2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
39 #include "transaction.h"
40 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
54 #include <asm/cpufeature.h>
57 static struct extent_io_ops btree_extent_io_ops
;
58 static void end_workqueue_fn(struct btrfs_work
*work
);
59 static void free_fs_root(struct btrfs_root
*root
);
60 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
63 struct btrfs_root
*root
);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
66 struct btrfs_root
*root
);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
68 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
69 struct extent_io_tree
*dirty_pages
,
71 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
72 struct extent_io_tree
*pinned_extents
);
73 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
74 static void btrfs_error_commit_super(struct btrfs_root
*root
);
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_fs_info
*info
;
88 struct list_head list
;
89 struct btrfs_work work
;
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
97 struct async_submit_bio
{
100 struct list_head list
;
101 extent_submit_bio_hook_t
*submit_bio_start
;
102 extent_submit_bio_hook_t
*submit_bio_done
;
105 unsigned long bio_flags
;
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
111 struct btrfs_work work
;
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
143 static struct btrfs_lockdep_keyset
{
144 u64 id
; /* root objectid */
145 const char *name_stem
; /* lock name stem */
146 char names
[BTRFS_MAX_LEVEL
+ 1][20];
147 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
148 } btrfs_lockdep_keysets
[] = {
149 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
150 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
151 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
152 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
153 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
154 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
155 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
156 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
157 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
158 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
159 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
160 { .id
= 0, .name_stem
= "tree" },
163 void __init
btrfs_init_lockdep(void)
167 /* initialize lockdep class names */
168 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
169 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
171 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
172 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
173 "btrfs-%s-%02d", ks
->name_stem
, j
);
177 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
180 struct btrfs_lockdep_keyset
*ks
;
182 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
186 if (ks
->id
== objectid
)
189 lockdep_set_class_and_name(&eb
->lock
,
190 &ks
->keys
[level
], ks
->names
[level
]);
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
199 static struct extent_map
*btree_get_extent(struct inode
*inode
,
200 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
203 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
204 struct extent_map
*em
;
207 read_lock(&em_tree
->lock
);
208 em
= lookup_extent_mapping(em_tree
, start
, len
);
211 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
212 read_unlock(&em_tree
->lock
);
215 read_unlock(&em_tree
->lock
);
217 em
= alloc_extent_map();
219 em
= ERR_PTR(-ENOMEM
);
224 em
->block_len
= (u64
)-1;
226 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
228 write_lock(&em_tree
->lock
);
229 ret
= add_extent_mapping(em_tree
, em
, 0);
230 if (ret
== -EEXIST
) {
232 em
= lookup_extent_mapping(em_tree
, start
, len
);
239 write_unlock(&em_tree
->lock
);
245 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
247 return crc32c(seed
, data
, len
);
250 void btrfs_csum_final(u32 crc
, char *result
)
252 put_unaligned_le32(~crc
, result
);
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
259 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
262 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
265 unsigned long cur_len
;
266 unsigned long offset
= BTRFS_CSUM_SIZE
;
268 unsigned long map_start
;
269 unsigned long map_len
;
272 unsigned long inline_result
;
274 len
= buf
->len
- offset
;
276 err
= map_private_extent_buffer(buf
, offset
, 32,
277 &kaddr
, &map_start
, &map_len
);
280 cur_len
= min(len
, map_len
- (offset
- map_start
));
281 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
286 if (csum_size
> sizeof(inline_result
)) {
287 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
291 result
= (char *)&inline_result
;
294 btrfs_csum_final(crc
, result
);
297 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
300 memcpy(&found
, result
, csum_size
);
302 read_extent_buffer(buf
, &val
, 0, csum_size
);
303 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
304 "failed on %llu wanted %X found %X "
306 root
->fs_info
->sb
->s_id
, buf
->start
,
307 val
, found
, btrfs_header_level(buf
));
308 if (result
!= (char *)&inline_result
)
313 write_extent_buffer(buf
, result
, 0, csum_size
);
315 if (result
!= (char *)&inline_result
)
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
327 struct extent_buffer
*eb
, u64 parent_transid
,
330 struct extent_state
*cached_state
= NULL
;
333 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
339 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
341 if (extent_buffer_uptodate(eb
) &&
342 btrfs_header_generation(eb
) == parent_transid
) {
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348 eb
->start
, parent_transid
, btrfs_header_generation(eb
));
350 clear_extent_buffer_uptodate(eb
);
352 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
353 &cached_state
, GFP_NOFS
);
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
361 static int btrfs_check_super_csum(char *raw_disk_sb
)
363 struct btrfs_super_block
*disk_sb
=
364 (struct btrfs_super_block
*)raw_disk_sb
;
365 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
368 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
370 const int csum_size
= sizeof(crc
);
371 char result
[csum_size
];
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
378 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
379 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
380 btrfs_csum_final(crc
, result
);
382 if (memcmp(raw_disk_sb
, result
, csum_size
))
385 if (ret
&& btrfs_super_generation(disk_sb
) < 10) {
386 printk(KERN_WARNING
"btrfs: super block crcs don't match, older mkfs detected\n");
391 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
392 printk(KERN_ERR
"btrfs: unsupported checksum algorithm %u\n",
401 * helper to read a given tree block, doing retries as required when
402 * the checksums don't match and we have alternate mirrors to try.
