hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blobad43b987bc5753fd35dd367a84eef6b0f285250d
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
67 #undef SP
69 struct kmem_cache *scsi_sdb_cache;
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
76 #define SCSI_QUEUE_DELAY 3
79 * Function: scsi_unprep_request()
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
84 * Arguments: req - request to unprepare
86 * Lock status: Assumed that no locks are held upon entry.
88 * Returns: Nothing.
90 static void scsi_unprep_request(struct request *req)
92 struct scsi_cmnd *cmd = req->special;
94 blk_unprep_request(req);
95 req->special = NULL;
97 scsi_put_command(cmd);
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
110 * file.
112 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
114 struct Scsi_Host *host = cmd->device->host;
115 struct scsi_device *device = cmd->device;
116 struct scsi_target *starget = scsi_target(device);
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
124 * Set the appropriate busy bit for the device/host.
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
136 switch (reason) {
137 case SCSI_MLQUEUE_HOST_BUSY:
138 host->host_blocked = host->max_host_blocked;
139 break;
140 case SCSI_MLQUEUE_DEVICE_BUSY:
141 case SCSI_MLQUEUE_EH_RETRY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
153 if (unbusy)
154 scsi_device_unbusy(device);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue. Schedule requeue work under
159 * lock such that the kblockd_schedule_work() call happens
160 * before blk_cleanup_queue() finishes.
162 spin_lock_irqsave(q->queue_lock, flags);
163 blk_requeue_request(q, cmd->request);
164 kblockd_schedule_work(q, &device->requeue_work);
165 spin_unlock_irqrestore(q->queue_lock, flags);
169 * Function: scsi_queue_insert()
171 * Purpose: Insert a command in the midlevel queue.
173 * Arguments: cmd - command that we are adding to queue.
174 * reason - why we are inserting command to queue.
176 * Lock status: Assumed that lock is not held upon entry.
178 * Returns: Nothing.
180 * Notes: We do this for one of two cases. Either the host is busy
181 * and it cannot accept any more commands for the time being,
182 * or the device returned QUEUE_FULL and can accept no more
183 * commands.
184 * Notes: This could be called either from an interrupt context or a
185 * normal process context.
187 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 __scsi_queue_insert(cmd, reason, 1);
192 * scsi_execute - insert request and wait for the result
193 * @sdev: scsi device
194 * @cmd: scsi command
195 * @data_direction: data direction
196 * @buffer: data buffer
197 * @bufflen: len of buffer
198 * @sense: optional sense buffer
199 * @timeout: request timeout in seconds
200 * @retries: number of times to retry request
201 * @flags: or into request flags;
202 * @resid: optional residual length
204 * returns the req->errors value which is the scsi_cmnd result
205 * field.
207 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208 int data_direction, void *buffer, unsigned bufflen,
209 unsigned char *sense, int timeout, int retries, int flags,
210 int *resid)
212 struct request *req;
213 int write = (data_direction == DMA_TO_DEVICE);
214 int ret = DRIVER_ERROR << 24;
216 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
217 if (!req)
218 return ret;
220 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
221 buffer, bufflen, __GFP_WAIT))
222 goto out;
224 req->cmd_len = COMMAND_SIZE(cmd[0]);
225 memcpy(req->cmd, cmd, req->cmd_len);
226 req->sense = sense;
227 req->sense_len = 0;
228 req->retries = retries;
229 req->timeout = timeout;
230 req->cmd_type = REQ_TYPE_BLOCK_PC;
231 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
234 * head injection *required* here otherwise quiesce won't work
236 blk_execute_rq(req->q, NULL, req, 1);
239 * Some devices (USB mass-storage in particular) may transfer
240 * garbage data together with a residue indicating that the data
241 * is invalid. Prevent the garbage from being misinterpreted
242 * and prevent security leaks by zeroing out the excess data.
244 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
245 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247 if (resid)
248 *resid = req->resid_len;
249 ret = req->errors;
250 out:
251 blk_put_request(req);
253 return ret;
255 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid, int flags)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, flags, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req_flags);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 void scsi_device_unbusy(struct scsi_device *sdev)
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev->request_queue);
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
358 scsi_device_put(sdev);
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
369 return 0;
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
385 return 0;
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
395 * Returns: Nothing
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue *q)
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
407 shost = sdev->host;
408 if (scsi_target(sdev)->single_lun)
409 scsi_single_lun_run(sdev);
411 spin_lock_irqsave(shost->host_lock, flags);
412 list_splice_init(&shost->starved_list, &starved_list);
414 while (!list_empty(&starved_list)) {
415 struct request_queue *slq;
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
421 * starved_list.
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
427 if (scsi_host_is_busy(shost))
428 break;
430 sdev = list_entry(starved_list.next,
431 struct scsi_device, starved_entry);
432 list_del_init(&sdev->starved_entry);
433 if (scsi_target_is_busy(scsi_target(sdev))) {
434 list_move_tail(&sdev->starved_entry,
435 &shost->starved_list);
436 continue;
440 * Once we drop the host lock, a racing scsi_remove_device()
441 * call may remove the sdev from the starved list and destroy
442 * it and the queue. Mitigate by taking a reference to the
443 * queue and never touching the sdev again after we drop the
444 * host lock. Note: if __scsi_remove_device() invokes
445 * blk_cleanup_queue() before the queue is run from this
446 * function then blk_run_queue() will return immediately since
447 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
449 slq = sdev->request_queue;
450 if (!blk_get_queue(slq))
451 continue;
452 spin_unlock_irqrestore(shost->host_lock, flags);
454 blk_run_queue(slq);
455 blk_put_queue(slq);
457 spin_lock_irqsave(shost->host_lock, flags);
459 /* put any unprocessed entries back */
460 list_splice(&starved_list, &shost->starved_list);
461 spin_unlock_irqrestore(shost->host_lock, flags);
463 blk_run_queue(q);
466 void scsi_requeue_run_queue(struct work_struct *work)
468 struct scsi_device *sdev;
469 struct request_queue *q;
471 sdev = container_of(work, struct scsi_device, requeue_work);
472 q = sdev->request_queue;
473 scsi_run_queue(q);
477 * Function: scsi_requeue_command()
479 * Purpose: Handle post-processing of completed commands.
481 * Arguments: q - queue to operate on
482 * cmd - command that may need to be requeued.
484 * Returns: Nothing
486 * Notes: After command completion, there may be blocks left
487 * over which weren't finished by the previous command
488 * this can be for a number of reasons - the main one is
489 * I/O errors in the middle of the request, in which case
490 * we need to request the blocks that come after the bad
491 * sector.
492 * Notes: Upon return, cmd is a stale pointer.
494 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
496 struct scsi_device *sdev = cmd->device;
497 struct request *req = cmd->request;
498 unsigned long flags;
501 * We need to hold a reference on the device to avoid the queue being
502 * killed after the unlock and before scsi_run_queue is invoked which
503 * may happen because scsi_unprep_request() puts the command which
504 * releases its reference on the device.
506 get_device(&sdev->sdev_gendev);
508 spin_lock_irqsave(q->queue_lock, flags);
509 scsi_unprep_request(req);
510 blk_requeue_request(q, req);
511 spin_unlock_irqrestore(q->queue_lock, flags);
513 scsi_run_queue(q);
515 put_device(&sdev->sdev_gendev);
518 void scsi_next_command(struct scsi_cmnd *cmd)
520 struct scsi_device *sdev = cmd->device;
521 struct request_queue *q = sdev->request_queue;
523 /* need to hold a reference on the device before we let go of the cmd */
524 get_device(&sdev->sdev_gendev);
526 scsi_put_command(cmd);
527 scsi_run_queue(q);
529 /* ok to remove device now */
530 put_device(&sdev->sdev_gendev);
533 void scsi_run_host_queues(struct Scsi_Host *shost)
535 struct scsi_device *sdev;
537 shost_for_each_device(sdev, shost)
538 scsi_run_queue(sdev->request_queue);
541 static void __scsi_release_buffers(struct scsi_cmnd *, int);
544 * Function: scsi_end_request()
546 * Purpose: Post-processing of completed commands (usually invoked at end
547 * of upper level post-processing and scsi_io_completion).
549 * Arguments: cmd - command that is complete.
