hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / drivers / scsi / libsas / sas_expander.c
blob446b85110a1fc0a69b07e42bb3ecc7144d76d1ce
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(unsigned long _task)
46 struct sas_task *task = (void *) _task;
47 unsigned long flags;
49 spin_lock_irqsave(&task->task_state_lock, flags);
50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 spin_unlock_irqrestore(&task->task_state_lock, flags);
54 complete(&task->slow_task->completion);
57 static void smp_task_done(struct sas_task *task)
59 if (!del_timer(&task->slow_task->timer))
60 return;
61 complete(&task->slow_task->completion);
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 void *resp, int resp_size)
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
82 task = sas_alloc_slow_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 sg_init_one(&task->smp_task.smp_req, req, req_size);
90 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
92 task->task_done = smp_task_done;
94 task->slow_task->timer.data = (unsigned long) task;
95 task->slow_task->timer.function = smp_task_timedout;
96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->slow_task->timer);
99 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
101 if (res) {
102 del_timer(&task->slow_task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
107 wait_for_completion(&task->slow_task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
154 /* ---------- Allocations ---------- */
156 static inline void *alloc_smp_req(int size)
158 u8 *p = kzalloc(size, GFP_KERNEL);
159 if (p)
160 p[0] = SMP_REQUEST;
161 return p;
164 static inline void *alloc_smp_resp(int size)
166 return kzalloc(size, GFP_KERNEL);
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
171 switch (phy->routing_attr) {
172 case TABLE_ROUTING:
173 if (dev->ex_dev.t2t_supp)
174 return 'U';
175 else
176 return 'T';
177 case DIRECT_ROUTING:
178 return 'D';
179 case SUBTRACTIVE_ROUTING:
180 return 'S';
181 default:
182 return '?';
186 static enum sas_device_type to_dev_type(struct discover_resp *dr)
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
191 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 return SAS_SATA_PENDING;
194 else
195 return dr->attached_dev_type;
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
200 enum sas_device_type dev_type;
201 enum sas_linkrate linkrate;
202 u8 sas_addr[SAS_ADDR_SIZE];
203 struct smp_resp *resp = rsp;
204 struct discover_resp *dr = &resp->disc;
205 struct sas_ha_struct *ha = dev->port->ha;
206 struct expander_device *ex = &dev->ex_dev;
207 struct ex_phy *phy = &ex->ex_phy[phy_id];
208 struct sas_rphy *rphy = dev->rphy;
209 bool new_phy = !phy->phy;
210 char *type;
212 if (new_phy) {
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 return;
215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
217 /* FIXME: error_handling */
218 BUG_ON(!phy->phy);
221 switch (resp->result) {
222 case SMP_RESP_PHY_VACANT:
223 phy->phy_state = PHY_VACANT;
224 break;
225 default:
226 phy->phy_state = PHY_NOT_PRESENT;
227 break;
228 case SMP_RESP_FUNC_ACC:
229 phy->phy_state = PHY_EMPTY; /* do not know yet */
230 break;
233 /* check if anything important changed to squelch debug */
234 dev_type = phy->attached_dev_type;
235 linkrate = phy->linkrate;
236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
238 /* Handle vacant phy - rest of dr data is not valid so skip it */
239 if (phy->phy_state == PHY_VACANT) {
240 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241 phy->attached_dev_type = SAS_PHY_UNUSED;
242 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243 phy->phy_id = phy_id;
244 goto skip;
245 } else
246 goto out;
249 phy->attached_dev_type = to_dev_type(dr);
250 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
251 goto out;
252 phy->phy_id = phy_id;
253 phy->linkrate = dr->linkrate;
254 phy->attached_sata_host = dr->attached_sata_host;
255 phy->attached_sata_dev = dr->attached_sata_dev;
256 phy->attached_sata_ps = dr->attached_sata_ps;
257 phy->attached_iproto = dr->iproto << 1;
258 phy->attached_tproto = dr->tproto << 1;
259 /* help some expanders that fail to zero sas_address in the 'no
260 * device' case
262 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
265 else
266 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267 phy->attached_phy_id = dr->attached_phy_id;
268 phy->phy_change_count = dr->change_count;
269 phy->routing_attr = dr->routing_attr;
270 phy->virtual = dr->virtual;
271 phy->last_da_index = -1;
273 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274 phy->phy->identify.device_type = dr->attached_dev_type;
275 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276 phy->phy->identify.target_port_protocols = phy->attached_tproto;
277 if (!phy->attached_tproto && dr->attached_sata_dev)
278 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279 phy->phy->identify.phy_identifier = phy_id;
280 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282 phy->phy->minimum_linkrate = dr->pmin_linkrate;
283 phy->phy->maximum_linkrate = dr->pmax_linkrate;
284 phy->phy->negotiated_linkrate = phy->linkrate;
286 skip:
287 if (new_phy)
288 if (sas_phy_add(phy->phy)) {
289 sas_phy_free(phy->phy);
290 return;
293 out:
294 switch (phy->attached_dev_type) {
295 case SAS_SATA_PENDING:
296 type = "stp pending";
297 break;
298 case SAS_PHY_UNUSED:
299 type = "no device";
300 break;
301 case SAS_END_DEVICE:
302 if (phy->attached_iproto) {
303 if (phy->attached_tproto)
304 type = "host+target";
305 else
306 type = "host";
307 } else {
308 if (dr->attached_sata_dev)
309 type = "stp";
310 else
311 type = "ssp";
313 break;
314 case SAS_EDGE_EXPANDER_DEVICE:
315 case SAS_FANOUT_EXPANDER_DEVICE:
316 type = "smp";
317 break;
318 default:
319 type = "unknown";
322 /* this routine is polled by libata error recovery so filter
323 * unimportant messages
325 if (new_phy || phy->attached_dev_type != dev_type ||
326 phy->linkrate != linkrate ||
327 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
328 /* pass */;
329 else
330 return;
332 /* if the attached device type changed and ata_eh is active,
333 * make sure we run revalidation when eh completes (see:
334 * sas_enable_revalidation)
336 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
