hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / arch / s390 / mm / vmem.c
blobbcfb70b60be6b4586b187e8400629e3edde3fd3b
1 /*
2 * Copyright IBM Corp. 2006
3 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4 */
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
19 static DEFINE_MUTEX(vmem_mutex);
21 struct memory_segment {
22 struct list_head list;
23 unsigned long start;
24 unsigned long size;
27 static LIST_HEAD(mem_segs);
29 static void __ref *vmem_alloc_pages(unsigned int order)
31 if (slab_is_available())
32 return (void *)__get_free_pages(GFP_KERNEL, order);
33 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
36 static inline pud_t *vmem_pud_alloc(void)
38 pud_t *pud = NULL;
40 #ifdef CONFIG_64BIT
41 pud = vmem_alloc_pages(2);
42 if (!pud)
43 return NULL;
44 clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 #endif
46 return pud;
49 static inline pmd_t *vmem_pmd_alloc(void)
51 pmd_t *pmd = NULL;
53 #ifdef CONFIG_64BIT
54 pmd = vmem_alloc_pages(2);
55 if (!pmd)
56 return NULL;
57 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
58 #endif
59 return pmd;
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
64 pte_t *pte;
66 if (slab_is_available())
67 pte = (pte_t *) page_table_alloc(&init_mm, address);
68 else
69 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
70 if (!pte)
71 return NULL;
72 clear_table((unsigned long *) pte, _PAGE_INVALID,
73 PTRS_PER_PTE * sizeof(pte_t));
74 return pte;
78 * Add a physical memory range to the 1:1 mapping.
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
82 unsigned long end = start + size;
83 unsigned long address = start;
84 pgd_t *pg_dir;
85 pud_t *pu_dir;
86 pmd_t *pm_dir;
87 pte_t *pt_dir;
88 int ret = -ENOMEM;
90 while (address < end) {
91 pg_dir = pgd_offset_k(address);
92 if (pgd_none(*pg_dir)) {
93 pu_dir = vmem_pud_alloc();
94 if (!pu_dir)
95 goto out;
96 pgd_populate(&init_mm, pg_dir, pu_dir);
98 pu_dir = pud_offset(pg_dir, address);
99 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
100 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
101 !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
102 pud_val(*pu_dir) = __pa(address) |
103 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
104 (ro ? _REGION_ENTRY_PROTECT : 0);
105 address += PUD_SIZE;
106 continue;
108 #endif
109 if (pud_none(*pu_dir)) {
110 pm_dir = vmem_pmd_alloc();
111 if (!pm_dir)
112 goto out;
113 pud_populate(&init_mm, pu_dir, pm_dir);
115 pm_dir = pmd_offset(pu_dir, address);
116 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
117 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
118 !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
119 pmd_val(*pm_dir) = __pa(address) |
120 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
121 _SEGMENT_ENTRY_YOUNG |
122 (ro ? _SEGMENT_ENTRY_PROTECT : 0);
123 address += PMD_SIZE;
124 continue;
126 #endif
127 if (pmd_none(*pm_dir)) {
128 pt_dir = vmem_pte_alloc(address);
129 if (!pt_dir)
130 goto out;
131 pmd_populate(&init_mm, pm_dir, pt_dir);
134 pt_dir = pte_offset_kernel(pm_dir, address);
135 pte_val(*pt_dir) = __pa(address) |
136 pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
137 address += PAGE_SIZE;
139 ret = 0;
140 out:
141 flush_tlb_kernel_range(start, end);
142 return ret;
146 * Remove a physical memory range from the 1:1 mapping.
147 * Currently only invalidates page table entries.
