hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / fs / btrfs / disk-io.c
blob8964b59fee92bd40d0e09c616f1ebd05083a55dc
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
160 { .id = 0, .name_stem = "tree" },
163 void __init btrfs_init_lockdep(void)
165 int i, j;
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
180 struct btrfs_lockdep_keyset *ks;
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
193 #endif
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 struct page *page, size_t pg_offset, u64 start, u64 len,
201 int create)
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
207 read_lock(&em_tree->lock);
208 em = lookup_extent_mapping(em_tree, start, len);
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 read_unlock(&em_tree->lock);
213 goto out;
215 read_unlock(&em_tree->lock);
217 em = alloc_extent_map();
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
222 em->start = 0;
223 em->len = (u64)-1;
224 em->block_len = (u64)-1;
225 em->block_start = 0;
226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228 write_lock(&em_tree->lock);
229 ret = add_extent_mapping(em_tree, em, 0);
230 if (ret == -EEXIST) {
231 free_extent_map(em);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (!em)
234 em = ERR_PTR(-EIO);
235 } else if (ret) {
236 free_extent_map(em);
237 em = ERR_PTR(ret);
239 write_unlock(&em_tree->lock);
241 out:
242 return em;
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 return crc32c(seed, data, len);
250 void btrfs_csum_final(u32 crc, char *result)
252 put_unaligned_le32(~crc, result);
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 char *result = NULL;
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
272 unsigned long inline_result;
274 len = buf->len - offset;
275 while (len > 0) {
276 err = map_private_extent_buffer(buf, offset, 32,
277 &kaddr, &map_start, &map_len);
278 if (err)
279 return 1;
280 cur_len = min(len, map_len - (offset - map_start));
281 crc = btrfs_csum_data(kaddr + offset - map_start,
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
294 btrfs_csum_final(crc, result);
296 if (verify) {
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 u32 val;
299 u32 found = 0;
300 memcpy(&found, result, csum_size);
302 read_extent_buffer(buf, &val, 0, csum_size);
303 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304 "failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
330 struct extent_state *cached_state = NULL;
331 int ret;
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
336 if (atomic)
337 return -EAGAIN;
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 eb->start, parent_transid, btrfs_header_generation(eb));
349 ret = 1;
350 clear_extent_buffer_uptodate(eb);
351 out:
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
354 return ret;
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
361 static int btrfs_check_super_csum(char *raw_disk_sb)
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
366 int ret = 0;
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 u32 crc = ~(u32)0;
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
382 if (memcmp(raw_disk_sb, result, csum_size))
383 ret = 1;
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
386 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387 ret = 0;
391 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393 csum_type);
394 ret = 1;
397 return ret;
401 * helper to read a given tree block, doing retries as required when
402 * the checksums don't match and we have alternate mirrors to try.
404 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405 struct extent_buffer *eb,
406 u64 start, u64 parent_transid)
408 struct extent_io_tree *io_tree;
409 int failed = 0;
410 int ret;
411 int num_copies = 0;
412 int mirror_num = 0;
413 int failed_mirror = 0;
415 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
416 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417 while (1) {
418 ret = read_extent_buffer_pages(io_tree, eb, start,
419 WAIT_COMPLETE,
420 btree_get_extent, mirror_num);
421 if (!ret) {
422 if (!verify_parent_transid(io_tree, eb,
423 parent_transid, 0))
424 break;
425 else
426 ret = -EIO;
430 * This buffer's crc is fine, but its contents are corrupted, so
431 * there is no reason to read the other copies, they won't be
432 * any less wrong.
434 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
435 break;
437 num_copies = btrfs_num_copies(root->fs_info,
438 eb->start, eb->len);
439 if (num_copies == 1)
440 break;
442 if (!failed_mirror) {
443 failed = 1;
444 failed_mirror = eb->read_mirror;
447 mirror_num++;
448 if (mirror_num == failed_mirror)
449 mirror_num++;
451 if (mirror_num > num_copies)
452 break;
455 if (failed && !ret && failed_mirror)
456 repair_eb_io_failure(root, eb, failed_mirror);
458 return ret;
462 * checksum a dirty tree block before IO. This has extra checks to make sure
463 * we only fill in the checksum field in the first page of a multi-page block
466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 struct extent_io_tree *tree;
469 u64 start = page_offset(page);
470 u64 found_start;
471 struct extent_buffer *eb;
473 tree = &BTRFS_I(page->mapping->host)->io_tree;
475 eb = (struct extent_buffer *)page->private;
476 if (page != eb->pages[0])
477 return 0;
478 found_start = btrfs_header_bytenr(eb);
479 if (found_start != start) {
480 WARN_ON(1);
481 return 0;
483 if (!PageUptodate(page)) {
484 WARN_ON(1);
485 return 0;
487 csum_tree_block(root, eb, 0);
488 return 0;
491 static int check_tree_block_fsid(struct btrfs_root *root,
492 struct extent_buffer *eb)
494 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
495 u8 fsid[BTRFS_UUID_SIZE];
496 int ret = 1;
498 read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
499 while (fs_devices) {
500 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
501 ret = 0;
502 break;
504 fs_devices = fs_devices->seed;
506 return ret;
509 #define CORRUPT(reason, eb, root, slot) \
510 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
511 "root=%llu, slot=%d\n", reason, \
512 btrfs_header_bytenr(eb), root->objectid, slot)
514 static noinline int check_leaf(struct btrfs_root *root,
515 struct extent_buffer *leaf)
517 struct btrfs_key key;
518 struct btrfs_key leaf_key;
519 u32 nritems = btrfs_header_nritems(leaf);
520 int slot;
522 if (nritems == 0)
523 return 0;
525 /* Check the 0 item */
526 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("invalid item offset size pair", leaf, root, 0);
529 return -EIO;
533 * Check to make sure each items keys are in the correct order and their
534 * offsets make sense. We only have to loop through nritems-1 because
535 * we check the current slot against the next slot, which verifies the
536 * next slot's offset+size makes sense and that the current's slot
537 * offset is correct.
539 for (slot = 0; slot < nritems - 1; slot++) {
540 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
541 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
543 /* Make sure the keys are in the right order */
544 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
545 CORRUPT("bad key order", leaf, root, slot);
546 return -EIO;
550 * Make sure the offset and ends are right, remember that the
551 * item data starts at the end of the leaf and grows towards the
552 * front.
554 if (btrfs_item_offset_nr(leaf, slot) !=
555 btrfs_item_end_nr(leaf, slot + 1)) {
556 CORRUPT("slot offset bad", leaf, root, slot);
557 return -EIO;
561 * Check to make sure that we don't point outside of the leaf,
562 * just incase all the items are consistent to eachother, but
563 * all point outside of the leaf.
565 if (btrfs_item_end_nr(leaf, slot) >
566 BTRFS_LEAF_DATA_SIZE(root)) {
567 CORRUPT("slot end outside of leaf", leaf, root, slot);
568 return -EIO;
572 return 0;
575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
576 u64 phy_offset, struct page *page,
577 u64 start, u64 end, int mirror)
579 struct extent_io_tree *tree;
580 u64 found_start;
581 int found_level;
582 struct extent_buffer *eb;
583 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
584 int ret = 0;
585 int reads_done;
587 if (!page->private)
588 goto out;
590 tree = &BTRFS_I(page->mapping->host)->io_tree;
591 eb = (struct extent_buffer *)page->private;
593 /* the pending IO might have been the only thing that kept this buffer
594 * in memory. Make sure we have a ref for all this other checks
596 extent_buffer_get(eb);
598 reads_done = atomic_dec_and_test(&eb->io_pages);
599 if (!reads_done)
600 goto err;
602 eb->read_mirror = mirror;
603 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
604 ret = -EIO;
605 goto err;
608 found_start = btrfs_header_bytenr(eb);
609 if (found_start != eb->start) {
610 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
611 "%llu %llu\n",
612 found_start, eb->start);
613 ret = -EIO;
614 goto err;
616 if (check_tree_block_fsid(root, eb)) {
617 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
618 eb->start);
619 ret = -EIO;
620 goto err;
622 found_level = btrfs_header_level(eb);
623 if (found_level >= BTRFS_MAX_LEVEL) {
624 btrfs_info(root->fs_info, "bad tree block level %d\n",
625 (int)btrfs_header_level(eb));
626 ret = -EIO;
627 goto err;
630 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
631 eb, found_level);
633 ret = csum_tree_block(root, eb, 1);
634 if (ret) {
635 ret = -EIO;
636 goto err;
640 * If this is a leaf block and it is corrupt, set the corrupt bit so
641 * that we don't try and read the other copies of this block, just
642 * return -EIO.
644 if (found_level == 0 && check_leaf(root, eb)) {
645 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
646 ret = -EIO;
649 if (!ret)
650 set_extent_buffer_uptodate(eb);
651 err:
652 if (reads_done &&
653 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
654 btree_readahead_hook(root, eb, eb->start, ret);
656 if (ret) {
658 * our io error hook is going to dec the io pages
659 * again, we have to make sure it has something
660 * to decrement
662 atomic_inc(&eb->io_pages);
663 clear_extent_buffer_uptodate(eb);
665 free_extent_buffer(eb);
666 out:
667 return ret;
670 static int btree_io_failed_hook(struct page *page, int failed_mirror)
672 struct extent_buffer *eb;
673 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
675 eb = (struct extent_buffer *)page->private;
676 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
677 eb->read_mirror = failed_mirror;
678 atomic_dec(&eb->io_pages);
679 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
680 btree_readahead_hook(root, eb, eb->start, -EIO);
681 return -EIO; /* we fixed nothing */
684 static void end_workqueue_bio(struct bio *bio, int err)
686 struct end_io_wq *end_io_wq = bio->bi_private;
687 struct btrfs_fs_info *fs_info;
689 fs_info = end_io_wq->info;
690 end_io_wq->error = err;
691 end_io_wq->work.func = end_workqueue_fn;
692 end_io_wq->work.flags = 0;
694 if (bio->bi_rw & REQ_WRITE) {
695 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
696 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
697 &end_io_wq->work);
698 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
699 btrfs_queue_worker(&fs_info->endio_freespace_worker,
700 &end_io_wq->work);
701 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702 btrfs_queue_worker(&fs_info->endio_raid56_workers,
703 &end_io_wq->work);
704 else
705 btrfs_queue_worker(&fs_info->endio_write_workers,
706 &end_io_wq->work);
707 } else {
708 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709 btrfs_queue_worker(&fs_info->endio_raid56_workers,
710 &end_io_wq->work);
711 else if (end_io_wq->metadata)
712 btrfs_queue_worker(&fs_info->endio_meta_workers,
713 &end_io_wq->work);
714 else
715 btrfs_queue_worker(&fs_info->endio_workers,
716 &end_io_wq->work);
721 * For the metadata arg you want
723 * 0 - if data
724 * 1 - if normal metadta
725 * 2 - if writing to the free space cache area
726 * 3 - raid parity work
728 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
729 int metadata)
731 struct end_io_wq *end_io_wq;
732 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
733 if (!end_io_wq)
734 return -ENOMEM;
736 end_io_wq->private = bio->bi_private;
737 end_io_wq->end_io = bio->bi_end_io;
738 end_io_wq->info = info;
739 end_io_wq->error = 0;
740 end_io_wq->bio = bio;
741 end_io_wq->metadata = metadata;
743 bio->bi_private = end_io_wq;
744 bio->bi_end_io = end_workqueue_bio;
745 return 0;
748 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
750 unsigned long limit = min_t(unsigned long,
751 info->workers.max_workers,
752 info->fs_devices->open_devices);
753 return 256 * limit;
756 static void run_one_async_start(struct btrfs_work *work)
758 struct async_submit_bio *async;
759 int ret;
761 async = container_of(work, struct async_submit_bio, work);
762 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
763 async->mirror_num, async->bio_flags,
764 async->bio_offset);
765 if (ret)
766 async->error = ret;
769 static void run_one_async_done(struct btrfs_work *work)
771 struct btrfs_fs_info *fs_info;
772 struct async_submit_bio *async;
773 int limit;
775 async = container_of(work, struct async_submit_bio, work);
776 fs_info = BTRFS_I(async->inode)->root->fs_info;
778 limit = btrfs_async_submit_limit(fs_info);
779 limit = limit * 2 / 3;
781 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
782 waitqueue_active(&fs_info->async_submit_wait))
783 wake_up(&fs_info->async_submit_wait);
785 /* If an error occured we just want to clean up the bio and move on */
786 if (async->error) {
787 bio_endio(async->bio, async->error);
788 return;
791 async->submit_bio_done(async->inode, async->rw, async->bio,
792 async->mirror_num, async->bio_flags,
793 async->bio_offset);
796 static void run_one_async_free(struct btrfs_work *work)
798 struct async_submit_bio *async;
800 async = container_of(work, struct async_submit_bio, work);
801 kfree(async);
804 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
805 int rw, struct bio *bio, int mirror_num,
806 unsigned long bio_flags,
807 u64 bio_offset,
808 extent_submit_bio_hook_t *submit_bio_start,
809 extent_submit_bio_hook_t *submit_bio_done)
811 struct async_submit_bio *async;
813 async = kmalloc(sizeof(*async), GFP_NOFS);
814 if (!async)
815 return -ENOMEM;
817 async->inode = inode;
818 async->rw = rw;
819 async->bio = bio;
820 async->mirror_num = mirror_num;
821 async->submit_bio_start = submit_bio_start;
822 async->submit_bio_done = submit_bio_done;
824 async->work.func = run_one_async_start;
825 async->work.ordered_func = run_one_async_done;
826 async->work.ordered_free = run_one_async_free;
828 async->work.flags = 0;
829 async->bio_flags = bio_flags;
830 async->bio_offset = bio_offset;
832 async->error = 0;
834 atomic_inc(&fs_info->nr_async_submits);
836 if (rw & REQ_SYNC)
837 btrfs_set_work_high_prio(&async->work);
839 btrfs_queue_worker(&fs_info->workers, &async->work);
841 while (atomic_read(&fs_info->async_submit_draining) &&
842 atomic_read(&fs_info->nr_async_submits)) {
843 wait_event(fs_info->async_submit_wait,
844 (atomic_read(&fs_info->nr_async_submits) == 0));
847 return 0;
850 static int btree_csum_one_bio(struct bio *bio)
852 struct bio_vec *bvec = bio->bi_io_vec;
853 int bio_index = 0;
854 struct btrfs_root *root;
855 int ret = 0;
857 WARN_ON(bio->bi_vcnt <= 0);
858 while (bio_index < bio->bi_vcnt) {
859 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
860 ret = csum_dirty_buffer(root, bvec->bv_page);
861 if (ret)
862 break;
863 bio_index++;
864 bvec++;
866 return ret;
869 static int __btree_submit_bio_start(struct inode *inode, int rw,
870 struct bio *bio, int mirror_num,
871 unsigned long bio_flags,
872 u64 bio_offset)
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
878 return btree_csum_one_bio(bio);
881 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
882 int mirror_num, unsigned long bio_flags,
883 u64 bio_offset)
885 int ret;
888 * when we're called for a write, we're already in the async
889 * submission context. Just jump into btrfs_map_bio
891 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
892 if (ret)
893 bio_endio(bio, ret);
894 return ret;
897 static int check_async_write(struct inode *inode, unsigned long bio_flags)
899 if (bio_flags & EXTENT_BIO_TREE_LOG)
900 return 0;
901 #ifdef CONFIG_X86
902 if (cpu_has_xmm4_2)
903 return 0;
904 #endif
905 return 1;
908 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
909 int mirror_num, unsigned long bio_flags,
910 u64 bio_offset)
912 int async = check_async_write(inode, bio_flags);
913 int ret;
915 if (!(rw & REQ_WRITE)) {
917 * called for a read, do the setup so that checksum validation
918 * can happen in the async kernel threads
920 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
921 bio, 1);
922 if (ret)
923 goto out_w_error;
924 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
925 mirror_num, 0);
926 } else if (!async) {
927 ret = btree_csum_one_bio(bio);
928 if (ret)
929 goto out_w_error;
930 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
931 mirror_num, 0);
932 } else {
934 * kthread helpers are used to submit writes so that
935 * checksumming can happen in parallel across all CPUs
937 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
938 inode, rw, bio, mirror_num, 0,
939 bio_offset,
940 __btree_submit_bio_start,
941 __btree_submit_bio_done);
944 if (ret) {
945 out_w_error:
946 bio_endio(bio, ret);
948 return ret;
951 #ifdef CONFIG_MIGRATION
952 static int btree_migratepage(struct address_space *mapping,
953 struct page *newpage, struct page *page,
954 enum migrate_mode mode)
957 * we can't safely write a btree page from here,
958 * we haven't done the locking hook
960 if (PageDirty(page))
961 return -EAGAIN;
963 * Buffers may be managed in a filesystem specific way.
