2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool
{
42 struct kmem_cache
*slab
;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
50 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 SP(SCSI_MAX_SG_SEGMENTS
)
69 struct kmem_cache
*scsi_sdb_cache
;
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
76 #define SCSI_QUEUE_DELAY 3
79 * Function: scsi_unprep_request()
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
84 * Arguments: req - request to unprepare
86 * Lock status: Assumed that no locks are held upon entry.
90 static void scsi_unprep_request(struct request
*req
)
92 struct scsi_cmnd
*cmd
= req
->special
;
94 blk_unprep_request(req
);
97 scsi_put_command(cmd
);
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
112 static void __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
114 struct Scsi_Host
*host
= cmd
->device
->host
;
115 struct scsi_device
*device
= cmd
->device
;
116 struct scsi_target
*starget
= scsi_target(device
);
117 struct request_queue
*q
= device
->request_queue
;
121 printk("Inserting command %p into mlqueue\n", cmd
));
124 * Set the appropriate busy bit for the device/host.
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
137 case SCSI_MLQUEUE_HOST_BUSY
:
138 host
->host_blocked
= host
->max_host_blocked
;
140 case SCSI_MLQUEUE_DEVICE_BUSY
:
141 case SCSI_MLQUEUE_EH_RETRY
:
142 device
->device_blocked
= device
->max_device_blocked
;
144 case SCSI_MLQUEUE_TARGET_BUSY
:
145 starget
->target_blocked
= starget
->max_target_blocked
;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
154 scsi_device_unbusy(device
);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue. Schedule requeue work under
159 * lock such that the kblockd_schedule_work() call happens
160 * before blk_cleanup_queue() finishes.
162 spin_lock_irqsave(q
->queue_lock
, flags
);
163 blk_requeue_request(q
, cmd
->request
);
164 kblockd_schedule_work(q
, &device
->requeue_work
);
165 spin_unlock_irqrestore(q
->queue_lock
, flags
);
169 * Function: scsi_queue_insert()
171 * Purpose: Insert a command in the midlevel queue.
173 * Arguments: cmd - command that we are adding to queue.
174 * reason - why we are inserting command to queue.
176 * Lock status: Assumed that lock is not held upon entry.
180 * Notes: We do this for one of two cases. Either the host is busy
181 * and it cannot accept any more commands for the time being,
182 * or the device returned QUEUE_FULL and can accept no more
184 * Notes: This could be called either from an interrupt context or a
185 * normal process context.
187 void scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
189 __scsi_queue_insert(cmd
, reason
, 1);
192 * scsi_execute - insert request and wait for the result
195 * @data_direction: data direction
196 * @buffer: data buffer
197 * @bufflen: len of buffer
198 * @sense: optional sense buffer
199 * @timeout: request timeout in seconds
200 * @retries: number of times to retry request
201 * @flags: or into request flags;
202 * @resid: optional residual length
204 * returns the req->errors value which is the scsi_cmnd result
207 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
208 int data_direction
, void *buffer
, unsigned bufflen
,
209 unsigned char *sense
, int timeout
, int retries
, int flags
,
213 int write
= (data_direction
== DMA_TO_DEVICE
);
214 int ret
= DRIVER_ERROR
<< 24;
216 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
220 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
221 buffer
, bufflen
, __GFP_WAIT
))
224 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
225 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
228 req
->retries
= retries
;
229 req
->timeout
= timeout
;
230 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
231 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
234 * head injection *required* here otherwise quiesce won't work
236 blk_execute_rq(req
->q
, NULL
, req
, 1);
239 * Some devices (USB mass-storage in particular) may transfer
240 * garbage data together with a residue indicating that the data
241 * is invalid. Prevent the garbage from being misinterpreted
242 * and prevent security leaks by zeroing out the excess data.
244 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
245 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
248 *resid
= req
->resid_len
;
251 blk_put_request(req
);
255 EXPORT_SYMBOL(scsi_execute
);
257 int scsi_execute_req_flags(struct scsi_device
*sdev
, const unsigned char *cmd
,
258 int data_direction
, void *buffer
, unsigned bufflen
,
259 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
260 int *resid
, int flags
)
266 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
268 return DRIVER_ERROR
<< 24;
270 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
271 sense
, timeout
, retries
, flags
, resid
);
273 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
278 EXPORT_SYMBOL(scsi_execute_req_flags
);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
293 cmd
->serial_number
= 0;
294 scsi_set_resid(cmd
, 0);
295 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
296 if (cmd
->cmd_len
== 0)
297 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
300 void scsi_device_unbusy(struct scsi_device
*sdev
)
302 struct Scsi_Host
*shost
= sdev
->host
;
303 struct scsi_target
*starget
= scsi_target(sdev
);
306 spin_lock_irqsave(shost
->host_lock
, flags
);
308 starget
->target_busy
--;
309 if (unlikely(scsi_host_in_recovery(shost
) &&
310 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
311 scsi_eh_wakeup(shost
);
312 spin_unlock(shost
->host_lock
);
313 spin_lock(sdev
->request_queue
->queue_lock
);
315 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
327 struct Scsi_Host
*shost
= current_sdev
->host
;
328 struct scsi_device
*sdev
, *tmp
;
329 struct scsi_target
*starget
= scsi_target(current_sdev
);
332 spin_lock_irqsave(shost
->host_lock
, flags
);
333 starget
->starget_sdev_user
= NULL
;
334 spin_unlock_irqrestore(shost
->host_lock
, flags
);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev
->request_queue
);
344 spin_lock_irqsave(shost
->host_lock
, flags
);
345 if (starget
->starget_sdev_user
)
347 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
348 same_target_siblings
) {
349 if (sdev
== current_sdev
)
351 if (scsi_device_get(sdev
))
354 spin_unlock_irqrestore(shost
->host_lock
, flags
);
355 blk_run_queue(sdev
->request_queue
);
356 spin_lock_irqsave(shost
->host_lock
, flags
);
358 scsi_device_put(sdev
);
361 spin_unlock_irqrestore(shost
->host_lock
, flags
);
364 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
366 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
372 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
374 return ((starget
->can_queue
> 0 &&
375 starget
->target_busy
>= starget
->can_queue
) ||
376 starget
->target_blocked
);
379 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
381 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
382 shost
->host_blocked
|| shost
->host_self_blocked
)
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue
*q
)
402 struct scsi_device
*sdev
= q
->queuedata
;
403 struct Scsi_Host
*shost
;
404 LIST_HEAD(starved_list
);
408 if (scsi_target(sdev
)->single_lun
)
409 scsi_single_lun_run(sdev
);
411 spin_lock_irqsave(shost
->host_lock
, flags
);
412 list_splice_init(&shost
->starved_list
, &starved_list
);
414 while (!list_empty(&starved_list
)) {
415 struct request_queue
*slq
;
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
427 if (scsi_host_is_busy(shost
))
430 sdev
= list_entry(starved_list
.next
,
431 struct scsi_device
, starved_entry
);
432 list_del_init(&sdev
->starved_entry
);
433 if (scsi_target_is_busy(scsi_target(sdev
))) {
434 list_move_tail(&sdev
->starved_entry
,
435 &shost
->starved_list
);
440 * Once we drop the host lock, a racing scsi_remove_device()
441 * call may remove the sdev from the starved list and destroy
442 * it and the queue. Mitigate by taking a reference to the
443 * queue and never touching the sdev again after we drop the
444 * host lock. Note: if __scsi_remove_device() invokes
445 * blk_cleanup_queue() before the queue is run from this
446 * function then blk_run_queue() will return immediately since
447 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
449 slq
= sdev
->request_queue
;
450 if (!blk_get_queue(slq
))
452 spin_unlock_irqrestore(shost
->host_lock
, flags
);
457 spin_lock_irqsave(shost
->host_lock
, flags
);
459 /* put any unprocessed entries back */
460 list_splice(&starved_list
, &shost
->starved_list
);
461 spin_unlock_irqrestore(shost
->host_lock
, flags
);
466 void scsi_requeue_run_queue(struct work_struct
*work
)
468 struct scsi_device
*sdev
;
469 struct request_queue
*q
;
471 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
472 q
= sdev
->request_queue
;
477 * Function: scsi_requeue_command()
479 * Purpose: Handle post-processing of completed commands.
