hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / drivers / scsi / imm.c
blob89a8266560d0ebc2ecf44bb33f136b8cebb64ae9
1 /* imm.c -- low level driver for the IOMEGA MatchMaker
2 * parallel port SCSI host adapter.
3 *
4 * (The IMM is the embedded controller in the ZIP Plus drive.)
5 *
6 * My unofficial company acronym list is 21 pages long:
7 * FLA: Four letter acronym with built in facility for
8 * future expansion to five letters.
9 */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/parport.h>
16 #include <linux/workqueue.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <asm/io.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_host.h>
26 /* The following #define is to avoid a clash with hosts.c */
27 #define IMM_PROBE_SPP 0x0001
28 #define IMM_PROBE_PS2 0x0002
29 #define IMM_PROBE_ECR 0x0010
30 #define IMM_PROBE_EPP17 0x0100
31 #define IMM_PROBE_EPP19 0x0200
34 typedef struct {
35 struct pardevice *dev; /* Parport device entry */
36 int base; /* Actual port address */
37 int base_hi; /* Hi Base address for ECP-ISA chipset */
38 int mode; /* Transfer mode */
39 struct scsi_cmnd *cur_cmd; /* Current queued command */
40 struct delayed_work imm_tq; /* Polling interrupt stuff */
41 unsigned long jstart; /* Jiffies at start */
42 unsigned failed:1; /* Failure flag */
43 unsigned dp:1; /* Data phase present */
44 unsigned rd:1; /* Read data in data phase */
45 unsigned wanted:1; /* Parport sharing busy flag */
46 wait_queue_head_t *waiting;
47 struct Scsi_Host *host;
48 struct list_head list;
49 } imm_struct;
51 static void imm_reset_pulse(unsigned int base);
52 static int device_check(imm_struct *dev);
54 #include "imm.h"
56 static inline imm_struct *imm_dev(struct Scsi_Host *host)
58 return *(imm_struct **)&host->hostdata;
61 static DEFINE_SPINLOCK(arbitration_lock);
63 static void got_it(imm_struct *dev)
65 dev->base = dev->dev->port->base;
66 if (dev->cur_cmd)
67 dev->cur_cmd->SCp.phase = 1;
68 else
69 wake_up(dev->waiting);
72 static void imm_wakeup(void *ref)
74 imm_struct *dev = (imm_struct *) ref;
75 unsigned long flags;
77 spin_lock_irqsave(&arbitration_lock, flags);
78 if (dev->wanted) {
79 parport_claim(dev->dev);
80 got_it(dev);
81 dev->wanted = 0;
83 spin_unlock_irqrestore(&arbitration_lock, flags);
86 static int imm_pb_claim(imm_struct *dev)
88 unsigned long flags;
89 int res = 1;
90 spin_lock_irqsave(&arbitration_lock, flags);
91 if (parport_claim(dev->dev) == 0) {
92 got_it(dev);
93 res = 0;
95 dev->wanted = res;
96 spin_unlock_irqrestore(&arbitration_lock, flags);
97 return res;
100 static void imm_pb_dismiss(imm_struct *dev)
102 unsigned long flags;
103 int wanted;
104 spin_lock_irqsave(&arbitration_lock, flags);
105 wanted = dev->wanted;
106 dev->wanted = 0;
107 spin_unlock_irqrestore(&arbitration_lock, flags);
108 if (!wanted)
109 parport_release(dev->dev);
112 static inline void imm_pb_release(imm_struct *dev)
114 parport_release(dev->dev);
117 /* This is to give the imm driver a way to modify the timings (and other
118 * parameters) by writing to the /proc/scsi/imm/0 file.
119 * Very simple method really... (Too simple, no error checking :( )
120 * Reason: Kernel hackers HATE having to unload and reload modules for
121 * testing...
122 * Also gives a method to use a script to obtain optimum timings (TODO)
124 static int imm_write_info(struct Scsi_Host *host, char *buffer, int length)
126 imm_struct *dev = imm_dev(host);
128 if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) {
129 dev->mode = simple_strtoul(buffer + 5, NULL, 0);
130 return length;
132 printk("imm /proc: invalid variable\n");
133 return -EINVAL;
136 static int imm_show_info(struct seq_file *m, struct Scsi_Host *host)
138 imm_struct *dev = imm_dev(host);
140 seq_printf(m, "Version : %s\n", IMM_VERSION);
141 seq_printf(m, "Parport : %s\n", dev->dev->port->name);
142 seq_printf(m, "Mode : %s\n", IMM_MODE_STRING[dev->mode]);
143 return 0;
146 #if IMM_DEBUG > 0
147 #define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\
148 y, __func__, __LINE__); imm_fail_func(x,y);
149 static inline void
150 imm_fail_func(imm_struct *dev, int error_code)
151 #else
152 static inline void
153 imm_fail(imm_struct *dev, int error_code)
154 #endif
156 /* If we fail a device then we trash status / message bytes */
157 if (dev->cur_cmd) {
158 dev->cur_cmd->result = error_code << 16;
159 dev->failed = 1;
164 * Wait for the high bit to be set.