964 * We must have no buffers or drop them.
966 if (page_has_private(page) &&
967 !try_to_release_page(page, GFP_KERNEL))
968 return -EAGAIN;
969 return migrate_page(mapping, newpage, page, mode);
971 #endif
974 static int btree_writepages(struct address_space *mapping,
975 struct writeback_control *wbc)
977 struct extent_io_tree *tree;
978 struct btrfs_fs_info *fs_info;
979 int ret;
981 tree = &BTRFS_I(mapping->host)->io_tree;
982 if (wbc->sync_mode == WB_SYNC_NONE) {
984 if (wbc->for_kupdate)
985 return 0;
987 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988 /* this is a bit racy, but that's ok */
989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990 BTRFS_DIRTY_METADATA_THRESH);
991 if (ret < 0)
992 return 0;
994 return btree_write_cache_pages(mapping, wbc);
997 static int btree_readpage(struct file *file, struct page *page)
999 struct extent_io_tree *tree;
1000 tree = &BTRFS_I(page->mapping->host)->io_tree;
1001 return extent_read_full_page(tree, page, btree_get_extent, 0);
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 if (PageWriteback(page) || PageDirty(page))
1007 return 0;
1009 return try_release_extent_buffer(page);
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013 unsigned int length)
1015 struct extent_io_tree *tree;
1016 tree = &BTRFS_I(page->mapping->host)->io_tree;
1017 extent_invalidatepage(tree, page, offset);
1018 btree_releasepage(page, GFP_NOFS);
1019 if (PagePrivate(page)) {
1020 printk(KERN_WARNING "btrfs warning page private not zero "
1021 "on page %llu\n", (unsigned long long)page_offset(page));
1022 ClearPagePrivate(page);
1023 set_page_private(page, 0);
1024 page_cache_release(page);
1028 static int btree_set_page_dirty(struct page *page)
1030 #ifdef DEBUG
1031 struct extent_buffer *eb;
1033 BUG_ON(!PagePrivate(page));
1034 eb = (struct extent_buffer *)page->private;
1035 BUG_ON(!eb);
1036 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1037 BUG_ON(!atomic_read(&eb->refs));
1038 btrfs_assert_tree_locked(eb);
1039 #endif
1040 return __set_page_dirty_nobuffers(page);
1043 static const struct address_space_operations btree_aops = {
1044 .readpage = btree_readpage,
1045 .writepages = btree_writepages,
1046 .releasepage = btree_releasepage,
1047 .invalidatepage = btree_invalidatepage,
1048 #ifdef CONFIG_MIGRATION
1049 .migratepage = btree_migratepage,
1050 #endif
1051 .set_page_dirty = btree_set_page_dirty,
1054 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1055 u64 parent_transid)
1057 struct extent_buffer *buf = NULL;
1058 struct inode *btree_inode = root->fs_info->btree_inode;
1059 int ret = 0;
1061 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1062 if (!buf)
1063 return 0;
1064 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1065 buf, 0, WAIT_NONE, btree_get_extent, 0);
1066 free_extent_buffer(buf);
1067 return ret;
1070 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1071 int mirror_num, struct extent_buffer **eb)
1073 struct extent_buffer *buf = NULL;
1074 struct inode *btree_inode = root->fs_info->btree_inode;
1075 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1076 int ret;
1078 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1079 if (!buf)
1080 return 0;
1082 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1085 btree_get_extent, mirror_num);
1086 if (ret) {
1087 free_extent_buffer(buf);
1088 return ret;
1091 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1092 free_extent_buffer(buf);
1093 return -EIO;
1094 } else if (extent_buffer_uptodate(buf)) {
1095 *eb = buf;
1096 } else {
1097 free_extent_buffer(buf);
1099 return 0;
1102 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1103 u64 bytenr, u32 blocksize)
1105 struct inode *btree_inode = root->fs_info->btree_inode;
1106 struct extent_buffer *eb;
1107 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1108 bytenr, blocksize);
1109 return eb;
1112 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1113 u64 bytenr, u32 blocksize)
1115 struct inode *btree_inode = root->fs_info->btree_inode;
1116 struct extent_buffer *eb;
1118 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1119 bytenr, blocksize);
1120 return eb;
1124 int btrfs_write_tree_block(struct extent_buffer *buf)
1126 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1127 buf->start + buf->len - 1);
1130 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1132 return filemap_fdatawait_range(buf->pages[0]->mapping,
1133 buf->start, buf->start + buf->len - 1);
1136 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1137 u32 blocksize, u64 parent_transid)
1139 struct extent_buffer *buf = NULL;
1140 int ret;
1142 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1143 if (!buf)
1144 return NULL;
1146 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1147 if (ret) {
1148 free_extent_buffer(buf);
1149 return NULL;
1151 return buf;
1155 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1156 struct extent_buffer *buf)
1158 struct btrfs_fs_info *fs_info = root->fs_info;
1160 if (btrfs_header_generation(buf) ==
1161 fs_info->running_transaction->transid) {
1162 btrfs_assert_tree_locked(buf);
1164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1165 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1166 -buf->len,
1167 fs_info->dirty_metadata_batch);
1168 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169 btrfs_set_lock_blocking(buf);
1170 clear_extent_buffer_dirty(buf);
1175 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1176 u32 stripesize, struct btrfs_root *root,
1177 struct btrfs_fs_info *fs_info,
1178 u64 objectid)
1180 root->node = NULL;
1181 root->commit_root = NULL;
1182 root->sectorsize = sectorsize;
1183 root->nodesize = nodesize;
1184 root->leafsize = leafsize;
1185 root->stripesize = stripesize;
1186 root->ref_cows = 0;
1187 root->track_dirty = 0;
1188 root->in_radix = 0;
1189 root->orphan_item_inserted = 0;
1190 root->orphan_cleanup_state = 0;
1192 root->objectid = objectid;
1193 root->last_trans = 0;
1194 root->highest_objectid = 0;
1195 root->nr_delalloc_inodes = 0;
1196 root->nr_ordered_extents = 0;
1197 root->name = NULL;
1198 root->inode_tree = RB_ROOT;
1199 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1200 root->block_rsv = NULL;
1201 root->orphan_block_rsv = NULL;
1203 INIT_LIST_HEAD(&root->dirty_list);
1204 INIT_LIST_HEAD(&root->root_list);
1205 INIT_LIST_HEAD(&root->delalloc_inodes);
1206 INIT_LIST_HEAD(&root->delalloc_root);
1207 INIT_LIST_HEAD(&root->ordered_extents);
1208 INIT_LIST_HEAD(&root->ordered_root);
1209 INIT_LIST_HEAD(&root->logged_list[0]);
1210 INIT_LIST_HEAD(&root->logged_list[1]);
1211 spin_lock_init(&root->orphan_lock);
1212 spin_lock_init(&root->inode_lock);
1213 spin_lock_init(&root->delalloc_lock);
1214 spin_lock_init(&root->ordered_extent_lock);
1215 spin_lock_init(&root->accounting_lock);
1216 spin_lock_init(&root->log_extents_lock[0]);
1217 spin_lock_init(&root->log_extents_lock[1]);
1218 mutex_init(&root->objectid_mutex);
1219 mutex_init(&root->log_mutex);
1220 init_waitqueue_head(&root->log_writer_wait);
1221 init_waitqueue_head(&root->log_commit_wait[0]);
1222 init_waitqueue_head(&root->log_commit_wait[1]);
1223 atomic_set(&root->log_commit[0], 0);
1224 atomic_set(&root->log_commit[1], 0);
1225 atomic_set(&root->log_writers, 0);
1226 atomic_set(&root->log_batch, 0);
1227 atomic_set(&root->orphan_inodes, 0);
1228 atomic_set(&root->refs, 1);
1229 root->log_transid = 0;
1230 root->last_log_commit = 0;
1231 extent_io_tree_init(&root->dirty_log_pages,
1232 fs_info->btree_inode->i_mapping);
1234 memset(&root->root_key, 0, sizeof(root->root_key));
1235 memset(&root->root_item, 0, sizeof(root->root_item));
1236 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1237 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1238 root->defrag_trans_start = fs_info->generation;
1239 init_completion(&root->kobj_unregister);
1240 root->defrag_running = 0;
1241 root->root_key.objectid = objectid;
1242 root->anon_dev = 0;
1244 spin_lock_init(&root->root_item_lock);
1247 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1249 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1250 if (root)
1251 root->fs_info = fs_info;
1252 return root;
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256 struct btrfs_fs_info *fs_info,
1257 u64 objectid)
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
1263 int ret = 0;
1264 u64 bytenr;
1265 uuid_le uuid;
1267 root = btrfs_alloc_root(fs_info);
1268 if (!root)
1269 return ERR_PTR(-ENOMEM);
1271 __setup_root(tree_root->nodesize, tree_root->leafsize,
1272 tree_root->sectorsize, tree_root->stripesize,
1273 root, fs_info, objectid);
1274 root->root_key.objectid = objectid;
1275 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1276 root->root_key.offset = 0;
1278 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1279 0, objectid, NULL, 0, 0, 0);
1280 if (IS_ERR(leaf)) {
1281 ret = PTR_ERR(leaf);
1282 leaf = NULL;
1283 goto fail;
1286 bytenr = leaf->start;
1287 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1288 btrfs_set_header_bytenr(leaf, leaf->start);
1289 btrfs_set_header_generation(leaf, trans->transid);
1290 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1291 btrfs_set_header_owner(leaf, objectid);
1292 root->node = leaf;
1294 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
1295 BTRFS_FSID_SIZE);
1296 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1297 btrfs_header_chunk_tree_uuid(leaf),
1298 BTRFS_UUID_SIZE);
1299 btrfs_mark_buffer_dirty(leaf);
1301 root->commit_root = btrfs_root_node(root);
1302 root->track_dirty = 1;
1305 root->root_item.flags = 0;
1306 root->root_item.byte_limit = 0;
1307 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1308 btrfs_set_root_generation(&root->root_item, trans->transid);
1309 btrfs_set_root_level(&root->root_item, 0);
1310 btrfs_set_root_refs(&root->root_item, 1);
1311 btrfs_set_root_used(&root->root_item, leaf->len);
1312 btrfs_set_root_last_snapshot(&root->root_item, 0);
1313 btrfs_set_root_dirid(&root->root_item, 0);
1314 uuid_le_gen(&uuid);
1315 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1316 root->root_item.drop_level = 0;
1318 key.objectid = objectid;
1319 key.type = BTRFS_ROOT_ITEM_KEY;
1320 key.offset = 0;
1321 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322 if (ret)
1323 goto fail;
1325 btrfs_tree_unlock(leaf);
1327 return root;
1329 fail:
1330 if (leaf) {
1331 btrfs_tree_unlock(leaf);
1332 free_extent_buffer(leaf);
1334 kfree(root);
1336 return ERR_PTR(ret);
1339 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1340 struct btrfs_fs_info *fs_info)
1342 struct btrfs_root *root;
1343 struct btrfs_root *tree_root = fs_info->tree_root;
1344 struct extent_buffer *leaf;
1346 root = btrfs_alloc_root(fs_info);
1347 if (!root)
1348 return ERR_PTR(-ENOMEM);
1350 __setup_root(tree_root->nodesize, tree_root->leafsize,
1351 tree_root->sectorsize, tree_root->stripesize,
1352 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1354 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1355 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1356 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1358 * log trees do not get reference counted because they go away
1359 * before a real commit is actually done. They do store pointers
1360 * to file data extents, and those reference counts still get
1361 * updated (along with back refs to the log tree).