481 * Arguments: q - queue to operate on
482 * cmd - command that may need to be requeued.
486 * Notes: After command completion, there may be blocks left
487 * over which weren't finished by the previous command
488 * this can be for a number of reasons - the main one is
489 * I/O errors in the middle of the request, in which case
490 * we need to request the blocks that come after the bad
492 * Notes: Upon return, cmd is a stale pointer.
494 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
496 struct scsi_device
*sdev
= cmd
->device
;
497 struct request
*req
= cmd
->request
;
501 * We need to hold a reference on the device to avoid the queue being
502 * killed after the unlock and before scsi_run_queue is invoked which
503 * may happen because scsi_unprep_request() puts the command which
504 * releases its reference on the device.
506 get_device(&sdev
->sdev_gendev
);
508 spin_lock_irqsave(q
->queue_lock
, flags
);
509 scsi_unprep_request(req
);
510 blk_requeue_request(q
, req
);
511 spin_unlock_irqrestore(q
->queue_lock
, flags
);
515 put_device(&sdev
->sdev_gendev
);
518 void scsi_next_command(struct scsi_cmnd
*cmd
)
520 struct scsi_device
*sdev
= cmd
->device
;
521 struct request_queue
*q
= sdev
->request_queue
;
523 /* need to hold a reference on the device before we let go of the cmd */
524 get_device(&sdev
->sdev_gendev
);
526 scsi_put_command(cmd
);
529 /* ok to remove device now */
530 put_device(&sdev
->sdev_gendev
);
533 void scsi_run_host_queues(struct Scsi_Host
*shost
)
535 struct scsi_device
*sdev
;
537 shost_for_each_device(sdev
, shost
)
538 scsi_run_queue(sdev
->request_queue
);
541 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
544 * Function: scsi_end_request()
546 * Purpose: Post-processing of completed commands (usually invoked at end
547 * of upper level post-processing and scsi_io_completion).
549 * Arguments: cmd - command that is complete.
550 * error - 0 if I/O indicates success, < 0 for I/O error.
551 * bytes - number of bytes of completed I/O
552 * requeue - indicates whether we should requeue leftovers.
554 * Lock status: Assumed that lock is not held upon entry.
556 * Returns: cmd if requeue required, NULL otherwise.
558 * Notes: This is called for block device requests in order to
559 * mark some number of sectors as complete.
561 * We are guaranteeing that the request queue will be goosed
562 * at some point during this call.
563 * Notes: If cmd was requeued, upon return it will be a stale pointer.
565 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
566 int bytes
, int requeue
)
568 struct request_queue
*q
= cmd
->device
->request_queue
;
569 struct request
*req
= cmd
->request
;
572 * If there are blocks left over at the end, set up the command
573 * to queue the remainder of them.
575 if (blk_end_request(req
, error
, bytes
)) {
576 /* kill remainder if no retrys */
577 if (error
&& scsi_noretry_cmd(cmd
))
578 blk_end_request_all(req
, error
);
582 * Bleah. Leftovers again. Stick the
583 * leftovers in the front of the
584 * queue, and goose the queue again.
586 scsi_release_buffers(cmd
);
587 scsi_requeue_command(q
, cmd
);
595 * This will goose the queue request function at the end, so we don't
596 * need to worry about launching another command.
598 __scsi_release_buffers(cmd
, 0);
599 scsi_next_command(cmd
);
603 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
607 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
612 index
= get_count_order(nents
) - 3;
617 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
619 struct scsi_host_sg_pool
*sgp
;
621 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
622 mempool_free(sgl
, sgp
->pool
);
625 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
627 struct scsi_host_sg_pool
*sgp
;
629 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
630 return mempool_alloc(sgp
->pool
, gfp_mask
);
633 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
640 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
641 gfp_mask
, scsi_sg_alloc
);
643 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
649 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
651 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
654 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
657 if (cmd
->sdb
.table
.nents
)
658 scsi_free_sgtable(&cmd
->sdb
);
660 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
662 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
663 struct scsi_data_buffer
*bidi_sdb
=
664 cmd
->request
->next_rq
->special
;
665 scsi_free_sgtable(bidi_sdb
);
666 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
667 cmd
->request
->next_rq
->special
= NULL
;
670 if (scsi_prot_sg_count(cmd
))
671 scsi_free_sgtable(cmd
->prot_sdb
);
675 * Function: scsi_release_buffers()
677 * Purpose: Completion processing for block device I/O requests.
679 * Arguments: cmd - command that we are bailing.
681 * Lock status: Assumed that no lock is held upon entry.
685 * Notes: In the event that an upper level driver rejects a
686 * command, we must release resources allocated during
687 * the __init_io() function. Primarily this would involve
688 * the scatter-gather table, and potentially any bounce
691 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
693 __scsi_release_buffers(cmd
, 1);
695 EXPORT_SYMBOL(scsi_release_buffers
);
698 * __scsi_error_from_host_byte - translate SCSI error code into errno
699 * @cmd: SCSI command (unused)
700 * @result: scsi error code
702 * Translate SCSI error code into standard UNIX errno.
704 * -ENOLINK temporary transport failure
705 * -EREMOTEIO permanent target failure, do not retry
706 * -EBADE permanent nexus failure, retry on other path
707 * -ENOSPC No write space available
708 * -ENODATA Medium error
709 * -EIO unspecified I/O error
711 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
715 switch(host_byte(result
)) {
716 case DID_TRANSPORT_FAILFAST
:
719 case DID_TARGET_FAILURE
:
720 set_host_byte(cmd
, DID_OK
);
723 case DID_NEXUS_FAILURE
:
724 set_host_byte(cmd
, DID_OK
);
727 case DID_ALLOC_FAILURE
:
728 set_host_byte(cmd
, DID_OK
);
731 case DID_MEDIUM_ERROR
:
732 set_host_byte(cmd
, DID_OK
);
744 * Function: scsi_io_completion()
746 * Purpose: Completion processing for block device I/O requests.
748 * Arguments: cmd - command that is finished.
750 * Lock status: Assumed that no lock is held upon entry.
754 * Notes: This function is matched in terms of capabilities to
755 * the function that created the scatter-gather list.