550 * error - 0 if I/O indicates success, < 0 for I/O error.
551 * bytes - number of bytes of completed I/O
552 * requeue - indicates whether we should requeue leftovers.
554 * Lock status: Assumed that lock is not held upon entry.
556 * Returns: cmd if requeue required, NULL otherwise.
558 * Notes: This is called for block device requests in order to
559 * mark some number of sectors as complete.
561 * We are guaranteeing that the request queue will be goosed
562 * at some point during this call.
563 * Notes: If cmd was requeued, upon return it will be a stale pointer.
565 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
566 int bytes, int requeue)
568 struct request_queue *q = cmd->device->request_queue;
569 struct request *req = cmd->request;
572 * If there are blocks left over at the end, set up the command
573 * to queue the remainder of them.
575 if (blk_end_request(req, error, bytes)) {
576 /* kill remainder if no retrys */
577 if (error && scsi_noretry_cmd(cmd))
578 blk_end_request_all(req, error);
579 else {
580 if (requeue) {
582 * Bleah. Leftovers again. Stick the
583 * leftovers in the front of the
584 * queue, and goose the queue again.
586 scsi_release_buffers(cmd);
587 scsi_requeue_command(q, cmd);
588 cmd = NULL;
590 return cmd;
595 * This will goose the queue request function at the end, so we don't
596 * need to worry about launching another command.
598 __scsi_release_buffers(cmd, 0);
599 scsi_next_command(cmd);
600 return NULL;
603 static inline unsigned int scsi_sgtable_index(unsigned short nents)
605 unsigned int index;
607 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
609 if (nents <= 8)
610 index = 0;
611 else
612 index = get_count_order(nents) - 3;
614 return index;
617 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
619 struct scsi_host_sg_pool *sgp;
621 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
622 mempool_free(sgl, sgp->pool);
625 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
627 struct scsi_host_sg_pool *sgp;
629 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
630 return mempool_alloc(sgp->pool, gfp_mask);
633 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
634 gfp_t gfp_mask)
636 int ret;
638 BUG_ON(!nents);
640 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
641 gfp_mask, scsi_sg_alloc);
642 if (unlikely(ret))
643 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
644 scsi_sg_free);
646 return ret;
649 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
651 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
654 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
657 if (cmd->sdb.table.nents)
658 scsi_free_sgtable(&cmd->sdb);
660 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
662 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
663 struct scsi_data_buffer *bidi_sdb =
664 cmd->request->next_rq->special;
665 scsi_free_sgtable(bidi_sdb);
666 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
667 cmd->request->next_rq->special = NULL;
670 if (scsi_prot_sg_count(cmd))
671 scsi_free_sgtable(cmd->prot_sdb);
675 * Function: scsi_release_buffers()
677 * Purpose: Completion processing for block device I/O requests.
679 * Arguments: cmd - command that we are bailing.
681 * Lock status: Assumed that no lock is held upon entry.
683 * Returns: Nothing
685 * Notes: In the event that an upper level driver rejects a
686 * command, we must release resources allocated during
687 * the __init_io() function. Primarily this would involve
688 * the scatter-gather table, and potentially any bounce
689 * buffers.
691 void scsi_release_buffers(struct scsi_cmnd *cmd)
693 __scsi_release_buffers(cmd, 1);
695 EXPORT_SYMBOL(scsi_release_buffers);
698 * __scsi_error_from_host_byte - translate SCSI error code into errno
699 * @cmd: SCSI command (unused)
700 * @result: scsi error code
702 * Translate SCSI error code into standard UNIX errno.
703 * Return values:
704 * -ENOLINK temporary transport failure
705 * -EREMOTEIO permanent target failure, do not retry
706 * -EBADE permanent nexus failure, retry on other path
707 * -ENOSPC No write space available
708 * -ENODATA Medium error
709 * -EIO unspecified I/O error
711 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
713 int error = 0;
715 switch(host_byte(result)) {
716 case DID_TRANSPORT_FAILFAST:
717 error = -ENOLINK;
718 break;
719 case DID_TARGET_FAILURE:
720 set_host_byte(cmd, DID_OK);
721 error = -EREMOTEIO;
722 break;
723 case DID_NEXUS_FAILURE:
724 set_host_byte(cmd, DID_OK);
725 error = -EBADE;
726 break;
727 case DID_ALLOC_FAILURE:
728 set_host_byte(cmd, DID_OK);
729 error = -ENOSPC;
730 break;
731 case DID_MEDIUM_ERROR:
732 set_host_byte(cmd, DID_OK);
733 error = -ENODATA;
734 break;
735 default:
736 error = -EIO;
737 break;
740 return error;
744 * Function: scsi_io_completion()
746 * Purpose: Completion processing for block device I/O requests.
748 * Arguments: cmd - command that is finished.
750 * Lock status: Assumed that no lock is held upon entry.
752 * Returns: Nothing
754 * Notes: This function is matched in terms of capabilities to
755 * the function that created the scatter-gather list.
756 * In other words, if there are no bounce buffers
757 * (the normal case for most drivers), we don't need
758 * the logic to deal with cleaning up afterwards.
760 * We must call scsi_end_request(). This will finish off
761 * the specified number of sectors. If we are done, the
762 * command block will be released and the queue function
763 * will be goosed. If we are not done then we have to
764 * figure out what to do next:
766 * a) We can call scsi_requeue_command(). The request
767 * will be unprepared and put back on the queue. Then
768 * a new command will be created for it. This should
769 * be used if we made forward progress, or if we want
770 * to switch from READ(10) to READ(6) for example.
772 * b) We can call scsi_queue_insert(). The request will
773 * be put back on the queue and retried using the same
774 * command as before, possibly after a delay.
776 * c) We can call blk_end_request() with -EIO to fail
777 * the remainder of the request.
779 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
781 int result = cmd->result;
782 struct request_queue *q = cmd->device->request_queue;
783 struct request *req = cmd->request;
784 int error = 0;
785 struct scsi_sense_hdr sshdr;
786 int sense_valid = 0;
787 int sense_deferred = 0;
788 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
789 ACTION_DELAYED_RETRY} action;
790 char *description = NULL;
792 if (result) {
793 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
794 if (sense_valid)
795 sense_deferred = scsi_sense_is_deferred(&sshdr);
798 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
799 if (result) {
800 if (sense_valid && req->sense) {
802 * SG_IO wants current and deferred errors
804 int len = 8 + cmd->sense_buffer[7];
806 if (len > SCSI_SENSE_BUFFERSIZE)
807 len = SCSI_SENSE_BUFFERSIZE;
808 memcpy(req->sense, cmd->sense_buffer, len);
809 req->sense_len = len;
811 if (!sense_deferred)
812 error = __scsi_error_from_host_byte(cmd, result);
815 * __scsi_error_from_host_byte may have reset the host_byte
817 req->errors = cmd->result;
819 req->resid_len = scsi_get_resid(cmd);
821 if (scsi_bidi_cmnd(cmd)) {
823 * Bidi commands Must be complete as a whole,
824 * both sides at once.
826 req->next_rq->resid_len = scsi_in(cmd)->resid;
828 scsi_release_buffers(cmd);
829 blk_end_request_all(req, 0);
831 scsi_next_command(cmd);
832 return;
834 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
836 * Certain non BLOCK_PC requests are commands that don't
837 * actually transfer anything (FLUSH), so cannot use
838 * good_bytes != blk_rq_bytes(req) as the signal for an error.
839 * This sets the error explicitly for the problem case.
841 error = __scsi_error_from_host_byte(cmd, result);
844 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
845 BUG_ON(blk_bidi_rq(req));
848 * Next deal with any sectors which we were able to correctly
849 * handle.
851 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
852 "%d bytes done.\n",
853 blk_rq_sectors(req), good_bytes));
856 * Recovered errors need reporting, but they're always treated
857 * as success, so fiddle the result code here. For BLOCK_PC
858 * we already took a copy of the original into rq->errors which
859 * is what gets returned to the user
861 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
862 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
863 * print since caller wants ATA registers. Only occurs on
864 * SCSI ATA PASS_THROUGH commands when CK_COND=1
866 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
868 else if (!(req->cmd_flags & REQ_QUIET))
869 scsi_print_sense("", cmd);
870 result = 0;
871 /* BLOCK_PC may have set error */
872 error = 0;
876 * A number of bytes were successfully read. If there
877 * are leftovers and there is some kind of error
878 * (result != 0), retry the rest.
