2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 #include <linux/pm_runtime.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/block.h>
39 #include "blk-cgroup.h"
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
46 DEFINE_IDA(blk_queue_ida
);
49 * For the allocated request tables
51 static struct kmem_cache
*request_cachep
;
54 * For queue allocation
56 struct kmem_cache
*blk_requestq_cachep
;
59 * Controlling structure to kblockd
61 static struct workqueue_struct
*kblockd_workqueue
;
63 static void drive_stat_acct(struct request
*rq
, int new_io
)
65 struct hd_struct
*part
;
66 int rw
= rq_data_dir(rq
);
69 if (!blk_do_io_stat(rq
))
72 cpu
= part_stat_lock();
76 part_stat_inc(cpu
, part
, merges
[rw
]);
78 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
79 if (!hd_struct_try_get(part
)) {
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
88 part
= &rq
->rq_disk
->part0
;
91 part_round_stats(cpu
, part
);
92 part_inc_in_flight(part
, rw
);
99 void blk_queue_congestion_threshold(struct request_queue
*q
)
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
104 if (nr
> q
->nr_requests
)
106 q
->nr_congestion_on
= nr
;
108 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
111 q
->nr_congestion_off
= nr
;
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * Locates the passed device's request queue and returns the address of its
121 * Will return NULL if the request queue cannot be located.
123 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
125 struct backing_dev_info
*ret
= NULL
;
126 struct request_queue
*q
= bdev_get_queue(bdev
);
129 ret
= &q
->backing_dev_info
;
132 EXPORT_SYMBOL(blk_get_backing_dev_info
);
134 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
136 memset(rq
, 0, sizeof(*rq
));
138 INIT_LIST_HEAD(&rq
->queuelist
);
139 INIT_LIST_HEAD(&rq
->timeout_list
);
142 rq
->__sector
= (sector_t
) -1;
143 INIT_HLIST_NODE(&rq
->hash
);
144 RB_CLEAR_NODE(&rq
->rb_node
);
146 rq
->cmd_len
= BLK_MAX_CDB
;
149 rq
->start_time
= jiffies
;
150 set_start_time_ns(rq
);
153 EXPORT_SYMBOL(blk_rq_init
);
155 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
156 unsigned int nbytes
, int error
)
159 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
160 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
163 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
164 set_bit(BIO_QUIET
, &bio
->bi_flags
);
166 bio_advance(bio
, nbytes
);
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
170 bio_endio(bio
, error
);
173 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
177 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
178 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
181 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq
),
183 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
184 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
185 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
187 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
188 printk(KERN_INFO
" cdb: ");
189 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
190 printk("%02x ", rq
->cmd
[bit
]);
194 EXPORT_SYMBOL(blk_dump_rq_flags
);
196 static void blk_delay_work(struct work_struct
*work
)
198 struct request_queue
*q
;
200 q
= container_of(work
, struct request_queue
, delay_work
.work
);
201 spin_lock_irq(q
->queue_lock
);
203 spin_unlock_irq(q
->queue_lock
);
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
214 * restarted around the specified time. Queue lock must be held.
216 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
218 if (likely(!blk_queue_dead(q
)))
219 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
220 msecs_to_jiffies(msecs
));
222 EXPORT_SYMBOL(blk_delay_queue
);
225 * blk_start_queue - restart a previously stopped queue
226 * @q: The &struct request_queue in question
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 void blk_start_queue(struct request_queue
*q
)
235 WARN_ON(!irqs_disabled());
237 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
240 EXPORT_SYMBOL(blk_start_queue
);
243 * blk_stop_queue - stop a queue
244 * @q: The &struct request_queue in question
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 void blk_stop_queue(struct request_queue
*q
)
258 cancel_delayed_work(&q
->delay_work
);
259 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
261 EXPORT_SYMBOL(blk_stop_queue
);
264 * blk_sync_queue - cancel any pending callbacks on a queue
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
272 * that the callbacks might use. The caller must already have made sure
273 * that its ->make_request_fn will not re-add plugging prior to calling
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
278 * and blkcg_exit_queue() to be called with queue lock initialized.
281 void blk_sync_queue(struct request_queue
*q
)
283 del_timer_sync(&q
->timeout
);
284 cancel_delayed_work_sync(&q
->delay_work
);
286 EXPORT_SYMBOL(blk_sync_queue
);
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
299 inline void __blk_run_queue_uncond(struct request_queue
*q
)
301 if (unlikely(blk_queue_dead(q
)))
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
311 q
->request_fn_active
++;
313 q
->request_fn_active
--;
317 * __blk_run_queue - run a single device queue
318 * @q: The queue to run
321 * See @blk_run_queue. This variant must be called with the queue lock
322 * held and interrupts disabled.
324 void __blk_run_queue(struct request_queue
*q
)
326 if (unlikely(blk_queue_stopped(q
)))
329 __blk_run_queue_uncond(q
);
331 EXPORT_SYMBOL(__blk_run_queue
);
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
339 * of us. The caller must hold the queue lock.
341 void blk_run_queue_async(struct request_queue
*q
)
343 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
344 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
346 EXPORT_SYMBOL(blk_run_queue_async
);
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
353 * Invoke request handling on this queue, if it has pending work to do.
354 * May be used to restart queueing when a request has completed.
356 void blk_run_queue(struct request_queue
*q
)
360 spin_lock_irqsave(q
->queue_lock
, flags
);
362 spin_unlock_irqrestore(q
->queue_lock
, flags
);
364 EXPORT_SYMBOL(blk_run_queue
);
366 void blk_put_queue(struct request_queue
*q
)
368 kobject_put(&q
->kobj
);
370 EXPORT_SYMBOL(blk_put_queue
);
373 * __blk_drain_queue - drain requests from request_queue
375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
381 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
382 __releases(q
->queue_lock
)
383 __acquires(q
->queue_lock
)
387 lockdep_assert_held(q
->queue_lock
);
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
397 elv_drain_elevator(q
);
399 blkcg_drain_queue(q
);
402 * This function might be called on a queue which failed
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
408 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
411 drain
|= q
->nr_rqs_elvpriv
;
412 drain
|= q
->request_fn_active
;
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
420 drain
|= !list_empty(&q
->queue_head
);
421 for (i
= 0; i
< 2; i
++) {
422 drain
|= q
->nr_rqs
[i
];
423 drain
|= q
->in_flight
[i
];
424 drain
|= !list_empty(&q
->flush_queue
[i
]);
431 spin_unlock_irq(q
->queue_lock
);
435 spin_lock_irq(q
->queue_lock
);
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
444 struct request_list
*rl
;
446 blk_queue_for_each_rl(rl
, q
)
447 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
448 wake_up_all(&rl
->wait
[i
]);
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
458 * throttled or issued before. On return, it's guaranteed that no request
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
462 void blk_queue_bypass_start(struct request_queue
*q
)
466 spin_lock_irq(q
->queue_lock
);
467 drain
= !q
->bypass_depth
++;
468 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
469 spin_unlock_irq(q
->queue_lock
);
472 spin_lock_irq(q
->queue_lock
);
473 __blk_drain_queue(q
, false);
474 spin_unlock_irq(q
->queue_lock
);
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
480 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
486 * Leave bypass mode and restore the normal queueing behavior.
488 void blk_queue_bypass_end(struct request_queue
*q
)
490 spin_lock_irq(q
->queue_lock
);
491 if (!--q
->bypass_depth
)
492 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
493 WARN_ON_ONCE(q
->bypass_depth
< 0);
494 spin_unlock_irq(q
->queue_lock
);
496 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
505 void blk_cleanup_queue(struct request_queue
*q
)
507 spinlock_t
*lock
= q
->queue_lock
;
509 /* mark @q DYING, no new request or merges will be allowed afterwards */
510 mutex_lock(&q
->sysfs_lock
);
511 queue_flag_set_unlocked(QUEUE_FLAG_DYING
, q
);
515 * A dying queue is permanently in bypass mode till released. Note
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
524 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
526 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
528 queue_flag_set(QUEUE_FLAG_DYING
, q
);
529 spin_unlock_irq(lock
);
530 mutex_unlock(&q
->sysfs_lock
);
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
537 __blk_drain_queue(q
, true);
538 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
539 spin_unlock_irq(lock
);
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
546 if (q
->queue_lock
!= &q
->__queue_lock
)
547 q
->queue_lock
= &q
->__queue_lock
;
548 spin_unlock_irq(lock
);
550 /* @q is and will stay empty, shutdown and put */
553 EXPORT_SYMBOL(blk_cleanup_queue
);
555 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
558 if (unlikely(rl
->rq_pool
))
562 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
563 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
564 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
565 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
567 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
568 mempool_free_slab
, request_cachep
,
576 void blk_exit_rl(struct request_list
*rl
)
579 mempool_destroy(rl
->rq_pool
);
582 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
584 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
586 EXPORT_SYMBOL(blk_alloc_queue
);
588 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
590 struct request_queue
*q
;
593 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
594 gfp_mask
| __GFP_ZERO
, node_id
);
598 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
602 q
->backing_dev_info
.ra_pages
=
603 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
604 q
->backing_dev_info
.state
= 0;
605 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
606 q
->backing_dev_info
.name
= "block";
609 err
= bdi_init(&q
->backing_dev_info
);
613 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
614 laptop_mode_timer_fn
, (unsigned long) q
);
615 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
616 INIT_LIST_HEAD(&q
->queue_head
);
617 INIT_LIST_HEAD(&q
->timeout_list
);
618 INIT_LIST_HEAD(&q
->icq_list
);
619 #ifdef CONFIG_BLK_CGROUP
620 INIT_LIST_HEAD(&q
->blkg_list
);
622 INIT_LIST_HEAD(&q
->flush_queue
[0]);
623 INIT_LIST_HEAD(&q
->flush_queue
[1]);
624 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
625 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
627 kobject_init(&q
->kobj
, &blk_queue_ktype
);
629 mutex_init(&q
->sysfs_lock
);
630 spin_lock_init(&q
->__queue_lock
);
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
636 q
->queue_lock
= &q
->__queue_lock
;
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
645 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
647 if (blkcg_init_queue(q
))
653 bdi_destroy(&q
->backing_dev_info
);
655 ida_simple_remove(&blk_queue_ida
, q
->id
);
657 kmem_cache_free(blk_requestq_cachep
, q
);
660 EXPORT_SYMBOL(blk_alloc_queue_node
);
663 * blk_init_queue - prepare a request queue for use with a block device
664 * @rfn: The function to be called to process requests that have been
665 * placed on the queue.