756 * In other words, if there are no bounce buffers
757 * (the normal case for most drivers), we don't need
758 * the logic to deal with cleaning up afterwards.
760 * We must call scsi_end_request(). This will finish off
761 * the specified number of sectors. If we are done, the
762 * command block will be released and the queue function
763 * will be goosed. If we are not done then we have to
764 * figure out what to do next:
766 * a) We can call scsi_requeue_command(). The request
767 * will be unprepared and put back on the queue. Then
768 * a new command will be created for it. This should
769 * be used if we made forward progress, or if we want
770 * to switch from READ(10) to READ(6) for example.
772 * b) We can call scsi_queue_insert(). The request will
773 * be put back on the queue and retried using the same
774 * command as before, possibly after a delay.
776 * c) We can call blk_end_request() with -EIO to fail
777 * the remainder of the request.
779 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
781 int result
= cmd
->result
;
782 struct request_queue
*q
= cmd
->device
->request_queue
;
783 struct request
*req
= cmd
->request
;
785 struct scsi_sense_hdr sshdr
;
787 int sense_deferred
= 0;
788 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
789 ACTION_DELAYED_RETRY
} action
;
790 char *description
= NULL
;
793 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
795 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
798 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
800 if (sense_valid
&& req
->sense
) {
802 * SG_IO wants current and deferred errors
804 int len
= 8 + cmd
->sense_buffer
[7];
806 if (len
> SCSI_SENSE_BUFFERSIZE
)
807 len
= SCSI_SENSE_BUFFERSIZE
;
808 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
809 req
->sense_len
= len
;
812 error
= __scsi_error_from_host_byte(cmd
, result
);
815 * __scsi_error_from_host_byte may have reset the host_byte
817 req
->errors
= cmd
->result
;
819 req
->resid_len
= scsi_get_resid(cmd
);
821 if (scsi_bidi_cmnd(cmd
)) {
823 * Bidi commands Must be complete as a whole,
824 * both sides at once.
826 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
828 scsi_release_buffers(cmd
);
829 blk_end_request_all(req
, 0);
831 scsi_next_command(cmd
);
834 } else if (blk_rq_bytes(req
) == 0 && result
&& !sense_deferred
) {
836 * Certain non BLOCK_PC requests are commands that don't
837 * actually transfer anything (FLUSH), so cannot use
838 * good_bytes != blk_rq_bytes(req) as the signal for an error.
839 * This sets the error explicitly for the problem case.
841 error
= __scsi_error_from_host_byte(cmd
, result
);
844 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
845 BUG_ON(blk_bidi_rq(req
));
848 * Next deal with any sectors which we were able to correctly
851 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
853 blk_rq_sectors(req
), good_bytes
));
856 * Recovered errors need reporting, but they're always treated
857 * as success, so fiddle the result code here. For BLOCK_PC
858 * we already took a copy of the original into rq->errors which
859 * is what gets returned to the user
861 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
862 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
863 * print since caller wants ATA registers. Only occurs on
864 * SCSI ATA PASS_THROUGH commands when CK_COND=1
866 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
868 else if (!(req
->cmd_flags
& REQ_QUIET
))
869 scsi_print_sense("", cmd
);
871 /* BLOCK_PC may have set error */
876 * A number of bytes were successfully read. If there
877 * are leftovers and there is some kind of error
878 * (result != 0), retry the rest.
880 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
883 error
= __scsi_error_from_host_byte(cmd
, result
);
885 if (host_byte(result
) == DID_RESET
) {
886 /* Third party bus reset or reset for error recovery
887 * reasons. Just retry the command and see what
890 action
= ACTION_RETRY
;
891 } else if (sense_valid
&& !sense_deferred
) {
892 switch (sshdr
.sense_key
) {
894 if (cmd
->device
->removable
) {
895 /* Detected disc change. Set a bit
896 * and quietly refuse further access.
898 cmd
->device
->changed
= 1;
899 description
= "Media Changed";
900 action
= ACTION_FAIL
;
902 /* Must have been a power glitch, or a
903 * bus reset. Could not have been a
904 * media change, so we just retry the
905 * command and see what happens.
907 action
= ACTION_RETRY
;
910 case ILLEGAL_REQUEST
:
911 /* If we had an ILLEGAL REQUEST returned, then
912 * we may have performed an unsupported
913 * command. The only thing this should be
914 * would be a ten byte read where only a six
915 * byte read was supported. Also, on a system
916 * where READ CAPACITY failed, we may have
917 * read past the end of the disk.
919 if ((cmd
->device
->use_10_for_rw
&&
920 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
921 (cmd
->cmnd
[0] == READ_10
||
922 cmd
->cmnd
[0] == WRITE_10
)) {
923 /* This will issue a new 6-byte command. */
924 cmd
->device
->use_10_for_rw
= 0;
925 action
= ACTION_REPREP
;
926 } else if (sshdr
.asc
== 0x10) /* DIX */ {
927 description
= "Host Data Integrity Failure";
928 action
= ACTION_FAIL
;
930 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
931 } else if (sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) {
932 switch (cmd
->cmnd
[0]) {
934 description
= "Discard failure";
938 if (cmd
->cmnd
[1] & 0x8)
939 description
= "Discard failure";
942 "Write same failure";
945 description
= "Invalid command failure";
948 action
= ACTION_FAIL
;
951 action
= ACTION_FAIL
;
953 case ABORTED_COMMAND
:
954 action
= ACTION_FAIL
;
955 if (sshdr
.asc
== 0x10) { /* DIF */
956 description
= "Target Data Integrity Failure";
961 /* If the device is in the process of becoming
962 * ready, or has a temporary blockage, retry.
964 if (sshdr
.asc
== 0x04) {
965 switch (sshdr
.ascq
) {
966 case 0x01: /* becoming ready */
967 case 0x04: /* format in progress */
968 case 0x05: /* rebuild in progress */
969 case 0x06: /* recalculation in progress */
970 case 0x07: /* operation in progress */
971 case 0x08: /* Long write in progress */
972 case 0x09: /* self test in progress */
973 case 0x14: /* space allocation in progress */
974 action
= ACTION_DELAYED_RETRY
;
977 description
= "Device not ready";
978 action
= ACTION_FAIL
;
982 description
= "Device not ready";
983 action
= ACTION_FAIL
;
986 case VOLUME_OVERFLOW
:
987 /* See SSC3rXX or current. */
988 action
= ACTION_FAIL
;
991 description
= "Unhandled sense code";
992 action
= ACTION_FAIL
;
996 description
= "Unhandled error code";
997 action
= ACTION_FAIL
;
1002 /* Give up and fail the remainder of the request */
1003 scsi_release_buffers(cmd
);
1004 if (!(req
->cmd_flags
& REQ_QUIET
)) {
1006 scmd_printk(KERN_INFO
, cmd
, "%s\n",
1008 scsi_print_result(cmd
);
1009 if (driver_byte(result
) & DRIVER_SENSE
)
1010 scsi_print_sense("", cmd
);
1011 scsi_print_command(cmd
);
1013 if (blk_end_request_err(req
, error
))
1014 scsi_requeue_command(q
, cmd
);
1016 scsi_next_command(cmd
);
1019 /* Unprep the request and put it back at the head of the queue.
1020 * A new command will be prepared and issued.