1363 root->ref_cows = 0;
1365 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1366 BTRFS_TREE_LOG_OBJECTID, NULL,
1367 0, 0, 0);
1368 if (IS_ERR(leaf)) {
1369 kfree(root);
1370 return ERR_CAST(leaf);
1373 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1374 btrfs_set_header_bytenr(leaf, leaf->start);
1375 btrfs_set_header_generation(leaf, trans->transid);
1376 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1377 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1378 root->node = leaf;
1380 write_extent_buffer(root->node, root->fs_info->fsid,
1381 btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
1382 btrfs_mark_buffer_dirty(root->node);
1383 btrfs_tree_unlock(root->node);
1384 return root;
1387 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info)
1390 struct btrfs_root *log_root;
1392 log_root = alloc_log_tree(trans, fs_info);
1393 if (IS_ERR(log_root))
1394 return PTR_ERR(log_root);
1395 WARN_ON(fs_info->log_root_tree);
1396 fs_info->log_root_tree = log_root;
1397 return 0;
1400 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1401 struct btrfs_root *root)
1403 struct btrfs_root *log_root;
1404 struct btrfs_inode_item *inode_item;
1406 log_root = alloc_log_tree(trans, root->fs_info);
1407 if (IS_ERR(log_root))
1408 return PTR_ERR(log_root);
1410 log_root->last_trans = trans->transid;
1411 log_root->root_key.offset = root->root_key.objectid;
1413 inode_item = &log_root->root_item.inode;
1414 btrfs_set_stack_inode_generation(inode_item, 1);
1415 btrfs_set_stack_inode_size(inode_item, 3);
1416 btrfs_set_stack_inode_nlink(inode_item, 1);
1417 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1418 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1420 btrfs_set_root_node(&log_root->root_item, log_root->node);
1422 WARN_ON(root->log_root);
1423 root->log_root = log_root;
1424 root->log_transid = 0;
1425 root->last_log_commit = 0;
1426 return 0;
1429 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1430 struct btrfs_key *key)
1432 struct btrfs_root *root;
1433 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1434 struct btrfs_path *path;
1435 u64 generation;
1436 u32 blocksize;
1437 int ret;
1439 path = btrfs_alloc_path();
1440 if (!path)
1441 return ERR_PTR(-ENOMEM);
1443 root = btrfs_alloc_root(fs_info);
1444 if (!root) {
1445 ret = -ENOMEM;
1446 goto alloc_fail;
1449 __setup_root(tree_root->nodesize, tree_root->leafsize,
1450 tree_root->sectorsize, tree_root->stripesize,
1451 root, fs_info, key->objectid);
1453 ret = btrfs_find_root(tree_root, key, path,
1454 &root->root_item, &root->root_key);
1455 if (ret) {
1456 if (ret > 0)
1457 ret = -ENOENT;
1458 goto find_fail;
1461 generation = btrfs_root_generation(&root->root_item);
1462 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1463 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1464 blocksize, generation);
1465 if (!root->node) {
1466 ret = -ENOMEM;
1467 goto find_fail;
1468 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1469 ret = -EIO;
1470 goto read_fail;
1472 root->commit_root = btrfs_root_node(root);
1473 out:
1474 btrfs_free_path(path);
1475 return root;
1477 read_fail:
1478 free_extent_buffer(root->node);
1479 find_fail:
1480 kfree(root);
1481 alloc_fail:
1482 root = ERR_PTR(ret);
1483 goto out;
1486 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1487 struct btrfs_key *location)
1489 struct btrfs_root *root;
1491 root = btrfs_read_tree_root(tree_root, location);
1492 if (IS_ERR(root))
1493 return root;
1495 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1496 root->ref_cows = 1;
1497 btrfs_check_and_init_root_item(&root->root_item);
1500 return root;
1503 int btrfs_init_fs_root(struct btrfs_root *root)
1505 int ret;
1507 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1508 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1509 GFP_NOFS);
1510 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1511 ret = -ENOMEM;
1512 goto fail;
1515 btrfs_init_free_ino_ctl(root);
1516 mutex_init(&root->fs_commit_mutex);
1517 spin_lock_init(&root->cache_lock);
1518 init_waitqueue_head(&root->cache_wait);
1520 ret = get_anon_bdev(&root->anon_dev);
1521 if (ret)
1522 goto fail;
1523 return 0;
1524 fail:
1525 kfree(root->free_ino_ctl);
1526 kfree(root->free_ino_pinned);
1527 return ret;
1530 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531 u64 root_id)
1533 struct btrfs_root *root;
1535 spin_lock(&fs_info->fs_roots_radix_lock);
1536 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537 (unsigned long)root_id);
1538 spin_unlock(&fs_info->fs_roots_radix_lock);
1539 return root;
1542 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543 struct btrfs_root *root)
1545 int ret;
1547 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1548 if (ret)
1549 return ret;
1551 spin_lock(&fs_info->fs_roots_radix_lock);
1552 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553 (unsigned long)root->root_key.objectid,
1554 root);
1555 if (ret == 0)
1556 root->in_radix = 1;
1557 spin_unlock(&fs_info->fs_roots_radix_lock);
1558 radix_tree_preload_end();
1560 return ret;
1563 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1564 struct btrfs_key *location,
1565 bool check_ref)
1567 struct btrfs_root *root;
1568 int ret;
1570 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1571 return fs_info->tree_root;
1572 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1573 return fs_info->extent_root;
1574 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1575 return fs_info->chunk_root;
1576 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1577 return fs_info->dev_root;
1578 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1579 return fs_info->csum_root;
1580 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1581 return fs_info->quota_root ? fs_info->quota_root :
1582 ERR_PTR(-ENOENT);
1583 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1584 return fs_info->uuid_root ? fs_info->uuid_root :
1585 ERR_PTR(-ENOENT);
1586 again:
1587 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1588 if (root) {
1589 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1590 return ERR_PTR(-ENOENT);
1591 return root;
1594 root = btrfs_read_fs_root(fs_info->tree_root, location);
1595 if (IS_ERR(root))
1596 return root;
1598 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1599 ret = -ENOENT;
1600 goto fail;
1603 ret = btrfs_init_fs_root(root);
1604 if (ret)
1605 goto fail;
1607 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1608 if (ret < 0)
1609 goto fail;
1610 if (ret == 0)
1611 root->orphan_item_inserted = 1;
1613 ret = btrfs_insert_fs_root(fs_info, root);
1614 if (ret) {
1615 if (ret == -EEXIST) {
1616 free_fs_root(root);
1617 goto again;
1619 goto fail;
1621 return root;
1622 fail:
1623 free_fs_root(root);
1624 return ERR_PTR(ret);
1627 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1629 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630 int ret = 0;
1631 struct btrfs_device *device;
1632 struct backing_dev_info *bdi;
1634 rcu_read_lock();
1635 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1636 if (!device->bdev)
1637 continue;
1638 bdi = blk_get_backing_dev_info(device->bdev);
1639 if (bdi && bdi_congested(bdi, bdi_bits)) {
1640 ret = 1;
1641 break;
1644 rcu_read_unlock();
1645 return ret;
1649 * If this fails, caller must call bdi_destroy() to get rid of the
1650 * bdi again.
1652 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1654 int err;
1656 bdi->capabilities = BDI_CAP_MAP_COPY;
1657 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1658 if (err)
1659 return err;
1661 bdi->ra_pages = default_backing_dev_info.ra_pages;
1662 bdi->congested_fn = btrfs_congested_fn;
1663 bdi->congested_data = info;
1664 return 0;
1668 * called by the kthread helper functions to finally call the bio end_io
1669 * functions. This is where read checksum verification actually happens
1671 static void end_workqueue_fn(struct btrfs_work *work)
1673 struct bio *bio;
1674 struct end_io_wq *end_io_wq;
1675 struct btrfs_fs_info *fs_info;
1676 int error;
1678 end_io_wq = container_of(work, struct end_io_wq, work);
1679 bio = end_io_wq->bio;
1680 fs_info = end_io_wq->info;
1682 error = end_io_wq->error;
1683 bio->bi_private = end_io_wq->private;
1684 bio->bi_end_io = end_io_wq->end_io;
1685 kfree(end_io_wq);
1686 bio_endio(bio, error);
1689 static int cleaner_kthread(void *arg)
1691 struct btrfs_root *root = arg;
1692 int again;
1694 do {
1695 again = 0;
1697 /* Make the cleaner go to sleep early. */
1698 if (btrfs_need_cleaner_sleep(root))
1699 goto sleep;
1701 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1702 goto sleep;
1705 * Avoid the problem that we change the status of the fs
1706 * during the above check and trylock.
1708 if (btrfs_need_cleaner_sleep(root)) {
1709 mutex_unlock(&root->fs_info->cleaner_mutex);
1710 goto sleep;
1713 btrfs_run_delayed_iputs(root);
1714 again = btrfs_clean_one_deleted_snapshot(root);
1715 mutex_unlock(&root->fs_info->cleaner_mutex);
1718 * The defragger has dealt with the R/O remount and umount,
1719 * needn't do anything special here.
1721 btrfs_run_defrag_inodes(root->fs_info);
1722 sleep:
1723 if (!try_to_freeze() && !again) {
1724 set_current_state(TASK_INTERRUPTIBLE);
1725 if (!kthread_should_stop())
1726 schedule();
1727 __set_current_state(TASK_RUNNING);
1729 } while (!kthread_should_stop());
1730 return 0;
1733 static int transaction_kthread(void *arg)
1735 struct btrfs_root *root = arg;
1736 struct btrfs_trans_handle *trans;
1737 struct btrfs_transaction *cur;
1738 u64 transid;
1739 unsigned long now;
1740 unsigned long delay;
1741 bool cannot_commit;
1743 do {
1744 cannot_commit = false;
1745 delay = HZ * root->fs_info->commit_interval;
1746 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1748 spin_lock(&root->fs_info->trans_lock);
1749 cur = root->fs_info->running_transaction;
1750 if (!cur) {
1751 spin_unlock(&root->fs_info->trans_lock);
1752 goto sleep;
1755 now = get_seconds();
1756 if (cur->state < TRANS_STATE_BLOCKED &&
1757 (now < cur->start_time ||
1758 now - cur->start_time < root->fs_info->commit_interval)) {
1759 spin_unlock(&root->fs_info->trans_lock);
1760 delay = HZ * 5;
1761 goto sleep;
1763 transid = cur->transid;
1764 spin_unlock(&root->fs_info->trans_lock);
1766 /* If the file system is aborted, this will always fail. */
1767 trans = btrfs_attach_transaction(root);
1768 if (IS_ERR(trans)) {
1769 if (PTR_ERR(trans) != -ENOENT)
1770 cannot_commit = true;
1771 goto sleep;
1773 if (transid == trans->transid) {
1774 btrfs_commit_transaction(trans, root);
1775 } else {
1776 btrfs_end_transaction(trans, root);
1778 sleep:
1779 wake_up_process(root->fs_info->cleaner_kthread);
1780 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1782 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1783 &root->fs_info->fs_state)))
1784 btrfs_cleanup_transaction(root);
1785 if (!try_to_freeze()) {
1786 set_current_state(TASK_INTERRUPTIBLE);
1787 if (!kthread_should_stop() &&
1788 (!btrfs_transaction_blocked(root->fs_info) ||
1789 cannot_commit))
1790 schedule_timeout(delay);
1791 __set_current_state(TASK_RUNNING);
1793 } while (!kthread_should_stop());
1794 return 0;
1798 * this will find the highest generation in the array of
1799 * root backups. The index of the highest array is returned,
1800 * or -1 if we can't find anything.
1802 * We check to make sure the array is valid by comparing the
1803 * generation of the latest root in the array with the generation
1804 * in the super block. If they don't match we pitch it.