666 * @lock: Request queue spin lock
669 * If a block device wishes to use the standard request handling procedures,
670 * which sorts requests and coalesces adjacent requests, then it must
671 * call blk_init_queue(). The function @rfn will be called when there
672 * are requests on the queue that need to be processed. If the device
673 * supports plugging, then @rfn may not be called immediately when requests
674 * are available on the queue, but may be called at some time later instead.
675 * Plugged queues are generally unplugged when a buffer belonging to one
676 * of the requests on the queue is needed, or due to memory pressure.
678 * @rfn is not required, or even expected, to remove all requests off the
679 * queue, but only as many as it can handle at a time. If it does leave
680 * requests on the queue, it is responsible for arranging that the requests
681 * get dealt with eventually.
683 * The queue spin lock must be held while manipulating the requests on the
684 * request queue; this lock will be taken also from interrupt context, so irq
685 * disabling is needed for it.
687 * Function returns a pointer to the initialized request queue, or %NULL if
691 * blk_init_queue() must be paired with a blk_cleanup_queue() call
692 * when the block device is deactivated (such as at module unload).
695 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
697 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
699 EXPORT_SYMBOL(blk_init_queue
);
701 struct request_queue
*
702 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
704 struct request_queue
*uninit_q
, *q
;
706 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
710 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
712 blk_cleanup_queue(uninit_q
);
716 EXPORT_SYMBOL(blk_init_queue_node
);
718 struct request_queue
*
719 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
725 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
729 q
->prep_rq_fn
= NULL
;
730 q
->unprep_rq_fn
= NULL
;
731 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
733 /* Override internal queue lock with supplied lock pointer */
735 q
->queue_lock
= lock
;
738 * This also sets hw/phys segments, boundary and size
740 blk_queue_make_request(q
, blk_queue_bio
);
742 q
->sg_reserved_size
= INT_MAX
;
744 /* Protect q->elevator from elevator_change */
745 mutex_lock(&q
->sysfs_lock
);
748 if (elevator_init(q
, NULL
)) {
749 mutex_unlock(&q
->sysfs_lock
);
753 mutex_unlock(&q
->sysfs_lock
);
757 EXPORT_SYMBOL(blk_init_allocated_queue
);
759 bool blk_get_queue(struct request_queue
*q
)
761 if (likely(!blk_queue_dying(q
))) {
768 EXPORT_SYMBOL(blk_get_queue
);
770 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
772 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
773 elv_put_request(rl
->q
, rq
);
775 put_io_context(rq
->elv
.icq
->ioc
);
778 mempool_free(rq
, rl
->rq_pool
);
782 * ioc_batching returns true if the ioc is a valid batching request and
783 * should be given priority access to a request.
785 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
791 * Make sure the process is able to allocate at least 1 request
792 * even if the batch times out, otherwise we could theoretically
795 return ioc
->nr_batch_requests
== q
->nr_batching
||
796 (ioc
->nr_batch_requests
> 0
797 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
801 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
802 * will cause the process to be a "batcher" on all queues in the system. This
803 * is the behaviour we want though - once it gets a wakeup it should be given
806 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
808 if (!ioc
|| ioc_batching(q
, ioc
))
811 ioc
->nr_batch_requests
= q
->nr_batching
;
812 ioc
->last_waited
= jiffies
;
815 static void __freed_request(struct request_list
*rl
, int sync
)
817 struct request_queue
*q
= rl
->q
;
820 * bdi isn't aware of blkcg yet. As all async IOs end up root
821 * blkcg anyway, just use root blkcg state.
823 if (rl
== &q
->root_rl
&&
824 rl
->count
[sync
] < queue_congestion_off_threshold(q
))
825 blk_clear_queue_congested(q
, sync
);
827 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
828 if (waitqueue_active(&rl
->wait
[sync
]))
829 wake_up(&rl
->wait
[sync
]);
831 blk_clear_rl_full(rl
, sync
);
836 * A request has just been released. Account for it, update the full and
837 * congestion status, wake up any waiters. Called under q->queue_lock.
839 static void freed_request(struct request_list
*rl
, unsigned int flags
)
841 struct request_queue
*q
= rl
->q
;
842 int sync
= rw_is_sync(flags
);
846 if (flags
& REQ_ELVPRIV
)
849 __freed_request(rl
, sync
);
851 if (unlikely(rl
->starved
[sync
^ 1]))
852 __freed_request(rl
, sync
^ 1);
856 * Determine if elevator data should be initialized when allocating the
857 * request associated with @bio.
859 static bool blk_rq_should_init_elevator(struct bio
*bio
)
865 * Flush requests do not use the elevator so skip initialization.
866 * This allows a request to share the flush and elevator data.
868 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
875 * rq_ioc - determine io_context for request allocation
876 * @bio: request being allocated is for this bio (can be %NULL)
878 * Determine io_context to use for request allocation for @bio. May return
879 * %NULL if %current->io_context doesn't exist.
881 static struct io_context
*rq_ioc(struct bio
*bio
)
883 #ifdef CONFIG_BLK_CGROUP
884 if (bio
&& bio
->bi_ioc
)
887 return current
->io_context
;
891 * __get_request - get a free request
892 * @rl: request list to allocate from
893 * @rw_flags: RW and SYNC flags
894 * @bio: bio to allocate request for (can be %NULL)
895 * @gfp_mask: allocation mask
897 * Get a free request from @q. This function may fail under memory
898 * pressure or if @q is dead.
900 * Must be callled with @q->queue_lock held and,
901 * Returns %NULL on failure, with @q->queue_lock held.
902 * Returns !%NULL on success, with @q->queue_lock *not held*.
904 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
905 struct bio
*bio
, gfp_t gfp_mask
)
907 struct request_queue
*q
= rl
->q
;
909 struct elevator_type
*et
= q
->elevator
->type
;
910 struct io_context
*ioc
= rq_ioc(bio
);
911 struct io_cq
*icq
= NULL
;
912 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
915 if (unlikely(blk_queue_dying(q
)))
918 may_queue
= elv_may_queue(q
, rw_flags
);
919 if (may_queue
== ELV_MQUEUE_NO
)
922 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
923 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
925 * The queue will fill after this allocation, so set
926 * it as full, and mark this process as "batching".
927 * This process will be allowed to complete a batch of
928 * requests, others will be blocked.
930 if (!blk_rl_full(rl
, is_sync
)) {
931 ioc_set_batching(q
, ioc
);
932 blk_set_rl_full(rl
, is_sync
);
934 if (may_queue
!= ELV_MQUEUE_MUST
935 && !ioc_batching(q
, ioc
)) {
937 * The queue is full and the allocating
938 * process is not a "batcher", and not
939 * exempted by the IO scheduler
946 * bdi isn't aware of blkcg yet. As all async IOs end up
947 * root blkcg anyway, just use root blkcg state.
949 if (rl
== &q
->root_rl
)
950 blk_set_queue_congested(q
, is_sync
);
954 * Only allow batching queuers to allocate up to 50% over the defined
955 * limit of requests, otherwise we could have thousands of requests
956 * allocated with any setting of ->nr_requests
958 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
961 q
->nr_rqs
[is_sync
]++;
962 rl
->count
[is_sync
]++;
963 rl
->starved
[is_sync
] = 0;
966 * Decide whether the new request will be managed by elevator. If
967 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
968 * prevent the current elevator from being destroyed until the new
969 * request is freed. This guarantees icq's won't be destroyed and
970 * makes creating new ones safe.
