2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/u64_stats_sync.h>
6 #include <linux/sched/deadline.h>
7 #include <linux/binfmts.h>
8 #include <linux/mutex.h>
9 #include <linux/spinlock.h>
10 #include <linux/stop_machine.h>
11 #include <linux/irq_work.h>
12 #include <linux/tick.h>
13 #include <linux/slab.h>
16 #include "cpudeadline.h"
19 #ifdef CONFIG_SCHED_DEBUG
20 #define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
22 #define SCHED_WARN_ON(x) ((void)(x))
28 /* task_struct::on_rq states: */
29 #define TASK_ON_RQ_QUEUED 1
30 #define TASK_ON_RQ_MIGRATING 2
32 extern __read_mostly
int scheduler_running
;
34 extern unsigned long calc_load_update
;
35 extern atomic_long_t calc_load_tasks
;
37 extern void calc_global_load_tick(struct rq
*this_rq
);
38 extern long calc_load_fold_active(struct rq
*this_rq
, long adjust
);
41 extern void cpu_load_update_active(struct rq
*this_rq
);
43 static inline void cpu_load_update_active(struct rq
*this_rq
) { }
47 * Helpers for converting nanosecond timing to jiffy resolution
49 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
52 * Increase resolution of nice-level calculations for 64-bit architectures.
53 * The extra resolution improves shares distribution and load balancing of
54 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
55 * hierarchies, especially on larger systems. This is not a user-visible change
56 * and does not change the user-interface for setting shares/weights.
58 * We increase resolution only if we have enough bits to allow this increased
59 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
60 * pretty high and the returns do not justify the increased costs.
62 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
63 * increase coverage and consistency always enable it on 64bit platforms.
66 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
67 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
68 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
70 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
71 # define scale_load(w) (w)
72 # define scale_load_down(w) (w)
76 * Task weight (visible to users) and its load (invisible to users) have
77 * independent resolution, but they should be well calibrated. We use
78 * scale_load() and scale_load_down(w) to convert between them. The
79 * following must be true:
81 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
84 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
87 * Single value that decides SCHED_DEADLINE internal math precision.
88 * 10 -> just above 1us
89 * 9 -> just above 0.5us
94 * These are the 'tuning knobs' of the scheduler:
98 * single value that denotes runtime == period, ie unlimited time.
100 #define RUNTIME_INF ((u64)~0ULL)
102 static inline int idle_policy(int policy
)
104 return policy
== SCHED_IDLE
;
106 static inline int fair_policy(int policy
)
108 return policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
;
111 static inline int rt_policy(int policy
)
113 return policy
== SCHED_FIFO
|| policy
== SCHED_RR
;
116 static inline int dl_policy(int policy
)
118 return policy
== SCHED_DEADLINE
;
120 static inline bool valid_policy(int policy
)
122 return idle_policy(policy
) || fair_policy(policy
) ||
123 rt_policy(policy
) || dl_policy(policy
);
126 static inline int task_has_rt_policy(struct task_struct
*p
)
128 return rt_policy(p
->policy
);
131 static inline int task_has_dl_policy(struct task_struct
*p
)
133 return dl_policy(p
->policy
);
137 * Tells if entity @a should preempt entity @b.
140 dl_entity_preempt(struct sched_dl_entity
*a
, struct sched_dl_entity
*b
)
142 return dl_time_before(a
->deadline
, b
->deadline
);
146 * This is the priority-queue data structure of the RT scheduling class:
148 struct rt_prio_array
{
149 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
150 struct list_head queue
[MAX_RT_PRIO
];
153 struct rt_bandwidth
{
154 /* nests inside the rq lock: */
155 raw_spinlock_t rt_runtime_lock
;
158 struct hrtimer rt_period_timer
;
159 unsigned int rt_period_active
;
162 void __dl_clear_params(struct task_struct
*p
);
165 * To keep the bandwidth of -deadline tasks and groups under control
166 * we need some place where:
167 * - store the maximum -deadline bandwidth of the system (the group);
168 * - cache the fraction of that bandwidth that is currently allocated.
170 * This is all done in the data structure below. It is similar to the
171 * one used for RT-throttling (rt_bandwidth), with the main difference
172 * that, since here we are only interested in admission control, we
173 * do not decrease any runtime while the group "executes", neither we
174 * need a timer to replenish it.
176 * With respect to SMP, the bandwidth is given on a per-CPU basis,
178 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
179 * - dl_total_bw array contains, in the i-eth element, the currently
180 * allocated bandwidth on the i-eth CPU.
181 * Moreover, groups consume bandwidth on each CPU, while tasks only
182 * consume bandwidth on the CPU they're running on.
183 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
184 * that will be shown the next time the proc or cgroup controls will
185 * be red. It on its turn can be changed by writing on its own
188 struct dl_bandwidth
{
189 raw_spinlock_t dl_runtime_lock
;
194 static inline int dl_bandwidth_enabled(void)
196 return sysctl_sched_rt_runtime
>= 0;
199 extern struct dl_bw
*dl_bw_of(int i
);
207 void __dl_clear(struct dl_bw
*dl_b
, u64 tsk_bw
)
209 dl_b
->total_bw
-= tsk_bw
;
213 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
)
215 dl_b
->total_bw
+= tsk_bw
;
219 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
221 return dl_b
->bw
!= -1 &&
222 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
225 extern struct mutex sched_domains_mutex
;
227 #ifdef CONFIG_CGROUP_SCHED
229 #include <linux/cgroup.h>
234 extern struct list_head task_groups
;
236 struct cfs_bandwidth
{
237 #ifdef CONFIG_CFS_BANDWIDTH
241 s64 hierarchical_quota
;
244 int idle
, period_active
;
245 struct hrtimer period_timer
, slack_timer
;
246 struct list_head throttled_cfs_rq
;
249 int nr_periods
, nr_throttled
;
254 /* task group related information */
256 struct cgroup_subsys_state css
;
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity
**se
;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq
**cfs_rq
;
263 unsigned long shares
;
267 * load_avg can be heavily contended at clock tick time, so put
268 * it in its own cacheline separated from the fields above which
269 * will also be accessed at each tick.