1806 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1808 u64 cur;
1809 int newest_index = -1;
1810 struct btrfs_root_backup *root_backup;
1811 int i;
1813 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1814 root_backup = info->super_copy->super_roots + i;
1815 cur = btrfs_backup_tree_root_gen(root_backup);
1816 if (cur == newest_gen)
1817 newest_index = i;
1820 /* check to see if we actually wrapped around */
1821 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1822 root_backup = info->super_copy->super_roots;
1823 cur = btrfs_backup_tree_root_gen(root_backup);
1824 if (cur == newest_gen)
1825 newest_index = 0;
1827 return newest_index;
1832 * find the oldest backup so we know where to store new entries
1833 * in the backup array. This will set the backup_root_index
1834 * field in the fs_info struct
1836 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1837 u64 newest_gen)
1839 int newest_index = -1;
1841 newest_index = find_newest_super_backup(info, newest_gen);
1842 /* if there was garbage in there, just move along */
1843 if (newest_index == -1) {
1844 info->backup_root_index = 0;
1845 } else {
1846 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1851 * copy all the root pointers into the super backup array.
1852 * this will bump the backup pointer by one when it is
1853 * done
1855 static void backup_super_roots(struct btrfs_fs_info *info)
1857 int next_backup;
1858 struct btrfs_root_backup *root_backup;
1859 int last_backup;
1861 next_backup = info->backup_root_index;
1862 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1863 BTRFS_NUM_BACKUP_ROOTS;
1866 * just overwrite the last backup if we're at the same generation
1867 * this happens only at umount
1869 root_backup = info->super_for_commit->super_roots + last_backup;
1870 if (btrfs_backup_tree_root_gen(root_backup) ==
1871 btrfs_header_generation(info->tree_root->node))
1872 next_backup = last_backup;
1874 root_backup = info->super_for_commit->super_roots + next_backup;
1877 * make sure all of our padding and empty slots get zero filled
1878 * regardless of which ones we use today
1880 memset(root_backup, 0, sizeof(*root_backup));
1882 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1884 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1885 btrfs_set_backup_tree_root_gen(root_backup,
1886 btrfs_header_generation(info->tree_root->node));
1888 btrfs_set_backup_tree_root_level(root_backup,
1889 btrfs_header_level(info->tree_root->node));
1891 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1892 btrfs_set_backup_chunk_root_gen(root_backup,
1893 btrfs_header_generation(info->chunk_root->node));
1894 btrfs_set_backup_chunk_root_level(root_backup,
1895 btrfs_header_level(info->chunk_root->node));
1897 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1898 btrfs_set_backup_extent_root_gen(root_backup,
1899 btrfs_header_generation(info->extent_root->node));
1900 btrfs_set_backup_extent_root_level(root_backup,
1901 btrfs_header_level(info->extent_root->node));
1904 * we might commit during log recovery, which happens before we set
1905 * the fs_root. Make sure it is valid before we fill it in.
1907 if (info->fs_root && info->fs_root->node) {
1908 btrfs_set_backup_fs_root(root_backup,
1909 info->fs_root->node->start);
1910 btrfs_set_backup_fs_root_gen(root_backup,
1911 btrfs_header_generation(info->fs_root->node));
1912 btrfs_set_backup_fs_root_level(root_backup,
1913 btrfs_header_level(info->fs_root->node));
1916 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1917 btrfs_set_backup_dev_root_gen(root_backup,
1918 btrfs_header_generation(info->dev_root->node));
1919 btrfs_set_backup_dev_root_level(root_backup,
1920 btrfs_header_level(info->dev_root->node));
1922 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1923 btrfs_set_backup_csum_root_gen(root_backup,
1924 btrfs_header_generation(info->csum_root->node));
1925 btrfs_set_backup_csum_root_level(root_backup,
1926 btrfs_header_level(info->csum_root->node));
1928 btrfs_set_backup_total_bytes(root_backup,
1929 btrfs_super_total_bytes(info->super_copy));
1930 btrfs_set_backup_bytes_used(root_backup,
1931 btrfs_super_bytes_used(info->super_copy));
1932 btrfs_set_backup_num_devices(root_backup,
1933 btrfs_super_num_devices(info->super_copy));
1936 * if we don't copy this out to the super_copy, it won't get remembered
1937 * for the next commit
1939 memcpy(&info->super_copy->super_roots,
1940 &info->super_for_commit->super_roots,
1941 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1945 * this copies info out of the root backup array and back into
1946 * the in-memory super block. It is meant to help iterate through
1947 * the array, so you send it the number of backups you've already
1948 * tried and the last backup index you used.
1950 * this returns -1 when it has tried all the backups
1952 static noinline int next_root_backup(struct btrfs_fs_info *info,
1953 struct btrfs_super_block *super,
1954 int *num_backups_tried, int *backup_index)
1956 struct btrfs_root_backup *root_backup;
1957 int newest = *backup_index;
1959 if (*num_backups_tried == 0) {
1960 u64 gen = btrfs_super_generation(super);
1962 newest = find_newest_super_backup(info, gen);
1963 if (newest == -1)
1964 return -1;
1966 *backup_index = newest;
1967 *num_backups_tried = 1;
1968 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1969 /* we've tried all the backups, all done */
1970 return -1;
1971 } else {
1972 /* jump to the next oldest backup */
1973 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1974 BTRFS_NUM_BACKUP_ROOTS;
1975 *backup_index = newest;
1976 *num_backups_tried += 1;
1978 root_backup = super->super_roots + newest;
1980 btrfs_set_super_generation(super,
1981 btrfs_backup_tree_root_gen(root_backup));
1982 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1983 btrfs_set_super_root_level(super,
1984 btrfs_backup_tree_root_level(root_backup));
1985 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1988 * fixme: the total bytes and num_devices need to match or we should
1989 * need a fsck
1991 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1992 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1993 return 0;
1996 /* helper to cleanup workers */
1997 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1999 btrfs_stop_workers(&fs_info->generic_worker);
2000 btrfs_stop_workers(&fs_info->fixup_workers);
2001 btrfs_stop_workers(&fs_info->delalloc_workers);
2002 btrfs_stop_workers(&fs_info->workers);
2003 btrfs_stop_workers(&fs_info->endio_workers);
2004 btrfs_stop_workers(&fs_info->endio_meta_workers);
2005 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2006 btrfs_stop_workers(&fs_info->rmw_workers);
2007 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2008 btrfs_stop_workers(&fs_info->endio_write_workers);
2009 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2010 btrfs_stop_workers(&fs_info->submit_workers);
2011 btrfs_stop_workers(&fs_info->delayed_workers);
2012 btrfs_stop_workers(&fs_info->caching_workers);
2013 btrfs_stop_workers(&fs_info->readahead_workers);
2014 btrfs_stop_workers(&fs_info->flush_workers);
2015 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2018 /* helper to cleanup tree roots */
2019 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2021 free_extent_buffer(info->tree_root->node);
2022 free_extent_buffer(info->tree_root->commit_root);
2023 info->tree_root->node = NULL;
2024 info->tree_root->commit_root = NULL;
2026 if (info->dev_root) {
2027 free_extent_buffer(info->dev_root->node);
2028 free_extent_buffer(info->dev_root->commit_root);
2029 info->dev_root->node = NULL;
2030 info->dev_root->commit_root = NULL;
2032 if (info->extent_root) {
2033 free_extent_buffer(info->extent_root->node);
2034 free_extent_buffer(info->extent_root->commit_root);
2035 info->extent_root->node = NULL;
2036 info->extent_root->commit_root = NULL;
2038 if (info->csum_root) {
2039 free_extent_buffer(info->csum_root->node);
2040 free_extent_buffer(info->csum_root->commit_root);
2041 info->csum_root->node = NULL;
2042 info->csum_root->commit_root = NULL;
2044 if (info->quota_root) {
2045 free_extent_buffer(info->quota_root->node);
2046 free_extent_buffer(info->quota_root->commit_root);
2047 info->quota_root->node = NULL;
2048 info->quota_root->commit_root = NULL;
2050 if (info->uuid_root) {
2051 free_extent_buffer(info->uuid_root->node);
2052 free_extent_buffer(info->uuid_root->commit_root);
2053 info->uuid_root->node = NULL;
2054 info->uuid_root->commit_root = NULL;
2056 if (chunk_root) {
2057 free_extent_buffer(info->chunk_root->node);
2058 free_extent_buffer(info->chunk_root->commit_root);
2059 info->chunk_root->node = NULL;
2060 info->chunk_root->commit_root = NULL;
2064 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2066 int ret;
2067 struct btrfs_root *gang[8];
2068 int i;
2070 while (!list_empty(&fs_info->dead_roots)) {
2071 gang[0] = list_entry(fs_info->dead_roots.next,
2072 struct btrfs_root, root_list);
2073 list_del(&gang[0]->root_list);
2075 if (gang[0]->in_radix) {
2076 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2077 } else {
2078 free_extent_buffer(gang[0]->node);
2079 free_extent_buffer(gang[0]->commit_root);
2080 btrfs_put_fs_root(gang[0]);
2084 while (1) {
2085 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2086 (void **)gang, 0,
2087 ARRAY_SIZE(gang));
2088 if (!ret)
2089 break;
2090 for (i = 0; i < ret; i++)
2091 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2095 int open_ctree(struct super_block *sb,
2096 struct btrfs_fs_devices *fs_devices,
2097 char *options)
2099 u32 sectorsize;
2100 u32 nodesize;
2101 u32 leafsize;
2102 u32 blocksize;
2103 u32 stripesize;
2104 u64 generation;
2105 u64 features;
2106 struct btrfs_key location;
2107 struct buffer_head *bh;
2108 struct btrfs_super_block *disk_super;
2109 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2110 struct btrfs_root *tree_root;
2111 struct btrfs_root *extent_root;
2112 struct btrfs_root *csum_root;
2113 struct btrfs_root *chunk_root;
2114 struct btrfs_root *dev_root;
2115 struct btrfs_root *quota_root;
2116 struct btrfs_root *uuid_root;
2117 struct btrfs_root *log_tree_root;
2118 int ret;
2119 int err = -EINVAL;
2120 int num_backups_tried = 0;
2121 int backup_index = 0;
2122 bool create_uuid_tree;
2123 bool check_uuid_tree;
2125 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2126 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2127 if (!tree_root || !chunk_root) {
2128 err = -ENOMEM;
2129 goto fail;
2132 ret = init_srcu_struct(&fs_info->subvol_srcu);
2133 if (ret) {
2134 err = ret;
2135 goto fail;
2138 ret = setup_bdi(fs_info, &fs_info->bdi);
2139 if (ret) {
2140 err = ret;
2141 goto fail_srcu;
2144 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2145 if (ret) {
2146 err = ret;
2147 goto fail_bdi;
2149 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2150 (1 + ilog2(nr_cpu_ids));
2152 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2153 if (ret) {
2154 err = ret;
2155 goto fail_dirty_metadata_bytes;
2158 fs_info->btree_inode = new_inode(sb);
2159 if (!fs_info->btree_inode) {
2160 err = -ENOMEM;
2161 goto fail_delalloc_bytes;
2164 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2166 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2167 INIT_LIST_HEAD(&fs_info->trans_list);
2168 INIT_LIST_HEAD(&fs_info->dead_roots);
2169 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2170 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2171 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2172 spin_lock_init(&fs_info->delalloc_root_lock);
2173 spin_lock_init(&fs_info->trans_lock);
2174 spin_lock_init(&fs_info->fs_roots_radix_lock);
2175 spin_lock_init(&fs_info->delayed_iput_lock);
2176 spin_lock_init(&fs_info->defrag_inodes_lock);
2177 spin_lock_init(&fs_info->free_chunk_lock);
2178 spin_lock_init(&fs_info->tree_mod_seq_lock);
2179 spin_lock_init(&fs_info->super_lock);
2180 rwlock_init(&fs_info->tree_mod_log_lock);
2181 mutex_init(&fs_info->reloc_mutex);
2182 seqlock_init(&fs_info->profiles_lock);
2184 init_completion(&fs_info->kobj_unregister);
2185 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2186 INIT_LIST_HEAD(&fs_info->space_info);
2187 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2188 btrfs_mapping_init(&fs_info->mapping_tree);
2189 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2190 BTRFS_BLOCK_RSV_GLOBAL);
2191 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2192 BTRFS_BLOCK_RSV_DELALLOC);
2193 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2194 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2195 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2196 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2197 BTRFS_BLOCK_RSV_DELOPS);
2198 atomic_set(&fs_info->nr_async_submits, 0);
2199 atomic_set(&fs_info->async_delalloc_pages, 0);
2200 atomic_set(&fs_info->async_submit_draining, 0);
2201 atomic_set(&fs_info->nr_async_bios, 0);
2202 atomic_set(&fs_info->defrag_running, 0);
2203 atomic64_set(&fs_info->tree_mod_seq, 0);
2204 fs_info->sb = sb;
2205 fs_info->max_inline = 8192 * 1024;
2206 fs_info->metadata_ratio = 0;
2207 fs_info->defrag_inodes = RB_ROOT;
2208 fs_info->free_chunk_space = 0;
2209 fs_info->tree_mod_log = RB_ROOT;
2210 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2212 /* readahead state */
2213 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2214 spin_lock_init(&fs_info->reada_lock);
2216 fs_info->thread_pool_size = min_t(unsigned long,
2217 num_online_cpus() + 2, 8);
2219 INIT_LIST_HEAD(&fs_info->ordered_roots);
2220 spin_lock_init(&fs_info->ordered_root_lock);
2221 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2222 GFP_NOFS);
2223 if (!fs_info->delayed_root) {
2224 err = -ENOMEM;
2225 goto fail_iput;
2227 btrfs_init_delayed_root(fs_info->delayed_root);
2229 mutex_init(&fs_info->scrub_lock);
2230 atomic_set(&fs_info->scrubs_running, 0);
2231 atomic_set(&fs_info->scrub_pause_req, 0);
2232 atomic_set(&fs_info->scrubs_paused, 0);
2233 atomic_set(&fs_info->scrub_cancel_req, 0);
2234 init_waitqueue_head(&fs_info->scrub_pause_wait);
2235 init_rwsem(&fs_info->scrub_super_lock);
2236 fs_info->scrub_workers_refcnt = 0;
2237 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2238 fs_info->check_integrity_print_mask = 0;
2239 #endif
2241 spin_lock_init(&fs_info->balance_lock);
2242 mutex_init(&fs_info->balance_mutex);
2243 atomic_set(&fs_info->balance_running, 0);
2244 atomic_set(&fs_info->balance_pause_req, 0);
2245 atomic_set(&fs_info->balance_cancel_req, 0);
2246 fs_info->balance_ctl = NULL;
2247 init_waitqueue_head(&fs_info->balance_wait_q);
2249 sb->s_blocksize = 4096;
2250 sb->s_blocksize_bits = blksize_bits(4096);
2251 sb->s_bdi = &fs_info->bdi;
2253 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2254 set_nlink(fs_info->btree_inode, 1);
2256 * we set the i_size on the btree inode to the max possible int.