166 * In principle, this could be tied to an interrupt, but the adapter
167 * doesn't appear to be designed to support interrupts. We spin on
168 * the 0x80 ready bit.
170 static unsigned char imm_wait(imm_struct *dev)
172 int k;
173 unsigned short ppb = dev->base;
174 unsigned char r;
176 w_ctr(ppb, 0x0c);
178 k = IMM_SPIN_TMO;
179 do {
180 r = r_str(ppb);
181 k--;
182 udelay(1);
184 while (!(r & 0x80) && (k));
187 * STR register (LPT base+1) to SCSI mapping:
189 * STR imm imm
190 * ===================================
191 * 0x80 S_REQ S_REQ
192 * 0x40 !S_BSY (????)
193 * 0x20 !S_CD !S_CD
194 * 0x10 !S_IO !S_IO
195 * 0x08 (????) !S_BSY
197 * imm imm meaning
198 * ==================================
199 * 0xf0 0xb8 Bit mask
200 * 0xc0 0x88 ZIP wants more data
201 * 0xd0 0x98 ZIP wants to send more data
202 * 0xe0 0xa8 ZIP is expecting SCSI command data
203 * 0xf0 0xb8 end of transfer, ZIP is sending status
205 w_ctr(ppb, 0x04);
206 if (k)
207 return (r & 0xb8);
209 /* Counter expired - Time out occurred */
210 imm_fail(dev, DID_TIME_OUT);
211 printk("imm timeout in imm_wait\n");
212 return 0; /* command timed out */
215 static int imm_negotiate(imm_struct * tmp)
218 * The following is supposedly the IEEE 1284-1994 negotiate
219 * sequence. I have yet to obtain a copy of the above standard
220 * so this is a bit of a guess...
222 * A fair chunk of this is based on the Linux parport implementation
223 * of IEEE 1284.
225 * Return 0 if data available
226 * 1 if no data available
229 unsigned short base = tmp->base;
230 unsigned char a, mode;
232 switch (tmp->mode) {
233 case IMM_NIBBLE:
234 mode = 0x00;
235 break;
236 case IMM_PS2:
237 mode = 0x01;
238 break;
239 default:
240 return 0;
243 w_ctr(base, 0x04);
244 udelay(5);
245 w_dtr(base, mode);
246 udelay(100);
247 w_ctr(base, 0x06);
248 udelay(5);
249 a = (r_str(base) & 0x20) ? 0 : 1;
250 udelay(5);
251 w_ctr(base, 0x07);
252 udelay(5);
253 w_ctr(base, 0x06);
255 if (a) {
256 printk
257 ("IMM: IEEE1284 negotiate indicates no data available.\n");
258 imm_fail(tmp, DID_ERROR);
260 return a;
264 * Clear EPP timeout bit.
266 static inline void epp_reset(unsigned short ppb)
268 int i;
270 i = r_str(ppb);
271 w_str(ppb, i);
272 w_str(ppb, i & 0xfe);
276 * Wait for empty ECP fifo (if we are in ECP fifo mode only)
278 static inline void ecp_sync(imm_struct *dev)
280 int i, ppb_hi = dev->base_hi;
282 if (ppb_hi == 0)
283 return;
285 if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */
286 for (i = 0; i < 100; i++) {
287 if (r_ecr(ppb_hi) & 0x01)
288 return;
289 udelay(5);
291 printk("imm: ECP sync failed as data still present in FIFO.\n");
295 static int imm_byte_out(unsigned short base, const char *buffer, int len)
297 int i;
299 w_ctr(base, 0x4); /* apparently a sane mode */
300 for (i = len >> 1; i; i--) {
301 w_dtr(base, *buffer++);
302 w_ctr(base, 0x5); /* Drop STROBE low */
303 w_dtr(base, *buffer++);
304 w_ctr(base, 0x0); /* STROBE high + INIT low */
306 w_ctr(base, 0x4); /* apparently a sane mode */
307 return 1; /* All went well - we hope! */
310 static int imm_nibble_in(unsigned short base, char *buffer, int len)
312 unsigned char l;
313 int i;
316 * The following is based on documented timing signals
318 w_ctr(base, 0x4);
319 for (i = len; i; i--) {
320 w_ctr(base, 0x6);
321 l = (r_str(base) & 0xf0) >> 4;
322 w_ctr(base, 0x5);
323 *buffer++ = (r_str(base) & 0xf0) | l;
324 w_ctr(base, 0x4);
326 return 1; /* All went well - we hope! */
329 static int imm_byte_in(unsigned short base, char *buffer, int len)
331 int i;
334 * The following is based on documented timing signals
336 w_ctr(base, 0x4);
337 for (i = len; i; i--) {
338 w_ctr(base, 0x26);