271 atomic_long_t load_avg ____cacheline_aligned
;
275 #ifdef CONFIG_RT_GROUP_SCHED
276 struct sched_rt_entity
**rt_se
;
277 struct rt_rq
**rt_rq
;
279 struct rt_bandwidth rt_bandwidth
;
283 struct list_head list
;
285 struct task_group
*parent
;
286 struct list_head siblings
;
287 struct list_head children
;
289 #ifdef CONFIG_SCHED_AUTOGROUP
290 struct autogroup
*autogroup
;
293 struct cfs_bandwidth cfs_bandwidth
;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
300 * A weight of 0 or 1 can cause arithmetics problems.
301 * A weight of a cfs_rq is the sum of weights of which entities
302 * are queued on this cfs_rq, so a weight of a entity should not be
303 * too large, so as the shares value of a task group.
304 * (The default weight is 1024 - so there's no practical
305 * limitation from this.)
307 #define MIN_SHARES (1UL << 1)
308 #define MAX_SHARES (1UL << 18)
311 typedef int (*tg_visitor
)(struct task_group
*, void *);
313 extern int walk_tg_tree_from(struct task_group
*from
,
314 tg_visitor down
, tg_visitor up
, void *data
);
317 * Iterate the full tree, calling @down when first entering a node and @up when
318 * leaving it for the final time.
320 * Caller must hold rcu_lock or sufficient equivalent.
322 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
324 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
327 extern int tg_nop(struct task_group
*tg
, void *data
);
329 extern void free_fair_sched_group(struct task_group
*tg
);
330 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
331 extern void online_fair_sched_group(struct task_group
*tg
);
332 extern void unregister_fair_sched_group(struct task_group
*tg
);
333 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
334 struct sched_entity
*se
, int cpu
,
335 struct sched_entity
*parent
);
336 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
338 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
339 extern void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
340 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
342 extern void free_rt_sched_group(struct task_group
*tg
);
343 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
344 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
345 struct sched_rt_entity
*rt_se
, int cpu
,
346 struct sched_rt_entity
*parent
);
348 extern struct task_group
*sched_create_group(struct task_group
*parent
);
349 extern void sched_online_group(struct task_group
*tg
,
350 struct task_group
*parent
);
351 extern void sched_destroy_group(struct task_group
*tg
);
352 extern void sched_offline_group(struct task_group
*tg
);
354 extern void sched_move_task(struct task_struct
*tsk
);
356 #ifdef CONFIG_FAIR_GROUP_SCHED
357 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
360 extern void set_task_rq_fair(struct sched_entity
*se
,
361 struct cfs_rq
*prev
, struct cfs_rq
*next
);
362 #else /* !CONFIG_SMP */
363 static inline void set_task_rq_fair(struct sched_entity
*se
,
364 struct cfs_rq
*prev
, struct cfs_rq
*next
) { }
365 #endif /* CONFIG_SMP */
366 #endif /* CONFIG_FAIR_GROUP_SCHED */
368 #else /* CONFIG_CGROUP_SCHED */
370 struct cfs_bandwidth
{ };
372 #endif /* CONFIG_CGROUP_SCHED */
374 /* CFS-related fields in a runqueue */
376 struct load_weight load
;
377 unsigned int nr_running
, h_nr_running
;
382 u64 min_vruntime_copy
;
385 struct rb_root tasks_timeline
;
386 struct rb_node
*rb_leftmost
;
389 * 'curr' points to currently running entity on this cfs_rq.
390 * It is set to NULL otherwise (i.e when none are currently running).
392 struct sched_entity
*curr
, *next
, *last
, *skip
;
394 #ifdef CONFIG_SCHED_DEBUG
395 unsigned int nr_spread_over
;
402 struct sched_avg avg
;
403 u64 runnable_load_sum
;
404 unsigned long runnable_load_avg
;
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 unsigned long tg_load_avg_contrib
;
407 unsigned long propagate_avg
;
409 atomic_long_t removed_load_avg
, removed_util_avg
;
411 u64 load_last_update_time_copy
;
414 #ifdef CONFIG_FAIR_GROUP_SCHED
416 * h_load = weight * f(tg)
418 * Where f(tg) is the recursive weight fraction assigned to
421 unsigned long h_load
;
422 u64 last_h_load_update
;
423 struct sched_entity
*h_load_next
;
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425 #endif /* CONFIG_SMP */
427 #ifdef CONFIG_FAIR_GROUP_SCHED
428 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
431 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
432 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
433 * (like users, containers etc.)
435 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
436 * list is used during load balance.