2257 * the real end of the address space is determined by all of
2258 * the devices in the system
2260 fs_info->btree_inode->i_size = OFFSET_MAX;
2261 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2262 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2264 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2265 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2266 fs_info->btree_inode->i_mapping);
2267 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2268 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2270 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2272 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2273 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2274 sizeof(struct btrfs_key));
2275 set_bit(BTRFS_INODE_DUMMY,
2276 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2277 insert_inode_hash(fs_info->btree_inode);
2279 spin_lock_init(&fs_info->block_group_cache_lock);
2280 fs_info->block_group_cache_tree = RB_ROOT;
2281 fs_info->first_logical_byte = (u64)-1;
2283 extent_io_tree_init(&fs_info->freed_extents[0],
2284 fs_info->btree_inode->i_mapping);
2285 extent_io_tree_init(&fs_info->freed_extents[1],
2286 fs_info->btree_inode->i_mapping);
2287 fs_info->pinned_extents = &fs_info->freed_extents[0];
2288 fs_info->do_barriers = 1;
2291 mutex_init(&fs_info->ordered_operations_mutex);
2292 mutex_init(&fs_info->ordered_extent_flush_mutex);
2293 mutex_init(&fs_info->tree_log_mutex);
2294 mutex_init(&fs_info->chunk_mutex);
2295 mutex_init(&fs_info->transaction_kthread_mutex);
2296 mutex_init(&fs_info->cleaner_mutex);
2297 mutex_init(&fs_info->volume_mutex);
2298 init_rwsem(&fs_info->extent_commit_sem);
2299 init_rwsem(&fs_info->cleanup_work_sem);
2300 init_rwsem(&fs_info->subvol_sem);
2301 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2302 fs_info->dev_replace.lock_owner = 0;
2303 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2304 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2305 mutex_init(&fs_info->dev_replace.lock_management_lock);
2306 mutex_init(&fs_info->dev_replace.lock);
2308 spin_lock_init(&fs_info->qgroup_lock);
2309 mutex_init(&fs_info->qgroup_ioctl_lock);
2310 fs_info->qgroup_tree = RB_ROOT;
2311 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2312 fs_info->qgroup_seq = 1;
2313 fs_info->quota_enabled = 0;
2314 fs_info->pending_quota_state = 0;
2315 fs_info->qgroup_ulist = NULL;
2316 mutex_init(&fs_info->qgroup_rescan_lock);
2318 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2319 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2321 init_waitqueue_head(&fs_info->transaction_throttle);
2322 init_waitqueue_head(&fs_info->transaction_wait);
2323 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2324 init_waitqueue_head(&fs_info->async_submit_wait);
2326 ret = btrfs_alloc_stripe_hash_table(fs_info);
2327 if (ret) {
2328 err = ret;
2329 goto fail_alloc;
2332 __setup_root(4096, 4096, 4096, 4096, tree_root,
2333 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2335 invalidate_bdev(fs_devices->latest_bdev);
2338 * Read super block and check the signature bytes only
2340 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2341 if (!bh) {
2342 err = -EINVAL;
2343 goto fail_alloc;
2347 * We want to check superblock checksum, the type is stored inside.
2348 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2350 if (btrfs_check_super_csum(bh->b_data)) {
2351 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2352 err = -EINVAL;
2353 goto fail_alloc;
2357 * super_copy is zeroed at allocation time and we never touch the
2358 * following bytes up to INFO_SIZE, the checksum is calculated from
2359 * the whole block of INFO_SIZE
2361 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2362 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2363 sizeof(*fs_info->super_for_commit));
2364 brelse(bh);
2366 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2368 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2369 if (ret) {
2370 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2371 err = -EINVAL;
2372 goto fail_alloc;
2375 disk_super = fs_info->super_copy;
2376 if (!btrfs_super_root(disk_super))
2377 goto fail_alloc;
2379 /* check FS state, whether FS is broken. */
2380 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2381 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2384 * run through our array of backup supers and setup
2385 * our ring pointer to the oldest one
2387 generation = btrfs_super_generation(disk_super);
2388 find_oldest_super_backup(fs_info, generation);
2391 * In the long term, we'll store the compression type in the super
2392 * block, and it'll be used for per file compression control.
2394 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2396 ret = btrfs_parse_options(tree_root, options);
2397 if (ret) {
2398 err = ret;
2399 goto fail_alloc;
2402 features = btrfs_super_incompat_flags(disk_super) &
2403 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2404 if (features) {
2405 printk(KERN_ERR "BTRFS: couldn't mount because of "
2406 "unsupported optional features (%Lx).\n",
2407 features);
2408 err = -EINVAL;
2409 goto fail_alloc;
2412 if (btrfs_super_leafsize(disk_super) !=
2413 btrfs_super_nodesize(disk_super)) {
2414 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2415 "blocksizes don't match. node %d leaf %d\n",
2416 btrfs_super_nodesize(disk_super),
2417 btrfs_super_leafsize(disk_super));
2418 err = -EINVAL;
2419 goto fail_alloc;
2421 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2422 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2423 "blocksize (%d) was too large\n",
2424 btrfs_super_leafsize(disk_super));
2425 err = -EINVAL;
2426 goto fail_alloc;
2429 features = btrfs_super_incompat_flags(disk_super);
2430 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2431 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2432 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2434 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2435 printk(KERN_ERR "btrfs: has skinny extents\n");
2438 * flag our filesystem as having big metadata blocks if
2439 * they are bigger than the page size
2441 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2442 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2443 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2444 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2447 nodesize = btrfs_super_nodesize(disk_super);
2448 leafsize = btrfs_super_leafsize(disk_super);
2449 sectorsize = btrfs_super_sectorsize(disk_super);
2450 stripesize = btrfs_super_stripesize(disk_super);
2451 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2452 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2455 * mixed block groups end up with duplicate but slightly offset
2456 * extent buffers for the same range. It leads to corruptions
2458 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2459 (sectorsize != leafsize)) {
2460 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2461 "are not allowed for mixed block groups on %s\n",
2462 sb->s_id);
2463 goto fail_alloc;
2467 * Needn't use the lock because there is no other task which will
2468 * update the flag.
2470 btrfs_set_super_incompat_flags(disk_super, features);
2472 features = btrfs_super_compat_ro_flags(disk_super) &
2473 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2474 if (!(sb->s_flags & MS_RDONLY) && features) {
2475 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2476 "unsupported option features (%Lx).\n",
2477 features);
2478 err = -EINVAL;
2479 goto fail_alloc;
2482 btrfs_init_workers(&fs_info->generic_worker,
2483 "genwork", 1, NULL);
2485 btrfs_init_workers(&fs_info->workers, "worker",
2486 fs_info->thread_pool_size,
2487 &fs_info->generic_worker);
2489 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2490 fs_info->thread_pool_size, NULL);
2492 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2493 fs_info->thread_pool_size, NULL);
2495 btrfs_init_workers(&fs_info->submit_workers, "submit",
2496 min_t(u64, fs_devices->num_devices,
2497 fs_info->thread_pool_size), NULL);
2499 btrfs_init_workers(&fs_info->caching_workers, "cache",
2500 fs_info->thread_pool_size, NULL);
2502 /* a higher idle thresh on the submit workers makes it much more
2503 * likely that bios will be send down in a sane order to the
2504 * devices
2506 fs_info->submit_workers.idle_thresh = 64;
2508 fs_info->workers.idle_thresh = 16;
2509 fs_info->workers.ordered = 1;
2511 fs_info->delalloc_workers.idle_thresh = 2;
2512 fs_info->delalloc_workers.ordered = 1;
2514 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2515 &fs_info->generic_worker);
2516 btrfs_init_workers(&fs_info->endio_workers, "endio",
2517 fs_info->thread_pool_size,
2518 &fs_info->generic_worker);
2519 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2520 fs_info->thread_pool_size,
2521 &fs_info->generic_worker);
2522 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2523 "endio-meta-write", fs_info->thread_pool_size,
2524 &fs_info->generic_worker);
2525 btrfs_init_workers(&fs_info->endio_raid56_workers,
2526 "endio-raid56", fs_info->thread_pool_size,
2527 &fs_info->generic_worker);
2528 btrfs_init_workers(&fs_info->rmw_workers,
2529 "rmw", fs_info->thread_pool_size,
2530 &fs_info->generic_worker);
2531 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2532 fs_info->thread_pool_size,
2533 &fs_info->generic_worker);
2534 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2535 1, &fs_info->generic_worker);
2536 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2537 fs_info->thread_pool_size,
2538 &fs_info->generic_worker);
2539 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2540 fs_info->thread_pool_size,
2541 &fs_info->generic_worker);
2542 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2543 &fs_info->generic_worker);
2546 * endios are largely parallel and should have a very
2547 * low idle thresh
2549 fs_info->endio_workers.idle_thresh = 4;
2550 fs_info->endio_meta_workers.idle_thresh = 4;
2551 fs_info->endio_raid56_workers.idle_thresh = 4;
2552 fs_info->rmw_workers.idle_thresh = 2;
2554 fs_info->endio_write_workers.idle_thresh = 2;
2555 fs_info->endio_meta_write_workers.idle_thresh = 2;
2556 fs_info->readahead_workers.idle_thresh = 2;
2559 * btrfs_start_workers can really only fail because of ENOMEM so just
2560 * return -ENOMEM if any of these fail.