337 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
339 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
340 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
341 SAS_ADDR(dev->sas_addr), phy->phy_id,
342 sas_route_char(dev, phy), phy->linkrate,
343 SAS_ADDR(phy->attached_sas_addr), type);
346 /* check if we have an existing attached ata device on this expander phy */
347 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
349 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
350 struct domain_device *dev;
351 struct sas_rphy *rphy;
353 if (!ex_phy->port)
354 return NULL;
356 rphy = ex_phy->port->rphy;
357 if (!rphy)
358 return NULL;
360 dev = sas_find_dev_by_rphy(rphy);
362 if (dev && dev_is_sata(dev))
363 return dev;
365 return NULL;
368 #define DISCOVER_REQ_SIZE 16
369 #define DISCOVER_RESP_SIZE 56
371 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
372 u8 *disc_resp, int single)
374 struct discover_resp *dr;
375 int res;
377 disc_req[9] = single;
379 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
380 disc_resp, DISCOVER_RESP_SIZE);
381 if (res)
382 return res;
383 dr = &((struct smp_resp *)disc_resp)->disc;
384 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
385 sas_printk("Found loopback topology, just ignore it!\n");
386 return 0;
388 sas_set_ex_phy(dev, single, disc_resp);
389 return 0;
392 int sas_ex_phy_discover(struct domain_device *dev, int single)
394 struct expander_device *ex = &dev->ex_dev;
395 int res = 0;
396 u8 *disc_req;
397 u8 *disc_resp;
399 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
400 if (!disc_req)
401 return -ENOMEM;
403 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
404 if (!disc_resp) {
405 kfree(disc_req);
406 return -ENOMEM;
409 disc_req[1] = SMP_DISCOVER;
411 if (0 <= single && single < ex->num_phys) {
412 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
413 } else {
414 int i;
416 for (i = 0; i < ex->num_phys; i++) {
417 res = sas_ex_phy_discover_helper(dev, disc_req,
418 disc_resp, i);
419 if (res)
420 goto out_err;
423 out_err:
424 kfree(disc_resp);
425 kfree(disc_req);
426 return res;
429 static int sas_expander_discover(struct domain_device *dev)
431 struct expander_device *ex = &dev->ex_dev;
432 int res = -ENOMEM;
434 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
435 if (!ex->ex_phy)
436 return -ENOMEM;
438 res = sas_ex_phy_discover(dev, -1);
439 if (res)
440 goto out_err;
442 return 0;
443 out_err:
444 kfree(ex->ex_phy);
445 ex->ex_phy = NULL;
446 return res;
449 #define MAX_EXPANDER_PHYS 128
451 static void ex_assign_report_general(struct domain_device *dev,
452 struct smp_resp *resp)
454 struct report_general_resp *rg = &resp->rg;
456 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
457 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
458 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
459 dev->ex_dev.t2t_supp = rg->t2t_supp;
460 dev->ex_dev.conf_route_table = rg->conf_route_table;
461 dev->ex_dev.configuring = rg->configuring;
462 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
465 #define RG_REQ_SIZE 8
466 #define RG_RESP_SIZE 32
468 static int sas_ex_general(struct domain_device *dev)
470 u8 *rg_req;
471 struct smp_resp *rg_resp;
472 int res;
473 int i;
475 rg_req = alloc_smp_req(RG_REQ_SIZE);
476 if (!rg_req)
477 return -ENOMEM;
479 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
480 if (!rg_resp) {
481 kfree(rg_req);
482 return -ENOMEM;
485 rg_req[1] = SMP_REPORT_GENERAL;
487 for (i = 0; i < 5; i++) {
488 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
489 RG_RESP_SIZE);
491 if (res) {
492 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
493 SAS_ADDR(dev->sas_addr), res);
494 goto out;
495 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
496 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
497 SAS_ADDR(dev->sas_addr), rg_resp->result);
498 res = rg_resp->result;
499 goto out;
502 ex_assign_report_general(dev, rg_resp);
504 if (dev->ex_dev.configuring) {
505 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
506 SAS_ADDR(dev->sas_addr));
507 schedule_timeout_interruptible(5*HZ);
508 } else
509 break;
511 out:
512 kfree(rg_req);
513 kfree(rg_resp);
514 return res;
517 static void ex_assign_manuf_info(struct domain_device *dev, void
518 *_mi_resp)
520 u8 *mi_resp = _mi_resp;
521 struct sas_rphy *rphy = dev->rphy;
522 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
524 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
525 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
526 memcpy(edev->product_rev, mi_resp + 36,
527 SAS_EXPANDER_PRODUCT_REV_LEN);
529 if (mi_resp[8] & 1) {
530 memcpy(edev->component_vendor_id, mi_resp + 40,
531 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
532 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
533 edev->component_revision_id = mi_resp[50];
537 #define MI_REQ_SIZE 8
538 #define MI_RESP_SIZE 64
540 static int sas_ex_manuf_info(struct domain_device *dev)
542 u8 *mi_req;
543 u8 *mi_resp;
544 int res;
546 mi_req = alloc_smp_req(MI_REQ_SIZE);
547 if (!mi_req)
548 return -ENOMEM;
550 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
551 if (!mi_resp) {
552 kfree(mi_req);
553 return -ENOMEM;
556 mi_req[1] = SMP_REPORT_MANUF_INFO;
558 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
559 if (res) {
560 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
561 SAS_ADDR(dev->sas_addr), res);
562 goto out;
563 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
564 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
565 SAS_ADDR(dev->sas_addr), mi_resp[2]);
566 goto out;
569 ex_assign_manuf_info(dev, mi_resp);
570 out:
571 kfree(mi_req);
572 kfree(mi_resp);
573 return res;
576 #define PC_REQ_SIZE 44
577 #define PC_RESP_SIZE 8
579 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
580 enum phy_func phy_func,
581 struct sas_phy_linkrates *rates)
583 u8 *pc_req;
584 u8 *pc_resp;
585 int res;
587 pc_req = alloc_smp_req(PC_REQ_SIZE);
588 if (!pc_req)
589 return -ENOMEM;
591 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
592 if (!pc_resp) {
593 kfree(pc_req);
594 return -ENOMEM;
597 pc_req[1] = SMP_PHY_CONTROL;
598 pc_req[9] = phy_id;
599 pc_req[10]= phy_func;
600 if (rates) {