439 struct list_head leaf_cfs_rq_list
;
440 struct task_group
*tg
; /* group that "owns" this runqueue */
442 #ifdef CONFIG_CFS_BANDWIDTH
445 s64 runtime_remaining
;
447 u64 throttled_clock
, throttled_clock_task
;
448 u64 throttled_clock_task_time
;
449 int throttled
, throttle_count
;
450 struct list_head throttled_list
;
451 #endif /* CONFIG_CFS_BANDWIDTH */
452 #endif /* CONFIG_FAIR_GROUP_SCHED */
455 static inline int rt_bandwidth_enabled(void)
457 return sysctl_sched_rt_runtime
>= 0;
460 /* RT IPI pull logic requires IRQ_WORK */
461 #ifdef CONFIG_IRQ_WORK
462 # define HAVE_RT_PUSH_IPI
465 /* Real-Time classes' related field in a runqueue: */
467 struct rt_prio_array active
;
468 unsigned int rt_nr_running
;
469 unsigned int rr_nr_running
;
470 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
472 int curr
; /* highest queued rt task prio */
474 int next
; /* next highest */
479 unsigned long rt_nr_migratory
;
480 unsigned long rt_nr_total
;
482 struct plist_head pushable_tasks
;
483 #ifdef HAVE_RT_PUSH_IPI
486 struct irq_work push_work
;
487 raw_spinlock_t push_lock
;
489 #endif /* CONFIG_SMP */
495 /* Nests inside the rq lock: */
496 raw_spinlock_t rt_runtime_lock
;
498 #ifdef CONFIG_RT_GROUP_SCHED
499 unsigned long rt_nr_boosted
;
502 struct task_group
*tg
;
506 /* Deadline class' related fields in a runqueue */
508 /* runqueue is an rbtree, ordered by deadline */
509 struct rb_root rb_root
;
510 struct rb_node
*rb_leftmost
;
512 unsigned long dl_nr_running
;
516 * Deadline values of the currently executing and the
517 * earliest ready task on this rq. Caching these facilitates
518 * the decision wether or not a ready but not running task
519 * should migrate somewhere else.
526 unsigned long dl_nr_migratory
;
530 * Tasks on this rq that can be pushed away. They are kept in
531 * an rb-tree, ordered by tasks' deadlines, with caching
532 * of the leftmost (earliest deadline) element.
534 struct rb_root pushable_dl_tasks_root
;
535 struct rb_node
*pushable_dl_tasks_leftmost
;
543 static inline bool sched_asym_prefer(int a
, int b
)
545 return arch_asym_cpu_priority(a
) > arch_asym_cpu_priority(b
);
549 * We add the notion of a root-domain which will be used to define per-domain
550 * variables. Each exclusive cpuset essentially defines an island domain by
551 * fully partitioning the member cpus from any other cpuset. Whenever a new
552 * exclusive cpuset is created, we also create and attach a new root-domain
561 cpumask_var_t online
;
563 /* Indicate more than one runnable task for any CPU */
567 * The bit corresponding to a CPU gets set here if such CPU has more
568 * than one runnable -deadline task (as it is below for RT tasks).
570 cpumask_var_t dlo_mask
;
576 * The "RT overload" flag: it gets set if a CPU has more than
577 * one runnable RT task.
579 cpumask_var_t rto_mask
;
580 struct cpupri cpupri
;
582 unsigned long max_cpu_capacity
;
585 extern struct root_domain def_root_domain
;
587 #endif /* CONFIG_SMP */
590 * This is the main, per-CPU runqueue data structure.
592 * Locking rule: those places that want to lock multiple runqueues
593 * (such as the load balancing or the thread migration code), lock
594 * acquire operations must be ordered by ascending &runqueue.
601 * nr_running and cpu_load should be in the same cacheline because
602 * remote CPUs use both these fields when doing load calculation.
604 unsigned int nr_running
;
605 #ifdef CONFIG_NUMA_BALANCING
606 unsigned int nr_numa_running
;
607 unsigned int nr_preferred_running
;
609 #define CPU_LOAD_IDX_MAX 5
610 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
611 #ifdef CONFIG_NO_HZ_COMMON
613 unsigned long last_load_update_tick
;
614 #endif /* CONFIG_SMP */
615 unsigned long nohz_flags
;
616 #endif /* CONFIG_NO_HZ_COMMON */
617 #ifdef CONFIG_NO_HZ_FULL
618 unsigned long last_sched_tick
;
620 /* capture load from *all* tasks on this cpu: */
621 struct load_weight load
;
622 unsigned long nr_load_updates
;
629 #ifdef CONFIG_FAIR_GROUP_SCHED
630 /* list of leaf cfs_rq on this cpu: */
631 struct list_head leaf_cfs_rq_list
;
632 struct list_head
*tmp_alone_branch
;
633 #endif /* CONFIG_FAIR_GROUP_SCHED */
636 * This is part of a global counter where only the total sum
637 * over all CPUs matters. A task can increase this counter on
638 * one CPU and if it got migrated afterwards it may decrease
639 * it on another CPU. Always updated under the runqueue lock:
641 unsigned long nr_uninterruptible
;
643 struct task_struct
*curr
, *idle
, *stop
;
644 unsigned long next_balance
;
645 struct mm_struct
*prev_mm
;
647 unsigned int clock_skip_update
;
654 struct root_domain
*rd
;
655 struct sched_domain
*sd
;
657 unsigned long cpu_capacity
;
658 unsigned long cpu_capacity_orig
;
660 struct callback_head
*balance_callback
;
662 unsigned char idle_balance
;
663 /* For active balancing */
666 struct cpu_stop_work active_balance_work
;
667 /* cpu of this runqueue: */
671 struct list_head cfs_tasks
;
678 /* This is used to determine avg_idle's max value */
679 u64 max_idle_balance_cost
;
682 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
685 #ifdef CONFIG_PARAVIRT
688 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
689 u64 prev_steal_time_rq
;
692 /* calc_load related fields */
693 unsigned long calc_load_update
;
694 long calc_load_active
;
696 #ifdef CONFIG_SCHED_HRTICK
698 int hrtick_csd_pending
;
699 struct call_single_data hrtick_csd
;