404 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
405 struct extent_buffer
*eb
,
406 u64 start
, u64 parent_transid
)
408 struct extent_io_tree
*io_tree
;
413 int failed_mirror
= 0;
415 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
416 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
418 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
420 btree_get_extent
, mirror_num
);
422 if (!verify_parent_transid(io_tree
, eb
,
430 * This buffer's crc is fine, but its contents are corrupted, so
431 * there is no reason to read the other copies, they won't be
434 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
437 num_copies
= btrfs_num_copies(root
->fs_info
,
442 if (!failed_mirror
) {
444 failed_mirror
= eb
->read_mirror
;
448 if (mirror_num
== failed_mirror
)
451 if (mirror_num
> num_copies
)
455 if (failed
&& !ret
&& failed_mirror
)
456 repair_eb_io_failure(root
, eb
, failed_mirror
);
462 * checksum a dirty tree block before IO. This has extra checks to make sure
463 * we only fill in the checksum field in the first page of a multi-page block
466 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
468 struct extent_io_tree
*tree
;
469 u64 start
= page_offset(page
);
471 struct extent_buffer
*eb
;
473 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
475 eb
= (struct extent_buffer
*)page
->private;
476 if (page
!= eb
->pages
[0])
478 found_start
= btrfs_header_bytenr(eb
);
479 if (found_start
!= start
) {
483 if (!PageUptodate(page
)) {
487 csum_tree_block(root
, eb
, 0);
491 static int check_tree_block_fsid(struct btrfs_root
*root
,
492 struct extent_buffer
*eb
)
494 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
495 u8 fsid
[BTRFS_UUID_SIZE
];
498 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(eb
), BTRFS_FSID_SIZE
);
500 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
504 fs_devices
= fs_devices
->seed
;
509 #define CORRUPT(reason, eb, root, slot) \
510 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
511 "root=%llu, slot=%d\n", reason, \
512 btrfs_header_bytenr(eb), root->objectid, slot)
514 static noinline
int check_leaf(struct btrfs_root
*root
,
515 struct extent_buffer
*leaf
)
517 struct btrfs_key key
;
518 struct btrfs_key leaf_key
;
519 u32 nritems
= btrfs_header_nritems(leaf
);
525 /* Check the 0 item */
526 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
527 BTRFS_LEAF_DATA_SIZE(root
)) {
528 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
533 * Check to make sure each items keys are in the correct order and their
534 * offsets make sense. We only have to loop through nritems-1 because
535 * we check the current slot against the next slot, which verifies the
536 * next slot's offset+size makes sense and that the current's slot
539 for (slot
= 0; slot
< nritems
- 1; slot
++) {
540 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
541 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
543 /* Make sure the keys are in the right order */
544 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
545 CORRUPT("bad key order", leaf
, root
, slot
);
550 * Make sure the offset and ends are right, remember that the
551 * item data starts at the end of the leaf and grows towards the
554 if (btrfs_item_offset_nr(leaf
, slot
) !=
555 btrfs_item_end_nr(leaf
, slot
+ 1)) {
556 CORRUPT("slot offset bad", leaf
, root
, slot
);
561 * Check to make sure that we don't point outside of the leaf,
562 * just incase all the items are consistent to eachother, but
563 * all point outside of the leaf.