972 * Also, lookup icq while holding queue_lock. If it doesn't exist,
973 * it will be created after releasing queue_lock.
975 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
976 rw_flags
|= REQ_ELVPRIV
;
978 if (et
->icq_cache
&& ioc
)
979 icq
= ioc_lookup_icq(ioc
, q
);
982 if (blk_queue_io_stat(q
))
983 rw_flags
|= REQ_IO_STAT
;
984 spin_unlock_irq(q
->queue_lock
);
986 /* allocate and init request */
987 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
992 blk_rq_set_rl(rq
, rl
);
993 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
996 if (rw_flags
& REQ_ELVPRIV
) {
997 if (unlikely(et
->icq_cache
&& !icq
)) {
999 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1005 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1008 /* @rq->elv.icq holds io_context until @rq is freed */
1010 get_io_context(icq
->ioc
);
1014 * ioc may be NULL here, and ioc_batching will be false. That's
1015 * OK, if the queue is under the request limit then requests need
1016 * not count toward the nr_batch_requests limit. There will always
1017 * be some limit enforced by BLK_BATCH_TIME.
1019 if (ioc_batching(q
, ioc
))
1020 ioc
->nr_batch_requests
--;
1022 trace_block_getrq(q
, bio
, rw_flags
& 1);
1027 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1028 * and may fail indefinitely under memory pressure and thus
1029 * shouldn't stall IO. Treat this request as !elvpriv. This will
1030 * disturb iosched and blkcg but weird is bettern than dead.
1032 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
1033 dev_name(q
->backing_dev_info
.dev
));
1035 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1038 spin_lock_irq(q
->queue_lock
);
1039 q
->nr_rqs_elvpriv
--;
1040 spin_unlock_irq(q
->queue_lock
);
1045 * Allocation failed presumably due to memory. Undo anything we
1046 * might have messed up.
1048 * Allocating task should really be put onto the front of the wait
1049 * queue, but this is pretty rare.
1051 spin_lock_irq(q
->queue_lock
);
1052 freed_request(rl
, rw_flags
);
1055 * in the very unlikely event that allocation failed and no
1056 * requests for this direction was pending, mark us starved so that
1057 * freeing of a request in the other direction will notice
1058 * us. another possible fix would be to split the rq mempool into
1062 if (unlikely(rl
->count
[is_sync
] == 0))
1063 rl
->starved
[is_sync
] = 1;
1068 * get_request - get a free request
1069 * @q: request_queue to allocate request from
1070 * @rw_flags: RW and SYNC flags
1071 * @bio: bio to allocate request for (can be %NULL)
1072 * @gfp_mask: allocation mask
1074 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1075 * function keeps retrying under memory pressure and fails iff @q is dead.
1077 * Must be callled with @q->queue_lock held and,
1078 * Returns %NULL on failure, with @q->queue_lock held.
1079 * Returns !%NULL on success, with @q->queue_lock *not held*.
1081 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1082 struct bio
*bio
, gfp_t gfp_mask
)
1084 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1086 struct request_list
*rl
;
1089 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1091 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1095 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dying(q
))) {
1100 /* wait on @rl and retry */
1101 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1102 TASK_UNINTERRUPTIBLE
);
1104 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1106 spin_unlock_irq(q
->queue_lock
);
1110 * After sleeping, we become a "batching" process and will be able
1111 * to allocate at least one request, and up to a big batch of them
1112 * for a small period time. See ioc_batching, ioc_set_batching
1114 ioc_set_batching(q
, current
->io_context
);
1116 spin_lock_irq(q
->queue_lock
);
1117 finish_wait(&rl
->wait
[is_sync
], &wait
);
1122 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1126 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1128 /* create ioc upfront */
1129 create_io_context(gfp_mask
, q
->node
);
1131 spin_lock_irq(q
->queue_lock
);
1132 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1134 spin_unlock_irq(q
->queue_lock
);
1135 /* q->queue_lock is unlocked at this point */
1139 EXPORT_SYMBOL(blk_get_request
);
1142 * blk_make_request - given a bio, allocate a corresponding struct request.
1143 * @q: target request queue
1144 * @bio: The bio describing the memory mappings that will be submitted for IO.
1145 * It may be a chained-bio properly constructed by block/bio layer.
1146 * @gfp_mask: gfp flags to be used for memory allocation
1148 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1149 * type commands. Where the struct request needs to be farther initialized by
1150 * the caller. It is passed a &struct bio, which describes the memory info of
1153 * The caller of blk_make_request must make sure that bi_io_vec
1154 * are set to describe the memory buffers. That bio_data_dir() will return
1155 * the needed direction of the request. (And all bio's in the passed bio-chain
1156 * are properly set accordingly)
1158 * If called under none-sleepable conditions, mapped bio buffers must not
1159 * need bouncing, by calling the appropriate masked or flagged allocator,
1160 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1163 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1164 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1165 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1166 * completion of a bio that hasn't been submitted yet, thus resulting in a
1167 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1168 * of bio_alloc(), as that avoids the mempool deadlock.
1169 * If possible a big IO should be split into smaller parts when allocation
1170 * fails. Partial allocation should not be an error, or you risk a live-lock.
1172 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1175 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1178 return ERR_PTR(-ENOMEM
);
1181 struct bio
*bounce_bio
= bio
;
1184 blk_queue_bounce(q
, &bounce_bio
);
1185 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1186 if (unlikely(ret
)) {
1187 blk_put_request(rq
);
1188 return ERR_PTR(ret
);
1194 EXPORT_SYMBOL(blk_make_request
);
1197 * blk_requeue_request - put a request back on queue
1198 * @q: request queue where request should be inserted
1199 * @rq: request to be inserted
1202 * Drivers often keep queueing requests until the hardware cannot accept
1203 * more, when that condition happens we need to put the request back
1204 * on the queue. Must be called with queue lock held.
1206 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1208 blk_delete_timer(rq
);
1209 blk_clear_rq_complete(rq
);
1210 trace_block_rq_requeue(q
, rq
);
1212 if (blk_rq_tagged(rq
))
1213 blk_queue_end_tag(q
, rq
);
1215 BUG_ON(blk_queued_rq(rq
));
1217 elv_requeue_request(q
, rq
);
1219 EXPORT_SYMBOL(blk_requeue_request
);
1221 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1224 drive_stat_acct(rq
, 1);
1225 __elv_add_request(q
, rq
, where
);
1228 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1231 if (now
== part
->stamp
)
1234 if (part_in_flight(part
)) {
1235 __part_stat_add(cpu
, part
, time_in_queue
,
1236 part_in_flight(part
) * (now
- part
->stamp
));
1237 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1243 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1244 * @cpu: cpu number for stats access
1245 * @part: target partition
1247 * The average IO queue length and utilisation statistics are maintained
1248 * by observing the current state of the queue length and the amount of
1249 * time it has been in this state for.
1251 * Normally, that accounting is done on IO completion, but that can result
1252 * in more than a second's worth of IO being accounted for within any one
1253 * second, leading to >100% utilisation. To deal with that, we call this
1254 * function to do a round-off before returning the results when reading
1255 * /proc/diskstats. This accounts immediately for all queue usage up to
1256 * the current jiffies and restarts the counters again.
1258 void part_round_stats(int cpu
, struct hd_struct
*part
)
1260 unsigned long now
= jiffies
;
1263 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1264 part_round_stats_single(cpu
, part
, now
);
1266 EXPORT_SYMBOL_GPL(part_round_stats
);
1268 #ifdef CONFIG_PM_RUNTIME
1269 static void blk_pm_put_request(struct request
*rq
)
1271 if (rq
->q
->dev
&& !(rq
->cmd_flags
& REQ_PM
) && !--rq
->q
->nr_pending
)
1272 pm_runtime_mark_last_busy(rq
->q
->dev
);
1275 static inline void blk_pm_put_request(struct request
*rq
) {}
1279 * queue lock must be held
1281 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1285 if (unlikely(--req
->ref_count
))
1288 blk_pm_put_request(req
);
1290 elv_completed_request(q
, req
);
1292 /* this is a bio leak */
1293 WARN_ON(req
->bio
!= NULL
);
1296 * Request may not have originated from ll_rw_blk. if not,
1297 * it didn't come out of our reserved rq pools
1299 if (req
->cmd_flags
& REQ_ALLOCED
) {
1300 unsigned int flags
= req
->cmd_flags
;
1301 struct request_list
*rl
= blk_rq_rl(req
);
1303 BUG_ON(!list_empty(&req
->queuelist
));
1304 BUG_ON(!hlist_unhashed(&req
->hash
));
1306 blk_free_request(rl
, req
);
1307 freed_request(rl
, flags
);
1311 EXPORT_SYMBOL_GPL(__blk_put_request
);
1313 void blk_put_request(struct request
*req
)
1315 unsigned long flags
;
1316 struct request_queue
*q
= req
->q
;
1318 spin_lock_irqsave(q
->queue_lock
, flags
);
1319 __blk_put_request(q
, req
);
1320 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1322 EXPORT_SYMBOL(blk_put_request
);
1325 * blk_add_request_payload - add a payload to a request
1326 * @rq: request to update
1327 * @page: page backing the payload
1328 * @len: length of the payload.