339 *buffer++ = r_dtr(base);
340 w_ctr(base, 0x25);
342 return 1; /* All went well - we hope! */
345 static int imm_out(imm_struct *dev, char *buffer, int len)
347 unsigned short ppb = dev->base;
348 int r = imm_wait(dev);
351 * Make sure that:
352 * a) the SCSI bus is BUSY (device still listening)
353 * b) the device is listening
355 if ((r & 0x18) != 0x08) {
356 imm_fail(dev, DID_ERROR);
357 printk("IMM: returned SCSI status %2x\n", r);
358 return 0;
360 switch (dev->mode) {
361 case IMM_EPP_32:
362 case IMM_EPP_16:
363 case IMM_EPP_8:
364 epp_reset(ppb);
365 w_ctr(ppb, 0x4);
366 #ifdef CONFIG_SCSI_IZIP_EPP16
367 if (!(((long) buffer | len) & 0x01))
368 outsw(ppb + 4, buffer, len >> 1);
369 #else
370 if (!(((long) buffer | len) & 0x03))
371 outsl(ppb + 4, buffer, len >> 2);
372 #endif
373 else
374 outsb(ppb + 4, buffer, len);
375 w_ctr(ppb, 0xc);
376 r = !(r_str(ppb) & 0x01);
377 w_ctr(ppb, 0xc);
378 ecp_sync(dev);
379 break;
381 case IMM_NIBBLE:
382 case IMM_PS2:
383 /* 8 bit output, with a loop */
384 r = imm_byte_out(ppb, buffer, len);
385 break;
387 default:
388 printk("IMM: bug in imm_out()\n");
389 r = 0;
391 return r;
394 static int imm_in(imm_struct *dev, char *buffer, int len)
396 unsigned short ppb = dev->base;
397 int r = imm_wait(dev);
400 * Make sure that:
401 * a) the SCSI bus is BUSY (device still listening)
402 * b) the device is sending data
404 if ((r & 0x18) != 0x18) {
405 imm_fail(dev, DID_ERROR);
406 return 0;
408 switch (dev->mode) {
409 case IMM_NIBBLE:
410 /* 4 bit input, with a loop */
411 r = imm_nibble_in(ppb, buffer, len);
412 w_ctr(ppb, 0xc);
413 break;
415 case IMM_PS2:
416 /* 8 bit input, with a loop */
417 r = imm_byte_in(ppb, buffer, len);
418 w_ctr(ppb, 0xc);
419 break;
421 case IMM_EPP_32:
422 case IMM_EPP_16:
423 case IMM_EPP_8:
424 epp_reset(ppb);
425 w_ctr(ppb, 0x24);
426 #ifdef CONFIG_SCSI_IZIP_EPP16
427 if (!(((long) buffer | len) & 0x01))
428 insw(ppb + 4, buffer, len >> 1);
429 #else
430 if (!(((long) buffer | len) & 0x03))
431 insl(ppb + 4, buffer, len >> 2);
432 #endif
433 else
434 insb(ppb + 4, buffer, len);
435 w_ctr(ppb, 0x2c);
436 r = !(r_str(ppb) & 0x01);
437 w_ctr(ppb, 0x2c);
438 ecp_sync(dev);
439 break;
441 default:
442 printk("IMM: bug in imm_ins()\n");
443 r = 0;
444 break;
446 return r;
449 static int imm_cpp(unsigned short ppb, unsigned char b)
452 * Comments on udelay values refer to the
453 * Command Packet Protocol (CPP) timing diagram.
456 unsigned char s1, s2, s3;
457 w_ctr(ppb, 0x0c);
458 udelay(2); /* 1 usec - infinite */
459 w_dtr(ppb, 0xaa);
460 udelay(10); /* 7 usec - infinite */
461 w_dtr(ppb, 0x55);
462 udelay(10); /* 7 usec - infinite */
463 w_dtr(ppb, 0x00);
464 udelay(10); /* 7 usec - infinite */
465 w_dtr(ppb, 0xff);
466 udelay(10); /* 7 usec - infinite */
467 s1 = r_str(ppb) & 0xb8;
468 w_dtr(ppb, 0x87);
469 udelay(10); /* 7 usec - infinite */
470 s2 = r_str(ppb) & 0xb8;
471 w_dtr(ppb, 0x78);
472 udelay(10); /* 7 usec - infinite */
473 s3 = r_str(ppb) & 0x38;
475 * Values for b are:
476 * 0000 00aa Assign address aa to current device
477 * 0010 00aa Select device aa in EPP Winbond mode
478 * 0010 10aa Select device aa in EPP mode
479 * 0011 xxxx Deselect all devices
480 * 0110 00aa Test device aa
481 * 1101 00aa Select device aa in ECP mode
482 * 1110 00aa Select device aa in Compatible mode
484 w_dtr(ppb, b);
485 udelay(2); /* 1 usec - infinite */
486 w_ctr(ppb, 0x0c);
487 udelay(10); /* 7 usec - infinite */
488 w_ctr(ppb, 0x0d);
489 udelay(2); /* 1 usec - infinite */
490 w_ctr(ppb, 0x0c);
491 udelay(10); /* 7 usec - infinite */
492 w_dtr(ppb, 0xff);
493 udelay(10); /* 7 usec - infinite */
496 * The following table is electrical pin values.