880 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
881 return;
883 error = __scsi_error_from_host_byte(cmd, result);
885 if (host_byte(result) == DID_RESET) {
886 /* Third party bus reset or reset for error recovery
887 * reasons. Just retry the command and see what
888 * happens.
890 action = ACTION_RETRY;
891 } else if (sense_valid && !sense_deferred) {
892 switch (sshdr.sense_key) {
893 case UNIT_ATTENTION:
894 if (cmd->device->removable) {
895 /* Detected disc change. Set a bit
896 * and quietly refuse further access.
898 cmd->device->changed = 1;
899 description = "Media Changed";
900 action = ACTION_FAIL;
901 } else {
902 /* Must have been a power glitch, or a
903 * bus reset. Could not have been a
904 * media change, so we just retry the
905 * command and see what happens.
907 action = ACTION_RETRY;
909 break;
910 case ILLEGAL_REQUEST:
911 /* If we had an ILLEGAL REQUEST returned, then
912 * we may have performed an unsupported
913 * command. The only thing this should be
914 * would be a ten byte read where only a six
915 * byte read was supported. Also, on a system
916 * where READ CAPACITY failed, we may have
917 * read past the end of the disk.
919 if ((cmd->device->use_10_for_rw &&
920 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
921 (cmd->cmnd[0] == READ_10 ||
922 cmd->cmnd[0] == WRITE_10)) {
923 /* This will issue a new 6-byte command. */
924 cmd->device->use_10_for_rw = 0;
925 action = ACTION_REPREP;
926 } else if (sshdr.asc == 0x10) /* DIX */ {
927 description = "Host Data Integrity Failure";
928 action = ACTION_FAIL;
929 error = -EILSEQ;
930 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
931 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
932 switch (cmd->cmnd[0]) {
933 case UNMAP:
934 description = "Discard failure";
935 break;
936 case WRITE_SAME:
937 case WRITE_SAME_16:
938 if (cmd->cmnd[1] & 0x8)
939 description = "Discard failure";
940 else
941 description =
942 "Write same failure";
943 break;
944 default:
945 description = "Invalid command failure";
946 break;
948 action = ACTION_FAIL;
949 error = -EREMOTEIO;
950 } else
951 action = ACTION_FAIL;
952 break;
953 case ABORTED_COMMAND:
954 action = ACTION_FAIL;
955 if (sshdr.asc == 0x10) { /* DIF */
956 description = "Target Data Integrity Failure";
957 error = -EILSEQ;
959 break;
960 case NOT_READY:
961 /* If the device is in the process of becoming
962 * ready, or has a temporary blockage, retry.
964 if (sshdr.asc == 0x04) {
965 switch (sshdr.ascq) {
966 case 0x01: /* becoming ready */
967 case 0x04: /* format in progress */
968 case 0x05: /* rebuild in progress */
969 case 0x06: /* recalculation in progress */
970 case 0x07: /* operation in progress */
971 case 0x08: /* Long write in progress */
972 case 0x09: /* self test in progress */
973 case 0x14: /* space allocation in progress */
974 action = ACTION_DELAYED_RETRY;
975 break;
976 default:
977 description = "Device not ready";
978 action = ACTION_FAIL;
979 break;
981 } else {
982 description = "Device not ready";
983 action = ACTION_FAIL;
985 break;
986 case VOLUME_OVERFLOW:
987 /* See SSC3rXX or current. */
988 action = ACTION_FAIL;
989 break;
990 default:
991 description = "Unhandled sense code";
992 action = ACTION_FAIL;
993 break;
995 } else {
996 description = "Unhandled error code";
997 action = ACTION_FAIL;
1000 switch (action) {
1001 case ACTION_FAIL:
1002 /* Give up and fail the remainder of the request */
1003 scsi_release_buffers(cmd);
1004 if (!(req->cmd_flags & REQ_QUIET)) {
1005 if (description)
1006 scmd_printk(KERN_INFO, cmd, "%s\n",
1007 description);
1008 scsi_print_result(cmd);
1009 if (driver_byte(result) & DRIVER_SENSE)
1010 scsi_print_sense("", cmd);
1011 scsi_print_command(cmd);
1013 if (blk_end_request_err(req, error))
1014 scsi_requeue_command(q, cmd);
1015 else
1016 scsi_next_command(cmd);
1017 break;
1018 case ACTION_REPREP:
1019 /* Unprep the request and put it back at the head of the queue.
1020 * A new command will be prepared and issued.
1022 scsi_release_buffers(cmd);
1023 scsi_requeue_command(q, cmd);
1024 break;
1025 case ACTION_RETRY:
1026 /* Retry the same command immediately */
1027 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1028 break;
1029 case ACTION_DELAYED_RETRY:
1030 /* Retry the same command after a delay */
1031 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1032 break;
1036 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1037 gfp_t gfp_mask)
1039 int count;
1042 * If sg table allocation fails, requeue request later.
1044 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1045 gfp_mask))) {
1046 return BLKPREP_DEFER;
1049 req->buffer = NULL;
1052 * Next, walk the list, and fill in the addresses and sizes of
1053 * each segment.
1055 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1056 BUG_ON(count > sdb->table.nents);
1057 sdb->table.nents = count;
1058 sdb->length = blk_rq_bytes(req);
1059 return BLKPREP_OK;
1063 * Function: scsi_init_io()
1065 * Purpose: SCSI I/O initialize function.
1067 * Arguments: cmd - Command descriptor we wish to initialize
1069 * Returns: 0 on success
1070 * BLKPREP_DEFER if the failure is retryable
1071 * BLKPREP_KILL if the failure is fatal
1073 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1075 struct request *rq = cmd->request;
1077 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1078 if (error)
1079 goto err_exit;
1081 if (blk_bidi_rq(rq)) {
1082 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1083 scsi_sdb_cache, GFP_ATOMIC);
1084 if (!bidi_sdb) {
1085 error = BLKPREP_DEFER;
1086 goto err_exit;
1089 rq->next_rq->special = bidi_sdb;
1090 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1091 if (error)
1092 goto err_exit;
1095 if (blk_integrity_rq(rq)) {
1096 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1097 int ivecs, count;
1099 BUG_ON(prot_sdb == NULL);
1100 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1102 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1103 error = BLKPREP_DEFER;
1104 goto err_exit;
1107 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1108 prot_sdb->table.sgl);
1109 BUG_ON(unlikely(count > ivecs));
1110 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1112 cmd->prot_sdb = prot_sdb;
1113 cmd->prot_sdb->table.nents = count;
1116 return BLKPREP_OK ;
1118 err_exit:
1119 scsi_release_buffers(cmd);
1120 cmd->request->special = NULL;
1121 scsi_put_command(cmd);
1122 return error;
1124 EXPORT_SYMBOL(scsi_init_io);
1126 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1127 struct request *req)
1129 struct scsi_cmnd *cmd;
1131 if (!req->special) {
1132 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1133 if (unlikely(!cmd))
1134 return NULL;
1135 req->special = cmd;
1136 } else {
1137 cmd = req->special;
1140 /* pull a tag out of the request if we have one */
1141 cmd->tag = req->tag;
1142 cmd->request = req;
1144 cmd->cmnd = req->cmd;
1145 cmd->prot_op = SCSI_PROT_NORMAL;
1147 return cmd;
1150 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1152 struct scsi_cmnd *cmd;
1153 int ret = scsi_prep_state_check(sdev, req);
1155 if (ret != BLKPREP_OK)
1156 return ret;
1158 cmd = scsi_get_cmd_from_req(sdev, req);
1159 if (unlikely(!cmd))
1160 return BLKPREP_DEFER;
1163 * BLOCK_PC requests may transfer data, in which case they must
1164 * a bio attached to them. Or they might contain a SCSI command
1165 * that does not transfer data, in which case they may optionally
1166 * submit a request without an attached bio.