1330 * This allows to later add a payload to an already submitted request by
1331 * a block driver. The driver needs to take care of freeing the payload
1334 * Note that this is a quite horrible hack and nothing but handling of
1335 * discard requests should ever use it.
1337 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1340 struct bio
*bio
= rq
->bio
;
1342 bio
->bi_io_vec
->bv_page
= page
;
1343 bio
->bi_io_vec
->bv_offset
= 0;
1344 bio
->bi_io_vec
->bv_len
= len
;
1348 bio
->bi_phys_segments
= 1;
1350 rq
->__data_len
= rq
->resid_len
= len
;
1351 rq
->nr_phys_segments
= 1;
1352 rq
->buffer
= bio_data(bio
);
1354 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1356 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1359 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1361 if (!ll_back_merge_fn(q
, req
, bio
))
1364 trace_block_bio_backmerge(q
, req
, bio
);
1366 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1367 blk_rq_set_mixed_merge(req
);
1369 req
->biotail
->bi_next
= bio
;
1371 req
->__data_len
+= bio
->bi_size
;
1372 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1374 drive_stat_acct(req
, 0);
1378 static bool bio_attempt_front_merge(struct request_queue
*q
,
1379 struct request
*req
, struct bio
*bio
)
1381 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1383 if (!ll_front_merge_fn(q
, req
, bio
))
1386 trace_block_bio_frontmerge(q
, req
, bio
);
1388 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1389 blk_rq_set_mixed_merge(req
);
1391 bio
->bi_next
= req
->bio
;
1395 * may not be valid. if the low level driver said
1396 * it didn't need a bounce buffer then it better
1397 * not touch req->buffer either...
1399 req
->buffer
= bio_data(bio
);
1400 req
->__sector
= bio
->bi_sector
;
1401 req
->__data_len
+= bio
->bi_size
;
1402 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1404 drive_stat_acct(req
, 0);
1409 * attempt_plug_merge - try to merge with %current's plugged list
1410 * @q: request_queue new bio is being queued at
1411 * @bio: new bio being queued
1412 * @request_count: out parameter for number of traversed plugged requests
1414 * Determine whether @bio being queued on @q can be merged with a request
1415 * on %current's plugged list. Returns %true if merge was successful,
1418 * Plugging coalesces IOs from the same issuer for the same purpose without
1419 * going through @q->queue_lock. As such it's more of an issuing mechanism
1420 * than scheduling, and the request, while may have elvpriv data, is not
1421 * added on the elevator at this point. In addition, we don't have
1422 * reliable access to the elevator outside queue lock. Only check basic
1423 * merging parameters without querying the elevator.
1425 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1426 unsigned int *request_count
)
1428 struct blk_plug
*plug
;
1432 plug
= current
->plug
;
1437 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1443 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1446 el_ret
= blk_try_merge(rq
, bio
);
1447 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1448 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1451 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1452 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1461 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1463 req
->cmd_type
= REQ_TYPE_FS
;
1465 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1466 if (bio
->bi_rw
& REQ_RAHEAD
)
1467 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1470 req
->__sector
= bio
->bi_sector
;
1471 req
->ioprio
= bio_prio(bio
);
1472 blk_rq_bio_prep(req
->q
, req
, bio
);
1475 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1477 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1478 struct blk_plug
*plug
;
1479 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1480 struct request
*req
;
1481 unsigned int request_count
= 0;
1484 * low level driver can indicate that it wants pages above a
1485 * certain limit bounced to low memory (ie for highmem, or even
1486 * ISA dma in theory)
1488 blk_queue_bounce(q
, &bio
);
1490 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1491 bio_endio(bio
, -EIO
);
1495 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1496 spin_lock_irq(q
->queue_lock
);
1497 where
= ELEVATOR_INSERT_FLUSH
;
1502 * Check if we can merge with the plugged list before grabbing
1505 if (attempt_plug_merge(q
, bio
, &request_count
))
1508 spin_lock_irq(q
->queue_lock
);
1510 el_ret
= elv_merge(q
, &req
, bio
);
1511 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1512 if (bio_attempt_back_merge(q
, req
, bio
)) {
1513 elv_bio_merged(q
, req
, bio
);
1514 if (!attempt_back_merge(q
, req
))
1515 elv_merged_request(q
, req
, el_ret
);
1518 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1519 if (bio_attempt_front_merge(q
, req
, bio
)) {
1520 elv_bio_merged(q
, req
, bio
);
1521 if (!attempt_front_merge(q
, req
))
1522 elv_merged_request(q
, req
, el_ret
);
1529 * This sync check and mask will be re-done in init_request_from_bio(),
1530 * but we need to set it earlier to expose the sync flag to the
1531 * rq allocator and io schedulers.
1533 rw_flags
= bio_data_dir(bio
);
1535 rw_flags
|= REQ_SYNC
;
1538 * Grab a free request. This is might sleep but can not fail.
1539 * Returns with the queue unlocked.
1541 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1542 if (unlikely(!req
)) {
1543 bio_endio(bio
, -ENODEV
); /* @q is dead */
1548 * After dropping the lock and possibly sleeping here, our request
1549 * may now be mergeable after it had proven unmergeable (above).
1550 * We don't worry about that case for efficiency. It won't happen
1551 * often, and the elevators are able to handle it.
1553 init_request_from_bio(req
, bio
);
1555 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1556 req
->cpu
= raw_smp_processor_id();
1558 plug
= current
->plug
;
1561 * If this is the first request added after a plug, fire
1565 trace_block_plug(q
);
1567 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1568 blk_flush_plug_list(plug
, false);
1569 trace_block_plug(q
);
1572 list_add_tail(&req
->queuelist
, &plug
->list
);
1573 drive_stat_acct(req
, 1);
1575 spin_lock_irq(q
->queue_lock
);
1576 add_acct_request(q
, req
, where
);
1579 spin_unlock_irq(q
->queue_lock
);
1582 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1585 * If bio->bi_dev is a partition, remap the location
1587 static inline void blk_partition_remap(struct bio
*bio
)
1589 struct block_device
*bdev
= bio
->bi_bdev
;
1591 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1592 struct hd_struct
*p
= bdev
->bd_part
;
1594 bio
->bi_sector
+= p
->start_sect
;
1595 bio
->bi_bdev
= bdev
->bd_contains
;
1597 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1599 bio
->bi_sector
- p
->start_sect
);
1603 static void handle_bad_sector(struct bio
*bio
)
1605 char b
[BDEVNAME_SIZE
];
1607 printk(KERN_INFO
"attempt to access beyond end of device\n");
1608 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1609 bdevname(bio
->bi_bdev
, b
),
1611 (unsigned long long)bio_end_sector(bio
),
1612 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1614 set_bit(BIO_EOF
, &bio
->bi_flags
);
1617 #ifdef CONFIG_FAIL_MAKE_REQUEST
1619 static DECLARE_FAULT_ATTR(fail_make_request
);
1621 static int __init
setup_fail_make_request(char *str
)
1623 return setup_fault_attr(&fail_make_request
, str
);
1625 __setup("fail_make_request=", setup_fail_make_request
);
1627 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1629 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1632 static int __init
fail_make_request_debugfs(void)
1634 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1635 NULL
, &fail_make_request
);
1637 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1640 late_initcall(fail_make_request_debugfs
);
1642 #else /* CONFIG_FAIL_MAKE_REQUEST */
1644 static inline bool should_fail_request(struct hd_struct
*part
,
1650 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1653 * Check whether this bio extends beyond the end of the device.
1655 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1662 /* Test device or partition size, when known. */
1663 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1665 sector_t sector
= bio
->bi_sector
;
1667 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1669 * This may well happen - the kernel calls bread()
1670 * without checking the size of the device, e.g., when
1671 * mounting a device.
1673 handle_bad_sector(bio
);
1681 static noinline_for_stack
bool
1682 generic_make_request_checks(struct bio
*bio
)
1684 struct request_queue
*q
;
1685 int nr_sectors
= bio_sectors(bio
);
1687 char b
[BDEVNAME_SIZE
];
1688 struct hd_struct
*part
;
1692 if (bio_check_eod(bio
, nr_sectors
))
1695 q
= bdev_get_queue(bio
->bi_bdev
);
1698 "generic_make_request: Trying to access "
1699 "nonexistent block-device %s (%Lu)\n",
1700 bdevname(bio
->bi_bdev
, b
),
1701 (long long) bio
->bi_sector
);
1705 if (likely(bio_is_rw(bio
) &&
1706 nr_sectors
> queue_max_hw_sectors(q
))) {
1707 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1708 bdevname(bio
->bi_bdev
, b
),
1710 queue_max_hw_sectors(q
));
1714 part
= bio
->bi_bdev
->bd_part
;
1715 if (should_fail_request(part
, bio
->bi_size
) ||
1716 should_fail_request(&part_to_disk(part
)->part0
,
1721 * If this device has partitions, remap block n
1722 * of partition p to block n+start(p) of the disk.