497 * (BSY is inverted at the CTR register)
499 * BSY ACK POut SEL Fault
500 * S1 0 X 1 1 1
501 * S2 1 X 0 1 1
502 * S3 L X 1 1 S
504 * L => Last device in chain
505 * S => Selected
507 * Observered values for S1,S2,S3 are:
508 * Disconnect => f8/58/78
509 * Connect => f8/58/70
511 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30))
512 return 1; /* Connected */
513 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38))
514 return 0; /* Disconnected */
516 return -1; /* No device present */
519 static inline int imm_connect(imm_struct *dev, int flag)
521 unsigned short ppb = dev->base;
523 imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
524 imm_cpp(ppb, 0x30); /* Disconnect all devices */
526 if ((dev->mode == IMM_EPP_8) ||
527 (dev->mode == IMM_EPP_16) ||
528 (dev->mode == IMM_EPP_32))
529 return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */
530 return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
533 static void imm_disconnect(imm_struct *dev)
535 imm_cpp(dev->base, 0x30); /* Disconnect all devices */
538 static int imm_select(imm_struct *dev, int target)
540 int k;
541 unsigned short ppb = dev->base;
544 * Firstly we want to make sure there is nothing
545 * holding onto the SCSI bus.
547 w_ctr(ppb, 0xc);
549 k = IMM_SELECT_TMO;
550 do {
551 k--;
552 } while ((r_str(ppb) & 0x08) && (k));
554 if (!k)
555 return 0;
558 * Now assert the SCSI ID (HOST and TARGET) on the data bus
560 w_ctr(ppb, 0x4);
561 w_dtr(ppb, 0x80 | (1 << target));
562 udelay(1);
565 * Deassert SELIN first followed by STROBE
567 w_ctr(ppb, 0xc);
568 w_ctr(ppb, 0xd);
571 * ACK should drop low while SELIN is deasserted.
572 * FAULT should drop low when the SCSI device latches the bus.
574 k = IMM_SELECT_TMO;
575 do {
576 k--;
578 while (!(r_str(ppb) & 0x08) && (k));
581 * Place the interface back into a sane state (status mode)
583 w_ctr(ppb, 0xc);
584 return (k) ? 1 : 0;
587 static int imm_init(imm_struct *dev)
589 if (imm_connect(dev, 0) != 1)
590 return -EIO;
591 imm_reset_pulse(dev->base);
592 mdelay(1); /* Delay to allow devices to settle */
593 imm_disconnect(dev);
594 mdelay(1); /* Another delay to allow devices to settle */
595 return device_check(dev);
598 static inline int imm_send_command(struct scsi_cmnd *cmd)
600 imm_struct *dev = imm_dev(cmd->device->host);
601 int k;
603 /* NOTE: IMM uses byte pairs */
604 for (k = 0; k < cmd->cmd_len; k += 2)
605 if (!imm_out(dev, &cmd->cmnd[k], 2))
606 return 0;
607 return 1;
611 * The bulk flag enables some optimisations in the data transfer loops,
612 * it should be true for any command that transfers data in integral
613 * numbers of sectors.
615 * The driver appears to remain stable if we speed up the parallel port
616 * i/o in this function, but not elsewhere.
618 static int imm_completion(struct scsi_cmnd *cmd)
620 /* Return codes:
621 * -1 Error
622 * 0 Told to schedule
623 * 1 Finished data transfer
625 imm_struct *dev = imm_dev(cmd->device->host);
626 unsigned short ppb = dev->base;
627 unsigned long start_jiffies = jiffies;
629 unsigned char r, v;
630 int fast, bulk, status;
632 v = cmd->cmnd[0];
633 bulk = ((v == READ_6) ||
634 (v == READ_10) || (v == WRITE_6) || (v == WRITE_10));
637 * We only get here if the drive is ready to comunicate,
638 * hence no need for a full imm_wait.
640 w_ctr(ppb, 0x0c);
641 r = (r_str(ppb) & 0xb8);
644 * while (device is not ready to send status byte)
645 * loop;
647 while (r != (unsigned char) 0xb8) {
649 * If we have been running for more than a full timer tick
650 * then take a rest.