601 pc_req[32] = rates->minimum_linkrate << 4;
602 pc_req[33] = rates->maximum_linkrate << 4;
605 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
607 kfree(pc_resp);
608 kfree(pc_req);
609 return res;
612 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
614 struct expander_device *ex = &dev->ex_dev;
615 struct ex_phy *phy = &ex->ex_phy[phy_id];
617 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
618 phy->linkrate = SAS_PHY_DISABLED;
621 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
623 struct expander_device *ex = &dev->ex_dev;
624 int i;
626 for (i = 0; i < ex->num_phys; i++) {
627 struct ex_phy *phy = &ex->ex_phy[i];
629 if (phy->phy_state == PHY_VACANT ||
630 phy->phy_state == PHY_NOT_PRESENT)
631 continue;
633 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
634 sas_ex_disable_phy(dev, i);
638 static int sas_dev_present_in_domain(struct asd_sas_port *port,
639 u8 *sas_addr)
641 struct domain_device *dev;
643 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
644 return 1;
645 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
646 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
647 return 1;
649 return 0;
652 #define RPEL_REQ_SIZE 16
653 #define RPEL_RESP_SIZE 32
654 int sas_smp_get_phy_events(struct sas_phy *phy)
656 int res;
657 u8 *req;
658 u8 *resp;
659 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
660 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
662 req = alloc_smp_req(RPEL_REQ_SIZE);
663 if (!req)
664 return -ENOMEM;
666 resp = alloc_smp_resp(RPEL_RESP_SIZE);
667 if (!resp) {
668 kfree(req);
669 return -ENOMEM;
672 req[1] = SMP_REPORT_PHY_ERR_LOG;
673 req[9] = phy->number;
675 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
676 resp, RPEL_RESP_SIZE);
678 if (!res)
679 goto out;
681 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
682 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
683 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
684 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
686 out:
687 kfree(resp);
688 return res;
692 #ifdef CONFIG_SCSI_SAS_ATA
694 #define RPS_REQ_SIZE 16
695 #define RPS_RESP_SIZE 60
697 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
698 struct smp_resp *rps_resp)
700 int res;
701 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
702 u8 *resp = (u8 *)rps_resp;
704 if (!rps_req)
705 return -ENOMEM;
707 rps_req[1] = SMP_REPORT_PHY_SATA;
708 rps_req[9] = phy_id;
710 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
711 rps_resp, RPS_RESP_SIZE);
713 /* 0x34 is the FIS type for the D2H fis. There's a potential
714 * standards cockup here. sas-2 explicitly specifies the FIS
715 * should be encoded so that FIS type is in resp[24].
716 * However, some expanders endian reverse this. Undo the
717 * reversal here */
718 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
719 int i;
721 for (i = 0; i < 5; i++) {
722 int j = 24 + (i*4);
723 u8 a, b;
724 a = resp[j + 0];
725 b = resp[j + 1];
726 resp[j + 0] = resp[j + 3];
727 resp[j + 1] = resp[j + 2];
728 resp[j + 2] = b;
729 resp[j + 3] = a;
733 kfree(rps_req);
734 return res;
736 #endif
738 static void sas_ex_get_linkrate(struct domain_device *parent,
739 struct domain_device *child,
740 struct ex_phy *parent_phy)
742 struct expander_device *parent_ex = &parent->ex_dev;
743 struct sas_port *port;
744 int i;
746 child->pathways = 0;
748 port = parent_phy->port;
750 for (i = 0; i < parent_ex->num_phys; i++) {
751 struct ex_phy *phy = &parent_ex->ex_phy[i];
753 if (phy->phy_state == PHY_VACANT ||
754 phy->phy_state == PHY_NOT_PRESENT)
755 continue;
757 if (SAS_ADDR(phy->attached_sas_addr) ==
758 SAS_ADDR(child->sas_addr)) {
760 child->min_linkrate = min(parent->min_linkrate,
761 phy->linkrate);
762 child->max_linkrate = max(parent->max_linkrate,
763 phy->linkrate);
764 child->pathways++;
765 sas_port_add_phy(port, phy->phy);
768 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
769 child->pathways = min(child->pathways, parent->pathways);
772 static struct domain_device *sas_ex_discover_end_dev(
773 struct domain_device *parent, int phy_id)
775 struct expander_device *parent_ex = &parent->ex_dev;
776 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
777 struct domain_device *child = NULL;
778 struct sas_rphy *rphy;
779 int res;
781 if (phy->attached_sata_host || phy->attached_sata_ps)
782 return NULL;
784 child = sas_alloc_device();
785 if (!child)
786 return NULL;
788 kref_get(&parent->kref);
789 child->parent = parent;
790 child->port = parent->port;
791 child->iproto = phy->attached_iproto;
792 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
793 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
794 if (!phy->port) {
795 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
796 if (unlikely(!phy->port))
797 goto out_err;
798 if (unlikely(sas_port_add(phy->port) != 0)) {
799 sas_port_free(phy->port);
800 goto out_err;
803 sas_ex_get_linkrate(parent, child, phy);
804 sas_device_set_phy(child, phy->port);
806 #ifdef CONFIG_SCSI_SAS_ATA
807 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
808 res = sas_get_ata_info(child, phy);
809 if (res)
810 goto out_free;
812 sas_init_dev(child);
813 res = sas_ata_init(child);
814 if (res)
815 goto out_free;
816 rphy = sas_end_device_alloc(phy->port);
817 if (!rphy)
818 goto out_free;
820 child->rphy = rphy;
821 get_device(&rphy->dev);
823 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
825 res = sas_discover_sata(child);
826 if (res) {
827 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
828 "%016llx:0x%x returned 0x%x\n",
829 SAS_ADDR(child->sas_addr),
830 SAS_ADDR(parent->sas_addr), phy_id, res);
831 goto out_list_del;
833 } else
834 #endif
835 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
836 child->dev_type = SAS_END_DEVICE;
837 rphy = sas_end_device_alloc(phy->port);
838 /* FIXME: error handling */
839 if (unlikely(!rphy))
840 goto out_free;
841 child->tproto = phy->attached_tproto;
842 sas_init_dev(child);
844 child->rphy = rphy;
845 get_device(&rphy->dev);
846 sas_fill_in_rphy(child, rphy);
848 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
850 res = sas_discover_end_dev(child);
851 if (res) {
852 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
853 "at %016llx:0x%x returned 0x%x\n",
