hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / drivers / mmc / core / core.c
blobbf18b6bfce487b2dd6a77917344c1514dc1aa7a8
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 #include <linux/of.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
37 #include "core.h"
38 #include "bus.h"
39 #include "host.h"
40 #include "sdio_bus.h"
42 #include "mmc_ops.h"
43 #include "sd_ops.h"
44 #include "sdio_ops.h"
46 /* If the device is not responding */
47 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
50 * Background operations can take a long time, depending on the housekeeping
51 * operations the card has to perform.
53 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
55 static struct workqueue_struct *workqueue;
56 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59 * Enabling software CRCs on the data blocks can be a significant (30%)
60 * performance cost, and for other reasons may not always be desired.
61 * So we allow it it to be disabled.
63 bool use_spi_crc = 1;
64 module_param(use_spi_crc, bool, 0);
67 * We normally treat cards as removed during suspend if they are not
68 * known to be on a non-removable bus, to avoid the risk of writing
69 * back data to a different card after resume. Allow this to be
70 * overridden if necessary.
72 #ifdef CONFIG_MMC_UNSAFE_RESUME
73 bool mmc_assume_removable;
74 #else
75 bool mmc_assume_removable = 1;
76 #endif
77 EXPORT_SYMBOL(mmc_assume_removable);
78 module_param_named(removable, mmc_assume_removable, bool, 0644);
79 MODULE_PARM_DESC(
80 removable,
81 "MMC/SD cards are removable and may be removed during suspend");
84 * Internal function. Schedule delayed work in the MMC work queue.
86 static int mmc_schedule_delayed_work(struct delayed_work *work,
87 unsigned long delay)
89 return queue_delayed_work(workqueue, work, delay);
93 * Internal function. Flush all scheduled work from the MMC work queue.
95 static void mmc_flush_scheduled_work(void)
97 flush_workqueue(workqueue);
100 #ifdef CONFIG_FAIL_MMC_REQUEST
103 * Internal function. Inject random data errors.
104 * If mmc_data is NULL no errors are injected.
106 static void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
109 struct mmc_command *cmd = mrq->cmd;
110 struct mmc_data *data = mrq->data;
111 static const int data_errors[] = {
112 -ETIMEDOUT,
113 -EILSEQ,
114 -EIO,
117 if (!data)
118 return;
120 if (cmd->error || data->error ||
121 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
122 return;
124 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
125 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
128 #else /* CONFIG_FAIL_MMC_REQUEST */
130 static inline void mmc_should_fail_request(struct mmc_host *host,
131 struct mmc_request *mrq)
135 #endif /* CONFIG_FAIL_MMC_REQUEST */
138 * mmc_request_done - finish processing an MMC request
139 * @host: MMC host which completed request
140 * @mrq: MMC request which request
142 * MMC drivers should call this function when they have completed
143 * their processing of a request.
145 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
147 struct mmc_command *cmd = mrq->cmd;
148 int err = cmd->error;
150 if (err && cmd->retries && mmc_host_is_spi(host)) {
151 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
152 cmd->retries = 0;
155 if (err && cmd->retries && !mmc_card_removed(host->card)) {
157 * Request starter must handle retries - see
158 * mmc_wait_for_req_done().
160 if (mrq->done)
161 mrq->done(mrq);
162 } else {
163 mmc_should_fail_request(host, mrq);
165 led_trigger_event(host->led, LED_OFF);
167 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), cmd->opcode, err,
169 cmd->resp[0], cmd->resp[1],
170 cmd->resp[2], cmd->resp[3]);
172 if (mrq->data) {
173 pr_debug("%s: %d bytes transferred: %d\n",
174 mmc_hostname(host),
175 mrq->data->bytes_xfered, mrq->data->error);
178 if (mrq->stop) {
179 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->stop->opcode,
181 mrq->stop->error,
182 mrq->stop->resp[0], mrq->stop->resp[1],
183 mrq->stop->resp[2], mrq->stop->resp[3]);
186 if (mrq->done)
187 mrq->done(mrq);
189 mmc_host_clk_release(host);
193 EXPORT_SYMBOL(mmc_request_done);
195 static void
196 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
198 #ifdef CONFIG_MMC_DEBUG
199 unsigned int i, sz;
200 struct scatterlist *sg;
201 #endif
203 if (mrq->sbc) {
204 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
205 mmc_hostname(host), mrq->sbc->opcode,
206 mrq->sbc->arg, mrq->sbc->flags);
209 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
210 mmc_hostname(host), mrq->cmd->opcode,
211 mrq->cmd->arg, mrq->cmd->flags);
213 if (mrq->data) {
214 pr_debug("%s: blksz %d blocks %d flags %08x "
215 "tsac %d ms nsac %d\n",
216 mmc_hostname(host), mrq->data->blksz,
217 mrq->data->blocks, mrq->data->flags,
218 mrq->data->timeout_ns / 1000000,
219 mrq->data->timeout_clks);
222 if (mrq->stop) {
223 pr_debug("%s: CMD%u arg %08x flags %08x\n",
224 mmc_hostname(host), mrq->stop->opcode,
225 mrq->stop->arg, mrq->stop->flags);
228 WARN_ON(!host->claimed);
230 mrq->cmd->error = 0;
231 mrq->cmd->mrq = mrq;
232 if (mrq->data) {
233 BUG_ON(mrq->data->blksz > host->max_blk_size);
234 BUG_ON(mrq->data->blocks > host->max_blk_count);
235 BUG_ON(mrq->data->blocks * mrq->data->blksz >
236 host->max_req_size);
238 #ifdef CONFIG_MMC_DEBUG
239 sz = 0;
240 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
241 sz += sg->length;
242 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
243 #endif
245 mrq->cmd->data = mrq->data;
246 mrq->data->error = 0;
247 mrq->data->mrq = mrq;
248 if (mrq->stop) {
249 mrq->data->stop = mrq->stop;
250 mrq->stop->error = 0;
251 mrq->stop->mrq = mrq;
254 mmc_host_clk_hold(host);
255 led_trigger_event(host->led, LED_FULL);
256 host->ops->request(host, mrq);
260 * mmc_start_bkops - start BKOPS for supported cards
261 * @card: MMC card to start BKOPS
262 * @form_exception: A flag to indicate if this function was
263 * called due to an exception raised by the card
265 * Start background operations whenever requested.
266 * When the urgent BKOPS bit is set in a R1 command response
267 * then background operations should be started immediately.
269 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
271 int err;
272 int timeout;
273 bool use_busy_signal;
275 BUG_ON(!card);
277 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
278 return;
280 err = mmc_read_bkops_status(card);
281 if (err) {
282 pr_err("%s: Failed to read bkops status: %d\n",
283 mmc_hostname(card->host), err);
284 return;
287 if (!card->ext_csd.raw_bkops_status)
288 return;
290 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
291 from_exception)
292 return;
294 mmc_claim_host(card->host);
295 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
296 timeout = MMC_BKOPS_MAX_TIMEOUT;
297 use_busy_signal = true;
298 } else {
299 timeout = 0;
300 use_busy_signal = false;
303 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
304 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
305 if (err) {
306 pr_warn("%s: Error %d starting bkops\n",
307 mmc_hostname(card->host), err);
308 goto out;
312 * For urgent bkops status (LEVEL_2 and more)
313 * bkops executed synchronously, otherwise
314 * the operation is in progress
316 if (!use_busy_signal)
317 mmc_card_set_doing_bkops(card);
318 out:
319 mmc_release_host(card->host);
321 EXPORT_SYMBOL(mmc_start_bkops);
324 * mmc_wait_data_done() - done callback for data request
325 * @mrq: done data request
327 * Wakes up mmc context, passed as a callback to host controller driver
329 static void mmc_wait_data_done(struct mmc_request *mrq)
331 mrq->host->context_info.is_done_rcv = true;
332 wake_up_interruptible(&mrq->host->context_info.wait);
335 static void mmc_wait_done(struct mmc_request *mrq)
337 complete(&mrq->completion);
341 *__mmc_start_data_req() - starts data request
342 * @host: MMC host to start the request
343 * @mrq: data request to start
345 * Sets the done callback to be called when request is completed by the card.
346 * Starts data mmc request execution
348 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
350 mrq->done = mmc_wait_data_done;
351 mrq->host = host;
352 if (mmc_card_removed(host->card)) {
353 mrq->cmd->error = -ENOMEDIUM;
354 mmc_wait_data_done(mrq);
355 return -ENOMEDIUM;
357 mmc_start_request(host, mrq);
359 return 0;
362 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
364 init_completion(&mrq->completion);
365 mrq->done = mmc_wait_done;
366 if (mmc_card_removed(host->card)) {
367 mrq->cmd->error = -ENOMEDIUM;
368 complete(&mrq->completion);
369 return -ENOMEDIUM;
371 mmc_start_request(host, mrq);
372 return 0;
376 * mmc_wait_for_data_req_done() - wait for request completed
377 * @host: MMC host to prepare the command.
378 * @mrq: MMC request to wait for
380 * Blocks MMC context till host controller will ack end of data request
381 * execution or new request notification arrives from the block layer.
382 * Handles command retries.
384 * Returns enum mmc_blk_status after checking errors.