701 struct hrtimer hrtick_timer
;
704 #ifdef CONFIG_SCHEDSTATS
706 struct sched_info rq_sched_info
;
707 unsigned long long rq_cpu_time
;
708 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
710 /* sys_sched_yield() stats */
711 unsigned int yld_count
;
713 /* schedule() stats */
714 unsigned int sched_count
;
715 unsigned int sched_goidle
;
717 /* try_to_wake_up() stats */
718 unsigned int ttwu_count
;
719 unsigned int ttwu_local
;
723 struct llist_head wake_list
;
726 #ifdef CONFIG_CPU_IDLE
727 /* Must be inspected within a rcu lock section */
728 struct cpuidle_state
*idle_state
;
732 static inline int cpu_of(struct rq
*rq
)
742 #ifdef CONFIG_SCHED_SMT
744 extern struct static_key_false sched_smt_present
;
746 extern void __update_idle_core(struct rq
*rq
);
748 static inline void update_idle_core(struct rq
*rq
)
750 if (static_branch_unlikely(&sched_smt_present
))
751 __update_idle_core(rq
);
755 static inline void update_idle_core(struct rq
*rq
) { }
758 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
760 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
761 #define this_rq() this_cpu_ptr(&runqueues)
762 #define task_rq(p) cpu_rq(task_cpu(p))
763 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
764 #define raw_rq() raw_cpu_ptr(&runqueues)
766 static inline u64
__rq_clock_broken(struct rq
*rq
)
768 return READ_ONCE(rq
->clock
);
771 static inline u64
rq_clock(struct rq
*rq
)
773 lockdep_assert_held(&rq
->lock
);
777 static inline u64
rq_clock_task(struct rq
*rq
)
779 lockdep_assert_held(&rq
->lock
);
780 return rq
->clock_task
;
783 #define RQCF_REQ_SKIP 0x01
784 #define RQCF_ACT_SKIP 0x02
786 static inline void rq_clock_skip_update(struct rq
*rq
, bool skip
)
788 lockdep_assert_held(&rq
->lock
);
790 rq
->clock_skip_update
|= RQCF_REQ_SKIP
;
792 rq
->clock_skip_update
&= ~RQCF_REQ_SKIP
;
796 enum numa_topology_type
{
801 extern enum numa_topology_type sched_numa_topology_type
;
802 extern int sched_max_numa_distance
;
803 extern bool find_numa_distance(int distance
);
806 #ifdef CONFIG_NUMA_BALANCING
807 /* The regions in numa_faults array from task_struct */
808 enum numa_faults_stats
{
814 extern void sched_setnuma(struct task_struct
*p
, int node
);
815 extern int migrate_task_to(struct task_struct
*p
, int cpu
);
816 extern int migrate_swap(struct task_struct
*, struct task_struct
*);
817 #endif /* CONFIG_NUMA_BALANCING */
822 queue_balance_callback(struct rq
*rq
,
823 struct callback_head
*head
,
824 void (*func
)(struct rq
*rq
))
826 lockdep_assert_held(&rq
->lock
);
828 if (unlikely(head
->next
))
831 head
->func
= (void (*)(struct callback_head
*))func
;
832 head
->next
= rq
->balance_callback
;
833 rq
->balance_callback
= head
;
836 extern void sched_ttwu_pending(void);
838 #define rcu_dereference_check_sched_domain(p) \
839 rcu_dereference_check((p), \
840 lockdep_is_held(&sched_domains_mutex))
843 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
844 * See detach_destroy_domains: synchronize_sched for details.
846 * The domain tree of any CPU may only be accessed from within
847 * preempt-disabled sections.
849 #define for_each_domain(cpu, __sd) \
850 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
851 __sd; __sd = __sd->parent)
853 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
856 * highest_flag_domain - Return highest sched_domain containing flag.
857 * @cpu: The cpu whose highest level of sched domain is to
859 * @flag: The flag to check for the highest sched_domain
862 * Returns the highest sched_domain of a cpu which contains the given flag.
864 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
866 struct sched_domain
*sd
, *hsd
= NULL
;
868 for_each_domain(cpu
, sd
) {
869 if (!(sd
->flags
& flag
))
877 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
879 struct sched_domain
*sd
;
881 for_each_domain(cpu
, sd
) {
882 if (sd
->flags
& flag
)
889 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
890 DECLARE_PER_CPU(int, sd_llc_size
);
891 DECLARE_PER_CPU(int, sd_llc_id
);
892 DECLARE_PER_CPU(struct sched_domain_shared
*, sd_llc_shared
);
893 DECLARE_PER_CPU(struct sched_domain
*, sd_numa
);
894 DECLARE_PER_CPU(struct sched_domain
*, sd_asym
);
896 struct sched_group_capacity
{
899 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
902 unsigned long capacity
;
903 unsigned long min_capacity
; /* Min per-CPU capacity in group */
904 unsigned long next_update
;
905 int imbalance
; /* XXX unrelated to capacity but shared group state */
907 unsigned long cpumask
[0]; /* iteration mask */
911 struct sched_group
*next
; /* Must be a circular list */
914 unsigned int group_weight
;
915 struct sched_group_capacity
*sgc
;
916 int asym_prefer_cpu
; /* cpu of highest priority in group */
919 * The CPUs this group covers.
921 * NOTE: this field is variable length. (Allocated dynamically
922 * by attaching extra space to the end of the structure,
923 * depending on how many CPUs the kernel has booted up with)
925 unsigned long cpumask
[0];
928 static inline struct cpumask
*sched_group_cpus(struct sched_group
*sg
)
930 return to_cpumask(sg
->cpumask
);
934 * cpumask masking which cpus in the group are allowed to iterate up the domain
937 static inline struct cpumask
*sched_group_mask(struct sched_group
*sg
)
939 return to_cpumask(sg
->sgc
->cpumask
);
943 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
944 * @group: The group whose first cpu is to be returned.