1724 blk_partition_remap(bio
);
1726 if (bio_check_eod(bio
, nr_sectors
))
1730 * Filter flush bio's early so that make_request based
1731 * drivers without flush support don't have to worry
1734 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1735 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1742 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1743 (!blk_queue_discard(q
) ||
1744 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1749 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1755 * Various block parts want %current->io_context and lazy ioc
1756 * allocation ends up trading a lot of pain for a small amount of
1757 * memory. Just allocate it upfront. This may fail and block
1758 * layer knows how to live with it.
1760 create_io_context(GFP_ATOMIC
, q
->node
);
1762 if (blk_throtl_bio(q
, bio
))
1763 return false; /* throttled, will be resubmitted later */
1765 trace_block_bio_queue(q
, bio
);
1769 bio_endio(bio
, err
);
1774 * generic_make_request - hand a buffer to its device driver for I/O
1775 * @bio: The bio describing the location in memory and on the device.
1777 * generic_make_request() is used to make I/O requests of block
1778 * devices. It is passed a &struct bio, which describes the I/O that needs
1781 * generic_make_request() does not return any status. The
1782 * success/failure status of the request, along with notification of
1783 * completion, is delivered asynchronously through the bio->bi_end_io
1784 * function described (one day) else where.
1786 * The caller of generic_make_request must make sure that bi_io_vec
1787 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1788 * set to describe the device address, and the
1789 * bi_end_io and optionally bi_private are set to describe how
1790 * completion notification should be signaled.
1792 * generic_make_request and the drivers it calls may use bi_next if this
1793 * bio happens to be merged with someone else, and may resubmit the bio to
1794 * a lower device by calling into generic_make_request recursively, which
1795 * means the bio should NOT be touched after the call to ->make_request_fn.
1797 void generic_make_request(struct bio
*bio
)
1799 struct bio_list bio_list_on_stack
;
1801 if (!generic_make_request_checks(bio
))
1805 * We only want one ->make_request_fn to be active at a time, else
1806 * stack usage with stacked devices could be a problem. So use
1807 * current->bio_list to keep a list of requests submited by a
1808 * make_request_fn function. current->bio_list is also used as a
1809 * flag to say if generic_make_request is currently active in this
1810 * task or not. If it is NULL, then no make_request is active. If
1811 * it is non-NULL, then a make_request is active, and new requests
1812 * should be added at the tail
1814 if (current
->bio_list
) {
1815 bio_list_add(current
->bio_list
, bio
);
1819 /* following loop may be a bit non-obvious, and so deserves some
1821 * Before entering the loop, bio->bi_next is NULL (as all callers
1822 * ensure that) so we have a list with a single bio.
1823 * We pretend that we have just taken it off a longer list, so
1824 * we assign bio_list to a pointer to the bio_list_on_stack,
1825 * thus initialising the bio_list of new bios to be
1826 * added. ->make_request() may indeed add some more bios
1827 * through a recursive call to generic_make_request. If it
1828 * did, we find a non-NULL value in bio_list and re-enter the loop
1829 * from the top. In this case we really did just take the bio
1830 * of the top of the list (no pretending) and so remove it from
1831 * bio_list, and call into ->make_request() again.
1833 BUG_ON(bio
->bi_next
);
1834 bio_list_init(&bio_list_on_stack
);
1835 current
->bio_list
= &bio_list_on_stack
;
1837 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1839 q
->make_request_fn(q
, bio
);
1841 bio
= bio_list_pop(current
->bio_list
);
1843 current
->bio_list
= NULL
; /* deactivate */
1845 EXPORT_SYMBOL(generic_make_request
);
1848 * submit_bio - submit a bio to the block device layer for I/O
1849 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1850 * @bio: The &struct bio which describes the I/O
1852 * submit_bio() is very similar in purpose to generic_make_request(), and
1853 * uses that function to do most of the work. Both are fairly rough
1854 * interfaces; @bio must be presetup and ready for I/O.
1857 void submit_bio(int rw
, struct bio
*bio
)
1862 * If it's a regular read/write or a barrier with data attached,
1863 * go through the normal accounting stuff before submission.
1865 if (bio_has_data(bio
)) {
1868 if (unlikely(rw
& REQ_WRITE_SAME
))
1869 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
1871 count
= bio_sectors(bio
);
1874 count_vm_events(PGPGOUT
, count
);
1876 task_io_account_read(bio
->bi_size
);
1877 count_vm_events(PGPGIN
, count
);
1880 if (unlikely(block_dump
)) {
1881 char b
[BDEVNAME_SIZE
];
1882 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1883 current
->comm
, task_pid_nr(current
),
1884 (rw
& WRITE
) ? "WRITE" : "READ",
1885 (unsigned long long)bio
->bi_sector
,
1886 bdevname(bio
->bi_bdev
, b
),
1891 generic_make_request(bio
);
1893 EXPORT_SYMBOL(submit_bio
);
1896 * blk_rq_check_limits - Helper function to check a request for the queue limit
1898 * @rq: the request being checked
1901 * @rq may have been made based on weaker limitations of upper-level queues
1902 * in request stacking drivers, and it may violate the limitation of @q.
1903 * Since the block layer and the underlying device driver trust @rq
1904 * after it is inserted to @q, it should be checked against @q before
1905 * the insertion using this generic function.
1907 * This function should also be useful for request stacking drivers
1908 * in some cases below, so export this function.
1909 * Request stacking drivers like request-based dm may change the queue
1910 * limits while requests are in the queue (e.g. dm's table swapping).
1911 * Such request stacking drivers should check those requests agaist
1912 * the new queue limits again when they dispatch those requests,
1913 * although such checkings are also done against the old queue limits
1914 * when submitting requests.
1916 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1918 if (!rq_mergeable(rq
))
1921 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
1922 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1927 * queue's settings related to segment counting like q->bounce_pfn
1928 * may differ from that of other stacking queues.
1929 * Recalculate it to check the request correctly on this queue's
1932 blk_recalc_rq_segments(rq
);
1933 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1934 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1940 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1943 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1944 * @q: the queue to submit the request
1945 * @rq: the request being queued
1947 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1949 unsigned long flags
;
1950 int where
= ELEVATOR_INSERT_BACK
;
1952 if (blk_rq_check_limits(q
, rq
))
1956 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1959 spin_lock_irqsave(q
->queue_lock
, flags
);
1960 if (unlikely(blk_queue_dying(q
))) {
1961 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1966 * Submitting request must be dequeued before calling this function
1967 * because it will be linked to another request_queue
1969 BUG_ON(blk_queued_rq(rq
));
1971 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1972 where
= ELEVATOR_INSERT_FLUSH
;
1974 add_acct_request(q
, rq
, where
);
1975 if (where
== ELEVATOR_INSERT_FLUSH
)
1977 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1981 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1984 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1985 * @rq: request to examine
1988 * A request could be merge of IOs which require different failure
1989 * handling. This function determines the number of bytes which
1990 * can be failed from the beginning of the request without
1991 * crossing into area which need to be retried further.
1994 * The number of bytes to fail.
1997 * queue_lock must be held.
1999 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2001 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2002 unsigned int bytes
= 0;
2005 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
2006 return blk_rq_bytes(rq
);
2009 * Currently the only 'mixing' which can happen is between
2010 * different fastfail types. We can safely fail portions
2011 * which have all the failfast bits that the first one has -
2012 * the ones which are at least as eager to fail as the first
2015 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2016 if ((bio
->bi_rw
& ff
) != ff
)
2018 bytes
+= bio
->bi_size
;
2021 /* this could lead to infinite loop */
2022 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2025 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2027 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2029 if (blk_do_io_stat(req
)) {
2030 const int rw
= rq_data_dir(req
);
2031 struct hd_struct
*part
;
2034 cpu
= part_stat_lock();
2036 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2041 static void blk_account_io_done(struct request
*req
)
2044 * Account IO completion. flush_rq isn't accounted as a
2045 * normal IO on queueing nor completion. Accounting the
2046 * containing request is enough.