854 SAS_ADDR(child->sas_addr),
855 SAS_ADDR(parent->sas_addr), phy_id, res);
856 goto out_list_del;
858 } else {
859 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
860 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
861 phy_id);
862 goto out_free;
865 list_add_tail(&child->siblings, &parent_ex->children);
866 return child;
868 out_list_del:
869 sas_rphy_free(child->rphy);
870 list_del(&child->disco_list_node);
871 spin_lock_irq(&parent->port->dev_list_lock);
872 list_del(&child->dev_list_node);
873 spin_unlock_irq(&parent->port->dev_list_lock);
874 out_free:
875 sas_port_delete(phy->port);
876 out_err:
877 phy->port = NULL;
878 sas_put_device(child);
879 return NULL;
882 /* See if this phy is part of a wide port */
883 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
885 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
886 int i;
888 for (i = 0; i < parent->ex_dev.num_phys; i++) {
889 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
891 if (ephy == phy)
892 continue;
894 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
895 SAS_ADDR_SIZE) && ephy->port) {
896 sas_port_add_phy(ephy->port, phy->phy);
897 phy->port = ephy->port;
898 phy->phy_state = PHY_DEVICE_DISCOVERED;
899 return true;
903 return false;
906 static struct domain_device *sas_ex_discover_expander(
907 struct domain_device *parent, int phy_id)
909 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
910 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
911 struct domain_device *child = NULL;
912 struct sas_rphy *rphy;
913 struct sas_expander_device *edev;
914 struct asd_sas_port *port;
915 int res;
917 if (phy->routing_attr == DIRECT_ROUTING) {
918 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
919 "allowed\n",
920 SAS_ADDR(parent->sas_addr), phy_id,
921 SAS_ADDR(phy->attached_sas_addr),
922 phy->attached_phy_id);
923 return NULL;
925 child = sas_alloc_device();
926 if (!child)
927 return NULL;
929 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
930 /* FIXME: better error handling */
931 BUG_ON(sas_port_add(phy->port) != 0);
934 switch (phy->attached_dev_type) {
935 case SAS_EDGE_EXPANDER_DEVICE:
936 rphy = sas_expander_alloc(phy->port,
937 SAS_EDGE_EXPANDER_DEVICE);
938 break;
939 case SAS_FANOUT_EXPANDER_DEVICE:
940 rphy = sas_expander_alloc(phy->port,
941 SAS_FANOUT_EXPANDER_DEVICE);
942 break;
943 default:
944 rphy = NULL; /* shut gcc up */
945 BUG();
947 port = parent->port;
948 child->rphy = rphy;
949 get_device(&rphy->dev);
950 edev = rphy_to_expander_device(rphy);
951 child->dev_type = phy->attached_dev_type;
952 kref_get(&parent->kref);
953 child->parent = parent;
954 child->port = port;
955 child->iproto = phy->attached_iproto;
956 child->tproto = phy->attached_tproto;
957 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
958 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
959 sas_ex_get_linkrate(parent, child, phy);
960 edev->level = parent_ex->level + 1;
961 parent->port->disc.max_level = max(parent->port->disc.max_level,
962 edev->level);
963 sas_init_dev(child);
964 sas_fill_in_rphy(child, rphy);
965 sas_rphy_add(rphy);
967 spin_lock_irq(&parent->port->dev_list_lock);
968 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
969 spin_unlock_irq(&parent->port->dev_list_lock);
971 res = sas_discover_expander(child);
972 if (res) {
973 sas_rphy_delete(rphy);
974 spin_lock_irq(&parent->port->dev_list_lock);
975 list_del(&child->dev_list_node);
976 spin_unlock_irq(&parent->port->dev_list_lock);
977 sas_put_device(child);
978 return NULL;
980 list_add_tail(&child->siblings, &parent->ex_dev.children);
981 return child;
984 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
986 struct expander_device *ex = &dev->ex_dev;
987 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
988 struct domain_device *child = NULL;
989 int res = 0;
991 /* Phy state */
992 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
993 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
994 res = sas_ex_phy_discover(dev, phy_id);
995 if (res)
996 return res;
999 /* Parent and domain coherency */
1000 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001 SAS_ADDR(dev->port->sas_addr))) {
1002 sas_add_parent_port(dev, phy_id);
1003 return 0;
1005 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006 SAS_ADDR(dev->parent->sas_addr))) {
1007 sas_add_parent_port(dev, phy_id);
1008 if (ex_phy->routing_attr == TABLE_ROUTING)
1009 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010 return 0;
1013 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1016 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1021 return 0;
1022 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023 return 0;
1025 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030 "phy 0x%x\n", ex_phy->attached_dev_type,
1031 SAS_ADDR(dev->sas_addr),
1032 phy_id);
1033 return 0;
1036 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037 if (res) {
1038 SAS_DPRINTK("configure routing for dev %016llx "
1039 "reported 0x%x. Forgotten\n",
1040 SAS_ADDR(ex_phy->attached_sas_addr), res);
1041 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042 return res;
1045 if (sas_ex_join_wide_port(dev, phy_id)) {
1046 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048 return res;
1051 switch (ex_phy->attached_dev_type) {
1052 case SAS_END_DEVICE:
1053 case SAS_SATA_PENDING:
1054 child = sas_ex_discover_end_dev(dev, phy_id);
1055 break;
1056 case SAS_FANOUT_EXPANDER_DEVICE:
1057 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059 "attached to ex %016llx phy 0x%x\n",
1060 SAS_ADDR(ex_phy->attached_sas_addr),
1061 ex_phy->attached_phy_id,
1062 SAS_ADDR(dev->sas_addr),
1063 phy_id);
1064 sas_ex_disable_phy(dev, phy_id);
1065 break;
1066 } else
1067 memcpy(dev->port->disc.fanout_sas_addr,
1068 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069 /* fallthrough */
1070 case SAS_EDGE_EXPANDER_DEVICE:
1071 child = sas_ex_discover_expander(dev, phy_id);
1072 break;
1073 default:
1074 break;
1077 if (child) {
1078 int i;
1080 for (i = 0; i < ex->num_phys; i++) {
1081 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083 continue;
1085 * Due to races, the phy might not get added to the
1086 * wide port, so we add the phy to the wide port here.
