frag_hdr
);
3987 if (!done
|| fragment
)
3990 csum
= skb_checksum_setup_ip(skb
, nexthdr
, off
);
3992 return PTR_ERR(csum
);
3995 *csum
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3996 &ipv6_hdr(skb
)->daddr
,
3997 skb
->len
- off
, nexthdr
, 0);
4005 * skb_checksum_setup - set up partial checksum offset
4006 * @skb: the skb to set up
4007 * @recalculate: if true the pseudo-header checksum will be recalculated
4009 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
4013 switch (skb
->protocol
) {
4014 case htons(ETH_P_IP
):
4015 err
= skb_checksum_setup_ipv4(skb
, recalculate
);
4018 case htons(ETH_P_IPV6
):
4019 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
4029 EXPORT_SYMBOL(skb_checksum_setup
);
4031 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
4033 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4036 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
4038 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
4041 skb_release_head_state(skb
);
4042 kmem_cache_free(skbuff_head_cache
, skb
);
4047 EXPORT_SYMBOL(kfree_skb_partial
);
4050 * skb_try_coalesce - try to merge skb to prior one
4052 * @from: buffer to add
4053 * @fragstolen: pointer to boolean
4054 * @delta_truesize: how much more was allocated than was requested
4056 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
4057 bool *fragstolen
, int *delta_truesize
)
4059 int i
, delta
, len
= from
->len
;
4061 *fragstolen
= false;
4066 if (len
<= skb_tailroom(to
)) {
4068 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
4069 *delta_truesize
= 0;
4073 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
4076 if (skb_headlen(from
) != 0) {
4078 unsigned int offset
;
4080 if (skb_shinfo(to
)->nr_frags
+
4081 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
4084 if (skb_head_is_locked(from
))
4087 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
4089 page
= virt_to_head_page(from
->head
);
4090 offset
= from
->data
- (unsigned char *)page_address(page
);
4092 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
4093 page
, offset
, skb_headlen(from
));
4096 if (skb_shinfo(to
)->nr_frags
+
4097 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
4100 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
4103 WARN_ON_ONCE(delta
< len
);
4105 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
4106 skb_shinfo(from
)->frags
,
4107 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
4108 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
4110 if (!skb_cloned(from
))
4111 skb_shinfo(from
)->nr_frags
= 0;
4113 /* if the skb is not cloned this does nothing
4114 * since we set nr_frags to 0.
4116 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
4117 skb_frag_ref(from
, i
);
4119 to
->truesize
+= delta
;
4121 to
->data_len
+= len
;
4123 *delta_truesize
= delta
;
4126 EXPORT_SYMBOL(skb_try_coalesce
);
4129 * skb_scrub_packet - scrub an skb
4131 * @skb: buffer to clean
4132 * @xnet: packet is crossing netns
4134 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4135 * into/from a tunnel. Some information have to be cleared during these
4137 * skb_scrub_packet can also be used to clean a skb before injecting it in
4138 * another namespace (@xnet == true). We have to clear all information in the
4139 * skb that could impact namespace isolation.
4141 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
4145 skb
->tstamp
.tv64
= 0;
4146 skb
->pkt_type
= PACKET_HOST
;
4153 nf_reset_trace(skb
);
4155 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
4158 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4162 * skb_gso_transport_seglen is used to determine the real size of the
4163 * individual segments, including Layer4 headers (TCP/UDP).
4165 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4167 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
4169 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
4170 unsigned int thlen
= 0;
4172 if (skb
->encapsulation
) {
4173 thlen
= skb_inner_transport_header(skb
) -
4174 skb_transport_header(skb
);
4176 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
4177 thlen
+= inner_tcp_hdrlen(skb
);
4178 } else if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
4179 thlen
= tcp_hdrlen(skb
);
4181 /* UFO sets gso_size to the size of the fragmentation
4182 * payload, i.e. the size of the L4 (UDP) header is already
4185 return thlen
+ shinfo
->gso_size
;
4187 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen
);
4189 static struct sk_buff
*skb_reorder_vlan_header(struct sk_buff
*skb
)
4191 if (skb_cow(skb
, skb_headroom(skb
)) < 0) {
4196 memmove(skb
->data
- ETH_HLEN
, skb
->data
- VLAN_ETH_HLEN
, 2 * ETH_ALEN
);
4197 skb
->mac_header
+= VLAN_HLEN