1022 scsi_release_buffers(cmd
);
1023 scsi_requeue_command(q
, cmd
);
1026 /* Retry the same command immediately */
1027 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
1029 case ACTION_DELAYED_RETRY
:
1030 /* Retry the same command after a delay */
1031 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
1036 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
1042 * If sg table allocation fails, requeue request later.
1044 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
1046 return BLKPREP_DEFER
;
1052 * Next, walk the list, and fill in the addresses and sizes of
1055 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
1056 BUG_ON(count
> sdb
->table
.nents
);
1057 sdb
->table
.nents
= count
;
1058 sdb
->length
= blk_rq_bytes(req
);
1063 * Function: scsi_init_io()
1065 * Purpose: SCSI I/O initialize function.
1067 * Arguments: cmd - Command descriptor we wish to initialize
1069 * Returns: 0 on success
1070 * BLKPREP_DEFER if the failure is retryable
1071 * BLKPREP_KILL if the failure is fatal
1073 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1075 struct request
*rq
= cmd
->request
;
1077 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1081 if (blk_bidi_rq(rq
)) {
1082 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1083 scsi_sdb_cache
, GFP_ATOMIC
);
1085 error
= BLKPREP_DEFER
;
1089 rq
->next_rq
->special
= bidi_sdb
;
1090 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1095 if (blk_integrity_rq(rq
)) {
1096 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1099 BUG_ON(prot_sdb
== NULL
);
1100 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1102 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1103 error
= BLKPREP_DEFER
;
1107 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1108 prot_sdb
->table
.sgl
);
1109 BUG_ON(unlikely(count
> ivecs
));
1110 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1112 cmd
->prot_sdb
= prot_sdb
;
1113 cmd
->prot_sdb
->table
.nents
= count
;
1119 scsi_release_buffers(cmd
);
1120 cmd
->request
->special
= NULL
;
1121 scsi_put_command(cmd
);
1124 EXPORT_SYMBOL(scsi_init_io
);
1126 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1127 struct request
*req
)
1129 struct scsi_cmnd
*cmd
;
1131 if (!req
->special
) {
1132 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1140 /* pull a tag out of the request if we have one */
1141 cmd
->tag
= req
->tag
;
1144 cmd
->cmnd
= req
->cmd
;
1145 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1150 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1152 struct scsi_cmnd
*cmd
;
1153 int ret
= scsi_prep_state_check(sdev
, req
);
1155 if (ret
!= BLKPREP_OK
)
1158 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1160 return BLKPREP_DEFER
;
1163 * BLOCK_PC requests may transfer data, in which case they must
1164 * a bio attached to them. Or they might contain a SCSI command
1165 * that does not transfer data, in which case they may optionally
1166 * submit a request without an attached bio.
1171 BUG_ON(!req
->nr_phys_segments
);
1173 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1177 BUG_ON(blk_rq_bytes(req
));
1179 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1183 cmd
->cmd_len
= req
->cmd_len
;
1184 if (!blk_rq_bytes(req
))
1185 cmd
->sc_data_direction
= DMA_NONE
;
1186 else if (rq_data_dir(req
) == WRITE
)
1187 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1189 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1191 cmd
->transfersize
= blk_rq_bytes(req
);
1192 cmd
->allowed
= req
->retries
;
1195 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1198 * Setup a REQ_TYPE_FS command. These are simple read/write request
1199 * from filesystems that still need to be translated to SCSI CDBs from
1202 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1204 struct scsi_cmnd
*cmd
;
1205 int ret
= scsi_prep_state_check(sdev
, req
);
1207 if (ret
!= BLKPREP_OK
)
1210 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1211 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1212 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1213 if (ret
!= BLKPREP_OK
)
1218 * Filesystem requests must transfer data.
1220 BUG_ON(!req
->nr_phys_segments
);
1222 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1224 return BLKPREP_DEFER
;
1226 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1227 return scsi_init_io(cmd
, GFP_ATOMIC
);
1229 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1231 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1233 int ret
= BLKPREP_OK
;
1236 * If the device is not in running state we will reject some
1239 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1240 switch (sdev
->sdev_state
) {
1242 case SDEV_TRANSPORT_OFFLINE
:
1244 * If the device is offline we refuse to process any
1245 * commands. The device must be brought online
1246 * before trying any recovery commands.
1248 sdev_printk(KERN_ERR
, sdev
,
1249 "rejecting I/O to offline device\n");
1254 * If the device is fully deleted, we refuse to
1255 * process any commands as well.
1257 sdev_printk(KERN_ERR
, sdev
,
1258 "rejecting I/O to dead device\n");
1263 case SDEV_CREATED_BLOCK
:
1265 * If the devices is blocked we defer normal commands.
1267 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1268 ret
= BLKPREP_DEFER
;
1272 * For any other not fully online state we only allow
1273 * special commands. In particular any user initiated
1274 * command is not allowed.
1276 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1283 EXPORT_SYMBOL(scsi_prep_state_check
);
1285 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1287 struct scsi_device
*sdev
= q
->queuedata
;
1291 req
->errors
= DID_NO_CONNECT
<< 16;
1292 /* release the command and kill it */
1294 struct scsi_cmnd
*cmd
= req
->special
;
1295 scsi_release_buffers(cmd
);
1296 scsi_put_command(cmd
);
1297 req
->special
= NULL
;
1302 * If we defer, the blk_peek_request() returns NULL, but the
1303 * queue must be restarted, so we schedule a callback to happen
1306 if (sdev
->device_busy
== 0)
1307 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1310 req
->cmd_flags
|= REQ_DONTPREP
;
1315 EXPORT_SYMBOL(scsi_prep_return
);
1317 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1319 struct scsi_device
*sdev
= q
->queuedata
;
1320 int ret
= BLKPREP_KILL
;
1322 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1323 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1324 return scsi_prep_return(q
, req
, ret
);
1326 EXPORT_SYMBOL(scsi_prep_fn
);
1329 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1332 * Called with the queue_lock held.
1334 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1335 struct scsi_device
*sdev
)
1337 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1339 * unblock after device_blocked iterates to zero
1341 if (--sdev
->device_blocked
== 0) {
1343 sdev_printk(KERN_INFO
, sdev
,
1344 "unblocking device at zero depth\n"));
1346 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1350 if (scsi_device_is_busy(sdev
))
1358 * scsi_target_queue_ready: checks if there we can send commands to target
1359 * @sdev: scsi device on starget to check.
1361 * Called with the host lock held.
1363 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1364 struct scsi_device
*sdev
)
1366 struct scsi_target
*starget
= scsi_target(sdev
);
1368 if (starget
->single_lun
) {
1369 if (starget
->starget_sdev_user
&&
1370 starget
->starget_sdev_user
!= sdev
)
1372 starget
->starget_sdev_user
= sdev
;
1375 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1377 * unblock after target_blocked iterates to zero
1379 if (--starget
->target_blocked
== 0) {
1380 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1381 "unblocking target at zero depth\n"));
1386 if (scsi_target_is_busy(starget
)) {
1387 list_move_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1395 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1396 * return 0. We must end up running the queue again whenever 0 is
1397 * returned, else IO can hang.
1399 * Called with host_lock held.