946 static inline unsigned int group_first_cpu(struct sched_group
*group
)
948 return cpumask_first(sched_group_cpus(group
));
951 extern int group_balance_cpu(struct sched_group
*sg
);
953 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
954 void register_sched_domain_sysctl(void);
955 void unregister_sched_domain_sysctl(void);
957 static inline void register_sched_domain_sysctl(void)
960 static inline void unregister_sched_domain_sysctl(void)
967 static inline void sched_ttwu_pending(void) { }
969 #endif /* CONFIG_SMP */
972 #include "auto_group.h"
974 #ifdef CONFIG_CGROUP_SCHED
977 * Return the group to which this tasks belongs.
979 * We cannot use task_css() and friends because the cgroup subsystem
980 * changes that value before the cgroup_subsys::attach() method is called,
981 * therefore we cannot pin it and might observe the wrong value.
983 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
984 * core changes this before calling sched_move_task().
986 * Instead we use a 'copy' which is updated from sched_move_task() while
987 * holding both task_struct::pi_lock and rq::lock.
989 static inline struct task_group
*task_group(struct task_struct
*p
)
991 return p
->sched_task_group
;
994 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
995 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
997 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
998 struct task_group
*tg
= task_group(p
);
1001 #ifdef CONFIG_FAIR_GROUP_SCHED
1002 set_task_rq_fair(&p
->se
, p
->se
.cfs_rq
, tg
->cfs_rq
[cpu
]);
1003 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
1004 p
->se
.parent
= tg
->se
[cpu
];
1007 #ifdef CONFIG_RT_GROUP_SCHED
1008 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
1009 p
->rt
.parent
= tg
->rt_se
[cpu
];
1013 #else /* CONFIG_CGROUP_SCHED */
1015 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
1016 static inline struct task_group
*task_group(struct task_struct
*p
)
1021 #endif /* CONFIG_CGROUP_SCHED */
1023 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1025 set_task_rq(p
, cpu
);
1028 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1029 * successfuly executed on another CPU. We must ensure that updates of
1030 * per-task data have been completed by this moment.
1033 #ifdef CONFIG_THREAD_INFO_IN_TASK
1036 task_thread_info(p
)->cpu
= cpu
;
1043 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1045 #ifdef CONFIG_SCHED_DEBUG
1046 # include <linux/static_key.h>
1047 # define const_debug __read_mostly
1049 # define const_debug const
1052 extern const_debug
unsigned int sysctl_sched_features
;
1054 #define SCHED_FEAT(name, enabled) \
1055 __SCHED_FEAT_##name ,
1058 #include "features.h"
1064 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1065 #define SCHED_FEAT(name, enabled) \
1066 static __always_inline bool static_branch_##name(struct static_key *key) \
1068 return static_key_##enabled(key); \
1071 #include "features.h"
1075 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
1076 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1077 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1078 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1079 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1081 extern struct static_key_false sched_numa_balancing
;
1082 extern struct static_key_false sched_schedstats
;
1084 static inline u64
global_rt_period(void)
1086 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
1089 static inline u64
global_rt_runtime(void)
1091 if (sysctl_sched_rt_runtime
< 0)
1094 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
1097 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
1099 return rq
->curr
== p
;
1102 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1107 return task_current(rq
, p
);
1111 static inline int task_on_rq_queued(struct task_struct
*p
)
1113 return p
->on_rq
== TASK_ON_RQ_QUEUED
;
1116 static inline int task_on_rq_migrating(struct task_struct
*p
)
1118 return p
->on_rq
== TASK_ON_RQ_MIGRATING
;
1121 #ifndef prepare_arch_switch
1122 # define prepare_arch_switch(next) do { } while (0)
1124 #ifndef finish_arch_post_lock_switch
1125 # define finish_arch_post_lock_switch() do { } while (0)
1128 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1132 * We can optimise this out completely for !SMP, because the
1133 * SMP rebalancing from interrupt is the only thing that cares
1140 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1144 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1145 * We must ensure this doesn't happen until the switch is completely
1148 * In particular, the load of prev->state in finish_task_switch() must
1149 * happen before this.
1151 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1153 smp_store_release(&prev
->on_cpu
, 0);
1155 #ifdef CONFIG_DEBUG_SPINLOCK
1156 /* this is a valid case when another task releases the spinlock */
1157 rq
->lock
.owner
= current
;
1160 * If we are tracking spinlock dependencies then we have to
1161 * fix up the runqueue lock - which gets 'carried over' from
1162 * prev into current:
1164 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1166 raw_spin_unlock_irq(&rq
->lock
);
1172 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1173 #define WF_FORK 0x02 /* child wakeup after fork */
1174 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1177 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1178 * of tasks with abnormal "nice" values across CPUs the contribution that
1179 * each task makes to its run queue's load is weighted according to its
1180 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1181 * scaled version of the new time slice allocation that they receive on time
1185 #define WEIGHT_IDLEPRIO 3
1186 #define WMULT_IDLEPRIO 1431655765
1188 extern const int sched_prio_to_weight
[40];
1189 extern const u32 sched_prio_to_wmult
[40];
1192 * {de,en}queue flags:
1194 * DEQUEUE_SLEEP - task is no longer runnable
1195 * ENQUEUE_WAKEUP - task just became runnable
1197 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1198 * are in a known state which allows modification. Such pairs
1199 * should preserve as much state as possible.