386 static int mmc_wait_for_data_req_done(struct mmc_host *host,
387 struct mmc_request *mrq,
388 struct mmc_async_req *next_req)
390 struct mmc_command *cmd;
391 struct mmc_context_info *context_info = &host->context_info;
392 int err;
393 unsigned long flags;
395 while (1) {
396 wait_event_interruptible(context_info->wait,
397 (context_info->is_done_rcv ||
398 context_info->is_new_req));
399 spin_lock_irqsave(&context_info->lock, flags);
400 context_info->is_waiting_last_req = false;
401 spin_unlock_irqrestore(&context_info->lock, flags);
402 if (context_info->is_done_rcv) {
403 context_info->is_done_rcv = false;
404 context_info->is_new_req = false;
405 cmd = mrq->cmd;
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card)) {
409 err = host->areq->err_check(host->card,
410 host->areq);
411 break; /* return err */
412 } else {
413 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host),
415 cmd->opcode, cmd->error);
416 cmd->retries--;
417 cmd->error = 0;
418 host->ops->request(host, mrq);
419 continue; /* wait for done/new event again */
421 } else if (context_info->is_new_req) {
422 context_info->is_new_req = false;
423 if (!next_req) {
424 err = MMC_BLK_NEW_REQUEST;
425 break; /* return err */
429 return err;
432 static void mmc_wait_for_req_done(struct mmc_host *host,
433 struct mmc_request *mrq)
435 struct mmc_command *cmd;
437 while (1) {
438 wait_for_completion(&mrq->completion);
440 cmd = mrq->cmd;
443 * If host has timed out waiting for the sanitize
444 * to complete, card might be still in programming state
445 * so let's try to bring the card out of programming
446 * state.
448 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
449 if (!mmc_interrupt_hpi(host->card)) {
450 pr_warning("%s: %s: Interrupted sanitize\n",
451 mmc_hostname(host), __func__);
452 cmd->error = 0;
453 break;
454 } else {
455 pr_err("%s: %s: Failed to interrupt sanitize\n",
456 mmc_hostname(host), __func__);
459 if (!cmd->error || !cmd->retries ||
460 mmc_card_removed(host->card))
461 break;
463 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
464 mmc_hostname(host), cmd->opcode, cmd->error);
465 cmd->retries--;
466 cmd->error = 0;
467 host->ops->request(host, mrq);
472 * mmc_pre_req - Prepare for a new request
473 * @host: MMC host to prepare command
474 * @mrq: MMC request to prepare for
475 * @is_first_req: true if there is no previous started request
476 * that may run in parellel to this call, otherwise false
478 * mmc_pre_req() is called in prior to mmc_start_req() to let
479 * host prepare for the new request. Preparation of a request may be
480 * performed while another request is running on the host.
482 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
483 bool is_first_req)
485 if (host->ops->pre_req) {
486 mmc_host_clk_hold(host);
487 host->ops->pre_req(host, mrq, is_first_req);
488 mmc_host_clk_release(host);
493 * mmc_post_req - Post process a completed request
494 * @host: MMC host to post process command
495 * @mrq: MMC request to post process for
496 * @err: Error, if non zero, clean up any resources made in pre_req
498 * Let the host post process a completed request. Post processing of
499 * a request may be performed while another reuqest is running.
501 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
502 int err)
504 if (host->ops->post_req) {
505 mmc_host_clk_hold(host);
506 host->ops->post_req(host, mrq, err);
507 mmc_host_clk_release(host);
512 * mmc_start_req - start a non-blocking request
513 * @host: MMC host to start command
514 * @areq: async request to start
515 * @error: out parameter returns 0 for success, otherwise non zero
517 * Start a new MMC custom command request for a host.
518 * If there is on ongoing async request wait for completion
519 * of that request and start the new one and return.
520 * Does not wait for the new request to complete.
522 * Returns the completed request, NULL in case of none completed.
523 * Wait for the an ongoing request (previoulsy started) to complete and
524 * return the completed request. If there is no ongoing request, NULL
525 * is returned without waiting. NULL is not an error condition.
527 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
528 struct mmc_async_req *areq, int *error)
530 int err = 0;
531 int start_err = 0;
532 struct mmc_async_req *data = host->areq;
534 /* Prepare a new request */
535 if (areq)
536 mmc_pre_req(host, areq->mrq, !host->areq);
538 if (host->areq) {
539 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
540 if (err == MMC_BLK_NEW_REQUEST) {
541 if (error)
542 *error = err;
544 * The previous request was not completed,
545 * nothing to return
547 return NULL;
550 * Check BKOPS urgency for each R1 response
552 if (host->card && mmc_card_mmc(host->card) &&
553 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
554 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
555 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
556 mmc_start_bkops(host->card, true);
559 if (!err && areq)
560 start_err = __mmc_start_data_req(host, areq->mrq);
562 if (host->areq)
563 mmc_post_req(host, host->areq->mrq, 0);
565 /* Cancel a prepared request if it was not started. */
566 if ((err || start_err) && areq)
567 mmc_post_req(host, areq->mrq, -EINVAL);
569 if (err)
570 host->areq = NULL;
571 else
572 host->areq = areq;
574 if (error)
575 *error = err;
576 return data;
578 EXPORT_SYMBOL(mmc_start_req);
581 * mmc_wait_for_req - start a request and wait for completion
582 * @host: MMC host to start command
583 * @mrq: MMC request to start
585 * Start a new MMC custom command request for a host, and wait
586 * for the command to complete. Does not attempt to parse the
587 * response.
589 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
591 __mmc_start_req(host, mrq);
592 mmc_wait_for_req_done(host, mrq);
594 EXPORT_SYMBOL(mmc_wait_for_req);
597 * mmc_interrupt_hpi - Issue for High priority Interrupt
598 * @card: the MMC card associated with the HPI transfer
600 * Issued High Priority Interrupt, and check for card status
601 * until out-of prg-state.
603 int mmc_interrupt_hpi(struct mmc_card *card)
605 int err;
606 u32 status;
607 unsigned long prg_wait;
609 BUG_ON(!card);
611 if (!card->ext_csd.hpi_en) {
612 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
613 return 1;
616 mmc_claim_host(card->host);
617 err = mmc_send_status(card, &status);
618 if (err) {
619 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
620 goto out;
623 switch (R1_CURRENT_STATE(status)) {
624 case R1_STATE_IDLE:
625 case R1_STATE_READY:
626 case R1_STATE_STBY:
627 case R1_STATE_TRAN:
629 * In idle and transfer states, HPI is not needed and the caller
630 * can issue the next intended command immediately
632 goto out;
633 case R1_STATE_PRG:
634 break;
635 default:
636 /* In all other states, it's illegal to issue HPI */
637 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
638 mmc_hostname(card->host), R1_CURRENT_STATE(status));
639 err = -EINVAL;
640 goto out;
643 err = mmc_send_hpi_cmd(card, &status);
644 if (err)
645 goto out;
647 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
648 do {
649 err = mmc_send_status(card, &status);
651 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
652 break;
653 if (time_after(jiffies, prg_wait))
654 err = -ETIMEDOUT;
655 } while (!err);
657 out:
658 mmc_release_host(card->host);
659 return err;
661 EXPORT_SYMBOL(mmc_interrupt_hpi);
664 * mmc_wait_for_cmd - start a command and wait for completion
665 * @host: MMC host to start command
666 * @cmd: MMC command to start
667 * @retries: maximum number of retries
669 * Start a new MMC command for a host, and wait for the command
670 * to complete. Return any error that occurred while the command
671 * was executing. Do not attempt to parse the response.
673 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
675 struct mmc_request mrq = {NULL};
677 WARN_ON(!host->claimed);
679 memset(cmd->resp, 0, sizeof(cmd->resp));
680 cmd->retries = retries;
682 mrq.cmd = cmd;
683 cmd->data = NULL;
685 mmc_wait_for_req(host, &mrq);
687 return cmd->error;
690 EXPORT_SYMBOL(mmc_wait_for_cmd);
693 * mmc_stop_bkops - stop ongoing BKOPS
694 * @card: MMC card to check BKOPS
696 * Send HPI command to stop ongoing background operations to
697 * allow rapid servicing of foreground operations, e.g. read/
698 * writes. Wait until the card comes out of the programming state
699 * to avoid errors in servicing read/write requests.
701 int mmc_stop_bkops(struct mmc_card *card)
703 int err = 0;
705 BUG_ON(!card);
706 err = mmc_interrupt_hpi(card);
709 * If err is EINVAL, we can't issue an HPI.
710 * It should complete the BKOPS.
712 if (!err || (err == -EINVAL)) {
713 mmc_card_clr_doing_bkops(card);
714 err = 0;
717 return err;
719 EXPORT_SYMBOL(mmc_stop_bkops);
721 int mmc_read_bkops_status(struct mmc_card *card)
723 int err;
724 u8 *ext_csd;
727 * In future work, we should consider storing the entire ext_csd.