2048 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2049 unsigned long duration
= jiffies
- req
->start_time
;
2050 const int rw
= rq_data_dir(req
);
2051 struct hd_struct
*part
;
2054 cpu
= part_stat_lock();
2057 part_stat_inc(cpu
, part
, ios
[rw
]);
2058 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2059 part_round_stats(cpu
, part
);
2060 part_dec_in_flight(part
, rw
);
2062 hd_struct_put(part
);
2067 #ifdef CONFIG_PM_RUNTIME
2069 * Don't process normal requests when queue is suspended
2070 * or in the process of suspending/resuming
2072 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2075 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2076 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->cmd_flags
& REQ_PM
))))
2082 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2090 * blk_peek_request - peek at the top of a request queue
2091 * @q: request queue to peek at
2094 * Return the request at the top of @q. The returned request
2095 * should be started using blk_start_request() before LLD starts
2099 * Pointer to the request at the top of @q if available. Null
2103 * queue_lock must be held.
2105 struct request
*blk_peek_request(struct request_queue
*q
)
2110 while ((rq
= __elv_next_request(q
)) != NULL
) {
2112 rq
= blk_pm_peek_request(q
, rq
);
2116 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2118 * This is the first time the device driver
2119 * sees this request (possibly after
2120 * requeueing). Notify IO scheduler.
2122 if (rq
->cmd_flags
& REQ_SORTED
)
2123 elv_activate_rq(q
, rq
);
2126 * just mark as started even if we don't start
2127 * it, a request that has been delayed should
2128 * not be passed by new incoming requests
2130 rq
->cmd_flags
|= REQ_STARTED
;
2131 trace_block_rq_issue(q
, rq
);
2134 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2135 q
->end_sector
= rq_end_sector(rq
);
2136 q
->boundary_rq
= NULL
;
2139 if (rq
->cmd_flags
& REQ_DONTPREP
)
2142 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2144 * make sure space for the drain appears we
2145 * know we can do this because max_hw_segments
2146 * has been adjusted to be one fewer than the
2149 rq
->nr_phys_segments
++;
2155 ret
= q
->prep_rq_fn(q
, rq
);
2156 if (ret
== BLKPREP_OK
) {
2158 } else if (ret
== BLKPREP_DEFER
) {
2160 * the request may have been (partially) prepped.
2161 * we need to keep this request in the front to
2162 * avoid resource deadlock. REQ_STARTED will
2163 * prevent other fs requests from passing this one.
2165 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2166 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2168 * remove the space for the drain we added
2169 * so that we don't add it again
2171 --rq
->nr_phys_segments
;
2176 } else if (ret
== BLKPREP_KILL
) {
2177 rq
->cmd_flags
|= REQ_QUIET
;
2179 * Mark this request as started so we don't trigger
2180 * any debug logic in the end I/O path.
2182 blk_start_request(rq
);
2183 __blk_end_request_all(rq
, -EIO
);
2185 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2192 EXPORT_SYMBOL(blk_peek_request
);
2194 void blk_dequeue_request(struct request
*rq
)
2196 struct request_queue
*q
= rq
->q
;
2198 BUG_ON(list_empty(&rq
->queuelist
));
2199 BUG_ON(ELV_ON_HASH(rq
));
2201 list_del_init(&rq
->queuelist
);
2204 * the time frame between a request being removed from the lists
2205 * and to it is freed is accounted as io that is in progress at
2208 if (blk_account_rq(rq
)) {
2209 q
->in_flight
[rq_is_sync(rq
)]++;
2210 set_io_start_time_ns(rq
);
2215 * blk_start_request - start request processing on the driver
2216 * @req: request to dequeue
2219 * Dequeue @req and start timeout timer on it. This hands off the
2220 * request to the driver.
2222 * Block internal functions which don't want to start timer should
2223 * call blk_dequeue_request().
2226 * queue_lock must be held.
2228 void blk_start_request(struct request
*req
)
2230 blk_dequeue_request(req
);
2233 * We are now handing the request to the hardware, initialize
2234 * resid_len to full count and add the timeout handler.
2236 req
->resid_len
= blk_rq_bytes(req
);
2237 if (unlikely(blk_bidi_rq(req
)))
2238 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2240 BUG_ON(test_bit(REQ_ATOM_COMPLETE
, &req
->atomic_flags
));
2243 EXPORT_SYMBOL(blk_start_request
);
2246 * blk_fetch_request - fetch a request from a request queue
2247 * @q: request queue to fetch a request from
2250 * Return the request at the top of @q. The request is started on
2251 * return and LLD can start processing it immediately.
2254 * Pointer to the request at the top of @q if available. Null
2258 * queue_lock must be held.
2260 struct request
*blk_fetch_request(struct request_queue
*q
)
2264 rq
= blk_peek_request(q
);
2266 blk_start_request(rq
);
2269 EXPORT_SYMBOL(blk_fetch_request
);
2272 * blk_update_request - Special helper function for request stacking drivers
2273 * @req: the request being processed
2274 * @error: %0 for success, < %0 for error
2275 * @nr_bytes: number of bytes to complete @req
2278 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2279 * the request structure even if @req doesn't have leftover.
2280 * If @req has leftover, sets it up for the next range of segments.
2282 * This special helper function is only for request stacking drivers
2283 * (e.g. request-based dm) so that they can handle partial completion.
2284 * Actual device drivers should use blk_end_request instead.
2286 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2287 * %false return from this function.
2290 * %false - this request doesn't have any more data
2291 * %true - this request has more data
2293 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2300 trace_block_rq_complete(req
->q
, req
, nr_bytes
);
2303 * For fs requests, rq is just carrier of independent bio's
2304 * and each partial completion should be handled separately.
2305 * Reset per-request error on each partial completion.
2307 * TODO: tj: This is too subtle. It would be better to let
2308 * low level drivers do what they see fit.
2310 if (req
->cmd_type
== REQ_TYPE_FS
)
2313 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2314 !(req
->cmd_flags
& REQ_QUIET
)) {
2319 error_type
= "recoverable transport";
2322 error_type
= "critical target";
2325 error_type
= "critical nexus";
2328 error_type
= "timeout";
2331 error_type
= "critical space allocation";
2334 error_type
= "critical medium";
2341 printk_ratelimited(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2342 error_type
, req
->rq_disk
?
2343 req
->rq_disk
->disk_name
: "?",
2344 (unsigned long long)blk_rq_pos(req
));
2348 blk_account_io_completion(req
, nr_bytes
);
2352 struct bio
*bio
= req
->bio
;
2353 unsigned bio_bytes
= min(bio
->bi_size
, nr_bytes
);
2355 if (bio_bytes
== bio
->bi_size
)
2356 req
->bio
= bio
->bi_next
;
2358 req_bio_endio(req
, bio
, bio_bytes
, error
);
2360 total_bytes
+= bio_bytes
;
2361 nr_bytes
-= bio_bytes
;
2372 * Reset counters so that the request stacking driver
2373 * can find how many bytes remain in the request
2376 req
->__data_len
= 0;
2380 req
->__data_len
-= total_bytes
;
2381 req
->buffer
= bio_data(req
->bio
);
2383 /* update sector only for requests with clear definition of sector */
2384 if (req
->cmd_type
== REQ_TYPE_FS
)
2385 req
->__sector
+= total_bytes
>> 9;
2387 /* mixed attributes always follow the first bio */
2388 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2389 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2390 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2394 * If total number of sectors is less than the first segment
2395 * size, something has gone terribly wrong.
2397 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2398 blk_dump_rq_flags(req
, "request botched");
2399 req
->__data_len
= blk_rq_cur_bytes(req
);
2402 /* recalculate the number of segments */
2403 blk_recalc_rq_segments(req
);
2407 EXPORT_SYMBOL_GPL(blk_update_request
);
2409 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2410 unsigned int nr_bytes
,
2411 unsigned int bidi_bytes
)
2413 if (blk_update_request(rq
, error
, nr_bytes
))
2416 /* Bidi request must be completed as a whole */
2417 if (unlikely(blk_bidi_rq(rq
)) &&
2418 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2421 if (blk_queue_add_random(rq
->q
))
2422 add_disk_randomness(rq
->rq_disk
);
2428 * blk_unprep_request - unprepare a request
2431 * This function makes a request ready for complete resubmission (or
2432 * completion). It happens only after all error handling is complete,
2433 * so represents the appropriate moment to deallocate any resources
2434 * that were allocated to the request in the prep_rq_fn. The queue
2435 * lock is held when calling this.