565 if (btrfs_item_end_nr(leaf
, slot
) >
566 BTRFS_LEAF_DATA_SIZE(root
)) {
567 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
575 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
576 u64 phy_offset
, struct page
*page
,
577 u64 start
, u64 end
, int mirror
)
579 struct extent_io_tree
*tree
;
582 struct extent_buffer
*eb
;
583 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
590 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
591 eb
= (struct extent_buffer
*)page
->private;
593 /* the pending IO might have been the only thing that kept this buffer
594 * in memory. Make sure we have a ref for all this other checks
596 extent_buffer_get(eb
);
598 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
602 eb
->read_mirror
= mirror
;
603 if (test_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
)) {
608 found_start
= btrfs_header_bytenr(eb
);
609 if (found_start
!= eb
->start
) {
610 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
612 found_start
, eb
->start
);
616 if (check_tree_block_fsid(root
, eb
)) {
617 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
622 found_level
= btrfs_header_level(eb
);
623 if (found_level
>= BTRFS_MAX_LEVEL
) {
624 btrfs_info(root
->fs_info
, "bad tree block level %d\n",
625 (int)btrfs_header_level(eb
));
630 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
633 ret
= csum_tree_block(root
, eb
, 1);
640 * If this is a leaf block and it is corrupt, set the corrupt bit so
641 * that we don't try and read the other copies of this block, just
644 if (found_level
== 0 && check_leaf(root
, eb
)) {
645 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
650 set_extent_buffer_uptodate(eb
);
653 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
654 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
658 * our io error hook is going to dec the io pages
659 * again, we have to make sure it has something
662 atomic_inc(&eb
->io_pages
);
663 clear_extent_buffer_uptodate(eb
);
665 free_extent_buffer(eb
);
670 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
672 struct extent_buffer
*eb
;
673 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
675 eb
= (struct extent_buffer
*)page
->private;
676 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
677 eb
->read_mirror
= failed_mirror
;
678 atomic_dec(&eb
->io_pages
);
679 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
680 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
681 return -EIO
; /* we fixed nothing */
684 static void end_workqueue_bio(struct bio
*bio
, int err
)
686 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
687 struct btrfs_fs_info
*fs_info
;
689 fs_info
= end_io_wq
->info
;
690 end_io_wq
->error
= err
;
691 end_io_wq
->work
.func
= end_workqueue_fn
;
692 end_io_wq
->work
.flags
= 0;
694 if (bio
->bi_rw
& REQ_WRITE
) {
695 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
696 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
698 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
699 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
701 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
702 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
705 btrfs_queue_worker(&fs_info
->endio_write_workers
,
708 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
709 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
711 else if (end_io_wq
->metadata
)
712 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
715 btrfs_queue_worker(&fs_info
->endio_workers
,
721 * For the metadata arg you want
724 * 1 - if normal metadta
725 * 2 - if writing to the free space cache area
726 * 3 - raid parity work
728 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
731 struct end_io_wq
*end_io_wq
;
732 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
736 end_io_wq
->private = bio
->bi_private
;
737 end_io_wq
->end_io
= bio
->bi_end_io
;
738 end_io_wq
->info
= info
;
739 end_io_wq
->error
= 0;
740 end_io_wq
->bio
= bio
;
741 end_io_wq
->metadata
= metadata
;
743 bio
->bi_private
= end_io_wq
;
744 bio
->bi_end_io
= end_workqueue_bio
;
748 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
750 unsigned long limit
= min_t(unsigned long,
751 info
->workers
.max_workers
,
752 info
->fs_devices
->open_devices
);
756 static void run_one_async_start(struct btrfs_work
*work
)
758 struct async_submit_bio
*async
;
761 async
= container_of(work
, struct async_submit_bio
, work
);
762 ret
= async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
763 async
->mirror_num
, async
->bio_flags
,
769 static void run_one_async_done(struct btrfs_work
*work
)
771 struct btrfs_fs_info
*fs_info
;
772 struct async_submit_bio
*async
;
775 async
= container_of(work
, struct async_submit_bio
, work
);
776 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
778 limit
= btrfs_async_submit_limit(fs_info
);
779 limit
= limit
* 2 / 3;
781 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
782 waitqueue_active(&fs_info
->async_submit_wait
))
783 wake_up(&fs_info
->async_submit_wait
);
785 /* If an error occured we just want to clean up the bio and move on */
787 bio_endio(async
->bio
, async
->error
);
791 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
792 async
->mirror_num
, async
->bio_flags
,
796 static void run_one_async_free(struct btrfs_work
*work
)
798 struct async_submit_bio
*async
;
800 async
= container_of(work
, struct async_submit_bio