1201 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1204 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1205 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1206 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1210 #define DEQUEUE_SLEEP 0x01
1211 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1212 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1214 #define ENQUEUE_WAKEUP 0x01
1215 #define ENQUEUE_RESTORE 0x02
1216 #define ENQUEUE_MOVE 0x04
1218 #define ENQUEUE_HEAD 0x08
1219 #define ENQUEUE_REPLENISH 0x10
1221 #define ENQUEUE_MIGRATED 0x20
1223 #define ENQUEUE_MIGRATED 0x00
1226 #define RETRY_TASK ((void *)-1UL)
1228 struct sched_class
{
1229 const struct sched_class
*next
;
1231 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1232 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1233 void (*yield_task
) (struct rq
*rq
);
1234 bool (*yield_to_task
) (struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1236 void (*check_preempt_curr
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1239 * It is the responsibility of the pick_next_task() method that will
1240 * return the next task to call put_prev_task() on the @prev task or
1241 * something equivalent.
1243 * May return RETRY_TASK when it finds a higher prio class has runnable
1246 struct task_struct
* (*pick_next_task
) (struct rq
*rq
,
1247 struct task_struct
*prev
,
1248 struct pin_cookie cookie
);
1249 void (*put_prev_task
) (struct rq
*rq
, struct task_struct
*p
);
1252 int (*select_task_rq
)(struct task_struct
*p
, int task_cpu
, int sd_flag
, int flags
);
1253 void (*migrate_task_rq
)(struct task_struct
*p
);
1255 void (*task_woken
) (struct rq
*this_rq
, struct task_struct
*task
);
1257 void (*set_cpus_allowed
)(struct task_struct
*p
,
1258 const struct cpumask
*newmask
);
1260 void (*rq_online
)(struct rq
*rq
);
1261 void (*rq_offline
)(struct rq
*rq
);
1264 void (*set_curr_task
) (struct rq
*rq
);
1265 void (*task_tick
) (struct rq
*rq
, struct task_struct
*p
, int queued
);
1266 void (*task_fork
) (struct task_struct
*p
);
1267 void (*task_dead
) (struct task_struct
*p
);
1270 * The switched_from() call is allowed to drop rq->lock, therefore we
1271 * cannot assume the switched_from/switched_to pair is serliazed by
1272 * rq->lock. They are however serialized by p->pi_lock.
1274 void (*switched_from
) (struct rq
*this_rq
, struct task_struct
*task
);
1275 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1276 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1279 unsigned int (*get_rr_interval
) (struct rq
*rq
,
1280 struct task_struct
*task
);
1282 void (*update_curr
) (struct rq
*rq
);
1284 #define TASK_SET_GROUP 0
1285 #define TASK_MOVE_GROUP 1
1287 #ifdef CONFIG_FAIR_GROUP_SCHED
1288 void (*task_change_group
) (struct task_struct
*p
, int type
);
1292 static inline void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
1294 prev
->sched_class
->put_prev_task(rq
, prev
);
1297 static inline void set_curr_task(struct rq
*rq
, struct task_struct
*curr
)
1299 curr
->sched_class
->set_curr_task(rq
);
1302 #define sched_class_highest (&stop_sched_class)
1303 #define for_each_class(class) \
1304 for (class = sched_class_highest; class; class = class->next)
1306 extern const struct sched_class stop_sched_class
;
1307 extern const struct sched_class dl_sched_class
;
1308 extern const struct sched_class rt_sched_class
;
1309 extern const struct sched_class fair_sched_class
;
1310 extern const struct sched_class idle_sched_class
;
1315 extern void update_group_capacity(struct sched_domain
*sd
, int cpu
);
1317 extern void trigger_load_balance(struct rq
*rq
);
1319 extern void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
);
1323 #ifdef CONFIG_CPU_IDLE
1324 static inline void idle_set_state(struct rq
*rq
,
1325 struct cpuidle_state
*idle_state
)
1327 rq
->idle_state
= idle_state
;
1330 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1332 SCHED_WARN_ON(!rcu_read_lock_held());
1333 return rq
->idle_state
;
1336 static inline void idle_set_state(struct rq
*rq
,
1337 struct cpuidle_state
*idle_state
)
1341 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1347 extern void sysrq_sched_debug_show(void);
1348 extern void sched_init_granularity(void);
1349 extern void update_max_interval(void);
1351 extern void init_sched_dl_class(void);
1352 extern void init_sched_rt_class(void);
1353 extern void init_sched_fair_class(void);
1355 extern void resched_curr(struct rq
*rq
);
1356 extern void resched_cpu(int cpu
);
1358 extern struct rt_bandwidth def_rt_bandwidth
;
1359 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
1361 extern struct dl_bandwidth def_dl_bandwidth
;
1362 extern void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
);
1363 extern void init_dl_task_timer(struct sched_dl_entity
*dl_se
);
1365 unsigned long to_ratio(u64 period
, u64 runtime
);
1367 extern void init_entity_runnable_average(struct sched_entity
*se
);
1368 extern void post_init_entity_util_avg(struct sched_entity
*se
);
1370 #ifdef CONFIG_NO_HZ_FULL
1371 extern bool sched_can_stop_tick(struct rq
*rq
);
1374 * Tick may be needed by tasks in the runqueue depending on their policy and
1375 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1376 * nohz mode if necessary.