1088 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089 SAS_ADDR(child->sas_addr)) {
1090 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091 if (sas_ex_join_wide_port(dev, i))
1092 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1099 return res;
1102 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1104 struct expander_device *ex = &dev->ex_dev;
1105 int i;
1107 for (i = 0; i < ex->num_phys; i++) {
1108 struct ex_phy *phy = &ex->ex_phy[i];
1110 if (phy->phy_state == PHY_VACANT ||
1111 phy->phy_state == PHY_NOT_PRESENT)
1112 continue;
1114 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1118 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1120 return 1;
1123 return 0;
1126 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1128 struct expander_device *ex = &dev->ex_dev;
1129 struct domain_device *child;
1130 u8 sub_addr[8] = {0, };
1132 list_for_each_entry(child, &ex->children, siblings) {
1133 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135 continue;
1136 if (sub_addr[0] == 0) {
1137 sas_find_sub_addr(child, sub_addr);
1138 continue;
1139 } else {
1140 u8 s2[8];
1142 if (sas_find_sub_addr(child, s2) &&
1143 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1145 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146 "diverges from subtractive "
1147 "boundary %016llx\n",
1148 SAS_ADDR(dev->sas_addr),
1149 SAS_ADDR(child->sas_addr),
1150 SAS_ADDR(s2),
1151 SAS_ADDR(sub_addr));
1153 sas_ex_disable_port(child, s2);
1157 return 0;
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1167 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1169 struct expander_device *ex = &dev->ex_dev;
1170 int i = 0, end = ex->num_phys;
1171 int res = 0;
1173 if (0 <= single && single < end) {
1174 i = single;
1175 end = i+1;
1178 for ( ; i < end; i++) {
1179 struct ex_phy *ex_phy = &ex->ex_phy[i];
1181 if (ex_phy->phy_state == PHY_VACANT ||
1182 ex_phy->phy_state == PHY_NOT_PRESENT ||
1183 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184 continue;
1186 switch (ex_phy->linkrate) {
1187 case SAS_PHY_DISABLED:
1188 case SAS_PHY_RESET_PROBLEM:
1189 case SAS_SATA_PORT_SELECTOR:
1190 continue;
1191 default:
1192 res = sas_ex_discover_dev(dev, i);
1193 if (res)
1194 break;
1195 continue;
1199 if (!res)
1200 sas_check_level_subtractive_boundary(dev);
1202 return res;
1205 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1207 struct expander_device *ex = &dev->ex_dev;
1208 int i;
1209 u8 *sub_sas_addr = NULL;
1211 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212 return 0;
1214 for (i = 0; i < ex->num_phys; i++) {
1215 struct ex_phy *phy = &ex->ex_phy[i];
1217 if (phy->phy_state == PHY_VACANT ||
1218 phy->phy_state == PHY_NOT_PRESENT)
1219 continue;
1221 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1225 if (!sub_sas_addr)
1226 sub_sas_addr = &phy->attached_sas_addr[0];
1227 else if (SAS_ADDR(sub_sas_addr) !=
1228 SAS_ADDR(phy->attached_sas_addr)) {
1230 SAS_DPRINTK("ex %016llx phy 0x%x "
1231 "diverges(%016llx) on subtractive "
1232 "boundary(%016llx). Disabled\n",
1233 SAS_ADDR(dev->sas_addr), i,
1234 SAS_ADDR(phy->attached_sas_addr),
1235 SAS_ADDR(sub_sas_addr));
1236 sas_ex_disable_phy(dev, i);
1240 return 0;
1243 static void sas_print_parent_topology_bug(struct domain_device *child,
1244 struct ex_phy *parent_phy,
1245 struct ex_phy *child_phy)
1247 static const char *ex_type[] = {
1248 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1251 struct domain_device *parent = child->parent;
1253 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254 "phy 0x%x has %c:%c routing link!\n",
1256 ex_type[parent->dev_type],
1257 SAS_ADDR(parent->sas_addr),
1258 parent_phy->phy_id,
1260 ex_type[child->dev_type],
1261 SAS_ADDR(child->sas_addr),
1262 child_phy->phy_id,
1264 sas_route_char(parent, parent_phy),
1265 sas_route_char(child, child_phy));
1268 static int sas_check_eeds(struct domain_device *child,
1269 struct ex_phy *parent_phy,
1270 struct ex_phy *child_phy)
1272 int res = 0;
1273 struct domain_device *parent = child->parent;
1275 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276 res = -ENODEV;
1277 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278 "phy S:0x%x, while there is a fanout ex %016llx\n",
1279 SAS_ADDR(parent->sas_addr),
1280 parent_phy->phy_id,
1281 SAS_ADDR(child->sas_addr),
1282 child_phy->phy_id,
1283 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286 SAS_ADDR_SIZE);
1287 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288 SAS_ADDR_SIZE);
1289 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290 SAS_ADDR(parent->sas_addr)) ||
1291 (SAS_ADDR(parent->port->disc.eeds_a) ==
1292 SAS_ADDR(child->sas_addr)))
1294 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295 SAS_ADDR(parent->sas_addr)) ||
1296 (SAS_ADDR(parent->port->disc.eeds_b) ==
1297 SAS_ADDR(child->sas_addr))))
1299 else {
1300 res = -ENODEV;
1301 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302 "phy 0x%x link forms a third EEDS!\n",
1303 SAS_ADDR(parent->sas_addr),
1304 parent_phy->phy_id,
1305 SAS_ADDR(child->sas_addr),
1306 child_phy->phy_id);
1309 return res;
1312 /* Here we spill over 80 columns. It is intentional.