, work
);
804 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
805 int rw
, struct bio
*bio
, int mirror_num
,
806 unsigned long bio_flags
,
808 extent_submit_bio_hook_t
*submit_bio_start
,
809 extent_submit_bio_hook_t
*submit_bio_done
)
811 struct async_submit_bio
*async
;
813 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
817 async
->inode
= inode
;
820 async
->mirror_num
= mirror_num
;
821 async
->submit_bio_start
= submit_bio_start
;
822 async
->submit_bio_done
= submit_bio_done
;
824 async
->work
.func
= run_one_async_start
;
825 async
->work
.ordered_func
= run_one_async_done
;
826 async
->work
.ordered_free
= run_one_async_free
;
828 async
->work
.flags
= 0;
829 async
->bio_flags
= bio_flags
;
830 async
->bio_offset
= bio_offset
;
834 atomic_inc(&fs_info
->nr_async_submits
);
837 btrfs_set_work_high_prio(&async
->work
);
839 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
841 while (atomic_read(&fs_info
->async_submit_draining
) &&
842 atomic_read(&fs_info
->nr_async_submits
)) {
843 wait_event(fs_info
->async_submit_wait
,
844 (atomic_read(&fs_info
->nr_async_submits
) == 0));
850 static int btree_csum_one_bio(struct bio
*bio
)
852 struct bio_vec
*bvec
= bio
->bi_io_vec
;
854 struct btrfs_root
*root
;
857 WARN_ON(bio
->bi_vcnt
<= 0);
858 while (bio_index
< bio
->bi_vcnt
) {
859 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
860 ret
= csum_dirty_buffer(root
, bvec
->bv_page
);
869 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
870 struct bio
*bio
, int mirror_num
,
871 unsigned long bio_flags
,
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
878 return btree_csum_one_bio(bio
);
881 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
882 int mirror_num
, unsigned long bio_flags
,
888 * when we're called for a write, we're already in the async
889 * submission context. Just jump into btrfs_map_bio
891 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
897 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
899 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
908 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
909 int mirror_num
, unsigned long bio_flags
,
912 int async
= check_async_write(inode
, bio_flags
);
915 if (!(rw
& REQ_WRITE
)) {
917 * called for a read, do the setup so that checksum validation
918 * can happen in the async kernel threads
920 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
924 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
927 ret
= btree_csum_one_bio(bio
);
930 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
934 * kthread helpers are used to submit writes so that
935 * checksumming can happen in parallel across all CPUs
937 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
938 inode
, rw
, bio
, mirror_num
, 0,
940 __btree_submit_bio_start
,
941 __btree_submit_bio_done
);
951 #ifdef CONFIG_MIGRATION
952 static int btree_migratepage(struct address_space
*mapping
,
953 struct page
*newpage
, struct page
*page
,
954 enum migrate_mode mode
)
957 * we can't safely write a btree page from here,
958 * we haven't done the locking hook
963 * Buffers may be managed in a filesystem specific way.
964 * We must have no buffers or drop them.
966 if (page_has_private(page
) &&
967 !try_to_release_page(page
, GFP_KERNEL
))
969 return migrate_page(mapping
, newpage
, page
, mode
);
974 static int btree_writepages(struct address_space
*mapping
,
975 struct writeback_control
*wbc
)
977 struct extent_io_tree
*tree
;
978 struct btrfs_fs_info
*fs_info
;
981 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
982 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
984 if (wbc
->for_kupdate
)
987 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
988 /* this is a bit racy, but that's ok */
989 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
990 BTRFS_DIRTY_METADATA_THRESH
);
994 return btree_write_cache_pages(mapping
, wbc
);
997 static int btree_readpage(struct file
*file
, struct page
*page
)
999 struct extent_io_tree
*tree
;
1000 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1001 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1004 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1006 if (PageWriteback(page
) || PageDirty(page
))
1009 return try_release_extent_buffer(page
);
1012 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1013 unsigned int length
)
1015 struct extent_io_tree
*tree
;
1016 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1017 extent_invalidatepage(tree
, page
, offset
);
1018 btree_releasepage(page
, GFP_NOFS
);
1019 if (PagePrivate(page
)) {
1020 printk(KERN_WARNING
"btrfs warning page private not zero "
1021 "on page %llu\n", (unsigned long long)page_offset(page
));
1022 ClearPagePrivate(page
);
1023 set_page_private(page
, 0);
1024 page_cache_release(page
);
1028 static int btree_set_page_dirty(struct page
*page
)
1031 struct extent_buffer
*eb
;
1033 BUG_ON(!PagePrivate(page
));
1034 eb
= (struct extent_buffer
*)page
->private;
1036 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1037 BUG_ON(!atomic_read(&eb
->refs
));
1038 btrfs_assert_tree_locked(eb
);
1040 return __set_page_dirty_nobuffers(page
);
1043 static const struct address_space_operations btree_aops
= {
1044 .readpage
= btree_readpage
,
1045 .writepages
= btree_writepages
,
1046 .releasepage
= btree_releasepage
,
1047 .invalidatepage
= btree_invalidatepage
,