149 static void vmem_remove_range(unsigned long start, unsigned long size)
151 unsigned long end = start + size;
152 unsigned long address = start;
153 pgd_t *pg_dir;
154 pud_t *pu_dir;
155 pmd_t *pm_dir;
156 pte_t *pt_dir;
157 pte_t pte;
159 pte_val(pte) = _PAGE_INVALID;
160 while (address < end) {
161 pg_dir = pgd_offset_k(address);
162 if (pgd_none(*pg_dir)) {
163 address += PGDIR_SIZE;
164 continue;
166 pu_dir = pud_offset(pg_dir, address);
167 if (pud_none(*pu_dir)) {
168 address += PUD_SIZE;
169 continue;
171 if (pud_large(*pu_dir)) {
172 pud_clear(pu_dir);
173 address += PUD_SIZE;
174 continue;
176 pm_dir = pmd_offset(pu_dir, address);
177 if (pmd_none(*pm_dir)) {
178 address += PMD_SIZE;
179 continue;
181 if (pmd_large(*pm_dir)) {
182 pmd_clear(pm_dir);
183 address += PMD_SIZE;
184 continue;
186 pt_dir = pte_offset_kernel(pm_dir, address);
187 *pt_dir = pte;
188 address += PAGE_SIZE;
190 flush_tlb_kernel_range(start, end);
194 * Add a backed mem_map array to the virtual mem_map array.
196 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
198 unsigned long address = start;
199 pgd_t *pg_dir;
200 pud_t *pu_dir;
201 pmd_t *pm_dir;
202 pte_t *pt_dir;
203 int ret = -ENOMEM;
205 for (address = start; address < end;) {
206 pg_dir = pgd_offset_k(address);
207 if (pgd_none(*pg_dir)) {
208 pu_dir = vmem_pud_alloc();
209 if (!pu_dir)
210 goto out;
211 pgd_populate(&init_mm, pg_dir, pu_dir);
214 pu_dir = pud_offset(pg_dir, address);
215 if (pud_none(*pu_dir)) {
216 pm_dir = vmem_pmd_alloc();
217 if (!pm_dir)
218 goto out;
219 pud_populate(&init_mm, pu_dir, pm_dir);
222 pm_dir = pmd_offset(pu_dir, address);
223 if (pmd_none(*pm_dir)) {
224 #ifdef CONFIG_64BIT
225 /* Use 1MB frames for vmemmap if available. We always
226 * use large frames even if they are only partially
227 * used.
228 * Otherwise we would have also page tables since
229 * vmemmap_populate gets called for each section
230 * separately. */
231 if (MACHINE_HAS_EDAT1) {
232 void *new_page;
234 new_page = vmemmap_alloc_block(PMD_SIZE, node);
235 if (!new_page)
236 goto out;
237 pmd_val(*pm_dir) = __pa(new_page) |
238 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
239 _SEGMENT_ENTRY_CO;
240 address = (address + PMD_SIZE) & PMD_MASK;
241 continue;
243 #endif
244 pt_dir = vmem_pte_alloc(address);
245 if (!pt_dir)
246 goto out;
247 pmd_populate(&init_mm, pm_dir, pt_dir);
248 } else if (pmd_large(*pm_dir)) {
249 address = (address + PMD_SIZE) & PMD_MASK;
250 continue;
253 pt_dir = pte_offset_kernel(pm_dir, address);
254 if (pte_none(*pt_dir)) {
255 unsigned long new_page;
257 new_page =__pa(vmem_alloc_pages(0));
258 if (!new_page)
259 goto out;
260 pte_val(*pt_dir) =
261 __pa(new_page) | pgprot_val(PAGE_KERNEL);
263 address += PAGE_SIZE;
265 memset((void *)start, 0, end - start);
266 ret = 0;
267 out:
268 flush_tlb_kernel_range(start, end);
269 return ret;
272 void vmemmap_free(unsigned long start, unsigned long end)
277 * Add memory segment to the segment list if it doesn't overlap with
278 * an already present segment.
280 static int insert_memory_segment(struct memory_segment *seg)
282 struct memory_segment *tmp;
284 if (seg->start + seg->size > VMEM_MAX_PHYS ||
285 seg->start + seg->size < seg->start)
286 return -ERANGE;
288 list_for_each_entry(tmp, &mem_segs, list) {
289 if (seg->start >= tmp->start + tmp->size)
290 continue;
291 if (seg->start + seg->size <= tmp->start)
292 continue;
293 return -ENOSPC;
295 list_add(&seg->list, &mem_segs);
296 return 0;
300 * Remove memory segment from the segment list.