652 if (time_after(jiffies, start_jiffies + 1))
653 return 0;
656 * FAIL if:
657 * a) Drive status is screwy (!ready && !present)
658 * b) Drive is requesting/sending more data than expected
660 if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) {
661 imm_fail(dev, DID_ERROR);
662 return -1; /* ERROR_RETURN */
664 /* determine if we should use burst I/O */
665 if (dev->rd == 0) {
666 fast = (bulk
667 && (cmd->SCp.this_residual >=
668 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2;
669 status = imm_out(dev, cmd->SCp.ptr, fast);
670 } else {
671 fast = (bulk
672 && (cmd->SCp.this_residual >=
673 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1;
674 status = imm_in(dev, cmd->SCp.ptr, fast);
677 cmd->SCp.ptr += fast;
678 cmd->SCp.this_residual -= fast;
680 if (!status) {
681 imm_fail(dev, DID_BUS_BUSY);
682 return -1; /* ERROR_RETURN */
684 if (cmd->SCp.buffer && !cmd->SCp.this_residual) {
685 /* if scatter/gather, advance to the next segment */
686 if (cmd->SCp.buffers_residual--) {
687 cmd->SCp.buffer++;
688 cmd->SCp.this_residual =
689 cmd->SCp.buffer->length;
690 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
693 * Make sure that we transfer even number of bytes
694 * otherwise it makes imm_byte_out() messy.
696 if (cmd->SCp.this_residual & 0x01)
697 cmd->SCp.this_residual++;
700 /* Now check to see if the drive is ready to comunicate */
701 w_ctr(ppb, 0x0c);
702 r = (r_str(ppb) & 0xb8);
704 /* If not, drop back down to the scheduler and wait a timer tick */
705 if (!(r & 0x80))
706 return 0;
708 return 1; /* FINISH_RETURN */
712 * Since the IMM itself doesn't generate interrupts, we use
713 * the scheduler's task queue to generate a stream of call-backs and
714 * complete the request when the drive is ready.
716 static void imm_interrupt(struct work_struct *work)
718 imm_struct *dev = container_of(work, imm_struct, imm_tq.work);
719 struct scsi_cmnd *cmd = dev->cur_cmd;
720 struct Scsi_Host *host = cmd->device->host;
721 unsigned long flags;
723 if (imm_engine(dev, cmd)) {
724 schedule_delayed_work(&dev->imm_tq, 1);
725 return;
727 /* Command must of completed hence it is safe to let go... */
728 #if IMM_DEBUG > 0
729 switch ((cmd->result >> 16) & 0xff) {
730 case DID_OK:
731 break;
732 case DID_NO_CONNECT:
733 printk("imm: no device at SCSI ID %i\n", cmd->device->id);
734 break;
735 case DID_BUS_BUSY:
736 printk("imm: BUS BUSY - EPP timeout detected\n");
737 break;
738 case DID_TIME_OUT:
739 printk("imm: unknown timeout\n");
740 break;
741 case DID_ABORT:
742 printk("imm: told to abort\n");
743 break;
744 case DID_PARITY:
745 printk("imm: parity error (???)\n");
746 break;
747 case DID_ERROR:
748 printk("imm: internal driver error\n");
749 break;
750 case DID_RESET:
751 printk("imm: told to reset device\n");
752 break;
753 case DID_BAD_INTR:
754 printk("imm: bad interrupt (???)\n");
755 break;
756 default:
757 printk("imm: bad return code (%02x)\n",
758 (cmd->result >> 16) & 0xff);
760 #endif
762 if (cmd->SCp.phase > 1)
763 imm_disconnect(dev);
765 imm_pb_dismiss(dev);
767 spin_lock_irqsave(host->host_lock, flags);
768 dev->cur_cmd = NULL;
769 cmd->scsi_done(cmd);
770 spin_unlock_irqrestore(host->host_lock, flags);
771 return;
774 static int imm_engine(imm_struct *dev, struct scsi_cmnd *cmd)
776 unsigned short ppb = dev->base;
777 unsigned char l = 0, h = 0;
778 int retv, x;
780 /* First check for any errors that may have occurred
781 * Here we check for internal errors
783 if (dev->failed)
784 return 0;
786 switch (cmd->SCp.phase) {
787 case 0: /* Phase 0 - Waiting for parport */