1048 #ifdef CONFIG_MIGRATION
1049 .migratepage
= btree_migratepage
,
1051 .set_page_dirty
= btree_set_page_dirty
,
1054 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1057 struct extent_buffer
*buf
= NULL
;
1058 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1061 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1064 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1065 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1066 free_extent_buffer(buf
);
1070 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1071 int mirror_num
, struct extent_buffer
**eb
)
1073 struct extent_buffer
*buf
= NULL
;
1074 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1075 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1078 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1082 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1084 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1085 btree_get_extent
, mirror_num
);
1087 free_extent_buffer(buf
);
1091 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1092 free_extent_buffer(buf
);
1094 } else if (extent_buffer_uptodate(buf
)) {
1097 free_extent_buffer(buf
);
1102 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1103 u64 bytenr
, u32 blocksize
)
1105 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1106 struct extent_buffer
*eb
;
1107 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1112 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1113 u64 bytenr
, u32 blocksize
)
1115 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1116 struct extent_buffer
*eb
;
1118 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1124 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1126 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1127 buf
->start
+ buf
->len
- 1);
1130 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1132 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1133 buf
->start
, buf
->start
+ buf
->len
- 1);
1136 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1137 u32 blocksize
, u64 parent_transid
)
1139 struct extent_buffer
*buf
= NULL
;
1142 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1146 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1148 free_extent_buffer(buf
);
1155 void clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1156 struct extent_buffer
*buf
)
1158 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1160 if (btrfs_header_generation(buf
) ==
1161 fs_info
->running_transaction
->transid
) {
1162 btrfs_assert_tree_locked(buf
);
1164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1165 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1167 fs_info
->dirty_metadata_batch
);
1168 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169 btrfs_set_lock_blocking(buf
);
1170 clear_extent_buffer_dirty(buf
);
1175 static void __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1176 u32 stripesize
, struct btrfs_root
*root
,
1177 struct btrfs_fs_info
*fs_info
,
1181 root
->commit_root
= NULL
;
1182 root
->sectorsize
= sectorsize
;
1183 root
->nodesize
= nodesize
;
1184 root
->leafsize
= leafsize
;
1185 root
->stripesize
= stripesize
;
1187 root
->track_dirty
= 0;
1189 root
->orphan_item_inserted
= 0;
1190 root
->orphan_cleanup_state
= 0;
1192 root
->objectid
= objectid
;
1193 root
->last_trans
= 0;
1194 root
->highest_objectid
= 0;
1195 root
->nr_delalloc_inodes
= 0;
1196 root
->nr_ordered_extents
= 0;
1198 root
->inode_tree
= RB_ROOT
;
1199 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1200 root
->block_rsv
= NULL
;
1201 root
->orphan_block_rsv
= NULL
;
1203 INIT_LIST_HEAD(&root
->dirty_list
);
1204 INIT_LIST_HEAD(&root
->root_list
);
1205 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1206 INIT_LIST_HEAD(&root
->delalloc_root
);
1207 INIT_LIST_HEAD(&root
->ordered_extents
);
1208 INIT_LIST_HEAD(&root
->ordered_root
);
1209 INIT_LIST_HEAD(&root
->logged_list
[0]);
1210 INIT_LIST_HEAD(&root
->logged_list
[1]);
1211 spin_lock_init(&root
->orphan_lock
);
1212 spin_lock_init(&root
->inode_lock
);
1213 spin_lock_init(&root
->delalloc_lock
);
1214 spin_lock_init(&root
->ordered_extent_lock
);
1215 spin_lock_init(&root
->accounting_lock
);
1216 spin_lock_init(&root
->log_extents_lock
[0]);
1217 spin_lock_init(&root
->log_extents_lock
[1]);
1218 mutex_init(&root
->objectid_mutex
);
1219 mutex_init(&root
->log_mutex
);
1220 init_waitqueue_head(&root
->log_writer_wait
);
1221 init_waitqueue_head(&root
->log_commit_wait
[0]);
1222 init_waitqueue_head(&root
->log_commit_wait
[1]);
1223 atomic_set(&root
->log_commit
[0], 0);
1224 atomic_set(&root
->log_commit
[1], 0);
1225 atomic_set(&root
->log_writers
, 0);
1226 atomic_set(&root
->log_batch
, 0);
1227 atomic_set(&root
->orphan_inodes
, 0);
1228 atomic_set(&root
->refs
, 1);
1229 root
->log_transid
= 0;
1230 root
->last_log_commit
= 0;
1231 extent_io_tree_init(&root
->dirty_log_pages
,
1232 fs_info
->btree_inode
->i_mapping
);
1234 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1235 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1236 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1237 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1238 root
->defrag_trans_start
= fs_info
->generation
;
1239 init_completion(&root
->kobj_unregister
);
1240 root
->defrag_running
= 0;
1241 root
->root_key
.objectid
= objectid
;
1244 spin_lock_init(&root
->root_item_lock
);