1378 static inline void sched_update_tick_dependency(struct rq
*rq
)
1382 if (!tick_nohz_full_enabled())
1387 if (!tick_nohz_full_cpu(cpu
))
1390 if (sched_can_stop_tick(rq
))
1391 tick_nohz_dep_clear_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1393 tick_nohz_dep_set_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1396 static inline void sched_update_tick_dependency(struct rq
*rq
) { }
1399 static inline void add_nr_running(struct rq
*rq
, unsigned count
)
1401 unsigned prev_nr
= rq
->nr_running
;
1403 rq
->nr_running
= prev_nr
+ count
;
1405 if (prev_nr
< 2 && rq
->nr_running
>= 2) {
1407 if (!rq
->rd
->overload
)
1408 rq
->rd
->overload
= true;
1412 sched_update_tick_dependency(rq
);
1415 static inline void sub_nr_running(struct rq
*rq
, unsigned count
)
1417 rq
->nr_running
-= count
;
1418 /* Check if we still need preemption */
1419 sched_update_tick_dependency(rq
);
1422 static inline void rq_last_tick_reset(struct rq
*rq
)
1424 #ifdef CONFIG_NO_HZ_FULL
1425 rq
->last_sched_tick
= jiffies
;
1429 extern void update_rq_clock(struct rq
*rq
);
1431 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1432 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1434 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
1436 extern const_debug
unsigned int sysctl_sched_time_avg
;
1437 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
1438 extern const_debug
unsigned int sysctl_sched_migration_cost
;
1440 static inline u64
sched_avg_period(void)
1442 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1445 #ifdef CONFIG_SCHED_HRTICK
1449 * - enabled by features
1450 * - hrtimer is actually high res
1452 static inline int hrtick_enabled(struct rq
*rq
)
1454 if (!sched_feat(HRTICK
))
1456 if (!cpu_active(cpu_of(rq
)))
1458 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1461 void hrtick_start(struct rq
*rq
, u64 delay
);
1465 static inline int hrtick_enabled(struct rq
*rq
)
1470 #endif /* CONFIG_SCHED_HRTICK */
1473 extern void sched_avg_update(struct rq
*rq
);
1475 #ifndef arch_scale_freq_capacity
1476 static __always_inline
1477 unsigned long arch_scale_freq_capacity(struct sched_domain
*sd
, int cpu
)
1479 return SCHED_CAPACITY_SCALE
;
1483 #ifndef arch_scale_cpu_capacity
1484 static __always_inline
1485 unsigned long arch_scale_cpu_capacity(struct sched_domain
*sd
, int cpu
)
1487 if (sd
&& (sd
->flags
& SD_SHARE_CPUCAPACITY
) && (sd
->span_weight
> 1))
1488 return sd
->smt_gain
/ sd
->span_weight
;
1490 return SCHED_CAPACITY_SCALE
;
1494 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1496 rq
->rt_avg
+= rt_delta
* arch_scale_freq_capacity(NULL
, cpu_of(rq
));
1497 sched_avg_update(rq
);
1500 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
) { }
1501 static inline void sched_avg_update(struct rq
*rq
) { }
1505 unsigned long flags
;
1506 struct pin_cookie cookie
;
1509 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1510 __acquires(rq
->lock
);
1511 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1512 __acquires(p
->pi_lock
)
1513 __acquires(rq
->lock
);
1515 static inline void __task_rq_unlock(struct rq
*rq
, struct rq_flags
*rf
)
1516 __releases(rq
->lock
)
1518 lockdep_unpin_lock(&rq
->lock
, rf
->cookie
);
1519 raw_spin_unlock(&rq
->lock
);
1523 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1524 __releases(rq
->lock
)
1525 __releases(p
->pi_lock
)
1527 lockdep_unpin_lock(&rq
->lock
, rf
->cookie
);
1528 raw_spin_unlock(&rq
->lock
);
1529 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
1533 #ifdef CONFIG_PREEMPT
1535 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1538 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1539 * way at the expense of forcing extra atomic operations in all
1540 * invocations. This assures that the double_lock is acquired using the
1541 * same underlying policy as the spinlock_t on this architecture, which
1542 * reduces latency compared to the unfair variant below. However, it
1543 * also adds more overhead and therefore may reduce throughput.
1545 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1546 __releases(this_rq
->lock
)
1547 __acquires(busiest
->lock
)
1548 __acquires(this_rq
->lock
)
1550 raw_spin_unlock(&this_rq
->lock
);
1551 double_rq_lock(this_rq
, busiest
);
1558 * Unfair double_lock_balance: Optimizes throughput at the expense of
1559 * latency by eliminating extra atomic operations when the locks are
1560 * already in proper order on entry. This favors lower cpu-ids and will
1561 * grant the double lock to lower cpus over higher ids under contention,
1562 * regardless of entry order into the function.
1564 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1565 __releases(this_rq
->lock
)
1566 __acquires(busiest
->lock
)
1567 __acquires(this_rq
->lock
)
1571 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1572 if (busiest
< this_rq
) {
1573 raw_spin_unlock(&this_rq
->lock
);
1574 raw_spin_lock(&busiest
->lock
);
1575 raw_spin_lock_nested(&this_rq
->lock
,
1576 SINGLE_DEPTH_NESTING
);
1579 raw_spin_lock_nested(&busiest
->lock
,
1580 SINGLE_DEPTH_NESTING
);
1585 #endif /* CONFIG_PREEMPT */
1588 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1590 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1592 if (unlikely(!irqs_disabled())) {
1593 /* printk() doesn't work good under rq->lock */
1594 raw_spin_unlock(&this_rq
->lock
);
1598 return _double_lock_balance(this_rq
, busiest
);
1601 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1602 __releases(busiest
->lock
)
1604 raw_spin_unlock(&busiest
->lock
);
1605 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1608 static inline void double_lock(spinlock_t
*l1
, spinlock_t
*l2
)
1614 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1617 static inline void double_lock_irq(spinlock_t
*l1
, spinlock_t
*l2
)
1623 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1626 static inline void double_raw_lock(raw_spinlock_t
*l1
, raw_spinlock_t
*l2
)
1632 raw_spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1636 * double_rq_lock - safely lock two runqueues
1638 * Note this does not disable interrupts like task_rq_lock,
1639 * you need to do so manually before calling.