788 if (time_after(jiffies, dev->jstart + HZ)) {
790 * We waited more than a second
791 * for parport to call us
793 imm_fail(dev, DID_BUS_BUSY);
794 return 0;
796 return 1; /* wait until imm_wakeup claims parport */
797 /* Phase 1 - Connected */
798 case 1:
799 imm_connect(dev, CONNECT_EPP_MAYBE);
800 cmd->SCp.phase++;
802 /* Phase 2 - We are now talking to the scsi bus */
803 case 2:
804 if (!imm_select(dev, scmd_id(cmd))) {
805 imm_fail(dev, DID_NO_CONNECT);
806 return 0;
808 cmd->SCp.phase++;
810 /* Phase 3 - Ready to accept a command */
811 case 3:
812 w_ctr(ppb, 0x0c);
813 if (!(r_str(ppb) & 0x80))
814 return 1;
816 if (!imm_send_command(cmd))
817 return 0;
818 cmd->SCp.phase++;
820 /* Phase 4 - Setup scatter/gather buffers */
821 case 4:
822 if (scsi_bufflen(cmd)) {
823 cmd->SCp.buffer = scsi_sglist(cmd);
824 cmd->SCp.this_residual = cmd->SCp.buffer->length;
825 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
826 } else {
827 cmd->SCp.buffer = NULL;
828 cmd->SCp.this_residual = 0;
829 cmd->SCp.ptr = NULL;
831 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
832 cmd->SCp.phase++;
833 if (cmd->SCp.this_residual & 0x01)
834 cmd->SCp.this_residual++;
835 /* Phase 5 - Pre-Data transfer stage */
836 case 5:
837 /* Spin lock for BUSY */
838 w_ctr(ppb, 0x0c);
839 if (!(r_str(ppb) & 0x80))
840 return 1;
842 /* Require negotiation for read requests */
843 x = (r_str(ppb) & 0xb8);
844 dev->rd = (x & 0x10) ? 1 : 0;
845 dev->dp = (x & 0x20) ? 0 : 1;
847 if ((dev->dp) && (dev->rd))
848 if (imm_negotiate(dev))
849 return 0;
850 cmd->SCp.phase++;
852 /* Phase 6 - Data transfer stage */
853 case 6:
854 /* Spin lock for BUSY */
855 w_ctr(ppb, 0x0c);
856 if (!(r_str(ppb) & 0x80))
857 return 1;
859 if (dev->dp) {
860 retv = imm_completion(cmd);
861 if (retv == -1)
862 return 0;
863 if (retv == 0)
864 return 1;
866 cmd->SCp.phase++;
868 /* Phase 7 - Post data transfer stage */
869 case 7:
870 if ((dev->dp) && (dev->rd)) {
871 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
872 w_ctr(ppb, 0x4);
873 w_ctr(ppb, 0xc);
874 w_ctr(ppb, 0xe);
875 w_ctr(ppb, 0x4);
878 cmd->SCp.phase++;
880 /* Phase 8 - Read status/message */
881 case 8:
882 /* Check for data overrun */
883 if (imm_wait(dev) != (unsigned char) 0xb8) {
884 imm_fail(dev, DID_ERROR);
885 return 0;
887 if (imm_negotiate(dev))
888 return 0;
889 if (imm_in(dev, &l, 1)) { /* read status byte */
890 /* Check for optional message byte */
891 if (imm_wait(dev) == (unsigned char) 0xb8)
892 imm_in(dev, &h, 1);
893 cmd->result = (DID_OK << 16) + (l & STATUS_MASK);
895 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
896 w_ctr(ppb, 0x4);
897 w_ctr(ppb, 0xc);
898 w_ctr(ppb, 0xe);
899 w_ctr(ppb, 0x4);
901 return 0; /* Finished */
902 break;
904 default:
905 printk("imm: Invalid scsi phase\n");
907 return 0;
910 static int imm_queuecommand_lck(struct scsi_cmnd *cmd,
911 void (*done)(struct scsi_cmnd *))
913 imm_struct *dev = imm_dev(cmd->device->host);
915 if (dev->cur_cmd) {
916 printk("IMM: bug in imm_queuecommand\n");
917 return 0;
919 dev->failed = 0;
920 dev->jstart = jiffies;
921 dev->cur_cmd = cmd;
922 cmd->scsi_done = done;
923 cmd->result = DID_ERROR << 16; /* default return code */
924 cmd->SCp.phase = 0; /* bus free */
926 schedule_delayed_work(&dev->imm_tq, 0);
928 imm_pb_claim(dev);
930 return 0;
933 static DEF_SCSI_QCMD(imm_queuecommand)
936 * Apparently the disk->capacity attribute is off by 1 sector
937 * for all disk drives. We add the one here, but it should really
938 * be done in sd.c. Even if it gets fixed there, this will still
939 * work.