1314 static int sas_check_parent_topology(struct domain_device *child)
1316 struct expander_device *child_ex = &child->ex_dev;
1317 struct expander_device *parent_ex;
1318 int i;
1319 int res = 0;
1321 if (!child->parent)
1322 return 0;
1324 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326 return 0;
1328 parent_ex = &child->parent->ex_dev;
1330 for (i = 0; i < parent_ex->num_phys; i++) {
1331 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332 struct ex_phy *child_phy;
1334 if (parent_phy->phy_state == PHY_VACANT ||
1335 parent_phy->phy_state == PHY_NOT_PRESENT)
1336 continue;
1338 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339 continue;
1341 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1343 switch (child->parent->dev_type) {
1344 case SAS_EDGE_EXPANDER_DEVICE:
1345 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347 child_phy->routing_attr != TABLE_ROUTING) {
1348 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349 res = -ENODEV;
1351 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353 res = sas_check_eeds(child, parent_phy, child_phy);
1354 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1355 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356 res = -ENODEV;
1358 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360 (child_phy->routing_attr == TABLE_ROUTING &&
1361 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362 /* All good */;
1363 } else {
1364 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365 res = -ENODEV;
1368 break;
1369 case SAS_FANOUT_EXPANDER_DEVICE:
1370 if (parent_phy->routing_attr != TABLE_ROUTING ||
1371 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373 res = -ENODEV;
1375 break;
1376 default:
1377 break;
1381 return res;
1384 #define RRI_REQ_SIZE 16
1385 #define RRI_RESP_SIZE 44
1387 static int sas_configure_present(struct domain_device *dev, int phy_id,
1388 u8 *sas_addr, int *index, int *present)
1390 int i, res = 0;
1391 struct expander_device *ex = &dev->ex_dev;
1392 struct ex_phy *phy = &ex->ex_phy[phy_id];
1393 u8 *rri_req;
1394 u8 *rri_resp;
1396 *present = 0;
1397 *index = 0;
1399 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400 if (!rri_req)
1401 return -ENOMEM;
1403 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404 if (!rri_resp) {
1405 kfree(rri_req);
1406 return -ENOMEM;
1409 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410 rri_req[9] = phy_id;
1412 for (i = 0; i < ex->max_route_indexes ; i++) {
1413 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415 RRI_RESP_SIZE);
1416 if (res)
1417 goto out;
1418 res = rri_resp[2];
1419 if (res == SMP_RESP_NO_INDEX) {
1420 SAS_DPRINTK("overflow of indexes: dev %016llx "
1421 "phy 0x%x index 0x%x\n",
1422 SAS_ADDR(dev->sas_addr), phy_id, i);
1423 goto out;
1424 } else if (res != SMP_RESP_FUNC_ACC) {
1425 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426 "result 0x%x\n", __func__,
1427 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428 goto out;
1430 if (SAS_ADDR(sas_addr) != 0) {
1431 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432 *index = i;
1433 if ((rri_resp[12] & 0x80) == 0x80)
1434 *present = 0;
1435 else
1436 *present = 1;
1437 goto out;
1438 } else if (SAS_ADDR(rri_resp+16) == 0) {
1439 *index = i;
1440 *present = 0;
1441 goto out;
1443 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1444 phy->last_da_index < i) {
1445 phy->last_da_index = i;
1446 *index = i;
1447 *present = 0;
1448 goto out;
1451 res = -1;
1452 out:
1453 kfree(rri_req);
1454 kfree(rri_resp);
1455 return res;
1458 #define CRI_REQ_SIZE 44
1459 #define CRI_RESP_SIZE 8
1461 static int sas_configure_set(struct domain_device *dev, int phy_id,
1462 u8 *sas_addr, int index, int include)
1464 int res;
1465 u8 *cri_req;
1466 u8 *cri_resp;
1468 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469 if (!cri_req)
1470 return -ENOMEM;
1472 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473 if (!cri_resp) {
1474 kfree(cri_req);
1475 return -ENOMEM;
1478 cri_req[1] = SMP_CONF_ROUTE_INFO;
1479 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480 cri_req[9] = phy_id;
1481 if (SAS_ADDR(sas_addr) == 0 || !include)
1482 cri_req[12] |= 0x80;
1483 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1485 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486 CRI_RESP_SIZE);
1487 if (res)
1488 goto out;
1489 res = cri_resp[2];
1490 if (res == SMP_RESP_NO_INDEX) {
1491 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492 "index 0x%x\n",
1493 SAS_ADDR(dev->sas_addr), phy_id, index);
1495 out:
1496 kfree(cri_req);
1497 kfree(cri_resp);
1498 return res;
1501 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502 u8 *sas_addr, int include)
1504 int index;
1505 int present;
1506 int res;
1508 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509 if (res)
1510 return res;
1511 if (include ^ present)
1512 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1514 return res;
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
1523 static int sas_configure_parent(struct domain_device *parent,
1524 struct domain_device *child,
1525 u8 *sas_addr, int include)
1527 struct expander_device *ex_parent = &parent->ex_dev;
1528 int res = 0;
1529 int i;
1531 if (parent->parent) {
1532 res = sas_configure_parent(parent->parent, parent, sas_addr,
1533 include);
1534 if (res)
1535 return res;
1538 if (ex_parent->conf_route_table == 0) {
1539 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540 SAS_ADDR(parent->sas_addr));
1541 return 0;
1544 for (i = 0; i < ex_parent->num_phys; i++) {
1545 struct ex_phy *phy = &ex_parent->ex_phy[i];
1547 if ((phy->routing_attr == TABLE_ROUTING) &&
1548 (SAS_ADDR(phy->attached_sas_addr) ==
1549 SAS_ADDR(child->sas_addr))) {
1550 res = sas_configure_phy(parent, i, sas_addr, include);
1551 if (res)
1552 return res;
1556 return res;
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1564 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1566 if (dev->parent)
1567 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568 return 0;
1571 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1573 if (dev->parent)
1574 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575 return 0;
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1582 * See comment in sas_discover_sata().