2562 ret = btrfs_start_workers(&fs_info->workers);
2563 ret |= btrfs_start_workers(&fs_info->generic_worker);
2564 ret |= btrfs_start_workers(&fs_info->submit_workers);
2565 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2566 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2567 ret |= btrfs_start_workers(&fs_info->endio_workers);
2568 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2569 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2570 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2571 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2572 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2573 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2574 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2575 ret |= btrfs_start_workers(&fs_info->caching_workers);
2576 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2577 ret |= btrfs_start_workers(&fs_info->flush_workers);
2578 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2579 if (ret) {
2580 err = -ENOMEM;
2581 goto fail_sb_buffer;
2584 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2585 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2586 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2588 tree_root->nodesize = nodesize;
2589 tree_root->leafsize = leafsize;
2590 tree_root->sectorsize = sectorsize;
2591 tree_root->stripesize = stripesize;
2593 sb->s_blocksize = sectorsize;
2594 sb->s_blocksize_bits = blksize_bits(sectorsize);
2596 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2597 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2598 goto fail_sb_buffer;
2601 if (sectorsize != PAGE_SIZE) {
2602 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2603 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2604 goto fail_sb_buffer;
2607 mutex_lock(&fs_info->chunk_mutex);
2608 ret = btrfs_read_sys_array(tree_root);
2609 mutex_unlock(&fs_info->chunk_mutex);
2610 if (ret) {
2611 printk(KERN_WARNING "btrfs: failed to read the system "
2612 "array on %s\n", sb->s_id);
2613 goto fail_sb_buffer;
2616 blocksize = btrfs_level_size(tree_root,
2617 btrfs_super_chunk_root_level(disk_super));
2618 generation = btrfs_super_chunk_root_generation(disk_super);
2620 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2621 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2623 chunk_root->node = read_tree_block(chunk_root,
2624 btrfs_super_chunk_root(disk_super),
2625 blocksize, generation);
2626 if (!chunk_root->node ||
2627 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2628 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2629 sb->s_id);
2630 goto fail_tree_roots;
2632 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2633 chunk_root->commit_root = btrfs_root_node(chunk_root);
2635 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2636 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2638 ret = btrfs_read_chunk_tree(chunk_root);
2639 if (ret) {
2640 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2641 sb->s_id);
2642 goto fail_tree_roots;
2646 * keep the device that is marked to be the target device for the
2647 * dev_replace procedure
2649 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2651 if (!fs_devices->latest_bdev) {
2652 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2653 sb->s_id);
2654 goto fail_tree_roots;
2657 retry_root_backup:
2658 blocksize = btrfs_level_size(tree_root,
2659 btrfs_super_root_level(disk_super));
2660 generation = btrfs_super_generation(disk_super);
2662 tree_root->node = read_tree_block(tree_root,
2663 btrfs_super_root(disk_super),
2664 blocksize, generation);
2665 if (!tree_root->node ||
2666 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2667 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2668 sb->s_id);
2670 goto recovery_tree_root;
2673 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2674 tree_root->commit_root = btrfs_root_node(tree_root);
2676 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2677 location.type = BTRFS_ROOT_ITEM_KEY;
2678 location.offset = 0;
2680 extent_root = btrfs_read_tree_root(tree_root, &location);
2681 if (IS_ERR(extent_root)) {
2682 ret = PTR_ERR(extent_root);
2683 goto recovery_tree_root;
2685 extent_root->track_dirty = 1;
2686 fs_info->extent_root = extent_root;
2688 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2689 dev_root = btrfs_read_tree_root(tree_root, &location);
2690 if (IS_ERR(dev_root)) {
2691 ret = PTR_ERR(dev_root);
2692 goto recovery_tree_root;
2694 dev_root->track_dirty = 1;
2695 fs_info->dev_root = dev_root;
2696 btrfs_init_devices_late(fs_info);
2698 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2699 csum_root = btrfs_read_tree_root(tree_root, &location);
2700 if (IS_ERR(csum_root)) {
2701 ret = PTR_ERR(csum_root);
2702 goto recovery_tree_root;
2704 csum_root->track_dirty = 1;
2705 fs_info->csum_root = csum_root;
2707 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2708 quota_root = btrfs_read_tree_root(tree_root, &location);
2709 if (!IS_ERR(quota_root)) {
2710 quota_root->track_dirty = 1;
2711 fs_info->quota_enabled = 1;
2712 fs_info->pending_quota_state = 1;
2713 fs_info->quota_root = quota_root;
2716 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2717 uuid_root = btrfs_read_tree_root(tree_root, &location);
2718 if (IS_ERR(uuid_root)) {
2719 ret = PTR_ERR(uuid_root);
2720 if (ret != -ENOENT)
2721 goto recovery_tree_root;
2722 create_uuid_tree = true;
2723 check_uuid_tree = false;
2724 } else {
2725 uuid_root->track_dirty = 1;
2726 fs_info->uuid_root = uuid_root;
2727 create_uuid_tree = false;
2728 check_uuid_tree =
2729 generation != btrfs_super_uuid_tree_generation(disk_super);
2732 fs_info->generation = generation;
2733 fs_info->last_trans_committed = generation;
2735 ret = btrfs_recover_balance(fs_info);
2736 if (ret) {
2737 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2738 goto fail_block_groups;
2741 ret = btrfs_init_dev_stats(fs_info);
2742 if (ret) {
2743 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2744 ret);
2745 goto fail_block_groups;
2748 ret = btrfs_init_dev_replace(fs_info);
2749 if (ret) {
2750 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2751 goto fail_block_groups;
2754 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2756 ret = btrfs_init_space_info(fs_info);
2757 if (ret) {
2758 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2759 goto fail_block_groups;
2762 ret = btrfs_read_block_groups(extent_root);
2763 if (ret) {
2764 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2765 goto fail_block_groups;
2767 fs_info->num_tolerated_disk_barrier_failures =
2768 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2769 if (fs_info->fs_devices->missing_devices >
2770 fs_info->num_tolerated_disk_barrier_failures &&
2771 !(sb->s_flags & MS_RDONLY)) {
2772 printk(KERN_WARNING
2773 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2774 goto fail_block_groups;
2777 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2778 "btrfs-cleaner");
2779 if (IS_ERR(fs_info->cleaner_kthread))
2780 goto fail_block_groups;
2782 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2783 tree_root,
2784 "btrfs-transaction");
2785 if (IS_ERR(fs_info->transaction_kthread))
2786 goto fail_cleaner;
2788 if (!btrfs_test_opt(tree_root, SSD) &&
2789 !btrfs_test_opt(tree_root, NOSSD) &&
2790 !fs_info->fs_devices->rotating) {
2791 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2792 "mode\n");
2793 btrfs_set_opt(fs_info->mount_opt, SSD);
2796 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2797 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2798 ret = btrfsic_mount(tree_root, fs_devices,
2799 btrfs_test_opt(tree_root,
2800 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2801 1 : 0,
2802 fs_info->check_integrity_print_mask);
2803 if (ret)
2804 printk(KERN_WARNING "btrfs: failed to initialize"
2805 " integrity check module %s\n", sb->s_id);
2807 #endif
2808 ret = btrfs_read_qgroup_config(fs_info);
2809 if (ret)
2810 goto fail_trans_kthread;
2812 /* do not make disk changes in broken FS */
2813 if (btrfs_super_log_root(disk_super) != 0) {
2814 u64 bytenr = btrfs_super_log_root(disk_super);
2816 if (fs_devices->rw_devices == 0) {
2817 printk(KERN_WARNING "Btrfs log replay required "
2818 "on RO media\n");
2819 err = -EIO;
2820 goto fail_qgroup;
2822 blocksize =
2823 btrfs_level_size(tree_root,
2824 btrfs_super_log_root_level(disk_super));
2826 log_tree_root = btrfs_alloc_root(fs_info);
2827 if (!log_tree_root) {
2828 err = -ENOMEM;
2829 goto fail_qgroup;
2832 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2833 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2835 log_tree_root->node = read_tree_block(tree_root, bytenr,
2836 blocksize,
2837 generation + 1);
2838 if (!log_tree_root->node ||
2839 !extent_buffer_uptodate(log_tree_root->node)) {
2840 printk(KERN_ERR "btrfs: failed to read log tree\n");
2841 free_extent_buffer(log_tree_root->node);
2842 kfree(log_tree_root);
2843 goto fail_trans_kthread;
2845 /* returns with log_tree_root freed on success */
2846 ret = btrfs_recover_log_trees(log_tree_root);
2847 if (ret) {
2848 btrfs_error(tree_root->fs_info, ret,
2849 "Failed to recover log tree");
2850 free_extent_buffer(log_tree_root->node);
2851 kfree(log_tree_root);
2852 goto fail_trans_kthread;
2855 if (sb->s_flags & MS_RDONLY) {
2856 ret = btrfs_commit_super(tree_root);
2857 if (ret)
2858 goto fail_trans_kthread;
2862 ret = btrfs_find_orphan_roots(tree_root);
2863 if (ret)
2864 goto fail_trans_kthread;
2866 if (!(sb->s_flags & MS_RDONLY)) {
2867 ret = btrfs_cleanup_fs_roots(fs_info);
2868 if (ret)
2869 goto fail_trans_kthread;
2871 ret = btrfs_recover_relocation(tree_root);
2872 if (ret < 0) {
2873 printk(KERN_WARNING
2874 "btrfs: failed to recover relocation\n");
2875 err = -EINVAL;
2876 goto fail_qgroup;
2880 location.objectid = BTRFS_FS_TREE_OBJECTID;
2881 location.type = BTRFS_ROOT_ITEM_KEY;
2882 location.offset = 0;
2884 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2885 if (IS_ERR(fs_info->fs_root)) {
2886 err = PTR_ERR(fs_info->fs_root);
2887 goto fail_qgroup;
2890 if (sb->s_flags & MS_RDONLY)
2891 return 0;
2893 down_read(&fs_info->cleanup_work_sem);
2894 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2895 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2896 up_read(&fs_info->cleanup_work_sem);
2897 close_ctree(tree_root);
2898 return ret;
2900 up_read(&fs_info->cleanup_work_sem);
2902 ret = btrfs_resume_balance_async(fs_info);
2903 if (ret) {
2904 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2905 close_ctree(tree_root);
2906 return ret;
2909 ret = btrfs_resume_dev_replace_async(fs_info);
2910 if (ret) {
2911 pr_warn("btrfs: failed to resume dev_replace\n");
2912 close_ctree(tree_root);
2913 return ret;
2916 btrfs_qgroup_rescan_resume(fs_info);
2918 if (create_uuid_tree) {
2919 pr_info("btrfs: creating UUID tree\n");
2920 ret = btrfs_create_uuid_tree(fs_info);
2921 if (ret) {
2922 pr_warn("btrfs: failed to create the UUID tree %d\n",
2923 ret);
2924 close_ctree(tree_root);
2925 return ret;
2927 } else if (check_uuid_tree ||
2928 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2929 pr_info("btrfs: checking UUID tree\n");
2930 ret = btrfs_check_uuid_tree(fs_info);
2931 if (ret) {
2932 pr_warn("btrfs: failed to check the UUID tree %d\n",
2933 ret);
2934 close_ctree(tree_root);
2935 return ret;
2937 } else {
2938 fs_info->update_uuid_tree_gen = 1;
2941 return 0;
2943 fail_qgroup:
2944 btrfs_free_qgroup_config(fs_info);
2945 fail_trans_kthread:
2946 kthread_stop(fs_info->transaction_kthread);
2947 btrfs_cleanup_transaction(fs_info->tree_root);
2948 del_fs_roots(fs_info);
2949 fail_cleaner:
2950 kthread_stop(fs_info->cleaner_kthread);
2953 * make sure we're done with the btree inode before we stop our
2954 * kthreads
2956 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2958 fail_block_groups:
2959 btrfs_put_block_group_cache(fs_info);
2960 btrfs_free_block_groups(fs_info);
2962 fail_tree_roots:
2963 free_root_pointers(fs_info, 1);
2964 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2966 fail_sb_buffer:
2967 btrfs_stop_all_workers(fs_info);
2968 fail_alloc:
2969 fail_iput:
2970 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2972 iput(fs_info->btree_inode);
2973 fail_delalloc_bytes:
2974 percpu_counter_destroy(&fs_info->delalloc_bytes);
2975 fail_dirty_metadata_bytes:
2976 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2977 fail_bdi:
2978 bdi_destroy(&fs_info->bdi);
2979 fail_srcu:
2980 cleanup_srcu_struct(&fs_info->subvol_srcu);
2981 fail:
2982 btrfs_free_stripe_hash_table(fs_info);
2983 btrfs_close_devices(fs_info->fs_devices);
2984 return err;
2986 recovery_tree_root:
2987 if (!btrfs_test_opt(tree_root, RECOVERY))
2988 goto fail_tree_roots;
2990 free_root_pointers(fs_info, 0);
2992 /* don't use the log in recovery mode, it won't be valid */
2993 btrfs_set_super_log_root(disk_super, 0);
2995 /* we can't trust the free space cache either */
2996 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2998 ret = next_root_backup(fs_info, fs_info->super_copy,
2999 &num_backups_tried, &backup_index);
3000 if (ret == -1)
3001 goto fail_block_groups;
3002 goto retry_root_backup;
3005 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3007 if (uptodate) {
3008 set_buffer_uptodate(bh);
3009 } else {
3010 struct btrfs_device *device = (struct btrfs_device *)
3011 bh->b_private;
3013 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3014 "I/O error on %s\n",
3015 rcu_str_deref(device->name));
3016 /* note, we dont' set_buffer_write_io_error because we have
3017 * our own ways of dealing with the IO errors
3019 clear_buffer_uptodate(bh);
3020 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3022 unlock_buffer(bh);
3023 put_bh(bh);
3026 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3028 struct buffer_head *bh;
3029 struct buffer_head *latest = NULL;
3030 struct btrfs_super_block *super;
3031 int i;
3032 u64 transid = 0;
3033 u64 bytenr;
3035 /* we would like to check all the supers, but that would make
3036 * a btrfs mount succeed after a mkfs from a different FS.
3037 * So, we need to add a special mount option to scan for
3038 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3040 for (i = 0; i < 1; i++) {
3041 bytenr = btrfs_sb_offset(i);
3042 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3043 i_size_read(bdev->bd_inode))
3044 break;
3045 bh = __bread(bdev, bytenr / 4096,
3046 BTRFS_SUPER_INFO_SIZE);
3047 if (!bh)
3048 continue;
3050 super = (struct btrfs_super_block *)bh->b_data;
3051 if (btrfs_super_bytenr(super) != bytenr ||
3052 btrfs_super_magic(super) != BTRFS_MAGIC) {
3053 brelse(bh);
3054 continue;
3057 if (!latest || btrfs_super_generation(super) > transid) {
3058 brelse(latest);
3059 latest = bh;
3060 transid = btrfs_super_generation(super);
3061 } else {
3062 brelse(bh);
3065 return latest;
3069 * this should be called twice, once with wait == 0 and
3070 * once with wait == 1. When wait == 0 is done, all the buffer heads
3071 * we write are pinned.
3073 * They are released when wait == 1 is done.
3074 * max_mirrors must be the same for both runs, and it indicates how
3075 * many supers on this one device should be written.
3077 * max_mirrors == 0 means to write them all.
3079 static int write_dev_supers(struct btrfs_device *device,
3080 struct btrfs_super_block *sb,
3081 int do_barriers, int wait, int max_mirrors)
3083 struct buffer_head *bh;
3084 int i;
3085 int ret;
3086 int errors = 0;
3087 u32 crc;
3088 u64 bytenr;
3090 if (max_mirrors == 0)
3091 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3093 for (i = 0; i < max_mirrors; i++) {
3094 bytenr = btrfs_sb_offset(i);
3095 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3096 break;
3098 if (wait) {
3099 bh = __find_get_block(device->bdev, bytenr / 4096,
3100 BTRFS_SUPER_INFO_SIZE);
3101 if (!bh) {
3102 errors++;
3103 continue;
3105 wait_on_buffer(bh);
3106 if (!buffer_uptodate(bh))
3107 errors++;
3109 /* drop our reference */
3110 brelse(bh);
3112 /* drop the reference from the wait == 0 run */
3113 brelse(bh);
3114 continue;
3115 } else {
3116 btrfs_set_super_bytenr(sb, bytenr);
3118 crc = ~(u32)0;
3119 crc = btrfs_csum_data((char *)sb +
3120 BTRFS_CSUM_SIZE, crc,
3121 BTRFS_SUPER_INFO_SIZE -
3122 BTRFS_CSUM_SIZE);
3123 btrfs_csum_final(crc, sb->csum);
3126 * one reference for us, and we leave it for the
3127 * caller
3129 bh = __getblk(device->bdev, bytenr / 4096,
3130 BTRFS_SUPER_INFO_SIZE);
3131 if (!bh) {
3132 printk(KERN_ERR "btrfs: couldn't get super "
3133 "buffer head for bytenr %Lu\n", bytenr);
3134 errors++;
3135 continue;
3138 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3140 /* one reference for submit_bh */
3141 get_bh(bh);
3143 set_buffer_uptodate(bh);
3144 lock_buffer(bh);
3145 bh->b_end_io = btrfs_end_buffer_write_sync;
3146 bh->b_private = device;
3150 * we fua the first super. The others we allow
3151 * to go down lazy.