1401 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1402 struct Scsi_Host
*shost
,
1403 struct scsi_device
*sdev
)
1405 if (scsi_host_in_recovery(shost
))
1407 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1409 * unblock after host_blocked iterates to zero
1411 if (--shost
->host_blocked
== 0) {
1413 printk("scsi%d unblocking host at zero depth\n",
1419 if (scsi_host_is_busy(shost
)) {
1420 if (list_empty(&sdev
->starved_entry
))
1421 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1425 /* We're OK to process the command, so we can't be starved */
1426 if (!list_empty(&sdev
->starved_entry
))
1427 list_del_init(&sdev
->starved_entry
);
1433 * Busy state exporting function for request stacking drivers.
1435 * For efficiency, no lock is taken to check the busy state of
1436 * shost/starget/sdev, since the returned value is not guaranteed and
1437 * may be changed after request stacking drivers call the function,
1438 * regardless of taking lock or not.
1440 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1441 * needs to return 'not busy'. Otherwise, request stacking drivers
1442 * may hold requests forever.
1444 static int scsi_lld_busy(struct request_queue
*q
)
1446 struct scsi_device
*sdev
= q
->queuedata
;
1447 struct Scsi_Host
*shost
;
1449 if (blk_queue_dying(q
))
1455 * Ignore host/starget busy state.
1456 * Since block layer does not have a concept of fairness across
1457 * multiple queues, congestion of host/starget needs to be handled
1460 if (scsi_host_in_recovery(shost
) || scsi_device_is_busy(sdev
))
1467 * Kill a request for a dead device
1469 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1471 struct scsi_cmnd
*cmd
= req
->special
;
1472 struct scsi_device
*sdev
;
1473 struct scsi_target
*starget
;
1474 struct Scsi_Host
*shost
;
1476 blk_start_request(req
);
1478 scmd_printk(KERN_INFO
, cmd
, "killing request\n");
1481 starget
= scsi_target(sdev
);
1483 scsi_init_cmd_errh(cmd
);
1484 cmd
->result
= DID_NO_CONNECT
<< 16;
1485 atomic_inc(&cmd
->device
->iorequest_cnt
);
1488 * SCSI request completion path will do scsi_device_unbusy(),
1489 * bump busy counts. To bump the counters, we need to dance
1490 * with the locks as normal issue path does.
1492 sdev
->device_busy
++;
1493 spin_unlock(sdev
->request_queue
->queue_lock
);
1494 spin_lock(shost
->host_lock
);
1496 starget
->target_busy
++;
1497 spin_unlock(shost
->host_lock
);
1498 spin_lock(sdev
->request_queue
->queue_lock
);
1500 blk_complete_request(req
);
1503 static void scsi_softirq_done(struct request
*rq
)
1505 struct scsi_cmnd
*cmd
= rq
->special
;
1506 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1509 INIT_LIST_HEAD(&cmd
->eh_entry
);
1511 atomic_inc(&cmd
->device
->iodone_cnt
);
1513 atomic_inc(&cmd
->device
->ioerr_cnt
);
1515 disposition
= scsi_decide_disposition(cmd
);
1516 if (disposition
!= SUCCESS
&&
1517 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1518 sdev_printk(KERN_ERR
, cmd
->device
,
1519 "timing out command, waited %lus\n",
1521 disposition
= SUCCESS
;
1524 scsi_log_completion(cmd
, disposition
);
1526 switch (disposition
) {
1528 scsi_finish_command(cmd
);
1531 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1533 case ADD_TO_MLQUEUE
:
1534 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1537 if (!scsi_eh_scmd_add(cmd
, 0))
1538 scsi_finish_command(cmd
);
1543 * Function: scsi_request_fn()
1545 * Purpose: Main strategy routine for SCSI.
1547 * Arguments: q - Pointer to actual queue.
1551 * Lock status: IO request lock assumed to be held when called.
1553 static void scsi_request_fn(struct request_queue
*q
)
1555 struct scsi_device
*sdev
= q
->queuedata
;
1556 struct Scsi_Host
*shost
;
1557 struct scsi_cmnd
*cmd
;
1558 struct request
*req
;
1560 if(!get_device(&sdev
->sdev_gendev
))
1561 /* We must be tearing the block queue down already */
1565 * To start with, we keep looping until the queue is empty, or until
1566 * the host is no longer able to accept any more requests.
1572 * get next queueable request. We do this early to make sure
1573 * that the request is fully prepared even if we cannot
1576 req
= blk_peek_request(q
);
1577 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1580 if (unlikely(!scsi_device_online(sdev
))) {
1581 sdev_printk(KERN_ERR
, sdev
,
1582 "rejecting I/O to offline device\n");
1583 scsi_kill_request(req
, q
);
1589 * Remove the request from the request list.
1591 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1592 blk_start_request(req
);
1593 sdev
->device_busy
++;
1595 spin_unlock(q
->queue_lock
);
1597 if (unlikely(cmd
== NULL
)) {
1598 printk(KERN_CRIT
"impossible request in %s.\n"
1599 "please mail a stack trace to "
1600 "linux-scsi@vger.kernel.org\n",
1602 blk_dump_rq_flags(req
, "foo");
1605 spin_lock(shost
->host_lock
);
1608 * We hit this when the driver is using a host wide
1609 * tag map. For device level tag maps the queue_depth check
1610 * in the device ready fn would prevent us from trying
1611 * to allocate a tag. Since the map is a shared host resource
1612 * we add the dev to the starved list so it eventually gets
1613 * a run when a tag is freed.
1615 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1616 if (list_empty(&sdev
->starved_entry
))
1617 list_add_tail(&sdev
->starved_entry
,
1618 &shost
->starved_list
);
1622 if (!scsi_target_queue_ready(shost
, sdev
))
1625 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1628 scsi_target(sdev
)->target_busy
++;
1632 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1633 * take the lock again.
1635 spin_unlock_irq(shost
->host_lock
);
1638 * Finally, initialize any error handling parameters, and set up
1639 * the timers for timeouts.
1641 scsi_init_cmd_errh(cmd
);
1644 * Dispatch the command to the low-level driver.
1646 rtn
= scsi_dispatch_cmd(cmd
);
1647 spin_lock_irq(q
->queue_lock
);
1655 spin_unlock_irq(shost
->host_lock
);
1658 * lock q, handle tag, requeue req, and decrement device_busy. We
1659 * must return with queue_lock held.
1661 * Decrementing device_busy without checking it is OK, as all such
1662 * cases (host limits or settings) should run the queue at some
1665 spin_lock_irq(q
->queue_lock
);
1666 blk_requeue_request(q
, req
);
1667 sdev
->device_busy
--;
1669 if (sdev
->device_busy
== 0)
1670 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1672 /* must be careful here...if we trigger the ->remove() function
1673 * we cannot be holding the q lock */
1674 spin_unlock_irq(q
->queue_lock
);
1675 put_device(&sdev
->sdev_gendev
);
1676 spin_lock_irq(q
->queue_lock
);
1679 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1681 struct device
*host_dev
;
1682 u64 bounce_limit
= 0xffffffff;
1684 if (shost
->unchecked_isa_dma
)
1685 return BLK_BOUNCE_ISA
;
1687 * Platforms with virtual-DMA translation
1688 * hardware have no practical limit.