1168 if (req->bio) {
1169 int ret;
1171 BUG_ON(!req->nr_phys_segments);
1173 ret = scsi_init_io(cmd, GFP_ATOMIC);
1174 if (unlikely(ret))
1175 return ret;
1176 } else {
1177 BUG_ON(blk_rq_bytes(req));
1179 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1180 req->buffer = NULL;
1183 cmd->cmd_len = req->cmd_len;
1184 if (!blk_rq_bytes(req))
1185 cmd->sc_data_direction = DMA_NONE;
1186 else if (rq_data_dir(req) == WRITE)
1187 cmd->sc_data_direction = DMA_TO_DEVICE;
1188 else
1189 cmd->sc_data_direction = DMA_FROM_DEVICE;
1191 cmd->transfersize = blk_rq_bytes(req);
1192 cmd->allowed = req->retries;
1193 return BLKPREP_OK;
1195 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1198 * Setup a REQ_TYPE_FS command. These are simple read/write request
1199 * from filesystems that still need to be translated to SCSI CDBs from
1200 * the ULD.
1202 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1204 struct scsi_cmnd *cmd;
1205 int ret = scsi_prep_state_check(sdev, req);
1207 if (ret != BLKPREP_OK)
1208 return ret;
1210 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1211 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1212 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1213 if (ret != BLKPREP_OK)
1214 return ret;
1218 * Filesystem requests must transfer data.
1220 BUG_ON(!req->nr_phys_segments);
1222 cmd = scsi_get_cmd_from_req(sdev, req);
1223 if (unlikely(!cmd))
1224 return BLKPREP_DEFER;
1226 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1227 return scsi_init_io(cmd, GFP_ATOMIC);
1229 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1231 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1233 int ret = BLKPREP_OK;
1236 * If the device is not in running state we will reject some
1237 * or all commands.
1239 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1240 switch (sdev->sdev_state) {
1241 case SDEV_OFFLINE:
1242 case SDEV_TRANSPORT_OFFLINE:
1244 * If the device is offline we refuse to process any
1245 * commands. The device must be brought online
1246 * before trying any recovery commands.
1248 sdev_printk(KERN_ERR, sdev,
1249 "rejecting I/O to offline device\n");
1250 ret = BLKPREP_KILL;
1251 break;
1252 case SDEV_DEL:
1254 * If the device is fully deleted, we refuse to
1255 * process any commands as well.
1257 sdev_printk(KERN_ERR, sdev,
1258 "rejecting I/O to dead device\n");
1259 ret = BLKPREP_KILL;
1260 break;
1261 case SDEV_QUIESCE:
1262 case SDEV_BLOCK:
1263 case SDEV_CREATED_BLOCK:
1265 * If the devices is blocked we defer normal commands.
1267 if (!(req->cmd_flags & REQ_PREEMPT))
1268 ret = BLKPREP_DEFER;
1269 break;
1270 default:
1272 * For any other not fully online state we only allow
1273 * special commands. In particular any user initiated
1274 * command is not allowed.
1276 if (!(req->cmd_flags & REQ_PREEMPT))
1277 ret = BLKPREP_KILL;
1278 break;
1281 return ret;
1283 EXPORT_SYMBOL(scsi_prep_state_check);
1285 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1287 struct scsi_device *sdev = q->queuedata;
1289 switch (ret) {
1290 case BLKPREP_KILL:
1291 req->errors = DID_NO_CONNECT << 16;
1292 /* release the command and kill it */
1293 if (req->special) {
1294 struct scsi_cmnd *cmd = req->special;
1295 scsi_release_buffers(cmd);
1296 scsi_put_command(cmd);
1297 req->special = NULL;
1299 break;
1300 case BLKPREP_DEFER:
1302 * If we defer, the blk_peek_request() returns NULL, but the
1303 * queue must be restarted, so we schedule a callback to happen
1304 * shortly.
1306 if (sdev->device_busy == 0)
1307 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1308 break;
1309 default:
1310 req->cmd_flags |= REQ_DONTPREP;
1313 return ret;
1315 EXPORT_SYMBOL(scsi_prep_return);
1317 int scsi_prep_fn(struct request_queue *q, struct request *req)
1319 struct scsi_device *sdev = q->queuedata;
1320 int ret = BLKPREP_KILL;
1322 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1323 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1324 return scsi_prep_return(q, req, ret);
1326 EXPORT_SYMBOL(scsi_prep_fn);
1329 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1330 * return 0.
1332 * Called with the queue_lock held.
1334 static inline int scsi_dev_queue_ready(struct request_queue *q,
1335 struct scsi_device *sdev)
1337 if (sdev->device_busy == 0 && sdev->device_blocked) {
1339 * unblock after device_blocked iterates to zero
1341 if (--sdev->device_blocked == 0) {
1342 SCSI_LOG_MLQUEUE(3,
1343 sdev_printk(KERN_INFO, sdev,
1344 "unblocking device at zero depth\n"));
1345 } else {
1346 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1347 return 0;
1350 if (scsi_device_is_busy(sdev))
1351 return 0;
1353 return 1;
1358 * scsi_target_queue_ready: checks if there we can send commands to target
1359 * @sdev: scsi device on starget to check.
1361 * Called with the host lock held.
1363 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1364 struct scsi_device *sdev)
1366 struct scsi_target *starget = scsi_target(sdev);
1368 if (starget->single_lun) {
1369 if (starget->starget_sdev_user &&
1370 starget->starget_sdev_user != sdev)
1371 return 0;
1372 starget->starget_sdev_user = sdev;
1375 if (starget->target_busy == 0 && starget->target_blocked) {
1377 * unblock after target_blocked iterates to zero
1379 if (--starget->target_blocked == 0) {
1380 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1381 "unblocking target at zero depth\n"));
1382 } else
1383 return 0;
1386 if (scsi_target_is_busy(starget)) {
1387 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1388 return 0;
1391 return 1;
1395 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1396 * return 0. We must end up running the queue again whenever 0 is
1397 * returned, else IO can hang.
1399 * Called with host_lock held.
1401 static inline int scsi_host_queue_ready(struct request_queue *q,
1402 struct Scsi_Host *shost,
1403 struct scsi_device *sdev)
1405 if (scsi_host_in_recovery(shost))
1406 return 0;
1407 if (shost->host_busy == 0 && shost->host_blocked) {
1409 * unblock after host_blocked iterates to zero
1411 if (--shost->host_blocked == 0) {
1412 SCSI_LOG_MLQUEUE(3,
1413 printk("scsi%d unblocking host at zero depth\n",
1414 shost->host_no));
1415 } else {
1416 return 0;
1419 if (scsi_host_is_busy(shost)) {
1420 if (list_empty(&sdev->starved_entry))
1421 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1422 return 0;
1425 /* We're OK to process the command, so we can't be starved */
1426 if (!list_empty(&sdev->starved_entry))
1427 list_del_init(&sdev->starved_entry);
1429 return 1;
1433 * Busy state exporting function for request stacking drivers.
1435 * For efficiency, no lock is taken to check the busy state of
1436 * shost/starget/sdev, since the returned value is not guaranteed and
1437 * may be changed after request stacking drivers call the function,
1438 * regardless of taking lock or not.
1440 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1441 * needs to return 'not busy'. Otherwise, request stacking drivers
1442 * may hold requests forever.
1444 static int scsi_lld_busy(struct request_queue *q)
1446 struct scsi_device *sdev = q->queuedata;
1447 struct Scsi_Host *shost;
1449 if (blk_queue_dying(q))
1450 return 0;
1452 shost = sdev->host;
1455 * Ignore host/starget busy state.
1456 * Since block layer does not have a concept of fairness across
1457 * multiple queues, congestion of host/starget needs to be handled
1458 * in SCSI layer.
1460 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1461 return 1;
1463 return 0;
1467 * Kill a request for a dead device
1469 static void scsi_kill_request(struct request *req, struct request_queue *q)
1471 struct scsi_cmnd *cmd = req->special;
1472 struct scsi_device *sdev;
1473 struct scsi_target *starget;
1474 struct Scsi_Host *shost;
1476 blk_start_request(req);
1478 scmd_printk(KERN_INFO, cmd, "killing request\n");
1480 sdev = cmd->device;
1481 starget = scsi_target(sdev);
1482 shost = sdev->host;
1483 scsi_init_cmd_errh(cmd);
1484 cmd->result = DID_NO_CONNECT << 16;
1485 atomic_inc(&cmd->device->iorequest_cnt);
1488 * SCSI request completion path will do scsi_device_unbusy(),
1489 * bump busy counts. To bump the counters, we need to dance
1490 * with the locks as normal issue path does.