3153 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3154 if (ret)
3155 errors++;
3157 return errors < i ? 0 : -1;
3161 * endio for the write_dev_flush, this will wake anyone waiting
3162 * for the barrier when it is done
3164 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3166 if (err) {
3167 if (err == -EOPNOTSUPP)
3168 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3169 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3171 if (bio->bi_private)
3172 complete(bio->bi_private);
3173 bio_put(bio);
3177 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3178 * sent down. With wait == 1, it waits for the previous flush.
3180 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3181 * capable
3183 static int write_dev_flush(struct btrfs_device *device, int wait)
3185 struct bio *bio;
3186 int ret = 0;
3188 if (device->nobarriers)
3189 return 0;
3191 if (wait) {
3192 bio = device->flush_bio;
3193 if (!bio)
3194 return 0;
3196 wait_for_completion(&device->flush_wait);
3198 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3199 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3200 rcu_str_deref(device->name));
3201 device->nobarriers = 1;
3202 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3203 ret = -EIO;
3204 btrfs_dev_stat_inc_and_print(device,
3205 BTRFS_DEV_STAT_FLUSH_ERRS);
3208 /* drop the reference from the wait == 0 run */
3209 bio_put(bio);
3210 device->flush_bio = NULL;
3212 return ret;
3216 * one reference for us, and we leave it for the
3217 * caller
3219 device->flush_bio = NULL;
3220 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3221 if (!bio)
3222 return -ENOMEM;
3224 bio->bi_end_io = btrfs_end_empty_barrier;
3225 bio->bi_bdev = device->bdev;
3226 init_completion(&device->flush_wait);
3227 bio->bi_private = &device->flush_wait;
3228 device->flush_bio = bio;
3230 bio_get(bio);
3231 btrfsic_submit_bio(WRITE_FLUSH, bio);
3233 return 0;
3237 * send an empty flush down to each device in parallel,
3238 * then wait for them
3240 static int barrier_all_devices(struct btrfs_fs_info *info)
3242 struct list_head *head;
3243 struct btrfs_device *dev;
3244 int errors_send = 0;
3245 int errors_wait = 0;
3246 int ret;
3248 /* send down all the barriers */
3249 head = &info->fs_devices->devices;
3250 list_for_each_entry_rcu(dev, head, dev_list) {
3251 if (dev->missing)
3252 continue;
3253 if (!dev->bdev) {
3254 errors_send++;
3255 continue;
3257 if (!dev->in_fs_metadata || !dev->writeable)
3258 continue;
3260 ret = write_dev_flush(dev, 0);
3261 if (ret)
3262 errors_send++;
3265 /* wait for all the barriers */
3266 list_for_each_entry_rcu(dev, head, dev_list) {
3267 if (dev->missing)
3268 continue;
3269 if (!dev->bdev) {
3270 errors_wait++;
3271 continue;
3273 if (!dev->in_fs_metadata || !dev->writeable)
3274 continue;
3276 ret = write_dev_flush(dev, 1);
3277 if (ret)
3278 errors_wait++;
3280 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3281 errors_wait > info->num_tolerated_disk_barrier_failures)
3282 return -EIO;
3283 return 0;
3286 int btrfs_calc_num_tolerated_disk_barrier_failures(
3287 struct btrfs_fs_info *fs_info)
3289 struct btrfs_ioctl_space_info space;
3290 struct btrfs_space_info *sinfo;
3291 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3292 BTRFS_BLOCK_GROUP_SYSTEM,
3293 BTRFS_BLOCK_GROUP_METADATA,
3294 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3295 int num_types = 4;
3296 int i;
3297 int c;
3298 int num_tolerated_disk_barrier_failures =
3299 (int)fs_info->fs_devices->num_devices;
3301 for (i = 0; i < num_types; i++) {
3302 struct btrfs_space_info *tmp;
3304 sinfo = NULL;
3305 rcu_read_lock();
3306 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3307 if (tmp->flags == types[i]) {
3308 sinfo = tmp;
3309 break;
3312 rcu_read_unlock();
3314 if (!sinfo)
3315 continue;
3317 down_read(&sinfo->groups_sem);
3318 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3319 if (!list_empty(&sinfo->block_groups[c])) {
3320 u64 flags;
3322 btrfs_get_block_group_info(
3323 &sinfo->block_groups[c], &space);
3324 if (space.total_bytes == 0 ||
3325 space.used_bytes == 0)
3326 continue;
3327 flags = space.flags;
3329 * return
3330 * 0: if dup, single or RAID0 is configured for
3331 * any of metadata, system or data, else
3332 * 1: if RAID5 is configured, or if RAID1 or
3333 * RAID10 is configured and only two mirrors
3334 * are used, else
3335 * 2: if RAID6 is configured, else
3336 * num_mirrors - 1: if RAID1 or RAID10 is
3337 * configured and more than
3338 * 2 mirrors are used.
3340 if (num_tolerated_disk_barrier_failures > 0 &&
3341 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3342 BTRFS_BLOCK_GROUP_RAID0)) ||
3343 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3344 == 0)))
3345 num_tolerated_disk_barrier_failures = 0;
3346 else if (num_tolerated_disk_barrier_failures > 1) {
3347 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3348 BTRFS_BLOCK_GROUP_RAID5 |
3349 BTRFS_BLOCK_GROUP_RAID10)) {
3350 num_tolerated_disk_barrier_failures = 1;
3351 } else if (flags &
3352 BTRFS_BLOCK_GROUP_RAID6) {
3353 num_tolerated_disk_barrier_failures = 2;
3358 up_read(&sinfo->groups_sem);
3361 return num_tolerated_disk_barrier_failures;
3364 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3366 struct list_head *head;
3367 struct btrfs_device *dev;
3368 struct btrfs_super_block *sb;
3369 struct btrfs_dev_item *dev_item;
3370 int ret;
3371 int do_barriers;
3372 int max_errors;
3373 int total_errors = 0;
3374 u64 flags;
3376 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3377 backup_super_roots(root->fs_info);
3379 sb = root->fs_info->super_for_commit;
3380 dev_item = &sb->dev_item;
3382 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3383 head = &root->fs_info->fs_devices->devices;
3384 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3386 if (do_barriers) {
3387 ret = barrier_all_devices(root->fs_info);
3388 if (ret) {
3389 mutex_unlock(
3390 &root->fs_info->fs_devices->device_list_mutex);
3391 btrfs_error(root->fs_info, ret,
3392 "errors while submitting device barriers.");
3393 return ret;
3397 list_for_each_entry_rcu(dev, head, dev_list) {
3398 if (!dev->bdev) {
3399 total_errors++;
3400 continue;
3402 if (!dev->in_fs_metadata || !dev->writeable)
3403 continue;
3405 btrfs_set_stack_device_generation(dev_item, 0);
3406 btrfs_set_stack_device_type(dev_item, dev->type);
3407 btrfs_set_stack_device_id(dev_item, dev->devid);
3408 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3409 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3410 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3411 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3412 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3413 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3414 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3416 flags = btrfs_super_flags(sb);
3417 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3419 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3420 if (ret)
3421 total_errors++;
3423 if (total_errors > max_errors) {
3424 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3425 total_errors);
3426 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3428 /* FUA is masked off if unsupported and can't be the reason */
3429 btrfs_error(root->fs_info, -EIO,
3430 "%d errors while writing supers", total_errors);
3431 return -EIO;
3434 total_errors = 0;
3435 list_for_each_entry_rcu(dev, head, dev_list) {
3436 if (!dev->bdev)
3437 continue;
3438 if (!dev->in_fs_metadata || !dev->writeable)
3439 continue;
3441 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3442 if (ret)
3443 total_errors++;
3445 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3446 if (total_errors > max_errors) {
3447 btrfs_error(root->fs_info, -EIO,
3448 "%d errors while writing supers", total_errors);
3449 return -EIO;
3451 return 0;
3454 int write_ctree_super(struct btrfs_trans_handle *trans,
3455 struct btrfs_root *root, int max_mirrors)
3457 int ret;
3459 ret = write_all_supers(root, max_mirrors);
3460 return ret;
3463 /* Drop a fs root from the radix tree and free it. */
3464 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3465 struct btrfs_root *root)
3467 spin_lock(&fs_info->fs_roots_radix_lock);
3468 radix_tree_delete(&fs_info->fs_roots_radix,
3469 (unsigned long)root->root_key.objectid);
3470 spin_unlock(&fs_info->fs_roots_radix_lock);
3472 if (btrfs_root_refs(&root->root_item) == 0)
3473 synchronize_srcu(&fs_info->subvol_srcu);
3475 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3476 btrfs_free_log(NULL, root);
3477 btrfs_free_log_root_tree(NULL, fs_info);
3480 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3481 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3482 free_fs_root(root);
3485 static void free_fs_root(struct btrfs_root *root)
3487 iput(root->cache_inode);
3488 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3489 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3490 root->orphan_block_rsv = NULL;
3491 if (root->anon_dev)
3492 free_anon_bdev(root->anon_dev);
3493 free_extent_buffer(root->node);
3494 free_extent_buffer(root->commit_root);
3495 kfree(root->free_ino_ctl);
3496 kfree(root->free_ino_pinned);
3497 kfree(root->name);
3498 btrfs_put_fs_root(root);
3501 void btrfs_free_fs_root(struct btrfs_root *root)
3503 free_fs_root(root);
3506 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3508 u64 root_objectid = 0;
3509 struct btrfs_root *gang[8];
3510 int i;
3511 int ret;
3513 while (1) {
3514 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3515 (void **)gang, root_objectid,
3516 ARRAY_SIZE(gang));
3517 if (!ret)
3518 break;
3520 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3521 for (i = 0; i < ret; i++) {
3522 int err;
3524 root_objectid = gang[i]->root_key.objectid;
3525 err = btrfs_orphan_cleanup(gang[i]);
3526 if (err)
3527 return err;
3529 root_objectid++;
3531 return 0;
3534 int btrfs_commit_super(struct btrfs_root *root)
3536 struct btrfs_trans_handle *trans;
3537 int ret;
3539 mutex_lock(&root->fs_info->cleaner_mutex);
3540 btrfs_run_delayed_iputs(root);
3541 mutex_unlock(&root->fs_info->cleaner_mutex);
3542 wake_up_process(root->fs_info->cleaner_kthread);
3544 /* wait until ongoing cleanup work done */
3545 down_write(&root->fs_info->cleanup_work_sem);
3546 up_write(&root->fs_info->cleanup_work_sem);
3548 trans = btrfs_join_transaction(root);
3549 if (IS_ERR(trans))
3550 return PTR_ERR(trans);
3551 ret = btrfs_commit_transaction(trans, root);
3552 if (ret)
3553 return ret;
3554 /* run commit again to drop the original snapshot */
3555 trans = btrfs_join_transaction(root);
3556 if (IS_ERR(trans))
3557 return PTR_ERR(trans);
3558 ret = btrfs_commit_transaction(trans, root);
3559 if (ret)
3560 return ret;
3561 ret = btrfs_write_and_wait_transaction(NULL, root);
3562 if (ret) {
3563 btrfs_error(root->fs_info, ret,
3564 "Failed to sync btree inode to disk.");
3565 return ret;
3568 ret = write_ctree_super(NULL, root, 0);
3569 return ret;
3572 int close_ctree(struct btrfs_root *root)
3574 struct btrfs_fs_info *fs_info = root->fs_info;
3575 int ret;
3577 fs_info->closing = 1;
3578 smp_mb();
3580 /* wait for the uuid_scan task to finish */
3581 down(&fs_info->uuid_tree_rescan_sem);
3582 /* avoid complains from lockdep et al., set sem back to initial state */
3583 up(&fs_info->uuid_tree_rescan_sem);
3585 /* pause restriper - we want to resume on mount */
3586 btrfs_pause_balance(fs_info);
3588 btrfs_dev_replace_suspend_for_unmount(fs_info);
3590 btrfs_scrub_cancel(fs_info);
3592 /* wait for any defraggers to finish */
3593 wait_event(fs_info->transaction_wait,
3594 (atomic_read(&fs_info->defrag_running) == 0));
3596 /* clear out the rbtree of defraggable inodes */
3597 btrfs_cleanup_defrag_inodes(fs_info);
3599 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3600 ret = btrfs_commit_super(root);
3601 if (ret)
3602 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3605 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3606 btrfs_error_commit_super(root);
3608 btrfs_put_block_group_cache(fs_info);
3610 kthread_stop(fs_info->transaction_kthread);
3611 kthread_stop(fs_info->cleaner_kthread);
3613 fs_info->closing = 2;
3614 smp_mb();
3616 btrfs_free_qgroup_config(root->fs_info);
3618 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3619 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3620 percpu_counter_sum(&fs_info->delalloc_bytes));
3623 btrfs_free_block_groups(fs_info);
3626 * we must make sure there is not any read request to
3627 * submit after we stopping all workers.