1641 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1642 __acquires(rq1
->lock
)
1643 __acquires(rq2
->lock
)
1645 BUG_ON(!irqs_disabled());
1647 raw_spin_lock(&rq1
->lock
);
1648 __acquire(rq2
->lock
); /* Fake it out ;) */
1651 raw_spin_lock(&rq1
->lock
);
1652 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1654 raw_spin_lock(&rq2
->lock
);
1655 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1661 * double_rq_unlock - safely unlock two runqueues
1663 * Note this does not restore interrupts like task_rq_unlock,
1664 * you need to do so manually after calling.
1666 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1667 __releases(rq1
->lock
)
1668 __releases(rq2
->lock
)
1670 raw_spin_unlock(&rq1
->lock
);
1672 raw_spin_unlock(&rq2
->lock
);
1674 __release(rq2
->lock
);
1677 #else /* CONFIG_SMP */
1680 * double_rq_lock - safely lock two runqueues
1682 * Note this does not disable interrupts like task_rq_lock,
1683 * you need to do so manually before calling.
1685 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1686 __acquires(rq1
->lock
)
1687 __acquires(rq2
->lock
)
1689 BUG_ON(!irqs_disabled());
1691 raw_spin_lock(&rq1
->lock
);
1692 __acquire(rq2
->lock
); /* Fake it out ;) */
1696 * double_rq_unlock - safely unlock two runqueues
1698 * Note this does not restore interrupts like task_rq_unlock,
1699 * you need to do so manually after calling.
1701 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1702 __releases(rq1
->lock
)
1703 __releases(rq2
->lock
)
1706 raw_spin_unlock(&rq1
->lock
);
1707 __release(rq2
->lock
);
1712 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
1713 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
1715 #ifdef CONFIG_SCHED_DEBUG
1716 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
1717 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
1718 extern void print_dl_stats(struct seq_file
*m
, int cpu
);
1720 print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
);
1722 #ifdef CONFIG_NUMA_BALANCING
1724 show_numa_stats(struct task_struct
*p
, struct seq_file
*m
);
1726 print_numa_stats(struct seq_file
*m
, int node
, unsigned long tsf
,
1727 unsigned long tpf
, unsigned long gsf
, unsigned long gpf
);
1728 #endif /* CONFIG_NUMA_BALANCING */
1729 #endif /* CONFIG_SCHED_DEBUG */
1731 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
1732 extern void init_rt_rq(struct rt_rq
*rt_rq
);
1733 extern void init_dl_rq(struct dl_rq
*dl_rq
);
1735 extern void cfs_bandwidth_usage_inc(void);
1736 extern void cfs_bandwidth_usage_dec(void);
1738 #ifdef CONFIG_NO_HZ_COMMON
1739 enum rq_nohz_flag_bits
{
1744 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1746 extern void nohz_balance_exit_idle(unsigned int cpu
);
1748 static inline void nohz_balance_exit_idle(unsigned int cpu
) { }
1751 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1756 struct u64_stats_sync sync
;
1759 DECLARE_PER_CPU(struct irqtime
, cpu_irqtime
);
1761 static inline u64
irq_time_read(int cpu
)
1763 struct irqtime
*irqtime
= &per_cpu(cpu_irqtime
, cpu
);
1768 seq
= __u64_stats_fetch_begin(&irqtime
->sync
);
1769 total
= irqtime
->softirq_time
+ irqtime
->hardirq_time
;
1770 } while (__u64_stats_fetch_retry(&irqtime
->sync
, seq
));
1774 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1776 #ifdef CONFIG_CPU_FREQ
1777 DECLARE_PER_CPU(struct update_util_data
*, cpufreq_update_util_data
);
1780 * cpufreq_update_util - Take a note about CPU utilization changes.
1781 * @rq: Runqueue to carry out the update for.
1782 * @flags: Update reason flags.
1784 * This function is called by the scheduler on the CPU whose utilization is
1787 * It can only be called from RCU-sched read-side critical sections.
1789 * The way cpufreq is currently arranged requires it to evaluate the CPU
1790 * performance state (frequency/voltage) on a regular basis to prevent it from
1791 * being stuck in a completely inadequate performance level for too long.
1792 * That is not guaranteed to happen if the updates are only triggered from CFS,
1793 * though, because they may not be coming in if RT or deadline tasks are active
1794 * all the time (or there are RT and DL tasks only).
1796 * As a workaround for that issue, this function is called by the RT and DL
1797 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1798 * but that really is a band-aid. Going forward it should be replaced with
1799 * solutions targeted more specifically at RT and DL tasks.
1801 static inline void cpufreq_update_util(struct rq
*rq
, unsigned int flags
)
1803 struct update_util_data
*data
;
1805 data
= rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data
));
1807 data
->func(data
, rq_clock(rq
), flags
);
1810 static inline void cpufreq_update_this_cpu(struct rq
*rq
, unsigned int flags
)
1812 if (cpu_of(rq
) == smp_processor_id())
1813 cpufreq_update_util(rq
, flags
);
1816 static inline void cpufreq_update_util(struct rq
*rq
, unsigned int flags
) {}
1817 static inline void cpufreq_update_this_cpu(struct rq
*rq
, unsigned int flags
) {}
1818 #endif /* CONFIG_CPU_FREQ */
1820 #ifdef arch_scale_freq_capacity
1821 #ifndef arch_scale_freq_invariant
1822 #define arch_scale_freq_invariant() (true)
1824 #else /* arch_scale_freq_capacity */
1825 #define arch_scale_freq_invariant() (false)