941 static int imm_biosparam(struct scsi_device *sdev, struct block_device *dev,
942 sector_t capacity, int ip[])
944 ip[0] = 0x40;
945 ip[1] = 0x20;
946 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
947 if (ip[2] > 1024) {
948 ip[0] = 0xff;
949 ip[1] = 0x3f;
950 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
952 return 0;
955 static int imm_abort(struct scsi_cmnd *cmd)
957 imm_struct *dev = imm_dev(cmd->device->host);
959 * There is no method for aborting commands since Iomega
960 * have tied the SCSI_MESSAGE line high in the interface
963 switch (cmd->SCp.phase) {
964 case 0: /* Do not have access to parport */
965 case 1: /* Have not connected to interface */
966 dev->cur_cmd = NULL; /* Forget the problem */
967 return SUCCESS;
968 break;
969 default: /* SCSI command sent, can not abort */
970 return FAILED;
971 break;
975 static void imm_reset_pulse(unsigned int base)
977 w_ctr(base, 0x04);
978 w_dtr(base, 0x40);
979 udelay(1);
980 w_ctr(base, 0x0c);
981 w_ctr(base, 0x0d);
982 udelay(50);
983 w_ctr(base, 0x0c);
984 w_ctr(base, 0x04);
987 static int imm_reset(struct scsi_cmnd *cmd)
989 imm_struct *dev = imm_dev(cmd->device->host);
991 if (cmd->SCp.phase)
992 imm_disconnect(dev);
993 dev->cur_cmd = NULL; /* Forget the problem */
995 imm_connect(dev, CONNECT_NORMAL);
996 imm_reset_pulse(dev->base);
997 mdelay(1); /* device settle delay */
998 imm_disconnect(dev);
999 mdelay(1); /* device settle delay */
1000 return SUCCESS;
1003 static int device_check(imm_struct *dev)
1005 /* This routine looks for a device and then attempts to use EPP
1006 to send a command. If all goes as planned then EPP is available. */
1008 static char cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1009 int loop, old_mode, status, k, ppb = dev->base;
1010 unsigned char l;
1012 old_mode = dev->mode;
1013 for (loop = 0; loop < 8; loop++) {
1014 /* Attempt to use EPP for Test Unit Ready */
1015 if ((ppb & 0x0007) == 0x0000)
1016 dev->mode = IMM_EPP_32;
1018 second_pass:
1019 imm_connect(dev, CONNECT_EPP_MAYBE);
1020 /* Select SCSI device */
1021 if (!imm_select(dev, loop)) {
1022 imm_disconnect(dev);
1023 continue;
1025 printk("imm: Found device at ID %i, Attempting to use %s\n",
1026 loop, IMM_MODE_STRING[dev->mode]);
1028 /* Send SCSI command */
1029 status = 1;
1030 w_ctr(ppb, 0x0c);
1031 for (l = 0; (l < 3) && (status); l++)
1032 status = imm_out(dev, &cmd[l << 1], 2);
1034 if (!status) {
1035 imm_disconnect(dev);
1036 imm_connect(dev, CONNECT_EPP_MAYBE);
1037 imm_reset_pulse(dev->base);
1038 udelay(1000);
1039 imm_disconnect(dev);
1040 udelay(1000);
1041 if (dev->mode == IMM_EPP_32) {
1042 dev->mode = old_mode;
1043 goto second_pass;
1045 printk("imm: Unable to establish communication\n");
1046 return -EIO;
1048 w_ctr(ppb, 0x0c);
1050 k = 1000000; /* 1 Second */
1051 do {
1052 l = r_str(ppb);
1053 k--;
1054 udelay(1);
1055 } while (!(l & 0x80) && (k));
1057 l &= 0xb8;
1059 if (l != 0xb8) {
1060 imm_disconnect(dev);
1061 imm_connect(dev, CONNECT_EPP_MAYBE);
1062 imm_reset_pulse(dev->base);
1063 udelay(1000);
1064 imm_disconnect(dev);
1065 udelay(1000);
1066 if (dev->mode == IMM_EPP_32) {
1067 dev->mode = old_mode;
1068 goto second_pass;
1070 printk
1071 ("imm: Unable to establish communication\n");
1072 return -EIO;
1074 imm_disconnect(dev);
1075 printk
1076 ("imm: Communication established at 0x%x with ID %i using %s\n",
1077 ppb, loop, IMM_MODE_STRING[dev->mode]);
1078 imm_connect(dev, CONNECT_EPP_MAYBE);
1079 imm_reset_pulse(dev->base);
1080 udelay(1000);
1081 imm_disconnect(dev);
1082 udelay(1000);
1083 return 0;
1085 printk("imm: No devices found\n");
1086 return -ENODEV;
1090 * imm cannot deal with highmem, so this causes all IO pages for this host
1091 * to reside in low memory (hence mapped)
1093 static int imm_adjust_queue(struct scsi_device *device)
1095 blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH);
1096 return 0;
1099 static struct scsi_host_template imm_template = {
1100 .module = THIS_MODULE,
1101 .proc_name = "imm",