1584 static int sas_discover_expander(struct domain_device *dev)
1586 int res;
1588 res = sas_notify_lldd_dev_found(dev);
1589 if (res)
1590 return res;
1592 res = sas_ex_general(dev);
1593 if (res)
1594 goto out_err;
1595 res = sas_ex_manuf_info(dev);
1596 if (res)
1597 goto out_err;
1599 res = sas_expander_discover(dev);
1600 if (res) {
1601 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602 SAS_ADDR(dev->sas_addr), res);
1603 goto out_err;
1606 sas_check_ex_subtractive_boundary(dev);
1607 res = sas_check_parent_topology(dev);
1608 if (res)
1609 goto out_err;
1610 return 0;
1611 out_err:
1612 sas_notify_lldd_dev_gone(dev);
1613 return res;
1616 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1618 int res = 0;
1619 struct domain_device *dev;
1621 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624 struct sas_expander_device *ex =
1625 rphy_to_expander_device(dev->rphy);
1627 if (level == ex->level)
1628 res = sas_ex_discover_devices(dev, -1);
1629 else if (level > 0)
1630 res = sas_ex_discover_devices(port->port_dev, -1);
1635 return res;
1638 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1640 int res;
1641 int level;
1643 do {
1644 level = port->disc.max_level;
1645 res = sas_ex_level_discovery(port, level);
1646 mb();
1647 } while (level < port->disc.max_level);
1649 return res;
1652 int sas_discover_root_expander(struct domain_device *dev)
1654 int res;
1655 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1657 res = sas_rphy_add(dev->rphy);
1658 if (res)
1659 goto out_err;
1661 ex->level = dev->port->disc.max_level; /* 0 */
1662 res = sas_discover_expander(dev);
1663 if (res)
1664 goto out_err2;
1666 sas_ex_bfs_disc(dev->port);
1668 return res;
1670 out_err2:
1671 sas_rphy_remove(dev->rphy);
1672 out_err:
1673 return res;
1676 /* ---------- Domain revalidation ---------- */
1678 static int sas_get_phy_discover(struct domain_device *dev,
1679 int phy_id, struct smp_resp *disc_resp)
1681 int res;
1682 u8 *disc_req;
1684 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685 if (!disc_req)
1686 return -ENOMEM;
1688 disc_req[1] = SMP_DISCOVER;
1689 disc_req[9] = phy_id;
1691 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692 disc_resp, DISCOVER_RESP_SIZE);
1693 if (res)
1694 goto out;
1695 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696 res = disc_resp->result;
1697 goto out;
1699 out:
1700 kfree(disc_req);
1701 return res;
1704 static int sas_get_phy_change_count(struct domain_device *dev,
1705 int phy_id, int *pcc)
1707 int res;
1708 struct smp_resp *disc_resp;
1710 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711 if (!disc_resp)
1712 return -ENOMEM;
1714 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715 if (!res)
1716 *pcc = disc_resp->disc.change_count;
1718 kfree(disc_resp);
1719 return res;
1722 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723 u8 *sas_addr, enum sas_device_type *type)
1725 int res;
1726 struct smp_resp *disc_resp;
1727 struct discover_resp *dr;
1729 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730 if (!disc_resp)
1731 return -ENOMEM;
1732 dr = &disc_resp->disc;
1734 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735 if (res == 0) {
1736 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737 *type = to_dev_type(dr);
1738 if (*type == 0)
1739 memset(sas_addr, 0, 8);
1741 kfree(disc_resp);
1742 return res;
1745 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746 int from_phy, bool update)
1748 struct expander_device *ex = &dev->ex_dev;
1749 int res = 0;
1750 int i;
1752 for (i = from_phy; i < ex->num_phys; i++) {
1753 int phy_change_count = 0;
1755 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756 switch (res) {
1757 case SMP_RESP_PHY_VACANT:
1758 case SMP_RESP_NO_PHY:
1759 continue;
1760 case SMP_RESP_FUNC_ACC:
1761 break;
1762 default:
1763 return res;
1766 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767 if (update)
1768 ex->ex_phy[i].phy_change_count =
1769 phy_change_count;
1770 *phy_id = i;
1771 return 0;
1774 return 0;
1777 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1779 int res;
1780 u8 *rg_req;
1781 struct smp_resp *rg_resp;
1783 rg_req = alloc_smp_req(RG_REQ_SIZE);
1784 if (!rg_req)
1785 return -ENOMEM;
1787 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788 if (!rg_resp) {
1789 kfree(rg_req);
1790 return -ENOMEM;
1793 rg_req[1] = SMP_REPORT_GENERAL;
1795 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796 RG_RESP_SIZE);
1797 if (res)
1798 goto out;
1799 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800 res = rg_resp->result;
1801 goto out;
1804 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1805 out:
1806 kfree(rg_resp);
1807 kfree(rg_req);
1808 return res;
1811 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1825 static int sas_find_bcast_dev(struct domain_device *dev,
1826 struct domain_device **src_dev)
1828 struct expander_device *ex = &dev->ex_dev;
1829 int ex_change_count = -1;
1830 int phy_id = -1;
1831 int res;
1832 struct domain_device *ch;
1834 res = sas_get_ex_change_count(dev, &ex_change_count);
1835 if (res)
1836 goto out;
1837 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838 /* Just detect if this expander phys phy change count changed,
1839 * in order to determine if this expander originate BROADCAST,
1840 * and do not update phy change count field in our structure.
1842 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843 if (phy_id != -1) {
1844 *src_dev = dev;
1845 ex->ex_change_count = ex_change_count;
1846 SAS_DPRINTK("Expander phy change count has changed\n");
1847 return res;
1848 } else
1849 SAS_DPRINTK("Expander phys DID NOT change\n");
1851 list_for_each_entry(ch, &ex->children, siblings) {
1852 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853 res = sas_find_bcast_dev(ch, src_dev);
1854 if (*src_dev)
1855 return res;
1858 out:
1859 return res;
1862 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1864 struct expander_device *ex = &dev->ex_dev;
1865 struct domain_device *child, *n;
1867 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868 set_bit(SAS_DEV_GONE, &child->state);
1869 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871 sas_unregister_ex_tree(port, child);
1872 else
1873 sas_unregister_dev(port, child);
1875 sas_unregister_dev(port, dev);
1878 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879 int phy_id, bool last)
1881 struct expander_device *ex_dev = &parent->ex_dev;
1882 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883 struct domain_device *child, *n, *found = NULL;
1884 if (last) {
1885 list_for_each_entry_safe(child, n,
1886 &ex_dev->children, siblings) {
1887 if (SAS_ADDR(child->sas_addr) ==
1888 SAS_ADDR(phy->attached_sas_addr)) {
1889 set_bit(SAS_DEV_GONE, &child->state);
1890 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892 sas_unregister_ex_tree(parent->port, child);
1893 else
1894 sas_unregister_dev(parent->port, child);
1895 found = child;
1896 break;
1899 sas_disable_routing(parent, phy->attached_sas_addr);