3629 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3630 btrfs_stop_all_workers(fs_info);
3632 del_fs_roots(fs_info);
3634 free_root_pointers(fs_info, 1);
3636 iput(fs_info->btree_inode);
3638 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3639 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3640 btrfsic_unmount(root, fs_info->fs_devices);
3641 #endif
3643 btrfs_close_devices(fs_info->fs_devices);
3644 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3646 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3647 percpu_counter_destroy(&fs_info->delalloc_bytes);
3648 bdi_destroy(&fs_info->bdi);
3649 cleanup_srcu_struct(&fs_info->subvol_srcu);
3651 btrfs_free_stripe_hash_table(fs_info);
3653 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3654 root->orphan_block_rsv = NULL;
3656 return 0;
3659 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3660 int atomic)
3662 int ret;
3663 struct inode *btree_inode = buf->pages[0]->mapping->host;
3665 ret = extent_buffer_uptodate(buf);
3666 if (!ret)
3667 return ret;
3669 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3670 parent_transid, atomic);
3671 if (ret == -EAGAIN)
3672 return ret;
3673 return !ret;
3676 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3678 return set_extent_buffer_uptodate(buf);
3681 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3683 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3684 u64 transid = btrfs_header_generation(buf);
3685 int was_dirty;
3687 btrfs_assert_tree_locked(buf);
3688 if (transid != root->fs_info->generation)
3689 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3690 "found %llu running %llu\n",
3691 buf->start, transid, root->fs_info->generation);
3692 was_dirty = set_extent_buffer_dirty(buf);
3693 if (!was_dirty)
3694 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3695 buf->len,
3696 root->fs_info->dirty_metadata_batch);
3699 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3700 int flush_delayed)
3703 * looks as though older kernels can get into trouble with
3704 * this code, they end up stuck in balance_dirty_pages forever
3706 int ret;
3708 if (current->flags & PF_MEMALLOC)
3709 return;
3711 if (flush_delayed)
3712 btrfs_balance_delayed_items(root);
3714 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3715 BTRFS_DIRTY_METADATA_THRESH);
3716 if (ret > 0) {
3717 balance_dirty_pages_ratelimited(
3718 root->fs_info->btree_inode->i_mapping);
3720 return;
3723 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3725 __btrfs_btree_balance_dirty(root, 1);
3728 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3730 __btrfs_btree_balance_dirty(root, 0);
3733 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3735 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3736 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3739 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3740 int read_only)
3743 * Placeholder for checks
3745 return 0;
3748 static void btrfs_error_commit_super(struct btrfs_root *root)
3750 mutex_lock(&root->fs_info->cleaner_mutex);
3751 btrfs_run_delayed_iputs(root);
3752 mutex_unlock(&root->fs_info->cleaner_mutex);
3754 down_write(&root->fs_info->cleanup_work_sem);
3755 up_write(&root->fs_info->cleanup_work_sem);
3757 /* cleanup FS via transaction */
3758 btrfs_cleanup_transaction(root);
3761 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3762 struct btrfs_root *root)
3764 struct btrfs_inode *btrfs_inode;
3765 struct list_head splice;
3767 INIT_LIST_HEAD(&splice);
3769 mutex_lock(&root->fs_info->ordered_operations_mutex);
3770 spin_lock(&root->fs_info->ordered_root_lock);
3772 list_splice_init(&t->ordered_operations, &splice);
3773 while (!list_empty(&splice)) {
3774 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3775 ordered_operations);
3777 list_del_init(&btrfs_inode->ordered_operations);
3778 spin_unlock(&root->fs_info->ordered_root_lock);
3780 btrfs_invalidate_inodes(btrfs_inode->root);
3782 spin_lock(&root->fs_info->ordered_root_lock);
3785 spin_unlock(&root->fs_info->ordered_root_lock);
3786 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3789 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3791 struct btrfs_ordered_extent *ordered;
3793 spin_lock(&root->ordered_extent_lock);
3795 * This will just short circuit the ordered completion stuff which will
3796 * make sure the ordered extent gets properly cleaned up.
3798 list_for_each_entry(ordered, &root->ordered_extents,
3799 root_extent_list)
3800 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3801 spin_unlock(&root->ordered_extent_lock);
3804 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3806 struct btrfs_root *root;
3807 struct list_head splice;
3809 INIT_LIST_HEAD(&splice);
3811 spin_lock(&fs_info->ordered_root_lock);
3812 list_splice_init(&fs_info->ordered_roots, &splice);
3813 while (!list_empty(&splice)) {
3814 root = list_first_entry(&splice, struct btrfs_root,
3815 ordered_root);
3816 list_move_tail(&root->ordered_root,
3817 &fs_info->ordered_roots);
3819 btrfs_destroy_ordered_extents(root);
3821 cond_resched_lock(&fs_info->ordered_root_lock);
3823 spin_unlock(&fs_info->ordered_root_lock);
3826 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3827 struct btrfs_root *root)
3829 struct rb_node *node;
3830 struct btrfs_delayed_ref_root *delayed_refs;
3831 struct btrfs_delayed_ref_node *ref;
3832 int ret = 0;
3834 delayed_refs = &trans->delayed_refs;
3836 spin_lock(&delayed_refs->lock);
3837 if (delayed_refs->num_entries == 0) {
3838 spin_unlock(&delayed_refs->lock);
3839 printk(KERN_INFO "delayed_refs has NO entry\n");
3840 return ret;
3843 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3844 struct btrfs_delayed_ref_head *head = NULL;
3845 bool pin_bytes = false;
3847 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3848 atomic_set(&ref->refs, 1);
3849 if (btrfs_delayed_ref_is_head(ref)) {
3851 head = btrfs_delayed_node_to_head(ref);
3852 if (!mutex_trylock(&head->mutex)) {
3853 atomic_inc(&ref->refs);
3854 spin_unlock(&delayed_refs->lock);
3856 /* Need to wait for the delayed ref to run */
3857 mutex_lock(&head->mutex);
3858 mutex_unlock(&head->mutex);
3859 btrfs_put_delayed_ref(ref);
3861 spin_lock(&delayed_refs->lock);
3862 continue;
3865 if (head->must_insert_reserved)
3866 pin_bytes = true;
3867 btrfs_free_delayed_extent_op(head->extent_op);
3868 delayed_refs->num_heads--;
3869 if (list_empty(&head->cluster))
3870 delayed_refs->num_heads_ready--;
3871 list_del_init(&head->cluster);
3874 ref->in_tree = 0;
3875 rb_erase(&ref->rb_node, &delayed_refs->root);
3876 delayed_refs->num_entries--;
3877 spin_unlock(&delayed_refs->lock);
3878 if (head) {
3879 if (pin_bytes)
3880 btrfs_pin_extent(root, ref->bytenr,
3881 ref->num_bytes, 1);
3882 mutex_unlock(&head->mutex);
3884 btrfs_put_delayed_ref(ref);
3886 cond_resched();
3887 spin_lock(&delayed_refs->lock);
3890 spin_unlock(&delayed_refs->lock);
3892 return ret;
3895 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3897 struct btrfs_inode *btrfs_inode;
3898 struct list_head splice;
3900 INIT_LIST_HEAD(&splice);
3902 spin_lock(&root->delalloc_lock);
3903 list_splice_init(&root->delalloc_inodes, &splice);
3905 while (!list_empty(&splice)) {
3906 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3907 delalloc_inodes);
3909 list_del_init(&btrfs_inode->delalloc_inodes);
3910 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3911 &btrfs_inode->runtime_flags);
3912 spin_unlock(&root->delalloc_lock);
3914 btrfs_invalidate_inodes(btrfs_inode->root);
3916 spin_lock(&root->delalloc_lock);
3919 spin_unlock(&root->delalloc_lock);
3922 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3924 struct btrfs_root *root;
3925 struct list_head splice;
3927 INIT_LIST_HEAD(&splice);
3929 spin_lock(&fs_info->delalloc_root_lock);
3930 list_splice_init(&fs_info->delalloc_roots, &splice);
3931 while (!list_empty(&splice)) {
3932 root = list_first_entry(&splice, struct btrfs_root,
3933 delalloc_root);
3934 list_del_init(&root->delalloc_root);
3935 root = btrfs_grab_fs_root(root);
3936 BUG_ON(!root);
3937 spin_unlock(&fs_info->delalloc_root_lock);
3939 btrfs_destroy_delalloc_inodes(root);
3940 btrfs_put_fs_root(root);
3942 spin_lock(&fs_info->delalloc_root_lock);
3944 spin_unlock(&fs_info->delalloc_root_lock);
3947 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3948 struct extent_io_tree *dirty_pages,
3949 int mark)
3951 int ret;
3952 struct extent_buffer *eb;
3953 u64 start = 0;
3954 u64 end;
3956 while (1) {
3957 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3958 mark, NULL);
3959 if (ret)
3960 break;
3962 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3963 while (start <= end) {
3964 eb = btrfs_find_tree_block(root, start,
3965 root->leafsize);
3966 start += root->leafsize;
3967 if (!eb)
3968 continue;
3969 wait_on_extent_buffer_writeback(eb);
3971 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3972 &eb->bflags))
3973 clear_extent_buffer_dirty(eb);
3974 free_extent_buffer_stale(eb);
3978 return ret;
3981 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3982 struct extent_io_tree *pinned_extents)
3984 struct extent_io_tree *unpin;
3985 u64 start;
3986 u64 end;
3987 int ret;
3988 bool loop = true;
3990 unpin = pinned_extents;
3991 again:
3992 while (1) {
3993 ret = find_first_extent_bit(unpin, 0, &start, &end,
3994 EXTENT_DIRTY, NULL);
3995 if (ret)
3996 break;
3998 /* opt_discard */
3999 if (btrfs_test_opt(root, DISCARD))
4000 ret = btrfs_error_discard_extent(root, start,
4001 end + 1 - start,
4002 NULL);
4004 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4005 btrfs_error_unpin_extent_range(root, start, end);
4006 cond_resched();
4009 if (loop) {
4010 if (unpin == &root->fs_info->freed_extents[0])
4011 unpin = &root->fs_info->freed_extents[1];
4012 else
4013 unpin = &root->fs_info->freed_extents[0];
4014 loop = false;
4015 goto again;
4018 return 0;
4021 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4022 struct btrfs_root *root)
4024 btrfs_destroy_ordered_operations(cur_trans, root);
4026 btrfs_destroy_delayed_refs(cur_trans, root);
4027 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4028 cur_trans->dirty_pages.dirty_bytes);
4030 cur_trans->state = TRANS_STATE_COMMIT_START;
4031 wake_up(&root->fs_info->transaction_blocked_wait);
4033 cur_trans->state = TRANS_STATE_UNBLOCKED;
4034 wake_up(&root->fs_info->transaction_wait);
4036 btrfs_destroy_delayed_inodes(root);
4037 btrfs_assert_delayed_root_empty(root);
4039 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4040 EXTENT_DIRTY);
4041 btrfs_destroy_pinned_extent(root,
4042 root->fs_info->pinned_extents);
4044 cur_trans->state =TRANS_STATE_COMPLETED;
4045 wake_up(&cur_trans->commit_wait);
4048 memset(cur_trans, 0, sizeof(*cur_trans));
4049 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4053 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4055 struct btrfs_transaction *t;
4057 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4059 spin_lock(&root->fs_info->trans_lock);
4060 while (!list_empty(&root->fs_info->trans_list)) {
4061 t = list_first_entry(&root->fs_info->trans_list,
4062 struct btrfs_transaction, list);
4063 if (t->state >= TRANS_STATE_COMMIT_START) {
4064 atomic_inc(&t->use_count);
4065 spin_unlock(&root->fs_info->trans_lock);
4066 btrfs_wait_for_commit(root, t->transid);
4067 btrfs_put_transaction(t);
4068 spin_lock(&root->fs_info->trans_lock);
4069 continue;
4071 if (t == root->fs_info->running_transaction) {
4072 t->state = TRANS_STATE_COMMIT_DOING;
4073 spin_unlock(&root->fs_info->trans_lock);
4075 * We wait for 0 num_writers since we don't hold a trans
4076 * handle open currently for this transaction.
4078 wait_event(t->writer_wait,
4079 atomic_read(&t->num_writers) == 0);
4080 } else {
4081 spin_unlock(&root->fs_info->trans_lock);
4083 btrfs_cleanup_one_transaction(t, root);
4085 spin_lock(&root->fs_info->trans_lock);
4086 if (t == root->fs_info->running_transaction)
4087 root->fs_info->running_transaction = NULL;
4088 list_del_init(&t->list);
4089 spin_unlock(&root->fs_info->trans_lock);
4091 btrfs_put_transaction(t);
4092 trace_btrfs_transaction_commit(root);
4093 spin_lock(&root->fs_info->trans_lock);
4095 spin_unlock(&root->fs_info->trans_lock);
4096 btrfs_destroy_all_ordered_extents(root->fs_info);
4097 btrfs_destroy_delayed_inodes(root);
4098 btrfs_assert_delayed_root_empty(root);
4099 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4100 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4101 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4103 return 0;
4106 static struct extent_io_ops btree_extent_io_ops = {
4107 .readpage_end_io_hook = btree_readpage_end_io_hook,
4108 .readpage_io_failed_hook = btree_io_failed_hook,
4109 .submit_bio_hook = btree_submit_bio_hook,
4110 /* note we're sharing with inode.c for the merge bio hook */
4111 .merge_bio_hook = btrfs_merge_bio_hook,