2437 void blk_unprep_request(struct request
*req
)
2439 struct request_queue
*q
= req
->q
;
2441 req
->cmd_flags
&= ~REQ_DONTPREP
;
2442 if (q
->unprep_rq_fn
)
2443 q
->unprep_rq_fn(q
, req
);
2445 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2448 * queue lock must be held
2450 static void blk_finish_request(struct request
*req
, int error
)
2452 if (blk_rq_tagged(req
))
2453 blk_queue_end_tag(req
->q
, req
);
2455 BUG_ON(blk_queued_rq(req
));
2457 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2458 laptop_io_completion(&req
->q
->backing_dev_info
);
2460 blk_delete_timer(req
);
2462 if (req
->cmd_flags
& REQ_DONTPREP
)
2463 blk_unprep_request(req
);
2466 blk_account_io_done(req
);
2469 req
->end_io(req
, error
);
2471 if (blk_bidi_rq(req
))
2472 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2474 __blk_put_request(req
->q
, req
);
2479 * blk_end_bidi_request - Complete a bidi request
2480 * @rq: the request to complete
2481 * @error: %0 for success, < %0 for error
2482 * @nr_bytes: number of bytes to complete @rq
2483 * @bidi_bytes: number of bytes to complete @rq->next_rq
2486 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2487 * Drivers that supports bidi can safely call this member for any
2488 * type of request, bidi or uni. In the later case @bidi_bytes is
2492 * %false - we are done with this request
2493 * %true - still buffers pending for this request
2495 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2496 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2498 struct request_queue
*q
= rq
->q
;
2499 unsigned long flags
;
2501 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2504 spin_lock_irqsave(q
->queue_lock
, flags
);
2505 blk_finish_request(rq
, error
);
2506 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2512 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2513 * @rq: the request to complete
2514 * @error: %0 for success, < %0 for error
2515 * @nr_bytes: number of bytes to complete @rq
2516 * @bidi_bytes: number of bytes to complete @rq->next_rq
2519 * Identical to blk_end_bidi_request() except that queue lock is
2520 * assumed to be locked on entry and remains so on return.
2523 * %false - we are done with this request
2524 * %true - still buffers pending for this request
2526 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2527 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2529 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2532 blk_finish_request(rq
, error
);
2538 * blk_end_request - Helper function for drivers to complete the request.
2539 * @rq: the request being processed
2540 * @error: %0 for success, < %0 for error
2541 * @nr_bytes: number of bytes to complete
2544 * Ends I/O on a number of bytes attached to @rq.
2545 * If @rq has leftover, sets it up for the next range of segments.
2548 * %false - we are done with this request
2549 * %true - still buffers pending for this request
2551 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2553 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2555 EXPORT_SYMBOL(blk_end_request
);
2558 * blk_end_request_all - Helper function for drives to finish the request.
2559 * @rq: the request to finish
2560 * @error: %0 for success, < %0 for error
2563 * Completely finish @rq.
2565 void blk_end_request_all(struct request
*rq
, int error
)
2568 unsigned int bidi_bytes
= 0;
2570 if (unlikely(blk_bidi_rq(rq
)))
2571 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2573 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2576 EXPORT_SYMBOL(blk_end_request_all
);
2579 * blk_end_request_cur - Helper function to finish the current request chunk.
2580 * @rq: the request to finish the current chunk for
2581 * @error: %0 for success, < %0 for error
2584 * Complete the current consecutively mapped chunk from @rq.
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
2590 bool blk_end_request_cur(struct request
*rq
, int error
)
2592 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2594 EXPORT_SYMBOL(blk_end_request_cur
);
2597 * blk_end_request_err - Finish a request till the next failure boundary.
2598 * @rq: the request to finish till the next failure boundary for
2599 * @error: must be negative errno
2602 * Complete @rq till the next failure boundary.
2605 * %false - we are done with this request
2606 * %true - still buffers pending for this request
2608 bool blk_end_request_err(struct request
*rq
, int error
)
2610 WARN_ON(error
>= 0);
2611 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2613 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2616 * __blk_end_request - Helper function for drivers to complete the request.
2617 * @rq: the request being processed
2618 * @error: %0 for success, < %0 for error
2619 * @nr_bytes: number of bytes to complete
2622 * Must be called with queue lock held unlike blk_end_request().
2625 * %false - we are done with this request
2626 * %true - still buffers pending for this request
2628 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2630 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2632 EXPORT_SYMBOL(__blk_end_request
);
2635 * __blk_end_request_all - Helper function for drives to finish the request.
2636 * @rq: the request to finish
2637 * @error: %0 for success, < %0 for error
2640 * Completely finish @rq. Must be called with queue lock held.
2642 void __blk_end_request_all(struct request
*rq
, int error
)
2645 unsigned int bidi_bytes
= 0;
2647 if (unlikely(blk_bidi_rq(rq
)))
2648 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2650 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2653 EXPORT_SYMBOL(__blk_end_request_all
);
2656 * __blk_end_request_cur - Helper function to finish the current request chunk.
2657 * @rq: the request to finish the current chunk for
2658 * @error: %0 for success, < %0 for error
2661 * Complete the current consecutively mapped chunk from @rq. Must
2662 * be called with queue lock held.
2665 * %false - we are done with this request
2666 * %true - still buffers pending for this request
2668 bool __blk_end_request_cur(struct request
*rq
, int error
)
2670 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2672 EXPORT_SYMBOL(__blk_end_request_cur
);
2675 * __blk_end_request_err - Finish a request till the next failure boundary.
2676 * @rq: the request to finish till the next failure boundary for
2677 * @error: must be negative errno
2680 * Complete @rq till the next failure boundary. Must be called
2681 * with queue lock held.
2684 * %false - we are done with this request
2685 * %true - still buffers pending for this request
2687 bool __blk_end_request_err(struct request
*rq
, int error
)
2689 WARN_ON(error
>= 0);
2690 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2692 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2694 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2697 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2698 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2700 if (bio_has_data(bio
)) {
2701 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2702 rq
->buffer
= bio_data(bio
);
2704 rq
->__data_len
= bio
->bi_size
;
2705 rq
->bio
= rq
->biotail
= bio
;
2708 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2711 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2713 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2714 * @rq: the request to be flushed
2717 * Flush all pages in @rq.
2719 void rq_flush_dcache_pages(struct request
*rq
)
2721 struct req_iterator iter
;
2722 struct bio_vec
*bvec
;
2724 rq_for_each_segment(bvec
, rq
, iter
)
2725 flush_dcache_page(bvec
->bv_page
);
2727 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2731 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2732 * @q : the queue of the device being checked
2735 * Check if underlying low-level drivers of a device are busy.
2736 * If the drivers want to export their busy state, they must set own
2737 * exporting function using blk_queue_lld_busy() first.
2739 * Basically, this function is used only by request stacking drivers
2740 * to stop dispatching requests to underlying devices when underlying
2741 * devices are busy. This behavior helps more I/O merging on the queue
2742 * of the request stacking driver and prevents I/O throughput regression
2743 * on burst I/O load.
2746 * 0 - Not busy (The request stacking driver should dispatch request)
2747 * 1 - Busy (The request stacking driver should stop dispatching request)
2749 int blk_lld_busy(struct request_queue
*q
)
2752 return q
->lld_busy_fn(q
);
2756 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2759 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2760 * @rq: the clone request to be cleaned up
2763 * Free all bios in @rq for a cloned request.
2765 void blk_rq_unprep_clone(struct request
*rq
)
2769 while ((bio
= rq
->bio
) != NULL
) {
2770 rq
->bio
= bio
->bi_next
;
2775 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2778 * Copy attributes of the original request to the clone request.
2779 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2781 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2783 dst
->cpu
= src
->cpu
;
2784 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2785 dst
->cmd_type
= src
->cmd_type
;
2786 dst
->__sector
= blk_rq_pos(src
);
2787 dst
->__data_len
= blk_rq_bytes(src
);
2788 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2789 dst
->ioprio
= src
->ioprio
;
2790 dst
->extra_len
= src
->extra_len
;
2794 * blk_rq_prep_clone - Helper function to setup clone request
2795 * @rq: the request to be setup
2796 * @rq_src: original request to be cloned
2797 * @bs: bio_set that bios for clone are allocated from
2798 * @gfp_mask: memory allocation mask for bio
2799 * @bio_ctr: setup function to be called for each clone bio.
2800 * Returns %0 for success, non %0 for failure.
2801 * @data: private data to be passed to @bio_ctr
2804 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2805 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2806 * are not copied, and copying such parts is the caller's responsibility.
2807 * Also, pages which the original bios are pointing to are not copied
2808 * and the cloned bios just point same pages.
2809 * So cloned bios must be completed before original bios, which means
2810 * the caller must complete @rq before @rq_src.
2812 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2813 struct bio_set
*bs
, gfp_t gfp_mask
,
2814 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2817 struct bio
*bio
, *bio_src
;
2822 blk_rq_init(NULL
, rq
);
2824 __rq_for_each_bio(bio_src
, rq_src
) {
2825 bio
= bio_clone_bioset(bio_src
, gfp_mask
, bs
);
2829 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2833 rq
->biotail
->bi_next
= bio
;
2836 rq
->bio
= rq
->biotail
= bio
;
2839 __blk_rq_prep_clone(rq
, rq_src
);
2846 blk_rq_unprep_clone(rq
);
2850 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2852 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2854 return queue_work(kblockd_workqueue
, work
);
2856 EXPORT_SYMBOL(kblockd_schedule_work
);
2858 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2859 struct delayed_work
*dwork
, unsigned long delay
)
2861 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2863 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2865 #define PLUG_MAGIC 0x91827364
2868 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2869 * @plug: The &struct blk_plug that needs to be initialized
2872 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2873 * pending I/O should the task end up blocking between blk_start_plug() and
2874 * blk_finish_plug(). This is important from a performance perspective, but
2875 * also ensures that we don't deadlock. For instance, if the task is blocking
2876 * for a memory allocation, memory reclaim could end up wanting to free a
2877 * page belonging to that request that is currently residing in our private
2878 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2879 * this kind of deadlock.