1492 sdev->device_busy++;
1493 spin_unlock(sdev->request_queue->queue_lock);
1494 spin_lock(shost->host_lock);
1495 shost->host_busy++;
1496 starget->target_busy++;
1497 spin_unlock(shost->host_lock);
1498 spin_lock(sdev->request_queue->queue_lock);
1500 blk_complete_request(req);
1503 static void scsi_softirq_done(struct request *rq)
1505 struct scsi_cmnd *cmd = rq->special;
1506 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1507 int disposition;
1509 INIT_LIST_HEAD(&cmd->eh_entry);
1511 atomic_inc(&cmd->device->iodone_cnt);
1512 if (cmd->result)
1513 atomic_inc(&cmd->device->ioerr_cnt);
1515 disposition = scsi_decide_disposition(cmd);
1516 if (disposition != SUCCESS &&
1517 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1518 sdev_printk(KERN_ERR, cmd->device,
1519 "timing out command, waited %lus\n",
1520 wait_for/HZ);
1521 disposition = SUCCESS;
1524 scsi_log_completion(cmd, disposition);
1526 switch (disposition) {
1527 case SUCCESS:
1528 scsi_finish_command(cmd);
1529 break;
1530 case NEEDS_RETRY:
1531 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1532 break;
1533 case ADD_TO_MLQUEUE:
1534 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1535 break;
1536 default:
1537 if (!scsi_eh_scmd_add(cmd, 0))
1538 scsi_finish_command(cmd);
1543 * Function: scsi_request_fn()
1545 * Purpose: Main strategy routine for SCSI.
1547 * Arguments: q - Pointer to actual queue.
1549 * Returns: Nothing
1551 * Lock status: IO request lock assumed to be held when called.
1553 static void scsi_request_fn(struct request_queue *q)
1555 struct scsi_device *sdev = q->queuedata;
1556 struct Scsi_Host *shost;
1557 struct scsi_cmnd *cmd;
1558 struct request *req;
1560 if(!get_device(&sdev->sdev_gendev))
1561 /* We must be tearing the block queue down already */
1562 return;
1565 * To start with, we keep looping until the queue is empty, or until
1566 * the host is no longer able to accept any more requests.
1568 shost = sdev->host;
1569 for (;;) {
1570 int rtn;
1572 * get next queueable request. We do this early to make sure
1573 * that the request is fully prepared even if we cannot
1574 * accept it.
1576 req = blk_peek_request(q);
1577 if (!req || !scsi_dev_queue_ready(q, sdev))
1578 break;
1580 if (unlikely(!scsi_device_online(sdev))) {
1581 sdev_printk(KERN_ERR, sdev,
1582 "rejecting I/O to offline device\n");
1583 scsi_kill_request(req, q);
1584 continue;
1589 * Remove the request from the request list.
1591 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1592 blk_start_request(req);
1593 sdev->device_busy++;
1595 spin_unlock(q->queue_lock);
1596 cmd = req->special;
1597 if (unlikely(cmd == NULL)) {
1598 printk(KERN_CRIT "impossible request in %s.\n"
1599 "please mail a stack trace to "
1600 "linux-scsi@vger.kernel.org\n",
1601 __func__);
1602 blk_dump_rq_flags(req, "foo");
1603 BUG();
1605 spin_lock(shost->host_lock);
1608 * We hit this when the driver is using a host wide
1609 * tag map. For device level tag maps the queue_depth check
1610 * in the device ready fn would prevent us from trying
1611 * to allocate a tag. Since the map is a shared host resource
1612 * we add the dev to the starved list so it eventually gets
1613 * a run when a tag is freed.
1615 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1616 if (list_empty(&sdev->starved_entry))
1617 list_add_tail(&sdev->starved_entry,
1618 &shost->starved_list);
1619 goto not_ready;
1622 if (!scsi_target_queue_ready(shost, sdev))
1623 goto not_ready;
1625 if (!scsi_host_queue_ready(q, shost, sdev))
1626 goto not_ready;
1628 scsi_target(sdev)->target_busy++;
1629 shost->host_busy++;
1632 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1633 * take the lock again.
1635 spin_unlock_irq(shost->host_lock);
1638 * Finally, initialize any error handling parameters, and set up
1639 * the timers for timeouts.
1641 scsi_init_cmd_errh(cmd);
1644 * Dispatch the command to the low-level driver.
1646 rtn = scsi_dispatch_cmd(cmd);
1647 spin_lock_irq(q->queue_lock);
1648 if (rtn)
1649 goto out_delay;
1652 goto out;
1654 not_ready:
1655 spin_unlock_irq(shost->host_lock);
1658 * lock q, handle tag, requeue req, and decrement device_busy. We
1659 * must return with queue_lock held.
1661 * Decrementing device_busy without checking it is OK, as all such
1662 * cases (host limits or settings) should run the queue at some
1663 * later time.
1665 spin_lock_irq(q->queue_lock);
1666 blk_requeue_request(q, req);
1667 sdev->device_busy--;
1668 out_delay:
1669 if (sdev->device_busy == 0)
1670 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1671 out:
1672 /* must be careful here...if we trigger the ->remove() function
1673 * we cannot be holding the q lock */
1674 spin_unlock_irq(q->queue_lock);
1675 put_device(&sdev->sdev_gendev);
1676 spin_lock_irq(q->queue_lock);
1679 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1681 struct device *host_dev;
1682 u64 bounce_limit = 0xffffffff;
1684 if (shost->unchecked_isa_dma)
1685 return BLK_BOUNCE_ISA;
1687 * Platforms with virtual-DMA translation
1688 * hardware have no practical limit.
1690 if (!PCI_DMA_BUS_IS_PHYS)
1691 return BLK_BOUNCE_ANY;
1693 host_dev = scsi_get_device(shost);
1694 if (host_dev && host_dev->dma_mask)
1695 bounce_limit = *host_dev->dma_mask;
1697 return bounce_limit;
1699 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1701 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1702 request_fn_proc *request_fn)
1704 struct request_queue *q;
1705 struct device *dev = shost->dma_dev;
1707 q = blk_init_queue(request_fn, NULL);
1708 if (!q)
1709 return NULL;
1712 * this limit is imposed by hardware restrictions
1714 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1715 SCSI_MAX_SG_CHAIN_SEGMENTS));
1717 if (scsi_host_prot_dma(shost)) {
1718 shost->sg_prot_tablesize =
1719 min_not_zero(shost->sg_prot_tablesize,
1720 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1721 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1722 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1725 blk_queue_max_hw_sectors(q, shost->max_sectors);
1726 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1727 blk_queue_segment_boundary(q, shost->dma_boundary);
1728 dma_set_seg_boundary(dev, shost->dma_boundary);
1730 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1732 if (!shost->use_clustering)
1733 q->limits.cluster = 0;
1736 * set a reasonable default alignment on word boundaries: the
1737 * host and device may alter it using
1738 * blk_queue_update_dma_alignment() later.
1740 blk_queue_dma_alignment(q, 0x03);
1742 return q;
1744 EXPORT_SYMBOL(__scsi_alloc_queue);
1746 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1748 struct request_queue *q;
1750 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1751 if (!q)
1752 return NULL;
1754 blk_queue_prep_rq(q, scsi_prep_fn);
1755 blk_queue_softirq_done(q, scsi_softirq_done);
1756 blk_queue_rq_timed_out(q, scsi_times_out);
1757 blk_queue_lld_busy(q, scsi_lld_busy);
1758 return q;
1762 * Function: scsi_block_requests()
1764 * Purpose: Utility function used by low-level drivers to prevent further
1765 * commands from being queued to the device.
1767 * Arguments: shost - Host in question
1769 * Returns: Nothing
1771 * Lock status: No locks are assumed held.
1773 * Notes: There is no timer nor any other means by which the requests
1774 * get unblocked other than the low-level driver calling
1775 * scsi_unblock_requests().