729 ext_csd = kmalloc(512, GFP_KERNEL);
730 if (!ext_csd) {
731 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
732 mmc_hostname(card->host));
733 return -ENOMEM;
736 mmc_claim_host(card->host);
737 err = mmc_send_ext_csd(card, ext_csd);
738 mmc_release_host(card->host);
739 if (err)
740 goto out;
742 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
743 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
744 out:
745 kfree(ext_csd);
746 return err;
748 EXPORT_SYMBOL(mmc_read_bkops_status);
751 * mmc_set_data_timeout - set the timeout for a data command
752 * @data: data phase for command
753 * @card: the MMC card associated with the data transfer
755 * Computes the data timeout parameters according to the
756 * correct algorithm given the card type.
758 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
760 unsigned int mult;
763 * SDIO cards only define an upper 1 s limit on access.
765 if (mmc_card_sdio(card)) {
766 data->timeout_ns = 1000000000;
767 data->timeout_clks = 0;
768 return;
772 * SD cards use a 100 multiplier rather than 10
774 mult = mmc_card_sd(card) ? 100 : 10;
777 * Scale up the multiplier (and therefore the timeout) by
778 * the r2w factor for writes.
780 if (data->flags & MMC_DATA_WRITE)
781 mult <<= card->csd.r2w_factor;
783 data->timeout_ns = card->csd.tacc_ns * mult;
784 data->timeout_clks = card->csd.tacc_clks * mult;
787 * SD cards also have an upper limit on the timeout.
789 if (mmc_card_sd(card)) {
790 unsigned int timeout_us, limit_us;
792 timeout_us = data->timeout_ns / 1000;
793 if (mmc_host_clk_rate(card->host))
794 timeout_us += data->timeout_clks * 1000 /
795 (mmc_host_clk_rate(card->host) / 1000);
797 if (data->flags & MMC_DATA_WRITE)
799 * The MMC spec "It is strongly recommended
800 * for hosts to implement more than 500ms
801 * timeout value even if the card indicates
802 * the 250ms maximum busy length." Even the
803 * previous value of 300ms is known to be
804 * insufficient for some cards.
806 limit_us = 3000000;
807 else
808 limit_us = 100000;
811 * SDHC cards always use these fixed values.
813 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
814 data->timeout_ns = limit_us * 1000;
815 data->timeout_clks = 0;
820 * Some cards require longer data read timeout than indicated in CSD.
821 * Address this by setting the read timeout to a "reasonably high"
822 * value. For the cards tested, 300ms has proven enough. If necessary,
823 * this value can be increased if other problematic cards require this.
825 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
826 data->timeout_ns = 300000000;
827 data->timeout_clks = 0;
831 * Some cards need very high timeouts if driven in SPI mode.
832 * The worst observed timeout was 900ms after writing a
833 * continuous stream of data until the internal logic
834 * overflowed.
836 if (mmc_host_is_spi(card->host)) {
837 if (data->flags & MMC_DATA_WRITE) {
838 if (data->timeout_ns < 1000000000)
839 data->timeout_ns = 1000000000; /* 1s */
840 } else {
841 if (data->timeout_ns < 100000000)
842 data->timeout_ns = 100000000; /* 100ms */
846 EXPORT_SYMBOL(mmc_set_data_timeout);
849 * mmc_align_data_size - pads a transfer size to a more optimal value
850 * @card: the MMC card associated with the data transfer
851 * @sz: original transfer size
853 * Pads the original data size with a number of extra bytes in
854 * order to avoid controller bugs and/or performance hits
855 * (e.g. some controllers revert to PIO for certain sizes).
857 * Returns the improved size, which might be unmodified.
859 * Note that this function is only relevant when issuing a
860 * single scatter gather entry.
862 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
865 * FIXME: We don't have a system for the controller to tell
866 * the core about its problems yet, so for now we just 32-bit
867 * align the size.
869 sz = ((sz + 3) / 4) * 4;
871 return sz;
873 EXPORT_SYMBOL(mmc_align_data_size);
876 * __mmc_claim_host - exclusively claim a host
877 * @host: mmc host to claim
878 * @abort: whether or not the operation should be aborted
880 * Claim a host for a set of operations. If @abort is non null and
881 * dereference a non-zero value then this will return prematurely with
882 * that non-zero value without acquiring the lock. Returns zero
883 * with the lock held otherwise.
885 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
887 DECLARE_WAITQUEUE(wait, current);
888 unsigned long flags;
889 int stop;
891 might_sleep();
893 add_wait_queue(&host->wq, &wait);
894 spin_lock_irqsave(&host->lock, flags);
895 while (1) {
896 set_current_state(TASK_UNINTERRUPTIBLE);
897 stop = abort ? atomic_read(abort) : 0;
898 if (stop || !host->claimed || host->claimer == current)
899 break;
900 spin_unlock_irqrestore(&host->lock, flags);
901 schedule();
902 spin_lock_irqsave(&host->lock, flags);
904 set_current_state(TASK_RUNNING);
905 if (!stop) {
906 host->claimed = 1;
907 host->claimer = current;
908 host->claim_cnt += 1;
909 } else
910 wake_up(&host->wq);
911 spin_unlock_irqrestore(&host->lock, flags);
912 remove_wait_queue(&host->wq, &wait);
913 if (host->ops->enable && !stop && host->claim_cnt == 1)
914 host->ops->enable(host);
915 return stop;
918 EXPORT_SYMBOL(__mmc_claim_host);
921 * mmc_try_claim_host - try exclusively to claim a host
922 * @host: mmc host to claim
924 * Returns %1 if the host is claimed, %0 otherwise.
926 int mmc_try_claim_host(struct mmc_host *host)
928 int claimed_host = 0;
929 unsigned long flags;
931 spin_lock_irqsave(&host->lock, flags);
932 if (!host->claimed || host->claimer == current) {
933 host->claimed = 1;
934 host->claimer = current;
935 host->claim_cnt += 1;
936 claimed_host = 1;
938 spin_unlock_irqrestore(&host->lock, flags);
939 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
940 host->ops->enable(host);
941 return claimed_host;
943 EXPORT_SYMBOL(mmc_try_claim_host);
946 * mmc_release_host - release a host
947 * @host: mmc host to release
949 * Release a MMC host, allowing others to claim the host
950 * for their operations.
952 void mmc_release_host(struct mmc_host *host)
954 unsigned long flags;
956 WARN_ON(!host->claimed);
958 if (host->ops->disable && host->claim_cnt == 1)
959 host->ops->disable(host);
961 spin_lock_irqsave(&host->lock, flags);
962 if (--host->claim_cnt) {
963 /* Release for nested claim */
964 spin_unlock_irqrestore(&host->lock, flags);
965 } else {
966 host->claimed = 0;
967 host->claimer = NULL;
968 spin_unlock_irqrestore(&host->lock, flags);
969 wake_up(&host->wq);
972 EXPORT_SYMBOL(mmc_release_host);
975 * This is a helper function, which fetches a runtime pm reference for the
976 * card device and also claims the host.
978 void mmc_get_card(struct mmc_card *card)
980 pm_runtime_get_sync(&card->dev);
981 mmc_claim_host(card->host);
983 EXPORT_SYMBOL(mmc_get_card);
986 * This is a helper function, which releases the host and drops the runtime
987 * pm reference for the card device.
989 void mmc_put_card(struct mmc_card *card)
991 mmc_release_host(card->host);
992 pm_runtime_mark_last_busy(&card->dev);
993 pm_runtime_put_autosuspend(&card->dev);
995 EXPORT_SYMBOL(mmc_put_card);
998 * Internal function that does the actual ios call to the host driver,
999 * optionally printing some debug output.
1001 static inline void mmc_set_ios(struct mmc_host *host)
1003 struct mmc_ios *ios = &host->ios;
1005 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1006 "width %u timing %u\n",
1007 mmc_hostname(host), ios->clock, ios->bus_mode,
1008 ios->power_mode, ios->chip_select, ios->vdd,
1009 ios->bus_width, ios->timing);
1011 if (ios->clock > 0)
1012 mmc_set_ungated(host);
1013 host->ops->set_ios(host, ios);
1017 * Control chip select pin on a host.
1019 void mmc_set_chip_select(struct mmc_host *host, int mode)
1021 mmc_host_clk_hold(host);
1022 host->ios.chip_select = mode;
1023 mmc_set_ios(host);
1024 mmc_host_clk_release(host);
1028 * Sets the host clock to the highest possible frequency that
1029 * is below "hz".
1031 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1033 WARN_ON(hz < host->f_min);
1035 if (hz > host->f_max)
1036 hz = host->f_max;
1038 host->ios.clock = hz;
1039 mmc_set_ios(host);
1042 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1044 mmc_host_clk_hold(host);
1045 __mmc_set_clock(host, hz);
1046 mmc_host_clk_release(host);
1049 #ifdef CONFIG_MMC_CLKGATE
1051 * This gates the clock by setting it to 0 Hz.
1053 void mmc_gate_clock(struct mmc_host *host)
1055 unsigned long flags;
1057 spin_lock_irqsave(&host->clk_lock, flags);
1058 host->clk_old = host->ios.clock;
1059 host->ios.clock = 0;
1060 host->clk_gated = true;
1061 spin_unlock_irqrestore(&host->clk_lock, flags);
1062 mmc_set_ios(host);
1066 * This restores the clock from gating by using the cached
1067 * clock value.