2881 void blk_start_plug(struct blk_plug
*plug
)
2883 struct task_struct
*tsk
= current
;
2885 plug
->magic
= PLUG_MAGIC
;
2886 INIT_LIST_HEAD(&plug
->list
);
2887 INIT_LIST_HEAD(&plug
->cb_list
);
2890 * If this is a nested plug, don't actually assign it. It will be
2891 * flushed on its own.
2895 * Store ordering should not be needed here, since a potential
2896 * preempt will imply a full memory barrier
2901 EXPORT_SYMBOL(blk_start_plug
);
2903 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2905 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2906 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2908 return !(rqa
->q
< rqb
->q
||
2909 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
2913 * If 'from_schedule' is true, then postpone the dispatch of requests
2914 * until a safe kblockd context. We due this to avoid accidental big
2915 * additional stack usage in driver dispatch, in places where the originally
2916 * plugger did not intend it.
2918 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2920 __releases(q
->queue_lock
)
2922 trace_block_unplug(q
, depth
, !from_schedule
);
2925 blk_run_queue_async(q
);
2928 spin_unlock(q
->queue_lock
);
2931 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
2933 LIST_HEAD(callbacks
);
2935 while (!list_empty(&plug
->cb_list
)) {
2936 list_splice_init(&plug
->cb_list
, &callbacks
);
2938 while (!list_empty(&callbacks
)) {
2939 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2942 list_del(&cb
->list
);
2943 cb
->callback(cb
, from_schedule
);
2948 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
2951 struct blk_plug
*plug
= current
->plug
;
2952 struct blk_plug_cb
*cb
;
2957 list_for_each_entry(cb
, &plug
->cb_list
, list
)
2958 if (cb
->callback
== unplug
&& cb
->data
== data
)
2961 /* Not currently on the callback list */
2962 BUG_ON(size
< sizeof(*cb
));
2963 cb
= kzalloc(size
, GFP_ATOMIC
);
2966 cb
->callback
= unplug
;
2967 list_add(&cb
->list
, &plug
->cb_list
);
2971 EXPORT_SYMBOL(blk_check_plugged
);
2973 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2975 struct request_queue
*q
;
2976 unsigned long flags
;
2981 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2983 flush_plug_callbacks(plug
, from_schedule
);
2984 if (list_empty(&plug
->list
))
2987 list_splice_init(&plug
->list
, &list
);
2989 list_sort(NULL
, &list
, plug_rq_cmp
);
2995 * Save and disable interrupts here, to avoid doing it for every
2996 * queue lock we have to take.
2998 local_irq_save(flags
);
2999 while (!list_empty(&list
)) {
3000 rq
= list_entry_rq(list
.next
);
3001 list_del_init(&rq
->queuelist
);
3005 * This drops the queue lock
3008 queue_unplugged(q
, depth
, from_schedule
);
3011 spin_lock(q
->queue_lock
);
3015 * Short-circuit if @q is dead
3017 if (unlikely(blk_queue_dying(q
))) {
3018 __blk_end_request_all(rq
, -ENODEV
);
3023 * rq is already accounted, so use raw insert
3025 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3026 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3028 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3034 * This drops the queue lock
3037 queue_unplugged(q
, depth
, from_schedule
);
3039 local_irq_restore(flags
);
3042 void blk_finish_plug(struct blk_plug
*plug
)
3044 blk_flush_plug_list(plug
, false);
3046 if (plug
== current
->plug
)
3047 current
->plug
= NULL
;
3049 EXPORT_SYMBOL(blk_finish_plug
);
3051 #ifdef CONFIG_PM_RUNTIME
3053 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3054 * @q: the queue of the device
3055 * @dev: the device the queue belongs to
3058 * Initialize runtime-PM-related fields for @q and start auto suspend for
3059 * @dev. Drivers that want to take advantage of request-based runtime PM
3060 * should call this function after @dev has been initialized, and its
3061 * request queue @q has been allocated, and runtime PM for it can not happen
3062 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3063 * cases, driver should call this function before any I/O has taken place.
3065 * This function takes care of setting up using auto suspend for the device,
3066 * the autosuspend delay is set to -1 to make runtime suspend impossible
3067 * until an updated value is either set by user or by driver. Drivers do
3068 * not need to touch other autosuspend settings.
3070 * The block layer runtime PM is request based, so only works for drivers
3071 * that use request as their IO unit instead of those directly use bio's.
3073 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3076 q
->rpm_status
= RPM_ACTIVE
;
3077 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3078 pm_runtime_use_autosuspend(q
->dev
);
3080 EXPORT_SYMBOL(blk_pm_runtime_init
);
3083 * blk_pre_runtime_suspend - Pre runtime suspend check
3084 * @q: the queue of the device
3087 * This function will check if runtime suspend is allowed for the device
3088 * by examining if there are any requests pending in the queue. If there
3089 * are requests pending, the device can not be runtime suspended; otherwise,
3090 * the queue's status will be updated to SUSPENDING and the driver can
3091 * proceed to suspend the device.
3093 * For the not allowed case, we mark last busy for the device so that
3094 * runtime PM core will try to autosuspend it some time later.
3096 * This function should be called near the start of the device's
3097 * runtime_suspend callback.
3100 * 0 - OK to runtime suspend the device
3101 * -EBUSY - Device should not be runtime suspended
3103 int blk_pre_runtime_suspend(struct request_queue
*q
)
3107 spin_lock_irq(q
->queue_lock
);
3108 if (q
->nr_pending
) {
3110 pm_runtime_mark_last_busy(q
->dev
);
3112 q
->rpm_status
= RPM_SUSPENDING
;
3114 spin_unlock_irq(q
->queue_lock
);
3117 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3120 * blk_post_runtime_suspend - Post runtime suspend processing
3121 * @q: the queue of the device
3122 * @err: return value of the device's runtime_suspend function
3125 * Update the queue's runtime status according to the return value of the
3126 * device's runtime suspend function and mark last busy for the device so
3127 * that PM core will try to auto suspend the device at a later time.
3129 * This function should be called near the end of the device's
3130 * runtime_suspend callback.
3132 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3134 spin_lock_irq(q
->queue_lock
);
3136 q
->rpm_status
= RPM_SUSPENDED
;
3138 q
->rpm_status
= RPM_ACTIVE
;
3139 pm_runtime_mark_last_busy(q
->dev
);
3141 spin_unlock_irq(q
->queue_lock
);
3143 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3146 * blk_pre_runtime_resume - Pre runtime resume processing
3147 * @q: the queue of the device
3150 * Update the queue's runtime status to RESUMING in preparation for the
3151 * runtime resume of the device.
3153 * This function should be called near the start of the device's
3154 * runtime_resume callback.
3156 void blk_pre_runtime_resume(struct request_queue
*q
)
3158 spin_lock_irq(q
->queue_lock
);
3159 q
->rpm_status
= RPM_RESUMING
;
3160 spin_unlock_irq(q
->queue_lock
);
3162 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3165 * blk_post_runtime_resume - Post runtime resume processing
3166 * @q: the queue of the device
3167 * @err: return value of the device's runtime_resume function
3170 * Update the queue's runtime status according to the return value of the
3171 * device's runtime_resume function. If it is successfully resumed, process
3172 * the requests that are queued into the device's queue when it is resuming
3173 * and then mark last busy and initiate autosuspend for it.
3175 * This function should be called near the end of the device's
3176 * runtime_resume callback.
3178 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3180 spin_lock_irq(q
->queue_lock
);
3182 q
->rpm_status
= RPM_ACTIVE
;
3184 pm_runtime_mark_last_busy(q
->dev
);
3185 pm_request_autosuspend(q
->dev
);
3187 q
->rpm_status
= RPM_SUSPENDED
;
3189 spin_unlock_irq(q
->queue_lock
);
3191 EXPORT_SYMBOL(blk_post_runtime_resume
);
3194 int __init
blk_dev_init(void)
3196 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3197 sizeof(((struct request
*)0)->cmd_flags
));
3199 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3200 kblockd_workqueue
= alloc_workqueue("kblockd",
3201 WQ_MEM_RECLAIM
| WQ_HIGHPRI
|
3202 WQ_POWER_EFFICIENT
, 0);
3203 if (!kblockd_workqueue
)
3204 panic("Failed to create kblockd\n");
3206 request_cachep
= kmem_cache_create("blkdev_requests",
3207 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3209 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3210 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);