1690 if (!PCI_DMA_BUS_IS_PHYS
)
1691 return BLK_BOUNCE_ANY
;
1693 host_dev
= scsi_get_device(shost
);
1694 if (host_dev
&& host_dev
->dma_mask
)
1695 bounce_limit
= *host_dev
->dma_mask
;
1697 return bounce_limit
;
1699 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1701 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1702 request_fn_proc
*request_fn
)
1704 struct request_queue
*q
;
1705 struct device
*dev
= shost
->dma_dev
;
1707 q
= blk_init_queue(request_fn
, NULL
);
1712 * this limit is imposed by hardware restrictions
1714 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1715 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1717 if (scsi_host_prot_dma(shost
)) {
1718 shost
->sg_prot_tablesize
=
1719 min_not_zero(shost
->sg_prot_tablesize
,
1720 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1721 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1722 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1725 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1726 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1727 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1728 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1730 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1732 if (!shost
->use_clustering
)
1733 q
->limits
.cluster
= 0;
1736 * set a reasonable default alignment on word boundaries: the
1737 * host and device may alter it using
1738 * blk_queue_update_dma_alignment() later.
1740 blk_queue_dma_alignment(q
, 0x03);
1744 EXPORT_SYMBOL(__scsi_alloc_queue
);
1746 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1748 struct request_queue
*q
;
1750 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1754 blk_queue_prep_rq(q
, scsi_prep_fn
);
1755 blk_queue_softirq_done(q
, scsi_softirq_done
);
1756 blk_queue_rq_timed_out(q
, scsi_times_out
);
1757 blk_queue_lld_busy(q
, scsi_lld_busy
);
1762 * Function: scsi_block_requests()
1764 * Purpose: Utility function used by low-level drivers to prevent further
1765 * commands from being queued to the device.
1767 * Arguments: shost - Host in question
1771 * Lock status: No locks are assumed held.
1773 * Notes: There is no timer nor any other means by which the requests
1774 * get unblocked other than the low-level driver calling
1775 * scsi_unblock_requests().
1777 void scsi_block_requests(struct Scsi_Host
*shost
)
1779 shost
->host_self_blocked
= 1;
1781 EXPORT_SYMBOL(scsi_block_requests
);
1784 * Function: scsi_unblock_requests()
1786 * Purpose: Utility function used by low-level drivers to allow further
1787 * commands from being queued to the device.
1789 * Arguments: shost - Host in question
1793 * Lock status: No locks are assumed held.
1795 * Notes: There is no timer nor any other means by which the requests
1796 * get unblocked other than the low-level driver calling
1797 * scsi_unblock_requests().
1799 * This is done as an API function so that changes to the
1800 * internals of the scsi mid-layer won't require wholesale
1801 * changes to drivers that use this feature.
1803 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1805 shost
->host_self_blocked
= 0;
1806 scsi_run_host_queues(shost
);
1808 EXPORT_SYMBOL(scsi_unblock_requests
);
1810 int __init
scsi_init_queue(void)
1814 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1815 sizeof(struct scsi_data_buffer
),
1817 if (!scsi_sdb_cache
) {
1818 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1822 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1823 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1824 int size
= sgp
->size
* sizeof(struct scatterlist
);
1826 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1827 SLAB_HWCACHE_ALIGN
, NULL
);
1829 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1834 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1837 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1846 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1847 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1849 mempool_destroy(sgp
->pool
);
1851 kmem_cache_destroy(sgp
->slab
);
1853 kmem_cache_destroy(scsi_sdb_cache
);
1858 void scsi_exit_queue(void)
1862 kmem_cache_destroy(scsi_sdb_cache
);
1864 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1865 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1866 mempool_destroy(sgp
->pool
);
1867 kmem_cache_destroy(sgp
->slab
);
1872 * scsi_mode_select - issue a mode select
1873 * @sdev: SCSI device to be queried
1874 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1875 * @sp: Save page bit (0 == don't save, 1 == save)
1876 * @modepage: mode page being requested
1877 * @buffer: request buffer (may not be smaller than eight bytes)
1878 * @len: length of request buffer.
1879 * @timeout: command timeout
1880 * @retries: number of retries before failing
1881 * @data: returns a structure abstracting the mode header data
1882 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1883 * must be SCSI_SENSE_BUFFERSIZE big.
1885 * Returns zero if successful; negative error number or scsi
1890 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1891 unsigned char *buffer
, int len
, int timeout
, int retries
,
1892 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1894 unsigned char cmd
[10];
1895 unsigned char *real_buffer
;
1898 memset(cmd
, 0, sizeof(cmd
));
1899 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1901 if (sdev
->use_10_for_ms
) {
1904 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1907 memcpy(real_buffer
+ 8, buffer
, len
);
1911 real_buffer
[2] = data
->medium_type
;
1912 real_buffer
[3] = data
->device_specific
;
1913 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1915 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1916 real_buffer
[7] = data
->block_descriptor_length
;
1918 cmd
[0] = MODE_SELECT_10
;
1922 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1926 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1929 memcpy(real_buffer
+ 4, buffer
, len
);
1932 real_buffer
[1] = data
->medium_type
;
1933 real_buffer
[2] = data
->device_specific
;
1934 real_buffer
[3] = data
->block_descriptor_length
;
1937 cmd
[0] = MODE_SELECT
;
1941 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1942 sshdr
, timeout
, retries
, NULL
);
1946 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1949 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1950 * @sdev: SCSI device to be queried
1951 * @dbd: set if mode sense will allow block descriptors to be returned
1952 * @modepage: mode page being requested
1953 * @buffer: request buffer (may not be smaller than eight bytes)
1954 * @len: length of request buffer.
1955 * @timeout: command timeout
1956 * @retries: number of retries before failing
1957 * @data: returns a structure abstracting the mode header data
1958 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1959 * must be SCSI_SENSE_BUFFERSIZE big.
1961 * Returns zero if unsuccessful, or the header offset (either 4
1962 * or 8 depending on whether a six or ten byte command was
1963 * issued) if successful.
1966 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1967 unsigned char *buffer
, int len
, int timeout
, int retries
,
1968 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1970 unsigned char cmd
[12];
1974 struct scsi_sense_hdr my_sshdr
;
1976 memset(data
, 0, sizeof(*data
));
1977 memset(&cmd
[0], 0, 12);
1978 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1981 /* caller might not be interested in sense, but we need it */
1986 use_10_for_ms
= sdev
->use_10_for_ms
;
1988 if (use_10_for_ms
) {
1992 cmd
[0] = MODE_SENSE_10
;
1999 cmd
[0] = MODE_SENSE
;
2004 memset(buffer
, 0, len
);
2006 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
2007 sshdr
, timeout
, retries
, NULL
);
2009 /* This code looks awful: what it's doing is making sure an
2010 * ILLEGAL REQUEST sense return identifies the actual command
2011 * byte as the problem. MODE_SENSE commands can return
2012 * ILLEGAL REQUEST if the code page isn't supported */
2014 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
2015 (driver_byte(result
) & DRIVER_SENSE
)) {
2016 if (scsi_sense_valid(sshdr
)) {
2017 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
2018 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
2020 * Invalid command operation code
2022 sdev
->use_10_for_ms
= 0;
2028 if(scsi_status_is_good(result
)) {
2029 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
2030 (modepage
== 6 || modepage
== 8))) {
2031 /* Initio breakage? */
2034 data
->medium_type
= 0;
2035 data
->device_specific
= 0;
2037 data
->block_descriptor_length
= 0;
2038 } else if(use_10_for_ms
) {
2039 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
2040 data
->medium_type
= buffer
[2];
2041 data
->device_specific
= buffer
[3];
2042 data
->longlba
= buffer
[4] & 0x01;
2043 data
->block_descriptor_length
= buffer
[6]*256
2046 data
->length
= buffer
[0] + 1;
2047 data
->medium_type
= buffer
[1];
2048 data
->device_specific
= buffer
[2];
2049 data
->block_descriptor_length
= buffer
[3];
2051 data
->header_length
= header_length
;
2056 EXPORT_SYMBOL(scsi_mode_sense
);
2059 * scsi_test_unit_ready - test if unit is ready
2060 * @sdev: scsi device to change the state of.