1069 void mmc_ungate_clock(struct mmc_host *host)
1072 * We should previously have gated the clock, so the clock shall
1073 * be 0 here! The clock may however be 0 during initialization,
1074 * when some request operations are performed before setting
1075 * the frequency. When ungate is requested in that situation
1076 * we just ignore the call.
1078 if (host->clk_old) {
1079 BUG_ON(host->ios.clock);
1080 /* This call will also set host->clk_gated to false */
1081 __mmc_set_clock(host, host->clk_old);
1085 void mmc_set_ungated(struct mmc_host *host)
1087 unsigned long flags;
1090 * We've been given a new frequency while the clock is gated,
1091 * so make sure we regard this as ungating it.
1093 spin_lock_irqsave(&host->clk_lock, flags);
1094 host->clk_gated = false;
1095 spin_unlock_irqrestore(&host->clk_lock, flags);
1098 #else
1099 void mmc_set_ungated(struct mmc_host *host)
1102 #endif
1105 * Change the bus mode (open drain/push-pull) of a host.
1107 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1109 mmc_host_clk_hold(host);
1110 host->ios.bus_mode = mode;
1111 mmc_set_ios(host);
1112 mmc_host_clk_release(host);
1116 * Change data bus width of a host.
1118 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1120 mmc_host_clk_hold(host);
1121 host->ios.bus_width = width;
1122 mmc_set_ios(host);
1123 mmc_host_clk_release(host);
1127 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1128 * @vdd: voltage (mV)
1129 * @low_bits: prefer low bits in boundary cases
1131 * This function returns the OCR bit number according to the provided @vdd
1132 * value. If conversion is not possible a negative errno value returned.
1134 * Depending on the @low_bits flag the function prefers low or high OCR bits
1135 * on boundary voltages. For example,
1136 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1137 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1139 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1141 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1143 const int max_bit = ilog2(MMC_VDD_35_36);
1144 int bit;
1146 if (vdd < 1650 || vdd > 3600)
1147 return -EINVAL;
1149 if (vdd >= 1650 && vdd <= 1950)
1150 return ilog2(MMC_VDD_165_195);
1152 if (low_bits)
1153 vdd -= 1;
1155 /* Base 2000 mV, step 100 mV, bit's base 8. */
1156 bit = (vdd - 2000) / 100 + 8;
1157 if (bit > max_bit)
1158 return max_bit;
1159 return bit;
1163 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1164 * @vdd_min: minimum voltage value (mV)
1165 * @vdd_max: maximum voltage value (mV)
1167 * This function returns the OCR mask bits according to the provided @vdd_min
1168 * and @vdd_max values. If conversion is not possible the function returns 0.
1170 * Notes wrt boundary cases:
1171 * This function sets the OCR bits for all boundary voltages, for example
1172 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1173 * MMC_VDD_34_35 mask.
1175 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1177 u32 mask = 0;
1179 if (vdd_max < vdd_min)
1180 return 0;
1182 /* Prefer high bits for the boundary vdd_max values. */
1183 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1184 if (vdd_max < 0)
1185 return 0;
1187 /* Prefer low bits for the boundary vdd_min values. */
1188 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1189 if (vdd_min < 0)
1190 return 0;
1192 /* Fill the mask, from max bit to min bit. */
1193 while (vdd_max >= vdd_min)
1194 mask |= 1 << vdd_max--;
1196 return mask;
1198 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1200 #ifdef CONFIG_OF
1203 * mmc_of_parse_voltage - return mask of supported voltages
1204 * @np: The device node need to be parsed.
1205 * @mask: mask of voltages available for MMC/SD/SDIO
1207 * 1. Return zero on success.
1208 * 2. Return negative errno: voltage-range is invalid.
1210 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1212 const u32 *voltage_ranges;
1213 int num_ranges, i;
1215 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1216 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1217 if (!voltage_ranges || !num_ranges) {
1218 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1219 return -EINVAL;
1222 for (i = 0; i < num_ranges; i++) {
1223 const int j = i * 2;
1224 u32 ocr_mask;
1226 ocr_mask = mmc_vddrange_to_ocrmask(
1227 be32_to_cpu(voltage_ranges[j]),
1228 be32_to_cpu(voltage_ranges[j + 1]));
1229 if (!ocr_mask) {
1230 pr_err("%s: voltage-range #%d is invalid\n",
1231 np->full_name, i);
1232 return -EINVAL;
1234 *mask |= ocr_mask;
1237 return 0;
1239 EXPORT_SYMBOL(mmc_of_parse_voltage);
1241 #endif /* CONFIG_OF */
1243 #ifdef CONFIG_REGULATOR
1246 * mmc_regulator_get_ocrmask - return mask of supported voltages
1247 * @supply: regulator to use
1249 * This returns either a negative errno, or a mask of voltages that
1250 * can be provided to MMC/SD/SDIO devices using the specified voltage
1251 * regulator. This would normally be called before registering the
1252 * MMC host adapter.
1254 int mmc_regulator_get_ocrmask(struct regulator *supply)
1256 int result = 0;
1257 int count;
1258 int i;
1260 count = regulator_count_voltages(supply);
1261 if (count < 0)
1262 return count;
1264 for (i = 0; i < count; i++) {
1265 int vdd_uV;
1266 int vdd_mV;
1268 vdd_uV = regulator_list_voltage(supply, i);
1269 if (vdd_uV <= 0)
1270 continue;
1272 vdd_mV = vdd_uV / 1000;
1273 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1276 return result;
1278 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1281 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1282 * @mmc: the host to regulate
1283 * @supply: regulator to use
1284 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1286 * Returns zero on success, else negative errno.
1288 * MMC host drivers may use this to enable or disable a regulator using
1289 * a particular supply voltage. This would normally be called from the
1290 * set_ios() method.
1292 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1293 struct regulator *supply,
1294 unsigned short vdd_bit)
1296 int result = 0;
1297 int min_uV, max_uV;
1299 if (vdd_bit) {
1300 int tmp;
1301 int voltage;
1304 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1305 * bits this regulator doesn't quite support ... don't
1306 * be too picky, most cards and regulators are OK with
1307 * a 0.1V range goof (it's a small error percentage).
1309 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1310 if (tmp == 0) {
1311 min_uV = 1650 * 1000;
1312 max_uV = 1950 * 1000;
1313 } else {
1314 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1315 max_uV = min_uV + 100 * 1000;
1319 * If we're using a fixed/static regulator, don't call
1320 * regulator_set_voltage; it would fail.
1322 voltage = regulator_get_voltage(supply);
1324 if (!regulator_can_change_voltage(supply))
1325 min_uV = max_uV = voltage;
1327 if (voltage < 0)
1328 result = voltage;
1329 else if (voltage < min_uV || voltage > max_uV)
1330 result = regulator_set_voltage(supply, min_uV, max_uV);
1331 else
1332 result = 0;
1334 if (result == 0 && !mmc->regulator_enabled) {
1335 result = regulator_enable(supply);
1336 if (!result)
1337 mmc->regulator_enabled = true;
1339 } else if (mmc->regulator_enabled) {
1340 result = regulator_disable(supply);
1341 if (result == 0)
1342 mmc->regulator_enabled = false;
1345 if (result)
1346 dev_err(mmc_dev(mmc),
1347 "could not set regulator OCR (%d)\n", result);
1348 return result;
1350 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1352 int mmc_regulator_get_supply(struct mmc_host *mmc)
1354 struct device *dev = mmc_dev(mmc);
1355 struct regulator *supply;
1356 int ret;
1358 supply = devm_regulator_get(dev, "vmmc");
1359 mmc->supply.vmmc = supply;
1360 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1362 if (IS_ERR(supply))
1363 return PTR_ERR(supply);
1365 ret = mmc_regulator_get_ocrmask(supply);
1366 if (ret > 0)
1367 mmc->ocr_avail = ret;
1368 else
1369 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1371 return 0;
1373 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1375 #endif /* CONFIG_REGULATOR */
1378 * Mask off any voltages we don't support and select
1379 * the lowest voltage
1381 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1383 int bit;
1385 ocr &= host->ocr_avail;
1387 bit = ffs(ocr);
1388 if (bit) {
1389 bit -= 1;
1391 ocr &= 3 << bit;
1393 mmc_host_clk_hold(host);
1394 host->ios.vdd = bit;
1395 mmc_set_ios(host);
1396 mmc_host_clk_release(host);
1397 } else {
1398 pr_warning("%s: host doesn't support card's voltages\n",
1399 mmc_hostname(host));
1400 ocr = 0;
1403 return ocr;
1406 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1408 int err = 0;
1409 int old_signal_voltage = host->ios.signal_voltage;
1411 host->ios.signal_voltage = signal_voltage;
1412 if (host->ops->start_signal_voltage_switch) {
1413 mmc_host_clk_hold(host);
1414 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1415 mmc_host_clk_release(host);
1418 if (err)
1419 host->ios.signal_voltage = old_signal_voltage;
1421 return err;
1425 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1427 struct mmc_command cmd = {0};
1428 int err = 0;
1429 u32 clock;
1431 BUG_ON(!host);
1434 * Send CMD11 only if the request is to switch the card to
1435 * 1.8V signalling.