1247 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1249 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1251 root
->fs_info
= fs_info
;
1255 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1256 struct btrfs_fs_info
*fs_info
,
1259 struct extent_buffer
*leaf
;
1260 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1261 struct btrfs_root
*root
;
1262 struct btrfs_key key
;
1267 root
= btrfs_alloc_root(fs_info
);
1269 return ERR_PTR(-ENOMEM
);
1271 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1272 tree_root
->sectorsize
, tree_root
->stripesize
,
1273 root
, fs_info
, objectid
);
1274 root
->root_key
.objectid
= objectid
;
1275 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1276 root
->root_key
.offset
= 0;
1278 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1279 0, objectid
, NULL
, 0, 0, 0);
1281 ret
= PTR_ERR(leaf
);
1286 bytenr
= leaf
->start
;
1287 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1288 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1289 btrfs_set_header_generation(leaf
, trans
->transid
);
1290 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1291 btrfs_set_header_owner(leaf
, objectid
);
1294 write_extent_buffer(leaf
, fs_info
->fsid
, btrfs_header_fsid(leaf
),
1296 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1297 btrfs_header_chunk_tree_uuid(leaf
),
1299 btrfs_mark_buffer_dirty(leaf
);
1301 root
->commit_root
= btrfs_root_node(root
);
1302 root
->track_dirty
= 1;
1305 root
->root_item
.flags
= 0;
1306 root
->root_item
.byte_limit
= 0;
1307 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1308 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1309 btrfs_set_root_level(&root
->root_item
, 0);
1310 btrfs_set_root_refs(&root
->root_item
, 1);
1311 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1312 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1313 btrfs_set_root_dirid(&root
->root_item
, 0);
1315 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1316 root
->root_item
.drop_level
= 0;
1318 key
.objectid
= objectid
;
1319 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1321 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1325 btrfs_tree_unlock(leaf
);
1331 btrfs_tree_unlock(leaf
);
1332 free_extent_buffer(leaf
);
1336 return ERR_PTR(ret
);
1339 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1340 struct btrfs_fs_info
*fs_info
)
1342 struct btrfs_root
*root
;
1343 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1344 struct extent_buffer
*leaf
;
1346 root
= btrfs_alloc_root(fs_info
);
1348 return ERR_PTR(-ENOMEM
);
1350 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1351 tree_root
->sectorsize
, tree_root
->stripesize
,
1352 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1354 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1355 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1356 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1358 * log trees do not get reference counted because they go away
1359 * before a real commit is actually done. They do store pointers
1360 * to file data extents, and those reference counts still get
1361 * updated (along with back refs to the log tree).
1365 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1366 BTRFS_TREE_LOG_OBJECTID
, NULL
,
1370 return ERR_CAST(leaf
);
1373 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1374 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1375 btrfs_set_header_generation(leaf
, trans
->transid
);
1376 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1377 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1380 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1381 btrfs_header_fsid(root
->node
), BTRFS_FSID_SIZE
);
1382 btrfs_mark_buffer_dirty(root
->node
);
1383 btrfs_tree_unlock(root
->node
);
1387 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1388 struct btrfs_fs_info
*fs_info
)
1390 struct btrfs_root
*log_root
;
1392 log_root
= alloc_log_tree(trans
, fs_info
);
1393 if (IS_ERR(log_root
))
1394 return PTR_ERR(log_root
);
1395 WARN_ON(fs_info
->log_root_tree
);
1396 fs_info
->log_root_tree
= log_root
;
1400 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1401 struct btrfs_root
*root
)
1403 struct btrfs_root
*log_root
;
1404 struct btrfs_inode_item
*inode_item
;
1406 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1407 if (IS_ERR(log_root
))
1408 return PTR_ERR(log_root
);
1410 log_root
->last_trans
= trans
->transid
;
1411 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1413 inode_item
= &log_root
->root_item
.inode
;
1414 btrfs_set_stack_inode_generation(inode_item
, 1);
1415 btrfs_set_stack_inode_size(inode_item
, 3);
1416 btrfs_set_stack_inode_nlink(inode_item
, 1);
1417 btrfs_set_stack_inode_nbytes(inode_item
, root
->leafsize
);
1418 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1420 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1422 WARN_ON(root
->log_root
);
1423 root
->log_root
= log_root
;
1424 root
->log_transid
= 0;
1425 root
->last_log_commit
= 0;
1429 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1430 struct btrfs_key
*key
)
1432 struct btrfs_root
*root
;
1433 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1434 struct btrfs_path
*path
;
1439 path
= btrfs_alloc_path();
1441 return ERR_PTR(-ENOMEM
);
1443 root
= btrfs_alloc_root(fs_info
);
1449 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1450 tree_root