2061 * @timeout: command timeout
2062 * @retries: number of retries before failing
2063 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2064 * returning sense. Make sure that this is cleared before passing
2067 * Returns zero if unsuccessful or an error if TUR failed. For
2068 * removable media, UNIT_ATTENTION sets ->changed flag.
2071 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2072 struct scsi_sense_hdr
*sshdr_external
)
2075 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2077 struct scsi_sense_hdr
*sshdr
;
2080 if (!sshdr_external
)
2081 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2083 sshdr
= sshdr_external
;
2085 /* try to eat the UNIT_ATTENTION if there are enough retries */
2087 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2088 timeout
, retries
, NULL
);
2089 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2090 sshdr
->sense_key
== UNIT_ATTENTION
)
2092 } while (scsi_sense_valid(sshdr
) &&
2093 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2095 if (!sshdr_external
)
2099 EXPORT_SYMBOL(scsi_test_unit_ready
);
2102 * scsi_device_set_state - Take the given device through the device state model.
2103 * @sdev: scsi device to change the state of.
2104 * @state: state to change to.
2106 * Returns zero if unsuccessful or an error if the requested
2107 * transition is illegal.
2110 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2112 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2114 if (state
== oldstate
)
2120 case SDEV_CREATED_BLOCK
:
2131 case SDEV_TRANSPORT_OFFLINE
:
2144 case SDEV_TRANSPORT_OFFLINE
:
2152 case SDEV_TRANSPORT_OFFLINE
:
2167 case SDEV_CREATED_BLOCK
:
2174 case SDEV_CREATED_BLOCK
:
2189 case SDEV_TRANSPORT_OFFLINE
:
2202 case SDEV_TRANSPORT_OFFLINE
:
2204 case SDEV_CREATED_BLOCK
:
2212 sdev
->sdev_state
= state
;
2216 SCSI_LOG_ERROR_RECOVERY(1,
2217 sdev_printk(KERN_ERR
, sdev
,
2218 "Illegal state transition %s->%s\n",
2219 scsi_device_state_name(oldstate
),
2220 scsi_device_state_name(state
))
2224 EXPORT_SYMBOL(scsi_device_set_state
);
2227 * sdev_evt_emit - emit a single SCSI device uevent
2228 * @sdev: associated SCSI device
2229 * @evt: event to emit
2231 * Send a single uevent (scsi_event) to the associated scsi_device.
2233 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2238 switch (evt
->evt_type
) {
2239 case SDEV_EVT_MEDIA_CHANGE
:
2240 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2242 case SDEV_EVT_INQUIRY_CHANGE_REPORTED
:
2243 envp
[idx
++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2245 case SDEV_EVT_CAPACITY_CHANGE_REPORTED
:
2246 envp
[idx
++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2248 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED
:
2249 envp
[idx
++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2251 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED
:
2252 envp
[idx
++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2254 case SDEV_EVT_LUN_CHANGE_REPORTED
:
2255 envp
[idx
++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2264 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2268 * sdev_evt_thread - send a uevent for each scsi event
2269 * @work: work struct for scsi_device
2271 * Dispatch queued events to their associated scsi_device kobjects
2274 void scsi_evt_thread(struct work_struct
*work
)
2276 struct scsi_device
*sdev
;
2277 enum scsi_device_event evt_type
;
2278 LIST_HEAD(event_list
);
2280 sdev
= container_of(work
, struct scsi_device
, event_work
);
2282 for (evt_type
= SDEV_EVT_FIRST
; evt_type
<= SDEV_EVT_LAST
; evt_type
++)
2283 if (test_and_clear_bit(evt_type
, sdev
->pending_events
))
2284 sdev_evt_send_simple(sdev
, evt_type
, GFP_KERNEL
);
2287 struct scsi_event
*evt
;
2288 struct list_head
*this, *tmp
;
2289 unsigned long flags
;
2291 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2292 list_splice_init(&sdev
->event_list
, &event_list
);
2293 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2295 if (list_empty(&event_list
))
2298 list_for_each_safe(this, tmp
, &event_list
) {
2299 evt
= list_entry(this, struct scsi_event
, node
);
2300 list_del(&evt
->node
);
2301 scsi_evt_emit(sdev
, evt
);
2308 * sdev_evt_send - send asserted event to uevent thread
2309 * @sdev: scsi_device event occurred on
2310 * @evt: event to send
2312 * Assert scsi device event asynchronously.
2314 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2316 unsigned long flags
;
2319 /* FIXME: currently this check eliminates all media change events
2320 * for polled devices. Need to update to discriminate between AN
2321 * and polled events */
2322 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2328 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2329 list_add_tail(&evt
->node
, &sdev
->event_list
);
2330 schedule_work(&sdev
->event_work
);
2331 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2333 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2336 * sdev_evt_alloc - allocate a new scsi event
2337 * @evt_type: type of event to allocate
2338 * @gfpflags: GFP flags for allocation
2340 * Allocates and returns a new scsi_event.
2342 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2345 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2349 evt
->evt_type
= evt_type
;
2350 INIT_LIST_HEAD(&evt
->node
);
2352 /* evt_type-specific initialization, if any */
2354 case SDEV_EVT_MEDIA_CHANGE
:
2355 case SDEV_EVT_INQUIRY_CHANGE_REPORTED
:
2356 case SDEV_EVT_CAPACITY_CHANGE_REPORTED
:
2357 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED
:
2358 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED
:
2359 case SDEV_EVT_LUN_CHANGE_REPORTED
:
2367 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2370 * sdev_evt_send_simple - send asserted event to uevent thread
2371 * @sdev: scsi_device event occurred on
2372 * @evt_type: type of event to send
2373 * @gfpflags: GFP flags for allocation
2375 * Assert scsi device event asynchronously, given an event type.
2377 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2378 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2380 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2382 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2387 sdev_evt_send(sdev
, evt
);
2389 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2392 * scsi_device_quiesce - Block user issued commands.
2393 * @sdev: scsi device to quiesce.
2395 * This works by trying to transition to the SDEV_QUIESCE state
2396 * (which must be a legal transition). When the device is in this
2397 * state, only special requests will be accepted, all others will
2398 * be deferred. Since special requests may also be requeued requests,
2399 * a successful return doesn't guarantee the device will be
2400 * totally quiescent.
2402 * Must be called with user context, may sleep.
2404 * Returns zero if unsuccessful or an error if not.