1437 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1438 return __mmc_set_signal_voltage(host, signal_voltage);
1441 * If we cannot switch voltages, return failure so the caller
1442 * can continue without UHS mode
1444 if (!host->ops->start_signal_voltage_switch)
1445 return -EPERM;
1446 if (!host->ops->card_busy)
1447 pr_warning("%s: cannot verify signal voltage switch\n",
1448 mmc_hostname(host));
1450 cmd.opcode = SD_SWITCH_VOLTAGE;
1451 cmd.arg = 0;
1452 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1454 err = mmc_wait_for_cmd(host, &cmd, 0);
1455 if (err)
1456 return err;
1458 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1459 return -EIO;
1461 mmc_host_clk_hold(host);
1463 * The card should drive cmd and dat[0:3] low immediately
1464 * after the response of cmd11, but wait 1 ms to be sure
1466 mmc_delay(1);
1467 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1468 err = -EAGAIN;
1469 goto power_cycle;
1472 * During a signal voltage level switch, the clock must be gated
1473 * for 5 ms according to the SD spec
1475 clock = host->ios.clock;
1476 host->ios.clock = 0;
1477 mmc_set_ios(host);
1479 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1481 * Voltages may not have been switched, but we've already
1482 * sent CMD11, so a power cycle is required anyway
1484 err = -EAGAIN;
1485 goto power_cycle;
1488 /* Keep clock gated for at least 5 ms */
1489 mmc_delay(5);
1490 host->ios.clock = clock;
1491 mmc_set_ios(host);
1493 /* Wait for at least 1 ms according to spec */
1494 mmc_delay(1);
1497 * Failure to switch is indicated by the card holding
1498 * dat[0:3] low
1500 if (host->ops->card_busy && host->ops->card_busy(host))
1501 err = -EAGAIN;
1503 power_cycle:
1504 if (err) {
1505 pr_debug("%s: Signal voltage switch failed, "
1506 "power cycling card\n", mmc_hostname(host));
1507 mmc_power_cycle(host);
1510 mmc_host_clk_release(host);
1512 return err;
1516 * Select timing parameters for host.
1518 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1520 mmc_host_clk_hold(host);
1521 host->ios.timing = timing;
1522 mmc_set_ios(host);
1523 mmc_host_clk_release(host);
1527 * Select appropriate driver type for host.
1529 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1531 mmc_host_clk_hold(host);
1532 host->ios.drv_type = drv_type;
1533 mmc_set_ios(host);
1534 mmc_host_clk_release(host);
1538 * Apply power to the MMC stack. This is a two-stage process.
1539 * First, we enable power to the card without the clock running.
1540 * We then wait a bit for the power to stabilise. Finally,
1541 * enable the bus drivers and clock to the card.
1543 * We must _NOT_ enable the clock prior to power stablising.
1545 * If a host does all the power sequencing itself, ignore the
1546 * initial MMC_POWER_UP stage.
1548 void mmc_power_up(struct mmc_host *host)
1550 int bit;
1552 if (host->ios.power_mode == MMC_POWER_ON)
1553 return;
1555 mmc_host_clk_hold(host);
1557 /* If ocr is set, we use it */
1558 if (host->ocr)
1559 bit = ffs(host->ocr) - 1;
1560 else
1561 bit = fls(host->ocr_avail) - 1;
1563 host->ios.vdd = bit;
1564 if (mmc_host_is_spi(host))
1565 host->ios.chip_select = MMC_CS_HIGH;
1566 else
1567 host->ios.chip_select = MMC_CS_DONTCARE;
1568 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1569 host->ios.power_mode = MMC_POWER_UP;
1570 host->ios.bus_width = MMC_BUS_WIDTH_1;
1571 host->ios.timing = MMC_TIMING_LEGACY;
1572 mmc_set_ios(host);
1574 /* Set signal voltage to 3.3V */
1575 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1578 * This delay should be sufficient to allow the power supply
1579 * to reach the minimum voltage.
1581 mmc_delay(10);
1583 host->ios.clock = host->f_init;
1585 host->ios.power_mode = MMC_POWER_ON;
1586 mmc_set_ios(host);
1589 * This delay must be at least 74 clock sizes, or 1 ms, or the
1590 * time required to reach a stable voltage.
1592 mmc_delay(10);
1594 mmc_host_clk_release(host);
1597 void mmc_power_off(struct mmc_host *host)
1599 if (host->ios.power_mode == MMC_POWER_OFF)
1600 return;
1602 mmc_host_clk_hold(host);
1604 host->ios.clock = 0;
1605 host->ios.vdd = 0;
1609 * Reset ocr mask to be the highest possible voltage supported for
1610 * this mmc host. This value will be used at next power up.
1612 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1614 if (!mmc_host_is_spi(host)) {
1615 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1616 host->ios.chip_select = MMC_CS_DONTCARE;
1618 host->ios.power_mode = MMC_POWER_OFF;
1619 host->ios.bus_width = MMC_BUS_WIDTH_1;
1620 host->ios.timing = MMC_TIMING_LEGACY;
1621 mmc_set_ios(host);
1624 * Some configurations, such as the 802.11 SDIO card in the OLPC
1625 * XO-1.5, require a short delay after poweroff before the card
1626 * can be successfully turned on again.
1628 mmc_delay(1);
1630 mmc_host_clk_release(host);
1633 void mmc_power_cycle(struct mmc_host *host)
1635 mmc_power_off(host);
1636 /* Wait at least 1 ms according to SD spec */
1637 mmc_delay(1);
1638 mmc_power_up(host);
1642 * Cleanup when the last reference to the bus operator is dropped.
1644 static void __mmc_release_bus(struct mmc_host *host)
1646 BUG_ON(!host);
1647 BUG_ON(host->bus_refs);
1648 BUG_ON(!host->bus_dead);
1650 host->bus_ops = NULL;
1654 * Increase reference count of bus operator
1656 static inline void mmc_bus_get(struct mmc_host *host)
1658 unsigned long flags;
1660 spin_lock_irqsave(&host->lock, flags);
1661 host->bus_refs++;
1662 spin_unlock_irqrestore(&host->lock, flags);
1666 * Decrease reference count of bus operator and free it if
1667 * it is the last reference.
1669 static inline void mmc_bus_put(struct mmc_host *host)
1671 unsigned long flags;
1673 spin_lock_irqsave(&host->lock, flags);
1674 host->bus_refs--;
1675 if ((host->bus_refs == 0) && host->bus_ops)
1676 __mmc_release_bus(host);
1677 spin_unlock_irqrestore(&host->lock, flags);
1681 * Assign a mmc bus handler to a host. Only one bus handler may control a
1682 * host at any given time.
1684 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1686 unsigned long flags;
1688 BUG_ON(!host);
1689 BUG_ON(!ops);
1691 WARN_ON(!host->claimed);
1693 spin_lock_irqsave(&host->lock, flags);
1695 BUG_ON(host->bus_ops);
1696 BUG_ON(host->bus_refs);
1698 host->bus_ops = ops;
1699 host->bus_refs = 1;
1700 host->bus_dead = 0;
1702 spin_unlock_irqrestore(&host->lock, flags);
1706 * Remove the current bus handler from a host.
1708 void mmc_detach_bus(struct mmc_host *host)
1710 unsigned long flags;
1712 BUG_ON(!host);
1714 WARN_ON(!host->claimed);
1715 WARN_ON(!host->bus_ops);
1717 spin_lock_irqsave(&host->lock, flags);
1719 host->bus_dead = 1;
1721 spin_unlock_irqrestore(&host->lock, flags);
1723 mmc_bus_put(host);
1727 * mmc_detect_change - process change of state on a MMC socket
1728 * @host: host which changed state.
1729 * @delay: optional delay to wait before detection (jiffies)
1731 * MMC drivers should call this when they detect a card has been
1732 * inserted or removed. The MMC layer will confirm that any
1733 * present card is still functional, and initialize any newly
1734 * inserted.
1736 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1738 #ifdef CONFIG_MMC_DEBUG
1739 unsigned long flags;
1740 spin_lock_irqsave(&host->lock, flags);
1741 WARN_ON(host->removed);
1742 spin_unlock_irqrestore(&host->lock, flags);
1743 #endif
1744 host->detect_change = 1;
1745 mmc_schedule_delayed_work(&host->detect, delay);
1748 EXPORT_SYMBOL(mmc_detect_change);
1750 void mmc_init_erase(struct mmc_card *card)
1752 unsigned int sz;
1754 if (is_power_of_2(card->erase_size))
1755 card->erase_shift = ffs(card->erase_size) - 1;
1756 else
1757 card->erase_shift = 0;
1760 * It is possible to erase an arbitrarily large area of an SD or MMC
1761 * card. That is not desirable because it can take a long time
1762 * (minutes) potentially delaying more important I/O, and also the
1763 * timeout calculations become increasingly hugely over-estimated.
1764 * Consequently, 'pref_erase' is defined as a guide to limit erases
1765 * to that size and alignment.
1767 * For SD cards that define Allocation Unit size, limit erases to one
1768 * Allocation Unit at a time. For MMC cards that define High Capacity
1769 * Erase Size, whether it is switched on or not, limit to that size.