1777 void scsi_block_requests(struct Scsi_Host *shost)
1779 shost->host_self_blocked = 1;
1781 EXPORT_SYMBOL(scsi_block_requests);
1784 * Function: scsi_unblock_requests()
1786 * Purpose: Utility function used by low-level drivers to allow further
1787 * commands from being queued to the device.
1789 * Arguments: shost - Host in question
1791 * Returns: Nothing
1793 * Lock status: No locks are assumed held.
1795 * Notes: There is no timer nor any other means by which the requests
1796 * get unblocked other than the low-level driver calling
1797 * scsi_unblock_requests().
1799 * This is done as an API function so that changes to the
1800 * internals of the scsi mid-layer won't require wholesale
1801 * changes to drivers that use this feature.
1803 void scsi_unblock_requests(struct Scsi_Host *shost)
1805 shost->host_self_blocked = 0;
1806 scsi_run_host_queues(shost);
1808 EXPORT_SYMBOL(scsi_unblock_requests);
1810 int __init scsi_init_queue(void)
1812 int i;
1814 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1815 sizeof(struct scsi_data_buffer),
1816 0, 0, NULL);
1817 if (!scsi_sdb_cache) {
1818 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1819 return -ENOMEM;
1822 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1823 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1824 int size = sgp->size * sizeof(struct scatterlist);
1826 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1827 SLAB_HWCACHE_ALIGN, NULL);
1828 if (!sgp->slab) {
1829 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1830 sgp->name);
1831 goto cleanup_sdb;
1834 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1835 sgp->slab);
1836 if (!sgp->pool) {
1837 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1838 sgp->name);
1839 goto cleanup_sdb;
1843 return 0;
1845 cleanup_sdb:
1846 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1847 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1848 if (sgp->pool)
1849 mempool_destroy(sgp->pool);
1850 if (sgp->slab)
1851 kmem_cache_destroy(sgp->slab);
1853 kmem_cache_destroy(scsi_sdb_cache);
1855 return -ENOMEM;
1858 void scsi_exit_queue(void)
1860 int i;
1862 kmem_cache_destroy(scsi_sdb_cache);
1864 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1865 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1866 mempool_destroy(sgp->pool);
1867 kmem_cache_destroy(sgp->slab);
1872 * scsi_mode_select - issue a mode select
1873 * @sdev: SCSI device to be queried
1874 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1875 * @sp: Save page bit (0 == don't save, 1 == save)
1876 * @modepage: mode page being requested
1877 * @buffer: request buffer (may not be smaller than eight bytes)
1878 * @len: length of request buffer.
1879 * @timeout: command timeout
1880 * @retries: number of retries before failing
1881 * @data: returns a structure abstracting the mode header data
1882 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1883 * must be SCSI_SENSE_BUFFERSIZE big.
1885 * Returns zero if successful; negative error number or scsi
1886 * status on error
1890 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1891 unsigned char *buffer, int len, int timeout, int retries,
1892 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1894 unsigned char cmd[10];
1895 unsigned char *real_buffer;
1896 int ret;
1898 memset(cmd, 0, sizeof(cmd));
1899 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1901 if (sdev->use_10_for_ms) {
1902 if (len > 65535)
1903 return -EINVAL;
1904 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1905 if (!real_buffer)
1906 return -ENOMEM;
1907 memcpy(real_buffer + 8, buffer, len);
1908 len += 8;
1909 real_buffer[0] = 0;
1910 real_buffer[1] = 0;
1911 real_buffer[2] = data->medium_type;
1912 real_buffer[3] = data->device_specific;
1913 real_buffer[4] = data->longlba ? 0x01 : 0;
1914 real_buffer[5] = 0;
1915 real_buffer[6] = data->block_descriptor_length >> 8;
1916 real_buffer[7] = data->block_descriptor_length;
1918 cmd[0] = MODE_SELECT_10;
1919 cmd[7] = len >> 8;
1920 cmd[8] = len;
1921 } else {
1922 if (len > 255 || data->block_descriptor_length > 255 ||
1923 data->longlba)
1924 return -EINVAL;
1926 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1927 if (!real_buffer)
1928 return -ENOMEM;
1929 memcpy(real_buffer + 4, buffer, len);
1930 len += 4;
1931 real_buffer[0] = 0;
1932 real_buffer[1] = data->medium_type;
1933 real_buffer[2] = data->device_specific;
1934 real_buffer[3] = data->block_descriptor_length;
1937 cmd[0] = MODE_SELECT;
1938 cmd[4] = len;
1941 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1942 sshdr, timeout, retries, NULL);
1943 kfree(real_buffer);
1944 return ret;
1946 EXPORT_SYMBOL_GPL(scsi_mode_select);
1949 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1950 * @sdev: SCSI device to be queried
1951 * @dbd: set if mode sense will allow block descriptors to be returned
1952 * @modepage: mode page being requested
1953 * @buffer: request buffer (may not be smaller than eight bytes)
1954 * @len: length of request buffer.
1955 * @timeout: command timeout
1956 * @retries: number of retries before failing
1957 * @data: returns a structure abstracting the mode header data
1958 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1959 * must be SCSI_SENSE_BUFFERSIZE big.
1961 * Returns zero if unsuccessful, or the header offset (either 4
1962 * or 8 depending on whether a six or ten byte command was
1963 * issued) if successful.
1966 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1967 unsigned char *buffer, int len, int timeout, int retries,
1968 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1970 unsigned char cmd[12];
1971 int use_10_for_ms;
1972 int header_length;
1973 int result;
1974 struct scsi_sense_hdr my_sshdr;
1976 memset(data, 0, sizeof(*data));
1977 memset(&cmd[0], 0, 12);
1978 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1979 cmd[2] = modepage;
1981 /* caller might not be interested in sense, but we need it */
1982 if (!sshdr)
1983 sshdr = &my_sshdr;
1985 retry:
1986 use_10_for_ms = sdev->use_10_for_ms;
1988 if (use_10_for_ms) {
1989 if (len < 8)
1990 len = 8;
1992 cmd[0] = MODE_SENSE_10;
1993 cmd[8] = len;
1994 header_length = 8;
1995 } else {
1996 if (len < 4)
1997 len = 4;
1999 cmd[0] = MODE_SENSE;
2000 cmd[4] = len;
2001 header_length = 4;
2004 memset(buffer, 0, len);
2006 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2007 sshdr, timeout, retries, NULL);
2009 /* This code looks awful: what it's doing is making sure an
2010 * ILLEGAL REQUEST sense return identifies the actual command
2011 * byte as the problem. MODE_SENSE commands can return
2012 * ILLEGAL REQUEST if the code page isn't supported */
2014 if (use_10_for_ms && !scsi_status_is_good(result) &&
2015 (driver_byte(result) & DRIVER_SENSE)) {
2016 if (scsi_sense_valid(sshdr)) {
2017 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2018 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2020 * Invalid command operation code
2022 sdev->use_10_for_ms = 0;
2023 goto retry;
2028 if(scsi_status_is_good(result)) {
2029 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2030 (modepage == 6 || modepage == 8))) {
2031 /* Initio breakage? */
2032 header_length = 0;
2033 data->length = 13;
2034 data->medium_type = 0;
2035 data->device_specific = 0;
2036 data->longlba = 0;
2037 data->block_descriptor_length = 0;
2038 } else if(use_10_for_ms) {
2039 data->length = buffer[0]*256 + buffer[1] + 2;
2040 data->medium_type = buffer[2];
2041 data->device_specific = buffer[3];
2042 data->longlba = buffer[4] & 0x01;
2043 data->block_descriptor_length = buffer[6]*256
2044 + buffer[7];
2045 } else {
2046 data->length = buffer[0] + 1;
2047 data->medium_type = buffer[1];
2048 data->device_specific = buffer[2];
2049 data->block_descriptor_length = buffer[3];
2051 data->header_length = header_length;
2054 return result;
2056 EXPORT_SYMBOL(scsi_mode_sense);
2059 * scsi_test_unit_ready - test if unit is ready
2060 * @sdev: scsi device to change the state of.
2061 * @timeout: command timeout
2062 * @retries: number of retries before failing
2063 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2064 * returning sense. Make sure that this is cleared before passing
2065 * in.
2067 * Returns zero if unsuccessful or an error if TUR failed. For
2068 * removable media, UNIT_ATTENTION sets ->changed flag.