->sectorsize
, tree_root
->stripesize
,
1451 root
, fs_info
, key
->objectid
);
1453 ret
= btrfs_find_root(tree_root
, key
, path
,
1454 &root
->root_item
, &root
->root_key
);
1461 generation
= btrfs_root_generation(&root
->root_item
);
1462 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1463 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1464 blocksize
, generation
);
1468 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1472 root
->commit_root
= btrfs_root_node(root
);
1474 btrfs_free_path(path
);
1478 free_extent_buffer(root
->node
);
1482 root
= ERR_PTR(ret
);
1486 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1487 struct btrfs_key
*location
)
1489 struct btrfs_root
*root
;
1491 root
= btrfs_read_tree_root(tree_root
, location
);
1495 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1497 btrfs_check_and_init_root_item(&root
->root_item
);
1503 int btrfs_init_fs_root(struct btrfs_root
*root
)
1507 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1508 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1510 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1515 btrfs_init_free_ino_ctl(root
);
1516 mutex_init(&root
->fs_commit_mutex
);
1517 spin_lock_init(&root
->cache_lock
);
1518 init_waitqueue_head(&root
->cache_wait
);
1520 ret
= get_anon_bdev(&root
->anon_dev
);
1525 kfree(root
->free_ino_ctl
);
1526 kfree(root
->free_ino_pinned
);
1530 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1533 struct btrfs_root
*root
;
1535 spin_lock(&fs_info
->fs_roots_radix_lock
);
1536 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1537 (unsigned long)root_id
);
1538 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1542 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1543 struct btrfs_root
*root
)
1547 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1551 spin_lock(&fs_info
->fs_roots_radix_lock
);
1552 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1553 (unsigned long)root
->root_key
.objectid
,
1557 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1558 radix_tree_preload_end();
1563 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1564 struct btrfs_key
*location
,
1567 struct btrfs_root
*root
;
1570 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1571 return fs_info
->tree_root
;
1572 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1573 return fs_info
->extent_root
;
1574 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1575 return fs_info
->chunk_root
;
1576 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1577 return fs_info
->dev_root
;
1578 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1579 return fs_info
->csum_root
;
1580 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1581 return fs_info
->quota_root
? fs_info
->quota_root
:
1583 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1584 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1587 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1589 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1590 return ERR_PTR(-ENOENT
);
1594 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1598 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1603 ret
= btrfs_init_fs_root(root
);
1607 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1611 root
->orphan_item_inserted
= 1;
1613 ret
= btrfs_insert_fs_root(fs_info
, root
);
1615 if (ret
== -EEXIST
) {
1624 return ERR_PTR(ret
);
1627 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1629 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1631 struct btrfs_device
*device
;
1632 struct backing_dev_info
*bdi
;
1635 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1638 bdi
= blk_get_backing_dev_info(device
->bdev
);
1639 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1649 * If this fails, caller must call bdi_destroy() to get rid of the
1652 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1656 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1657 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1661 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1662 bdi
->congested_fn
= btrfs_congested_fn
;
1663 bdi
->congested_data
= info
;
1668 * called by the kthread helper functions to finally call the bio end_io
1669 * functions. This is where read checksum verification actually happens
1671 static void end_workqueue_fn(struct btrfs_work
*work
)
1674 struct end_io_wq
*end_io_wq
;
1675 struct btrfs_fs_info
*fs_info
;
1678 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1679 bio
= end_io_wq
->bio
;
1680 fs_info
= end_io_wq
->info
;
1682 error
= end_io_wq
->error
;
1683 bio
->bi_private
= end_io_wq
->private;
1684 bio
->bi_end_io
= end_io_wq
->end_io
;
1686 bio_endio(bio
, error
);
1689 static int cleaner_kthread(void *arg
)
1691 struct btrfs_root
*root
= arg
;
1697 /* Make the cleaner go to sleep early. */
1698 if (btrfs_need_cleaner_sleep(root
))
1701 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1705 * Avoid the problem that we change the status of the fs
1706 * during the above check and trylock.
1708 if (btrfs_need_cleaner_sleep(root
)) {
1709 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1713 btrfs_run_delayed_iputs(root
);
1714 again
= btrfs_clean_one_deleted_snapshot(root
);
1715 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1718 * The defragger has dealt with the R/O remount and umount,
1719 * needn't do anything special here.