1901 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902 if (phy->port) {
1903 sas_port_delete_phy(phy->port, phy->phy);
1904 sas_device_set_phy(found, phy->port);
1905 if (phy->port->num_phys == 0)
1906 sas_port_delete(phy->port);
1907 phy->port = NULL;
1911 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912 const int level)
1914 struct expander_device *ex_root = &root->ex_dev;
1915 struct domain_device *child;
1916 int res = 0;
1918 list_for_each_entry(child, &ex_root->children, siblings) {
1919 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921 struct sas_expander_device *ex =
1922 rphy_to_expander_device(child->rphy);
1924 if (level > ex->level)
1925 res = sas_discover_bfs_by_root_level(child,
1926 level);
1927 else if (level == ex->level)
1928 res = sas_ex_discover_devices(child, -1);
1931 return res;
1934 static int sas_discover_bfs_by_root(struct domain_device *dev)
1936 int res;
1937 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938 int level = ex->level+1;
1940 res = sas_ex_discover_devices(dev, -1);
1941 if (res)
1942 goto out;
1943 do {
1944 res = sas_discover_bfs_by_root_level(dev, level);
1945 mb();
1946 level += 1;
1947 } while (level <= dev->port->disc.max_level);
1948 out:
1949 return res;
1952 static int sas_discover_new(struct domain_device *dev, int phy_id)
1954 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955 struct domain_device *child;
1956 int res;
1958 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959 SAS_ADDR(dev->sas_addr), phy_id);
1960 res = sas_ex_phy_discover(dev, phy_id);
1961 if (res)
1962 return res;
1964 if (sas_ex_join_wide_port(dev, phy_id))
1965 return 0;
1967 res = sas_ex_discover_devices(dev, phy_id);
1968 if (res)
1969 return res;
1970 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971 if (SAS_ADDR(child->sas_addr) ==
1972 SAS_ADDR(ex_phy->attached_sas_addr)) {
1973 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975 res = sas_discover_bfs_by_root(child);
1976 break;
1979 return res;
1982 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1984 if (old == new)
1985 return true;
1987 /* treat device directed resets as flutter, if we went
1988 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1990 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992 return true;
1994 return false;
1997 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1999 struct expander_device *ex = &dev->ex_dev;
2000 struct ex_phy *phy = &ex->ex_phy[phy_id];
2001 enum sas_device_type type = SAS_PHY_UNUSED;
2002 u8 sas_addr[8];
2003 int res;
2005 memset(sas_addr, 0, 8);
2006 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007 switch (res) {
2008 case SMP_RESP_NO_PHY:
2009 phy->phy_state = PHY_NOT_PRESENT;
2010 sas_unregister_devs_sas_addr(dev, phy_id, last);
2011 return res;
2012 case SMP_RESP_PHY_VACANT:
2013 phy->phy_state = PHY_VACANT;
2014 sas_unregister_devs_sas_addr(dev, phy_id, last);
2015 return res;
2016 case SMP_RESP_FUNC_ACC:
2017 break;
2018 case -ECOMM:
2019 break;
2020 default:
2021 return res;
2024 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025 phy->phy_state = PHY_EMPTY;
2026 sas_unregister_devs_sas_addr(dev, phy_id, last);
2027 return res;
2028 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029 dev_type_flutter(type, phy->attached_dev_type)) {
2030 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031 char *action = "";
2033 sas_ex_phy_discover(dev, phy_id);
2035 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036 action = ", needs recovery";
2037 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038 SAS_ADDR(dev->sas_addr), phy_id, action);
2039 return res;
2042 /* delete the old link */
2043 if (SAS_ADDR(phy->attached_sas_addr) &&
2044 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046 SAS_ADDR(dev->sas_addr), phy_id,
2047 SAS_ADDR(phy->attached_sas_addr));
2048 sas_unregister_devs_sas_addr(dev, phy_id, last);
2051 return sas_discover_new(dev, phy_id);
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered. Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2068 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2070 struct expander_device *ex = &dev->ex_dev;
2071 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072 int res = 0;
2073 int i;
2074 bool last = true; /* is this the last phy of the port */
2076 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077 SAS_ADDR(dev->sas_addr), phy_id);
2079 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080 for (i = 0; i < ex->num_phys; i++) {
2081 struct ex_phy *phy = &ex->ex_phy[i];
2083 if (i == phy_id)
2084 continue;
2085 if (SAS_ADDR(phy->attached_sas_addr) ==
2086 SAS_ADDR(changed_phy->attached_sas_addr)) {
2087 SAS_DPRINTK("phy%d part of wide port with "
2088 "phy%d\n", phy_id, i);
2089 last = false;
2090 break;
2093 res = sas_rediscover_dev(dev, phy_id, last);
2094 } else
2095 res = sas_discover_new(dev, phy_id);
2096 return res;
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered. Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2108 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2110 int res;
2111 struct domain_device *dev = NULL;
2113 res = sas_find_bcast_dev(port_dev, &dev);
2114 while (res == 0 && dev) {
2115 struct expander_device *ex = &dev->ex_dev;
2116 int i = 0, phy_id;
2118 do {
2119 phy_id = -1;
2120 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121 if (phy_id == -1)
2122 break;
2123 res = sas_rediscover(dev, phy_id);
2124 i = phy_id + 1;
2125 } while (i < ex->num_phys);
2127 dev = NULL;
2128 res = sas_find_bcast_dev(port_dev, &dev);
2130 return res;
2133 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134 struct request *req)
2136 struct domain_device *dev;
2137 int ret, type;
2138 struct request *rsp = req->next_rq;
2140 if (!rsp) {
2141 printk("%s: space for a smp response is missing\n",
2142 __func__);
2143 return -EINVAL;
2146 /* no rphy means no smp target support (ie aic94xx host) */
2147 if (!rphy)
2148 return sas_smp_host_handler(shost, req, rsp);
2150 type = rphy->identify.device_type;
2152 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153 type != SAS_FANOUT_EXPANDER_DEVICE) {
2154 printk("%s: can we send a smp request to a device?\n",
2155 __func__);
2156 return -EINVAL;
2159 dev = sas_find_dev_by_rphy(rphy);
2160 if (!dev) {
2161 printk("%s: fail to find a domain_device?\n", __func__);
2162 return -EINVAL;
2165 /* do we need to support multiple segments? */
2166 if (bio_segments(req->bio) > 1 || bio_segments(rsp->bio) > 1) {
2167 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2168 __func__, bio_segments(req->bio), blk_rq_bytes(req),
2169 bio_segments(rsp->bio), blk_rq_bytes(rsp));
2170 return -EINVAL;
2173 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174 bio_data(rsp->bio), blk_rq_bytes(rsp));
2175 if (ret > 0) {
2176 /* positive number is the untransferred residual */
2177 rsp->resid_len = ret;
2178 req->resid_len = 0;
2179 ret = 0;
2180 } else if (ret == 0) {
2181 rsp->resid_len = 0;
2182 req->resid_len = 0;
2185 return ret;