1770 * Otherwise just have a stab at a good value. For modern cards it
1771 * will end up being 4MiB. Note that if the value is too small, it
1772 * can end up taking longer to erase.
1774 if (mmc_card_sd(card) && card->ssr.au) {
1775 card->pref_erase = card->ssr.au;
1776 card->erase_shift = ffs(card->ssr.au) - 1;
1777 } else if (card->ext_csd.hc_erase_size) {
1778 card->pref_erase = card->ext_csd.hc_erase_size;
1779 } else {
1780 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1781 if (sz < 128)
1782 card->pref_erase = 512 * 1024 / 512;
1783 else if (sz < 512)
1784 card->pref_erase = 1024 * 1024 / 512;
1785 else if (sz < 1024)
1786 card->pref_erase = 2 * 1024 * 1024 / 512;
1787 else
1788 card->pref_erase = 4 * 1024 * 1024 / 512;
1789 if (card->pref_erase < card->erase_size)
1790 card->pref_erase = card->erase_size;
1791 else {
1792 sz = card->pref_erase % card->erase_size;
1793 if (sz)
1794 card->pref_erase += card->erase_size - sz;
1799 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1800 unsigned int arg, unsigned int qty)
1802 unsigned int erase_timeout;
1804 if (arg == MMC_DISCARD_ARG ||
1805 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1806 erase_timeout = card->ext_csd.trim_timeout;
1807 } else if (card->ext_csd.erase_group_def & 1) {
1808 /* High Capacity Erase Group Size uses HC timeouts */
1809 if (arg == MMC_TRIM_ARG)
1810 erase_timeout = card->ext_csd.trim_timeout;
1811 else
1812 erase_timeout = card->ext_csd.hc_erase_timeout;
1813 } else {
1814 /* CSD Erase Group Size uses write timeout */
1815 unsigned int mult = (10 << card->csd.r2w_factor);
1816 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1817 unsigned int timeout_us;
1819 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1820 if (card->csd.tacc_ns < 1000000)
1821 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1822 else
1823 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1826 * ios.clock is only a target. The real clock rate might be
1827 * less but not that much less, so fudge it by multiplying by 2.
1829 timeout_clks <<= 1;
1830 timeout_us += (timeout_clks * 1000) /
1831 (mmc_host_clk_rate(card->host) / 1000);
1833 erase_timeout = timeout_us / 1000;
1836 * Theoretically, the calculation could underflow so round up
1837 * to 1ms in that case.
1839 if (!erase_timeout)
1840 erase_timeout = 1;
1843 /* Multiplier for secure operations */
1844 if (arg & MMC_SECURE_ARGS) {
1845 if (arg == MMC_SECURE_ERASE_ARG)
1846 erase_timeout *= card->ext_csd.sec_erase_mult;
1847 else
1848 erase_timeout *= card->ext_csd.sec_trim_mult;
1851 erase_timeout *= qty;
1854 * Ensure at least a 1 second timeout for SPI as per
1855 * 'mmc_set_data_timeout()'
1857 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1858 erase_timeout = 1000;
1860 return erase_timeout;
1863 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1864 unsigned int arg,
1865 unsigned int qty)
1867 unsigned int erase_timeout;
1869 if (card->ssr.erase_timeout) {
1870 /* Erase timeout specified in SD Status Register (SSR) */
1871 erase_timeout = card->ssr.erase_timeout * qty +
1872 card->ssr.erase_offset;
1873 } else {
1875 * Erase timeout not specified in SD Status Register (SSR) so
1876 * use 250ms per write block.
1878 erase_timeout = 250 * qty;
1881 /* Must not be less than 1 second */
1882 if (erase_timeout < 1000)
1883 erase_timeout = 1000;
1885 return erase_timeout;
1888 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1889 unsigned int arg,
1890 unsigned int qty)
1892 if (mmc_card_sd(card))
1893 return mmc_sd_erase_timeout(card, arg, qty);
1894 else
1895 return mmc_mmc_erase_timeout(card, arg, qty);
1898 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1899 unsigned int to, unsigned int arg)
1901 struct mmc_command cmd = {0};
1902 unsigned int qty = 0;
1903 unsigned long timeout;
1904 int err;
1907 * qty is used to calculate the erase timeout which depends on how many
1908 * erase groups (or allocation units in SD terminology) are affected.
1909 * We count erasing part of an erase group as one erase group.
1910 * For SD, the allocation units are always a power of 2. For MMC, the
1911 * erase group size is almost certainly also power of 2, but it does not
1912 * seem to insist on that in the JEDEC standard, so we fall back to
1913 * division in that case. SD may not specify an allocation unit size,
1914 * in which case the timeout is based on the number of write blocks.
1916 * Note that the timeout for secure trim 2 will only be correct if the
1917 * number of erase groups specified is the same as the total of all
1918 * preceding secure trim 1 commands. Since the power may have been
1919 * lost since the secure trim 1 commands occurred, it is generally
1920 * impossible to calculate the secure trim 2 timeout correctly.
1922 if (card->erase_shift)
1923 qty += ((to >> card->erase_shift) -
1924 (from >> card->erase_shift)) + 1;
1925 else if (mmc_card_sd(card))
1926 qty += to - from + 1;
1927 else
1928 qty += ((to / card->erase_size) -
1929 (from / card->erase_size)) + 1;
1931 if (!mmc_card_blockaddr(card)) {
1932 from <<= 9;
1933 to <<= 9;
1936 if (mmc_card_sd(card))
1937 cmd.opcode = SD_ERASE_WR_BLK_START;
1938 else
1939 cmd.opcode = MMC_ERASE_GROUP_START;
1940 cmd.arg = from;
1941 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1942 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1943 if (err) {
1944 pr_err("mmc_erase: group start error %d, "
1945 "status %#x\n", err, cmd.resp[0]);
1946 err = -EIO;
1947 goto out;
1950 memset(&cmd, 0, sizeof(struct mmc_command));
1951 if (mmc_card_sd(card))
1952 cmd.opcode = SD_ERASE_WR_BLK_END;
1953 else
1954 cmd.opcode = MMC_ERASE_GROUP_END;
1955 cmd.arg = to;
1956 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1957 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958 if (err) {
1959 pr_err("mmc_erase: group end error %d, status %#x\n",
1960 err, cmd.resp[0]);
1961 err = -EIO;
1962 goto out;
1965 memset(&cmd, 0, sizeof(struct mmc_command));
1966 cmd.opcode = MMC_ERASE;
1967 cmd.arg = arg;
1968 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1969 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1970 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1971 if (err) {
1972 pr_err("mmc_erase: erase error %d, status %#x\n",
1973 err, cmd.resp[0]);
1974 err = -EIO;
1975 goto out;
1978 if (mmc_host_is_spi(card->host))
1979 goto out;
1981 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1982 do {
1983 memset(&cmd, 0, sizeof(struct mmc_command));
1984 cmd.opcode = MMC_SEND_STATUS;
1985 cmd.arg = card->rca << 16;
1986 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1987 /* Do not retry else we can't see errors */
1988 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1989 if (err || (cmd.resp[0] & 0xFDF92000)) {
1990 pr_err("error %d requesting status %#x\n",
1991 err, cmd.resp[0]);
1992 err = -EIO;
1993 goto out;
1996 /* Timeout if the device never becomes ready for data and
1997 * never leaves the program state.
1999 if (time_after(jiffies, timeout)) {
2000 pr_err("%s: Card stuck in programming state! %s\n",
2001 mmc_hostname(card->host), __func__);
2002 err = -EIO;
2003 goto out;
2006 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2007 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2008 out:
2009 return err;
2013 * mmc_erase - erase sectors.
2014 * @card: card to erase
2015 * @from: first sector to erase
2016 * @nr: number of sectors to erase
2017 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2019 * Caller must claim host before calling this function.
2021 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2022 unsigned int arg)
2024 unsigned int rem, to = from + nr;
2026 if (!(card->host->caps & MMC_CAP_ERASE) ||
2027 !(card->csd.cmdclass & CCC_ERASE))
2028 return -EOPNOTSUPP;
2030 if (!card->erase_size)
2031 return -EOPNOTSUPP;
2033 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2034 return -EOPNOTSUPP;
2036 if ((arg & MMC_SECURE_ARGS) &&
2037 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2038 return -EOPNOTSUPP;
2040 if ((arg & MMC_TRIM_ARGS) &&
2041 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2042 return -EOPNOTSUPP;
2044 if (arg == MMC_SECURE_ERASE_ARG) {
2045 if (from % card->erase_size || nr % card->erase_size)
2046 return -EINVAL;
2049 if (arg == MMC_ERASE_ARG) {
2050 rem = from % card->erase_size;
2051 if (rem) {
2052 rem = card->erase_size - rem;
2053 from += rem;
2054 if (nr > rem)
2055 nr -= rem;
2056 else
2057 return 0;
2059 rem = nr % card->erase_size;
2060 if (rem)
2061 nr -= rem;
2064 if (nr == 0)
2065 return 0;
2067 to = from + nr;
2069 if (to <= from)
2070 return -EINVAL;
2072 /* 'from' and 'to' are inclusive */
2073 to -= 1;
2075 return mmc_do_erase(card, from, to, arg);
2077 EXPORT_SYMBOL(mmc_erase);
2079 int mmc_can_erase(struct mmc_card *card)
2081 if ((card->host->caps & MMC_CAP_ERASE) &&
2082 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2083 return 1;
2084 return 0;
2086 EXPORT_SYMBOL(mmc_can_erase);
2088 int mmc_can_trim(struct mmc_card *card)
2090 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2091 return 1;
2092 return 0;
2094 EXPORT_SYMBOL(mmc_can_trim);
2096 int mmc_can_discard(struct mmc_card *card)
2099 * As there's no way to detect the discard support bit at v4.5
2100 * use the s/w feature support filed.