2407 scsi_device_quiesce(struct scsi_device
*sdev
)
2409 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2413 scsi_run_queue(sdev
->request_queue
);
2414 while (sdev
->device_busy
) {
2415 msleep_interruptible(200);
2416 scsi_run_queue(sdev
->request_queue
);
2420 EXPORT_SYMBOL(scsi_device_quiesce
);
2423 * scsi_device_resume - Restart user issued commands to a quiesced device.
2424 * @sdev: scsi device to resume.
2426 * Moves the device from quiesced back to running and restarts the
2429 * Must be called with user context, may sleep.
2431 void scsi_device_resume(struct scsi_device
*sdev
)
2433 /* check if the device state was mutated prior to resume, and if
2434 * so assume the state is being managed elsewhere (for example
2435 * device deleted during suspend)
2437 if (sdev
->sdev_state
!= SDEV_QUIESCE
||
2438 scsi_device_set_state(sdev
, SDEV_RUNNING
))
2440 scsi_run_queue(sdev
->request_queue
);
2442 EXPORT_SYMBOL(scsi_device_resume
);
2445 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2447 scsi_device_quiesce(sdev
);
2451 scsi_target_quiesce(struct scsi_target
*starget
)
2453 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2455 EXPORT_SYMBOL(scsi_target_quiesce
);
2458 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2460 scsi_device_resume(sdev
);
2464 scsi_target_resume(struct scsi_target
*starget
)
2466 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2468 EXPORT_SYMBOL(scsi_target_resume
);
2471 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2472 * @sdev: device to block
2474 * Block request made by scsi lld's to temporarily stop all
2475 * scsi commands on the specified device. Called from interrupt
2476 * or normal process context.
2478 * Returns zero if successful or error if not
2481 * This routine transitions the device to the SDEV_BLOCK state
2482 * (which must be a legal transition). When the device is in this
2483 * state, all commands are deferred until the scsi lld reenables
2484 * the device with scsi_device_unblock or device_block_tmo fires.
2487 scsi_internal_device_block(struct scsi_device
*sdev
)
2489 struct request_queue
*q
= sdev
->request_queue
;
2490 unsigned long flags
;
2493 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2495 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2502 * The device has transitioned to SDEV_BLOCK. Stop the
2503 * block layer from calling the midlayer with this device's
2506 spin_lock_irqsave(q
->queue_lock
, flags
);
2508 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2512 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2515 * scsi_internal_device_unblock - resume a device after a block request
2516 * @sdev: device to resume
2517 * @new_state: state to set devices to after unblocking
2519 * Called by scsi lld's or the midlayer to restart the device queue
2520 * for the previously suspended scsi device. Called from interrupt or
2521 * normal process context.
2523 * Returns zero if successful or error if not.
2526 * This routine transitions the device to the SDEV_RUNNING state
2527 * or to one of the offline states (which must be a legal transition)
2528 * allowing the midlayer to goose the queue for this device.
2531 scsi_internal_device_unblock(struct scsi_device
*sdev
,
2532 enum scsi_device_state new_state
)
2534 struct request_queue
*q
= sdev
->request_queue
;
2535 unsigned long flags
;
2538 * Try to transition the scsi device to SDEV_RUNNING or one of the
2539 * offlined states and goose the device queue if successful.
2541 if ((sdev
->sdev_state
== SDEV_BLOCK
) ||
2542 (sdev
->sdev_state
== SDEV_TRANSPORT_OFFLINE
))
2543 sdev
->sdev_state
= new_state
;
2544 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
) {
2545 if (new_state
== SDEV_TRANSPORT_OFFLINE
||
2546 new_state
== SDEV_OFFLINE
)
2547 sdev
->sdev_state
= new_state
;
2549 sdev
->sdev_state
= SDEV_CREATED
;
2550 } else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2551 sdev
->sdev_state
!= SDEV_OFFLINE
)
2554 spin_lock_irqsave(q
->queue_lock
, flags
);
2556 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2560 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2563 device_block(struct scsi_device
*sdev
, void *data
)
2565 scsi_internal_device_block(sdev
);
2569 target_block(struct device
*dev
, void *data
)
2571 if (scsi_is_target_device(dev
))
2572 starget_for_each_device(to_scsi_target(dev
), NULL
,
2578 scsi_target_block(struct device
*dev
)
2580 if (scsi_is_target_device(dev
))
2581 starget_for_each_device(to_scsi_target(dev
), NULL
,
2584 device_for_each_child(dev
, NULL
, target_block
);
2586 EXPORT_SYMBOL_GPL(scsi_target_block
);
2589 device_unblock(struct scsi_device
*sdev
, void *data
)
2591 scsi_internal_device_unblock(sdev
, *(enum scsi_device_state
*)data
);
2595 target_unblock(struct device
*dev
, void *data
)
2597 if (scsi_is_target_device(dev
))
2598 starget_for_each_device(to_scsi_target(dev
), data
,
2604 scsi_target_unblock(struct device
*dev
, enum scsi_device_state new_state
)
2606 if (scsi_is_target_device(dev
))
2607 starget_for_each_device(to_scsi_target(dev
), &new_state
,
2610 device_for_each_child(dev
, &new_state
, target_unblock
);
2612 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2615 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2616 * @sgl: scatter-gather list
2617 * @sg_count: number of segments in sg
2618 * @offset: offset in bytes into sg, on return offset into the mapped area
2619 * @len: bytes to map, on return number of bytes mapped
2621 * Returns virtual address of the start of the mapped page
2623 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2624 size_t *offset
, size_t *len
)
2627 size_t sg_len
= 0, len_complete
= 0;
2628 struct scatterlist
*sg
;
2631 WARN_ON(!irqs_disabled());
2633 for_each_sg(sgl
, sg
, sg_count
, i
) {
2634 len_complete
= sg_len
; /* Complete sg-entries */
2635 sg_len
+= sg
->length
;
2636 if (sg_len
> *offset
)
2640 if (unlikely(i
== sg_count
)) {
2641 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2643 __func__
, sg_len
, *offset
, sg_count
);
2648 /* Offset starting from the beginning of first page in this sg-entry */
2649 *offset
= *offset
- len_complete
+ sg
->offset
;
2651 /* Assumption: contiguous pages can be accessed as "page + i" */
2652 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2653 *offset
&= ~PAGE_MASK
;
2655 /* Bytes in this sg-entry from *offset to the end of the page */
2656 sg_len
= PAGE_SIZE
- *offset
;
2660 return kmap_atomic(page
);
2662 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2665 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2666 * @virt: virtual address to be unmapped
2668 void scsi_kunmap_atomic_sg(void *virt
)
2670 kunmap_atomic(virt
);
2672 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);
2674 void sdev_disable_disk_events(struct scsi_device
*sdev
)
2676 atomic_inc(&sdev
->disk_events_disable_depth
);
2678 EXPORT_SYMBOL(sdev_disable_disk_events
);
2680 void sdev_enable_disk_events(struct scsi_device
*sdev
)
2682 if (WARN_ON_ONCE(atomic_read(&sdev
->disk_events_disable_depth
) <= 0))
2684 atomic_dec(&sdev
->disk_events_disable_depth
);
2686 EXPORT_SYMBOL(sdev_enable_disk_events
);