2071 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2072 struct scsi_sense_hdr *sshdr_external)
2074 char cmd[] = {
2075 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2077 struct scsi_sense_hdr *sshdr;
2078 int result;
2080 if (!sshdr_external)
2081 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2082 else
2083 sshdr = sshdr_external;
2085 /* try to eat the UNIT_ATTENTION if there are enough retries */
2086 do {
2087 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2088 timeout, retries, NULL);
2089 if (sdev->removable && scsi_sense_valid(sshdr) &&
2090 sshdr->sense_key == UNIT_ATTENTION)
2091 sdev->changed = 1;
2092 } while (scsi_sense_valid(sshdr) &&
2093 sshdr->sense_key == UNIT_ATTENTION && --retries);
2095 if (!sshdr_external)
2096 kfree(sshdr);
2097 return result;
2099 EXPORT_SYMBOL(scsi_test_unit_ready);
2102 * scsi_device_set_state - Take the given device through the device state model.
2103 * @sdev: scsi device to change the state of.
2104 * @state: state to change to.
2106 * Returns zero if unsuccessful or an error if the requested
2107 * transition is illegal.
2110 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2112 enum scsi_device_state oldstate = sdev->sdev_state;
2114 if (state == oldstate)
2115 return 0;
2117 switch (state) {
2118 case SDEV_CREATED:
2119 switch (oldstate) {
2120 case SDEV_CREATED_BLOCK:
2121 break;
2122 default:
2123 goto illegal;
2125 break;
2127 case SDEV_RUNNING:
2128 switch (oldstate) {
2129 case SDEV_CREATED:
2130 case SDEV_OFFLINE:
2131 case SDEV_TRANSPORT_OFFLINE:
2132 case SDEV_QUIESCE:
2133 case SDEV_BLOCK:
2134 break;
2135 default:
2136 goto illegal;
2138 break;
2140 case SDEV_QUIESCE:
2141 switch (oldstate) {
2142 case SDEV_RUNNING:
2143 case SDEV_OFFLINE:
2144 case SDEV_TRANSPORT_OFFLINE:
2145 break;
2146 default:
2147 goto illegal;
2149 break;
2151 case SDEV_OFFLINE:
2152 case SDEV_TRANSPORT_OFFLINE:
2153 switch (oldstate) {
2154 case SDEV_CREATED:
2155 case SDEV_RUNNING:
2156 case SDEV_QUIESCE:
2157 case SDEV_BLOCK:
2158 break;
2159 default:
2160 goto illegal;
2162 break;
2164 case SDEV_BLOCK:
2165 switch (oldstate) {
2166 case SDEV_RUNNING:
2167 case SDEV_CREATED_BLOCK:
2168 break;
2169 default:
2170 goto illegal;
2172 break;
2174 case SDEV_CREATED_BLOCK:
2175 switch (oldstate) {
2176 case SDEV_CREATED:
2177 break;
2178 default:
2179 goto illegal;
2181 break;
2183 case SDEV_CANCEL:
2184 switch (oldstate) {
2185 case SDEV_CREATED:
2186 case SDEV_RUNNING:
2187 case SDEV_QUIESCE:
2188 case SDEV_OFFLINE:
2189 case SDEV_TRANSPORT_OFFLINE:
2190 case SDEV_BLOCK:
2191 break;
2192 default:
2193 goto illegal;
2195 break;
2197 case SDEV_DEL:
2198 switch (oldstate) {
2199 case SDEV_CREATED:
2200 case SDEV_RUNNING:
2201 case SDEV_OFFLINE:
2202 case SDEV_TRANSPORT_OFFLINE:
2203 case SDEV_CANCEL:
2204 case SDEV_CREATED_BLOCK:
2205 break;
2206 default:
2207 goto illegal;
2209 break;
2212 sdev->sdev_state = state;
2213 return 0;
2215 illegal:
2216 SCSI_LOG_ERROR_RECOVERY(1,
2217 sdev_printk(KERN_ERR, sdev,
2218 "Illegal state transition %s->%s\n",
2219 scsi_device_state_name(oldstate),
2220 scsi_device_state_name(state))
2222 return -EINVAL;
2224 EXPORT_SYMBOL(scsi_device_set_state);
2227 * sdev_evt_emit - emit a single SCSI device uevent
2228 * @sdev: associated SCSI device
2229 * @evt: event to emit
2231 * Send a single uevent (scsi_event) to the associated scsi_device.
2233 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2235 int idx = 0;
2236 char *envp[3];
2238 switch (evt->evt_type) {
2239 case SDEV_EVT_MEDIA_CHANGE:
2240 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2241 break;
2242 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2243 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2244 break;
2245 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2246 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2247 break;
2248 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2249 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2250 break;
2251 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2252 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2253 break;
2254 case SDEV_EVT_LUN_CHANGE_REPORTED:
2255 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2256 break;
2257 default:
2258 /* do nothing */
2259 break;
2262 envp[idx++] = NULL;
2264 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2268 * sdev_evt_thread - send a uevent for each scsi event
2269 * @work: work struct for scsi_device
2271 * Dispatch queued events to their associated scsi_device kobjects
2272 * as uevents.
2274 void scsi_evt_thread(struct work_struct *work)
2276 struct scsi_device *sdev;
2277 enum scsi_device_event evt_type;
2278 LIST_HEAD(event_list);
2280 sdev = container_of(work, struct scsi_device, event_work);
2282 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2283 if (test_and_clear_bit(evt_type, sdev->pending_events))
2284 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2286 while (1) {
2287 struct scsi_event *evt;
2288 struct list_head *this, *tmp;
2289 unsigned long flags;
2291 spin_lock_irqsave(&sdev->list_lock, flags);
2292 list_splice_init(&sdev->event_list, &event_list);
2293 spin_unlock_irqrestore(&sdev->list_lock, flags);
2295 if (list_empty(&event_list))
2296 break;
2298 list_for_each_safe(this, tmp, &event_list) {
2299 evt = list_entry(this, struct scsi_event, node);
2300 list_del(&evt->node);
2301 scsi_evt_emit(sdev, evt);
2302 kfree(evt);
2308 * sdev_evt_send - send asserted event to uevent thread
2309 * @sdev: scsi_device event occurred on
2310 * @evt: event to send
2312 * Assert scsi device event asynchronously.
2314 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2316 unsigned long flags;
2318 #if 0
2319 /* FIXME: currently this check eliminates all media change events
2320 * for polled devices. Need to update to discriminate between AN
2321 * and polled events */
2322 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2323 kfree(evt);
2324 return;
2326 #endif
2328 spin_lock_irqsave(&sdev->list_lock, flags);
2329 list_add_tail(&evt->node, &sdev->event_list);
2330 schedule_work(&sdev->event_work);
2331 spin_unlock_irqrestore(&sdev->list_lock, flags);
2333 EXPORT_SYMBOL_GPL(sdev_evt_send);
2336 * sdev_evt_alloc - allocate a new scsi event
2337 * @evt_type: type of event to allocate
2338 * @gfpflags: GFP flags for allocation
2340 * Allocates and returns a new scsi_event.
2342 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2343 gfp_t gfpflags)
2345 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2346 if (!evt)
2347 return NULL;
2349 evt->evt_type = evt_type;
2350 INIT_LIST_HEAD(&evt->node);
2352 /* evt_type-specific initialization, if any */
2353 switch (evt_type) {
2354 case SDEV_EVT_MEDIA_CHANGE:
2355 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2356 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2357 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2358 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2359 case SDEV_EVT_LUN_CHANGE_REPORTED:
2360 default:
2361 /* do nothing */
2362 break;
2365 return evt;
2367 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2370 * sdev_evt_send_simple - send asserted event to uevent thread
2371 * @sdev: scsi_device event occurred on
2372 * @evt_type: type of event to send
2373 * @gfpflags: GFP flags for allocation
2375 * Assert scsi device event asynchronously, given an event type.
2377 void sdev_evt_send_simple(struct scsi_device *sdev,
2378 enum scsi_device_event evt_type, gfp_t gfpflags)
2380 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2381 if (!evt) {
2382 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2383 evt_type);
2384 return;
2387 sdev_evt_send(sdev, evt);
2389 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2392 * scsi_device_quiesce - Block user issued commands.