2102 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2103 return 1;
2104 return 0;
2106 EXPORT_SYMBOL(mmc_can_discard);
2108 int mmc_can_sanitize(struct mmc_card *card)
2110 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2111 return 0;
2112 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2113 return 1;
2114 return 0;
2116 EXPORT_SYMBOL(mmc_can_sanitize);
2118 int mmc_can_secure_erase_trim(struct mmc_card *card)
2120 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2121 return 1;
2122 return 0;
2124 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2126 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2127 unsigned int nr)
2129 if (!card->erase_size)
2130 return 0;
2131 if (from % card->erase_size || nr % card->erase_size)
2132 return 0;
2133 return 1;
2135 EXPORT_SYMBOL(mmc_erase_group_aligned);
2137 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2138 unsigned int arg)
2140 struct mmc_host *host = card->host;
2141 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2142 unsigned int last_timeout = 0;
2144 if (card->erase_shift)
2145 max_qty = UINT_MAX >> card->erase_shift;
2146 else if (mmc_card_sd(card))
2147 max_qty = UINT_MAX;
2148 else
2149 max_qty = UINT_MAX / card->erase_size;
2151 /* Find the largest qty with an OK timeout */
2152 do {
2153 y = 0;
2154 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2155 timeout = mmc_erase_timeout(card, arg, qty + x);
2156 if (timeout > host->max_discard_to)
2157 break;
2158 if (timeout < last_timeout)
2159 break;
2160 last_timeout = timeout;
2161 y = x;
2163 qty += y;
2164 } while (y);
2166 if (!qty)
2167 return 0;
2169 if (qty == 1)
2170 return 1;
2172 /* Convert qty to sectors */
2173 if (card->erase_shift)
2174 max_discard = --qty << card->erase_shift;
2175 else if (mmc_card_sd(card))
2176 max_discard = qty;
2177 else
2178 max_discard = --qty * card->erase_size;
2180 return max_discard;
2183 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2185 struct mmc_host *host = card->host;
2186 unsigned int max_discard, max_trim;
2188 if (!host->max_discard_to)
2189 return UINT_MAX;
2192 * Without erase_group_def set, MMC erase timeout depends on clock
2193 * frequence which can change. In that case, the best choice is
2194 * just the preferred erase size.
2196 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2197 return card->pref_erase;
2199 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2200 if (mmc_can_trim(card)) {
2201 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2202 if (max_trim < max_discard)
2203 max_discard = max_trim;
2204 } else if (max_discard < card->erase_size) {
2205 max_discard = 0;
2207 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2208 mmc_hostname(host), max_discard, host->max_discard_to);
2209 return max_discard;
2211 EXPORT_SYMBOL(mmc_calc_max_discard);
2213 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2215 struct mmc_command cmd = {0};
2217 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2218 return 0;
2220 cmd.opcode = MMC_SET_BLOCKLEN;
2221 cmd.arg = blocklen;
2222 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2223 return mmc_wait_for_cmd(card->host, &cmd, 5);
2225 EXPORT_SYMBOL(mmc_set_blocklen);
2227 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2228 bool is_rel_write)
2230 struct mmc_command cmd = {0};
2232 cmd.opcode = MMC_SET_BLOCK_COUNT;
2233 cmd.arg = blockcount & 0x0000FFFF;
2234 if (is_rel_write)
2235 cmd.arg |= 1 << 31;
2236 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2237 return mmc_wait_for_cmd(card->host, &cmd, 5);
2239 EXPORT_SYMBOL(mmc_set_blockcount);
2241 static void mmc_hw_reset_for_init(struct mmc_host *host)
2243 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2244 return;
2245 mmc_host_clk_hold(host);
2246 host->ops->hw_reset(host);
2247 mmc_host_clk_release(host);
2250 int mmc_can_reset(struct mmc_card *card)
2252 u8 rst_n_function;
2254 if (!mmc_card_mmc(card))
2255 return 0;
2256 rst_n_function = card->ext_csd.rst_n_function;
2257 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2258 return 0;
2259 return 1;
2261 EXPORT_SYMBOL(mmc_can_reset);
2263 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2265 struct mmc_card *card = host->card;
2267 if (!host->bus_ops->power_restore)
2268 return -EOPNOTSUPP;
2270 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2271 return -EOPNOTSUPP;
2273 if (!card)
2274 return -EINVAL;
2276 if (!mmc_can_reset(card))
2277 return -EOPNOTSUPP;
2279 mmc_host_clk_hold(host);
2280 mmc_set_clock(host, host->f_init);
2282 host->ops->hw_reset(host);
2284 /* If the reset has happened, then a status command will fail */
2285 if (check) {
2286 struct mmc_command cmd = {0};
2287 int err;
2289 cmd.opcode = MMC_SEND_STATUS;
2290 if (!mmc_host_is_spi(card->host))
2291 cmd.arg = card->rca << 16;
2292 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2293 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2294 if (!err) {
2295 mmc_host_clk_release(host);
2296 return -ENOSYS;
2300 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2301 if (mmc_host_is_spi(host)) {
2302 host->ios.chip_select = MMC_CS_HIGH;
2303 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2304 } else {
2305 host->ios.chip_select = MMC_CS_DONTCARE;
2306 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2308 host->ios.bus_width = MMC_BUS_WIDTH_1;
2309 host->ios.timing = MMC_TIMING_LEGACY;
2310 mmc_set_ios(host);
2312 mmc_host_clk_release(host);
2314 return host->bus_ops->power_restore(host);
2317 int mmc_hw_reset(struct mmc_host *host)
2319 return mmc_do_hw_reset(host, 0);
2321 EXPORT_SYMBOL(mmc_hw_reset);
2323 int mmc_hw_reset_check(struct mmc_host *host)
2325 return mmc_do_hw_reset(host, 1);
2327 EXPORT_SYMBOL(mmc_hw_reset_check);
2329 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2331 host->f_init = freq;
2333 #ifdef CONFIG_MMC_DEBUG
2334 pr_info("%s: %s: trying to init card at %u Hz\n",
2335 mmc_hostname(host), __func__, host->f_init);
2336 #endif
2337 mmc_power_up(host);
2340 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2341 * do a hardware reset if possible.
2343 mmc_hw_reset_for_init(host);
2346 * sdio_reset sends CMD52 to reset card. Since we do not know
2347 * if the card is being re-initialized, just send it. CMD52
2348 * should be ignored by SD/eMMC cards.
2350 sdio_reset(host);
2351 mmc_go_idle(host);
2353 mmc_send_if_cond(host, host->ocr_avail);
2355 /* Order's important: probe SDIO, then SD, then MMC */
2356 if (!mmc_attach_sdio(host))
2357 return 0;
2358 if (!mmc_attach_sd(host))
2359 return 0;
2360 if (!mmc_attach_mmc(host))
2361 return 0;
2363 mmc_power_off(host);
2364 return -EIO;
2367 int _mmc_detect_card_removed(struct mmc_host *host)
2369 int ret;
2371 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2372 return 0;
2374 if (!host->card || mmc_card_removed(host->card))
2375 return 1;
2377 ret = host->bus_ops->alive(host);
2380 * Card detect status and alive check may be out of sync if card is
2381 * removed slowly, when card detect switch changes while card/slot
2382 * pads are still contacted in hardware (refer to "SD Card Mechanical
2383 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2384 * detect work 200ms later for this case.
2386 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2387 mmc_detect_change(host, msecs_to_jiffies(200));
2388 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2391 if (ret) {
2392 mmc_card_set_removed(host->card);
2393 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2396 return ret;
2399 int mmc_detect_card_removed(struct mmc_host *host)
2401 struct mmc_card *card = host->card;
2402 int ret;
2404 WARN_ON(!host->claimed);
2406 if (!card)
2407 return 1;
2409 ret = mmc_card_removed(card);
2411 * The card will be considered unchanged unless we have been asked to
2412 * detect a change or host requires polling to provide card detection.
2414 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2415 return ret;
2417 host->detect_change = 0;
2418 if (!ret) {
2419 ret = _mmc_detect_card_removed(host);
2420 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2422 * Schedule a detect work as soon as possible to let a
2423 * rescan handle the card removal.