;
4201 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
)
4203 struct vlan_hdr
*vhdr
;
4206 if (unlikely(vlan_tx_tag_present(skb
))) {
4207 /* vlan_tci is already set-up so leave this for another time */
4211 skb
= skb_share_check(skb
, GFP_ATOMIC
);
4215 if (unlikely(!pskb_may_pull(skb
, VLAN_HLEN
)))
4218 vhdr
= (struct vlan_hdr
*)skb
->data
;
4219 vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4220 __vlan_hwaccel_put_tag(skb
, skb
->protocol
, vlan_tci
);
4222 skb_pull_rcsum(skb
, VLAN_HLEN
);
4223 vlan_set_encap_proto(skb
, vhdr
);
4225 skb
= skb_reorder_vlan_header(skb
);
4229 skb_reset_network_header(skb
);
4230 skb_reset_transport_header(skb
);
4231 skb_reset_mac_len(skb
);
4239 EXPORT_SYMBOL(skb_vlan_untag
);
4241 int skb_ensure_writable(struct sk_buff
*skb
, int write_len
)
4243 if (!pskb_may_pull(skb
, write_len
))
4246 if (!skb_cloned(skb
) || skb_clone_writable(skb
, write_len
))
4249 return pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4251 EXPORT_SYMBOL(skb_ensure_writable
);
4253 /* remove VLAN header from packet and update csum accordingly. */
4254 static int __skb_vlan_pop(struct sk_buff
*skb
, u16
*vlan_tci
)
4256 struct vlan_hdr
*vhdr
;
4257 unsigned int offset
= skb
->data
- skb_mac_header(skb
);
4260 __skb_push(skb
, offset
);
4261 err
= skb_ensure_writable(skb
, VLAN_ETH_HLEN
);
4265 skb_postpull_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
4267 vhdr
= (struct vlan_hdr
*)(skb
->data
+ ETH_HLEN
);
4268 *vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4270 memmove(skb
->data
+ VLAN_HLEN
, skb
->data
, 2 * ETH_ALEN
);
4271 __skb_pull(skb
, VLAN_HLEN
);
4273 vlan_set_encap_proto(skb
, vhdr
);
4274 skb
->mac_header
+= VLAN_HLEN
;
4276 if (skb_network_offset(skb
) < ETH_HLEN
)
4277 skb_set_network_header(skb
, ETH_HLEN
);
4279 skb_reset_mac_len(skb
);
4281 __skb_pull(skb
, offset
);
4286 int skb_vlan_pop(struct sk_buff
*skb
)
4292 if (likely(vlan_tx_tag_present(skb
))) {
4295 if (unlikely((skb
->protocol
!= htons(ETH_P_8021Q
) &&
4296 skb
->protocol
!= htons(ETH_P_8021AD
)) ||
4297 skb
->len
< VLAN_ETH_HLEN
))
4300 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4304 /* move next vlan tag to hw accel tag */
4305 if (likely((skb
->protocol
!= htons(ETH_P_8021Q
) &&
4306 skb
->protocol
!= htons(ETH_P_8021AD
)) ||
4307 skb
->len
< VLAN_ETH_HLEN
))
4310 vlan_proto
= skb
->protocol
;
4311 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4315 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4318 EXPORT_SYMBOL(skb_vlan_pop
);
4320 int skb_vlan_push(struct sk_buff
*skb
, __be16 vlan_proto
, u16 vlan_tci
)
4322 if (vlan_tx_tag_present(skb
)) {
4323 unsigned int offset
= skb
->data
- skb_mac_header(skb
);
4326 /* __vlan_insert_tag expect skb->data pointing to mac header.
4327 * So change skb->data before calling it and change back to
4328 * original position later
4330 __skb_push(skb
, offset
);
4331 err
= __vlan_insert_tag(skb
, skb
->vlan_proto
,
4332 vlan_tx_tag_get(skb
));
4335 skb
->protocol
= skb
->vlan_proto
;
4336 skb
->mac_len
+= VLAN_HLEN
;
4337 __skb_pull(skb
, offset
);
4339 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
4340 skb
->csum
= csum_add(skb
->csum
, csum_partial(skb
->data
4341 + (2 * ETH_ALEN
), VLAN_HLEN
, 0));
4343 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4346 EXPORT_SYMBOL(skb_vlan_push
);
4349 * alloc_skb_with_frags - allocate skb with page frags
4351 * @header_len: size of linear part
4352 * @data_len: needed length in frags
4353 * @max_page_order: max page order desired.
4354 * @errcode: pointer to error code if any
4355 * @gfp_mask: allocation mask
4357 * This can be used to allocate a paged skb, given a maximal order for frags.
4359 struct sk_buff
*alloc_skb_with_frags(unsigned long header_len
,
4360 unsigned long data_len
,
4365 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
4366 unsigned long chunk
;
4367 struct sk_buff
*skb
;
4372 *errcode
= -EMSGSIZE
;
4373 /* Note this test could be relaxed, if we succeed to allocate
4374 * high order pages...
4376 if (npages
> MAX_SKB_FRAGS
)
4379 gfp_head
= gfp_mask
;
4380 if (gfp_head
& __GFP_WAIT
)
4381 gfp_head
|= __GFP_REPEAT
;
4383 *errcode
= -ENOBUFS
;
4384 skb
= alloc_skb(header_len
, gfp_head
);
4388 skb
->truesize
+= npages
<< PAGE_SHIFT
;
4390 for (i
= 0; npages
> 0; i
++) {
4391 int order
= max_page_order
;
4394 if (npages
>= 1 << order
) {
4395 page
= alloc_pages(gfp_mask
|
4402 /* Do not retry other high order allocations */
4408 page
= alloc_page(gfp_mask
);
4412 chunk
= min_t(unsigned long, data_len
,
4413 PAGE_SIZE
<< order
);
4414 skb_fill_page_desc(skb
, i
, page
, 0, chunk
);
4416 npages
-= 1 << order
;
4424 EXPORT_SYMBOL(alloc_skb_with_frags
);