2393 * @sdev: scsi device to quiesce.
2395 * This works by trying to transition to the SDEV_QUIESCE state
2396 * (which must be a legal transition). When the device is in this
2397 * state, only special requests will be accepted, all others will
2398 * be deferred. Since special requests may also be requeued requests,
2399 * a successful return doesn't guarantee the device will be
2400 * totally quiescent.
2402 * Must be called with user context, may sleep.
2404 * Returns zero if unsuccessful or an error if not.
2407 scsi_device_quiesce(struct scsi_device *sdev)
2409 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2410 if (err)
2411 return err;
2413 scsi_run_queue(sdev->request_queue);
2414 while (sdev->device_busy) {
2415 msleep_interruptible(200);
2416 scsi_run_queue(sdev->request_queue);
2418 return 0;
2420 EXPORT_SYMBOL(scsi_device_quiesce);
2423 * scsi_device_resume - Restart user issued commands to a quiesced device.
2424 * @sdev: scsi device to resume.
2426 * Moves the device from quiesced back to running and restarts the
2427 * queues.
2429 * Must be called with user context, may sleep.
2431 void scsi_device_resume(struct scsi_device *sdev)
2433 /* check if the device state was mutated prior to resume, and if
2434 * so assume the state is being managed elsewhere (for example
2435 * device deleted during suspend)
2437 if (sdev->sdev_state != SDEV_QUIESCE ||
2438 scsi_device_set_state(sdev, SDEV_RUNNING))
2439 return;
2440 scsi_run_queue(sdev->request_queue);
2442 EXPORT_SYMBOL(scsi_device_resume);
2444 static void
2445 device_quiesce_fn(struct scsi_device *sdev, void *data)
2447 scsi_device_quiesce(sdev);
2450 void
2451 scsi_target_quiesce(struct scsi_target *starget)
2453 starget_for_each_device(starget, NULL, device_quiesce_fn);
2455 EXPORT_SYMBOL(scsi_target_quiesce);
2457 static void
2458 device_resume_fn(struct scsi_device *sdev, void *data)
2460 scsi_device_resume(sdev);
2463 void
2464 scsi_target_resume(struct scsi_target *starget)
2466 starget_for_each_device(starget, NULL, device_resume_fn);
2468 EXPORT_SYMBOL(scsi_target_resume);
2471 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2472 * @sdev: device to block
2474 * Block request made by scsi lld's to temporarily stop all
2475 * scsi commands on the specified device. Called from interrupt
2476 * or normal process context.
2478 * Returns zero if successful or error if not
2480 * Notes:
2481 * This routine transitions the device to the SDEV_BLOCK state
2482 * (which must be a legal transition). When the device is in this
2483 * state, all commands are deferred until the scsi lld reenables
2484 * the device with scsi_device_unblock or device_block_tmo fires.
2487 scsi_internal_device_block(struct scsi_device *sdev)
2489 struct request_queue *q = sdev->request_queue;
2490 unsigned long flags;
2491 int err = 0;
2493 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2494 if (err) {
2495 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2497 if (err)
2498 return err;
2502 * The device has transitioned to SDEV_BLOCK. Stop the
2503 * block layer from calling the midlayer with this device's
2504 * request queue.
2506 spin_lock_irqsave(q->queue_lock, flags);
2507 blk_stop_queue(q);
2508 spin_unlock_irqrestore(q->queue_lock, flags);
2510 return 0;
2512 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2515 * scsi_internal_device_unblock - resume a device after a block request
2516 * @sdev: device to resume
2517 * @new_state: state to set devices to after unblocking
2519 * Called by scsi lld's or the midlayer to restart the device queue
2520 * for the previously suspended scsi device. Called from interrupt or
2521 * normal process context.
2523 * Returns zero if successful or error if not.
2525 * Notes:
2526 * This routine transitions the device to the SDEV_RUNNING state
2527 * or to one of the offline states (which must be a legal transition)
2528 * allowing the midlayer to goose the queue for this device.
2531 scsi_internal_device_unblock(struct scsi_device *sdev,
2532 enum scsi_device_state new_state)
2534 struct request_queue *q = sdev->request_queue;
2535 unsigned long flags;
2538 * Try to transition the scsi device to SDEV_RUNNING or one of the
2539 * offlined states and goose the device queue if successful.
2541 if ((sdev->sdev_state == SDEV_BLOCK) ||
2542 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2543 sdev->sdev_state = new_state;
2544 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2545 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2546 new_state == SDEV_OFFLINE)
2547 sdev->sdev_state = new_state;
2548 else
2549 sdev->sdev_state = SDEV_CREATED;
2550 } else if (sdev->sdev_state != SDEV_CANCEL &&
2551 sdev->sdev_state != SDEV_OFFLINE)
2552 return -EINVAL;
2554 spin_lock_irqsave(q->queue_lock, flags);
2555 blk_start_queue(q);
2556 spin_unlock_irqrestore(q->queue_lock, flags);
2558 return 0;
2560 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2562 static void
2563 device_block(struct scsi_device *sdev, void *data)
2565 scsi_internal_device_block(sdev);
2568 static int
2569 target_block(struct device *dev, void *data)
2571 if (scsi_is_target_device(dev))
2572 starget_for_each_device(to_scsi_target(dev), NULL,
2573 device_block);
2574 return 0;
2577 void
2578 scsi_target_block(struct device *dev)
2580 if (scsi_is_target_device(dev))
2581 starget_for_each_device(to_scsi_target(dev), NULL,
2582 device_block);
2583 else
2584 device_for_each_child(dev, NULL, target_block);
2586 EXPORT_SYMBOL_GPL(scsi_target_block);
2588 static void
2589 device_unblock(struct scsi_device *sdev, void *data)
2591 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2594 static int
2595 target_unblock(struct device *dev, void *data)
2597 if (scsi_is_target_device(dev))
2598 starget_for_each_device(to_scsi_target(dev), data,
2599 device_unblock);
2600 return 0;
2603 void
2604 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2606 if (scsi_is_target_device(dev))
2607 starget_for_each_device(to_scsi_target(dev), &new_state,
2608 device_unblock);
2609 else
2610 device_for_each_child(dev, &new_state, target_unblock);
2612 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2615 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2616 * @sgl: scatter-gather list
2617 * @sg_count: number of segments in sg
2618 * @offset: offset in bytes into sg, on return offset into the mapped area
2619 * @len: bytes to map, on return number of bytes mapped
2621 * Returns virtual address of the start of the mapped page
2623 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2624 size_t *offset, size_t *len)
2626 int i;
2627 size_t sg_len = 0, len_complete = 0;
2628 struct scatterlist *sg;
2629 struct page *page;
2631 WARN_ON(!irqs_disabled());
2633 for_each_sg(sgl, sg, sg_count, i) {
2634 len_complete = sg_len; /* Complete sg-entries */
2635 sg_len += sg->length;
2636 if (sg_len > *offset)
2637 break;
2640 if (unlikely(i == sg_count)) {
2641 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2642 "elements %d\n",
2643 __func__, sg_len, *offset, sg_count);
2644 WARN_ON(1);
2645 return NULL;
2648 /* Offset starting from the beginning of first page in this sg-entry */
2649 *offset = *offset - len_complete + sg->offset;
2651 /* Assumption: contiguous pages can be accessed as "page + i" */
2652 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2653 *offset &= ~PAGE_MASK;
2655 /* Bytes in this sg-entry from *offset to the end of the page */
2656 sg_len = PAGE_SIZE - *offset;
2657 if (*len > sg_len)
2658 *len = sg_len;
2660 return kmap_atomic(page);
2662 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2665 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2666 * @virt: virtual address to be unmapped
2668 void scsi_kunmap_atomic_sg(void *virt)
2670 kunmap_atomic(virt);
2672 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2674 void sdev_disable_disk_events(struct scsi_device *sdev)
2676 atomic_inc(&sdev->disk_events_disable_depth);
2678 EXPORT_SYMBOL(sdev_disable_disk_events);
2680 void sdev_enable_disk_events(struct scsi_device *sdev)
2682 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2683 return;
2684 atomic_dec(&sdev->disk_events_disable_depth);
2686 EXPORT_SYMBOL(sdev_enable_disk_events);