2425 cancel_delayed_work(&host->detect);
2426 mmc_detect_change(host, 0);
2430 return ret;
2432 EXPORT_SYMBOL(mmc_detect_card_removed);
2434 void mmc_rescan(struct work_struct *work)
2436 struct mmc_host *host =
2437 container_of(work, struct mmc_host, detect.work);
2438 int i;
2440 if (host->rescan_disable)
2441 return;
2443 /* If there is a non-removable card registered, only scan once */
2444 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2445 return;
2446 host->rescan_entered = 1;
2448 mmc_bus_get(host);
2451 * if there is a _removable_ card registered, check whether it is
2452 * still present
2454 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2455 && !(host->caps & MMC_CAP_NONREMOVABLE))
2456 host->bus_ops->detect(host);
2458 host->detect_change = 0;
2461 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2462 * the card is no longer present.
2464 mmc_bus_put(host);
2465 mmc_bus_get(host);
2467 /* if there still is a card present, stop here */
2468 if (host->bus_ops != NULL) {
2469 mmc_bus_put(host);
2470 goto out;
2474 * Only we can add a new handler, so it's safe to
2475 * release the lock here.
2477 mmc_bus_put(host);
2479 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2480 mmc_claim_host(host);
2481 mmc_power_off(host);
2482 mmc_release_host(host);
2483 goto out;
2486 mmc_claim_host(host);
2487 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2488 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2489 break;
2490 if (freqs[i] <= host->f_min)
2491 break;
2493 mmc_release_host(host);
2495 out:
2496 if (host->caps & MMC_CAP_NEEDS_POLL)
2497 mmc_schedule_delayed_work(&host->detect, HZ);
2500 void mmc_start_host(struct mmc_host *host)
2502 host->f_init = max(freqs[0], host->f_min);
2503 host->rescan_disable = 0;
2504 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2505 mmc_power_off(host);
2506 else
2507 mmc_power_up(host);
2508 mmc_detect_change(host, 0);
2511 void mmc_stop_host(struct mmc_host *host)
2513 #ifdef CONFIG_MMC_DEBUG
2514 unsigned long flags;
2515 spin_lock_irqsave(&host->lock, flags);
2516 host->removed = 1;
2517 spin_unlock_irqrestore(&host->lock, flags);
2518 #endif
2520 host->rescan_disable = 1;
2521 cancel_delayed_work_sync(&host->detect);
2522 mmc_flush_scheduled_work();
2524 /* clear pm flags now and let card drivers set them as needed */
2525 host->pm_flags = 0;
2527 mmc_bus_get(host);
2528 if (host->bus_ops && !host->bus_dead) {
2529 /* Calling bus_ops->remove() with a claimed host can deadlock */
2530 host->bus_ops->remove(host);
2531 mmc_claim_host(host);
2532 mmc_detach_bus(host);
2533 mmc_power_off(host);
2534 mmc_release_host(host);
2535 mmc_bus_put(host);
2536 return;
2538 mmc_bus_put(host);
2540 BUG_ON(host->card);
2542 mmc_power_off(host);
2545 int mmc_power_save_host(struct mmc_host *host)
2547 int ret = 0;
2549 #ifdef CONFIG_MMC_DEBUG
2550 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2551 #endif
2553 mmc_bus_get(host);
2555 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2556 mmc_bus_put(host);
2557 return -EINVAL;
2560 if (host->bus_ops->power_save)
2561 ret = host->bus_ops->power_save(host);
2563 mmc_bus_put(host);
2565 mmc_power_off(host);
2567 return ret;
2569 EXPORT_SYMBOL(mmc_power_save_host);
2571 int mmc_power_restore_host(struct mmc_host *host)
2573 int ret;
2575 #ifdef CONFIG_MMC_DEBUG
2576 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2577 #endif
2579 mmc_bus_get(host);
2581 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2582 mmc_bus_put(host);
2583 return -EINVAL;
2586 mmc_power_up(host);
2587 ret = host->bus_ops->power_restore(host);
2589 mmc_bus_put(host);
2591 return ret;
2593 EXPORT_SYMBOL(mmc_power_restore_host);
2596 * Flush the cache to the non-volatile storage.
2598 int mmc_flush_cache(struct mmc_card *card)
2600 struct mmc_host *host = card->host;
2601 int err = 0;
2603 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2604 return err;
2606 if (mmc_card_mmc(card) &&
2607 (card->ext_csd.cache_size > 0) &&
2608 (card->ext_csd.cache_ctrl & 1)) {
2609 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2610 EXT_CSD_FLUSH_CACHE, 1, 0);
2611 if (err)
2612 pr_err("%s: cache flush error %d\n",
2613 mmc_hostname(card->host), err);
2616 return err;
2618 EXPORT_SYMBOL(mmc_flush_cache);
2621 * Turn the cache ON/OFF.
2622 * Turning the cache OFF shall trigger flushing of the data
2623 * to the non-volatile storage.
2624 * This function should be called with host claimed
2626 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2628 struct mmc_card *card = host->card;
2629 unsigned int timeout;
2630 int err = 0;
2632 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2633 mmc_card_is_removable(host))
2634 return err;
2636 if (card && mmc_card_mmc(card) &&
2637 (card->ext_csd.cache_size > 0)) {
2638 enable = !!enable;
2640 if (card->ext_csd.cache_ctrl ^ enable) {
2641 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2642 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2643 EXT_CSD_CACHE_CTRL, enable, timeout);
2644 if (err)
2645 pr_err("%s: cache %s error %d\n",
2646 mmc_hostname(card->host),
2647 enable ? "on" : "off",
2648 err);
2649 else
2650 card->ext_csd.cache_ctrl = enable;
2654 return err;
2656 EXPORT_SYMBOL(mmc_cache_ctrl);
2658 #ifdef CONFIG_PM
2661 * mmc_suspend_host - suspend a host
2662 * @host: mmc host
2664 int mmc_suspend_host(struct mmc_host *host)
2666 /* This function is deprecated */
2667 return 0;
2669 EXPORT_SYMBOL(mmc_suspend_host);
2672 * mmc_resume_host - resume a previously suspended host
2673 * @host: mmc host
2675 int mmc_resume_host(struct mmc_host *host)
2677 /* This function is deprecated */
2678 return 0;
2680 EXPORT_SYMBOL(mmc_resume_host);
2682 /* Do the card removal on suspend if card is assumed removeable
2683 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2684 to sync the card.
2686 int mmc_pm_notify(struct notifier_block *notify_block,
2687 unsigned long mode, void *unused)
2689 struct mmc_host *host = container_of(
2690 notify_block, struct mmc_host, pm_notify);
2691 unsigned long flags;
2692 int err = 0;
2694 switch (mode) {
2695 case PM_HIBERNATION_PREPARE:
2696 case PM_SUSPEND_PREPARE:
2697 spin_lock_irqsave(&host->lock, flags);
2698 host->rescan_disable = 1;
2699 spin_unlock_irqrestore(&host->lock, flags);
2700 cancel_delayed_work_sync(&host->detect);
2702 if (!host->bus_ops)
2703 break;
2705 /* Validate prerequisites for suspend */
2706 if (host->bus_ops->pre_suspend)
2707 err = host->bus_ops->pre_suspend(host);
2708 if (!err && host->bus_ops->suspend)
2709 break;
2711 /* Calling bus_ops->remove() with a claimed host can deadlock */
2712 host->bus_ops->remove(host);
2713 mmc_claim_host(host);
2714 mmc_detach_bus(host);
2715 mmc_power_off(host);
2716 mmc_release_host(host);
2717 host->pm_flags = 0;
2718 break;
2720 case PM_POST_SUSPEND:
2721 case PM_POST_HIBERNATION:
2722 case PM_POST_RESTORE:
2724 spin_lock_irqsave(&host->lock, flags);
2725 host->rescan_disable = 0;
2726 spin_unlock_irqrestore(&host->lock, flags);
2727 mmc_detect_change(host, 0);
2731 return 0;
2733 #endif
2736 * mmc_init_context_info() - init synchronization context
2737 * @host: mmc host
2739 * Init struct context_info needed to implement asynchronous
2740 * request mechanism, used by mmc core, host driver and mmc requests
2741 * supplier.
2743 void mmc_init_context_info(struct mmc_host *host)
2745 spin_lock_init(&host->context_info.lock);
2746 host->context_info.is_new_req = false;
2747 host->context_info.is_done_rcv = false;
2748 host->context_info.is_waiting_last_req = false;
2749 init_waitqueue_head(&host->context_info.wait);
2752 static int __init mmc_init(void)
2754 int ret;
2756 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2757 if (!workqueue)
2758 return -ENOMEM;
2760 ret = mmc_register_bus();
2761 if (ret)
2762 goto destroy_workqueue;
2764 ret = mmc_register_host_class();
2765 if (ret)
2766 goto unregister_bus;
2768 ret = sdio_register_bus();
2769 if (ret)
2770 goto unregister_host_class;
2772 return 0;
2774 unregister_host_class:
2775 mmc_unregister_host_class();
2776 unregister_bus:
2777 mmc_unregister_bus();
2778 destroy_workqueue:
2779 destroy_workqueue(workqueue);
2781 return ret;
2784 static void __exit mmc_exit(void)
2786 sdio_unregister_bus();
2787 mmc_unregister_host_class();
2788 mmc_unregister_bus();
2789 destroy_workqueue(workqueue);
2792 subsys_initcall(mmc_init);
2793 module_exit(mmc_exit);
2795 MODULE_LICENSE("GPL");