302 static void remove_memory_segment(struct memory_segment *seg)
304 list_del(&seg->list);
307 static void __remove_shared_memory(struct memory_segment *seg)
309 remove_memory_segment(seg);
310 vmem_remove_range(seg->start, seg->size);
313 int vmem_remove_mapping(unsigned long start, unsigned long size)
315 struct memory_segment *seg;
316 int ret;
318 mutex_lock(&vmem_mutex);
320 ret = -ENOENT;
321 list_for_each_entry(seg, &mem_segs, list) {
322 if (seg->start == start && seg->size == size)
323 break;
326 if (seg->start != start || seg->size != size)
327 goto out;
329 ret = 0;
330 __remove_shared_memory(seg);
331 kfree(seg);
332 out:
333 mutex_unlock(&vmem_mutex);
334 return ret;
337 int vmem_add_mapping(unsigned long start, unsigned long size)
339 struct memory_segment *seg;
340 int ret;
342 mutex_lock(&vmem_mutex);
343 ret = -ENOMEM;
344 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
345 if (!seg)
346 goto out;
347 seg->start = start;
348 seg->size = size;
350 ret = insert_memory_segment(seg);
351 if (ret)
352 goto out_free;
354 ret = vmem_add_mem(start, size, 0);
355 if (ret)
356 goto out_remove;
357 goto out;
359 out_remove:
360 __remove_shared_memory(seg);
361 out_free:
362 kfree(seg);
363 out:
364 mutex_unlock(&vmem_mutex);
365 return ret;
369 * map whole physical memory to virtual memory (identity mapping)
370 * we reserve enough space in the vmalloc area for vmemmap to hotplug
371 * additional memory segments.
373 void __init vmem_map_init(void)
375 unsigned long ro_start, ro_end;
376 unsigned long start, end;
377 int i;
379 ro_start = PFN_ALIGN((unsigned long)&_stext);
380 ro_end = (unsigned long)&_eshared & PAGE_MASK;
381 for (i = 0; i < MEMORY_CHUNKS; i++) {
382 if (!memory_chunk[i].size)
383 continue;
384 start = memory_chunk[i].addr;
385 end = memory_chunk[i].addr + memory_chunk[i].size;
386 if (start >= ro_end || end <= ro_start)
387 vmem_add_mem(start, end - start, 0);
388 else if (start >= ro_start && end <= ro_end)
389 vmem_add_mem(start, end - start, 1);
390 else if (start >= ro_start) {
391 vmem_add_mem(start, ro_end - start, 1);
392 vmem_add_mem(ro_end, end - ro_end, 0);
393 } else if (end < ro_end) {
394 vmem_add_mem(start, ro_start - start, 0);
395 vmem_add_mem(ro_start, end - ro_start, 1);
396 } else {
397 vmem_add_mem(start, ro_start - start, 0);
398 vmem_add_mem(ro_start, ro_end - ro_start, 1);
399 vmem_add_mem(ro_end, end - ro_end, 0);
405 * Convert memory chunk array to a memory segment list so there is a single
406 * list that contains both r/w memory and shared memory segments.
408 static int __init vmem_convert_memory_chunk(void)
410 struct memory_segment *seg;
411 int i;
413 mutex_lock(&vmem_mutex);
414 for (i = 0; i < MEMORY_CHUNKS; i++) {
415 if (!memory_chunk[i].size)
416 continue;
417 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
418 if (!seg)
419 panic("Out of memory...\n");
420 seg->start = memory_chunk[i].addr;
421 seg->size = memory_chunk[i].size;
422 insert_memory_segment(seg);
424 mutex_unlock(&vmem_mutex);
425 return 0;
428 core_initcall(vmem_convert_memory_chunk);