1102 .show_info = imm_show_info,
1103 .write_info = imm_write_info,
1104 .name = "Iomega VPI2 (imm) interface",
1105 .queuecommand = imm_queuecommand,
1106 .eh_abort_handler = imm_abort,
1107 .eh_bus_reset_handler = imm_reset,
1108 .eh_host_reset_handler = imm_reset,
1109 .bios_param = imm_biosparam,
1110 .this_id = 7,
1111 .sg_tablesize = SG_ALL,
1112 .cmd_per_lun = 1,
1113 .use_clustering = ENABLE_CLUSTERING,
1114 .can_queue = 1,
1115 .slave_alloc = imm_adjust_queue,
1118 /***************************************************************************
1119 * Parallel port probing routines *
1120 ***************************************************************************/
1122 static LIST_HEAD(imm_hosts);
1124 static int __imm_attach(struct parport *pb)
1126 struct Scsi_Host *host;
1127 imm_struct *dev;
1128 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waiting);
1129 DEFINE_WAIT(wait);
1130 int ports;
1131 int modes, ppb;
1132 int err = -ENOMEM;
1134 init_waitqueue_head(&waiting);
1136 dev = kzalloc(sizeof(imm_struct), GFP_KERNEL);
1137 if (!dev)
1138 return -ENOMEM;
1141 dev->base = -1;
1142 dev->mode = IMM_AUTODETECT;
1143 INIT_LIST_HEAD(&dev->list);
1145 dev->dev = parport_register_device(pb, "imm", NULL, imm_wakeup,
1146 NULL, 0, dev);
1148 if (!dev->dev)
1149 goto out;
1152 /* Claim the bus so it remembers what we do to the control
1153 * registers. [ CTR and ECP ]
1155 err = -EBUSY;
1156 dev->waiting = &waiting;
1157 prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE);
1158 if (imm_pb_claim(dev))
1159 schedule_timeout(3 * HZ);
1160 if (dev->wanted) {
1161 printk(KERN_ERR "imm%d: failed to claim parport because "
1162 "a pardevice is owning the port for too long "
1163 "time!\n", pb->number);
1164 imm_pb_dismiss(dev);
1165 dev->waiting = NULL;
1166 finish_wait(&waiting, &wait);
1167 goto out1;
1169 dev->waiting = NULL;
1170 finish_wait(&waiting, &wait);
1171 ppb = dev->base = dev->dev->port->base;
1172 dev->base_hi = dev->dev->port->base_hi;
1173 w_ctr(ppb, 0x0c);
1174 modes = dev->dev->port->modes;
1176 /* Mode detection works up the chain of speed
1177 * This avoids a nasty if-then-else-if-... tree
1179 dev->mode = IMM_NIBBLE;
1181 if (modes & PARPORT_MODE_TRISTATE)
1182 dev->mode = IMM_PS2;
1184 /* Done configuration */
1186 err = imm_init(dev);
1188 imm_pb_release(dev);
1190 if (err)
1191 goto out1;
1193 /* now the glue ... */
1194 if (dev->mode == IMM_NIBBLE || dev->mode == IMM_PS2)
1195 ports = 3;
1196 else
1197 ports = 8;
1199 INIT_DELAYED_WORK(&dev->imm_tq, imm_interrupt);
1201 err = -ENOMEM;
1202 host = scsi_host_alloc(&imm_template, sizeof(imm_struct *));
1203 if (!host)
1204 goto out1;
1205 host->io_port = pb->base;
1206 host->n_io_port = ports;
1207 host->dma_channel = -1;
1208 host->unique_id = pb->number;
1209 *(imm_struct **)&host->hostdata = dev;
1210 dev->host = host;
1211 list_add_tail(&dev->list, &imm_hosts);
1212 err = scsi_add_host(host, NULL);
1213 if (err)
1214 goto out2;
1215 scsi_scan_host(host);
1216 return 0;
1218 out2:
1219 list_del_init(&dev->list);
1220 scsi_host_put(host);
1221 out1:
1222 parport_unregister_device(dev->dev);
1223 out:
1224 kfree(dev);
1225 return err;
1228 static void imm_attach(struct parport *pb)
1230 __imm_attach(pb);
1233 static void imm_detach(struct parport *pb)
1235 imm_struct *dev;
1236 list_for_each_entry(dev, &imm_hosts, list) {
1237 if (dev->dev->port == pb) {
1238 list_del_init(&dev->list);
1239 scsi_remove_host(dev->host);
1240 scsi_host_put(dev->host);
1241 parport_unregister_device(dev->dev);
1242 kfree(dev);
1243 break;
1248 static struct parport_driver imm_driver = {
1249 .name = "imm",
1250 .attach = imm_attach,
1251 .detach = imm_detach,
1254 static int __init imm_driver_init(void)
1256 printk("imm: Version %s\n", IMM_VERSION);
1257 return parport_register_driver(&imm_driver);
1260 static void __exit imm_driver_exit(void)
1262 parport_unregister_driver(&imm_driver);
1265 module_init(imm_driver_init);
1266 module_exit(imm_driver_exit);
1268 MODULE_LICENSE("GPL");