1721 btrfs_run_defrag_inodes(root
->fs_info
);
1723 if (!try_to_freeze() && !again
) {
1724 set_current_state(TASK_INTERRUPTIBLE
);
1725 if (!kthread_should_stop())
1727 __set_current_state(TASK_RUNNING
);
1729 } while (!kthread_should_stop());
1733 static int transaction_kthread(void *arg
)
1735 struct btrfs_root
*root
= arg
;
1736 struct btrfs_trans_handle
*trans
;
1737 struct btrfs_transaction
*cur
;
1740 unsigned long delay
;
1744 cannot_commit
= false;
1745 delay
= HZ
* root
->fs_info
->commit_interval
;
1746 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1748 spin_lock(&root
->fs_info
->trans_lock
);
1749 cur
= root
->fs_info
->running_transaction
;
1751 spin_unlock(&root
->fs_info
->trans_lock
);
1755 now
= get_seconds();
1756 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1757 (now
< cur
->start_time
||
1758 now
- cur
->start_time
< root
->fs_info
->commit_interval
)) {
1759 spin_unlock(&root
->fs_info
->trans_lock
);
1763 transid
= cur
->transid
;
1764 spin_unlock(&root
->fs_info
->trans_lock
);
1766 /* If the file system is aborted, this will always fail. */
1767 trans
= btrfs_attach_transaction(root
);
1768 if (IS_ERR(trans
)) {
1769 if (PTR_ERR(trans
) != -ENOENT
)
1770 cannot_commit
= true;
1773 if (transid
== trans
->transid
) {
1774 btrfs_commit_transaction(trans
, root
);
1776 btrfs_end_transaction(trans
, root
);
1779 wake_up_process(root
->fs_info
->cleaner_kthread
);
1780 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1782 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1783 &root
->fs_info
->fs_state
)))
1784 btrfs_cleanup_transaction(root
);
1785 if (!try_to_freeze()) {
1786 set_current_state(TASK_INTERRUPTIBLE
);
1787 if (!kthread_should_stop() &&
1788 (!btrfs_transaction_blocked(root
->fs_info
) ||
1790 schedule_timeout(delay
);
1791 __set_current_state(TASK_RUNNING
);
1793 } while (!kthread_should_stop());
1798 * this will find the highest generation in the array of
1799 * root backups. The index of the highest array is returned,
1800 * or -1 if we can't find anything.
1802 * We check to make sure the array is valid by comparing the
1803 * generation of the latest root in the array with the generation
1804 * in the super block. If they don't match we pitch it.
1806 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1809 int newest_index
= -1;
1810 struct btrfs_root_backup
*root_backup
;
1813 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1814 root_backup
= info
->super_copy
->super_roots
+ i
;
1815 cur
= btrfs_backup_tree_root_gen(root_backup
);
1816 if (cur
== newest_gen
)
1820 /* check to see if we actually wrapped around */
1821 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1822 root_backup
= info
->super_copy
->super_roots
;
1823 cur
= btrfs_backup_tree_root_gen(root_backup
);
1824 if (cur
== newest_gen
)
1827 return newest_index
;
1832 * find the oldest backup so we know where to store new entries
1833 * in the backup array. This will set the backup_root_index
1834 * field in the fs_info struct
1836 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1839 int newest_index
= -1;
1841 newest_index
= find_newest_super_backup(info
, newest_gen
);
1842 /* if there was garbage in there, just move along */
1843 if (newest_index
== -1) {
1844 info
->backup_root_index
= 0;
1846 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1851 * copy all the root pointers into the super backup array.
1852 * this will bump the backup pointer by one when it is
1855 static void backup_super_roots(struct btrfs_fs_info
*info
)
1858 struct btrfs_root_backup
*root_backup
;
1861 next_backup
= info
->backup_root_index
;
1862 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1863 BTRFS_NUM_BACKUP_ROOTS
;
1866 * just overwrite the last backup if we're at the same generation
1867 * this happens only at umount
1869 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1870 if (btrfs_backup_tree_root_gen(root_backup
) ==
1871 btrfs_header_generation(info
->tree_root
->node
))
1872 next_backup
= last_backup
;
1874 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1877 * make sure all of our padding and empty slots get zero filled
1878 * regardless of which ones we use today
1880 memset(root_backup
, 0, sizeof(*root_backup
));
1882 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1884 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1885 btrfs_set_backup_tree_root_gen(root_backup
,
1886 btrfs_header_generation(info
->tree_root
->node
));
1888 btrfs_set_backup_tree_root_level(root_backup
,
1889 btrfs_header_level(info
->tree_root
->node
));
1891 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1892 btrfs_set_backup_chunk_root_gen(root_backup
,
1893 btrfs_header_generation(info
->chunk_root
->node
));
1894 btrfs_set_backup_chunk_root_level(root_backup
,
1895 btrfs_header_level(info
->chunk_root
->node
));
1897 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1898 btrfs_set_backup_extent_root_gen(root_backup
,
1899 btrfs_header_generation(info
->extent_root
->node
));
1900 btrfs_set_backup_extent_root_level(root_backup
,
1901 btrfs_header_level(info
->extent_root
->node
));
1904 * we might commit during log recovery, which happens before we set
1905 * the fs_root. Make sure it is valid before we fill it in.
1907 if (info
->fs_root
&& info
->fs_root
->node
) {
1908 btrfs_set_backup_fs_root(root_backup
,
1909 info
->fs_root
->node
->start
);
1910 btrfs_set_backup_fs_root_gen(root_backup
,
1911 btrfs_header_generation(info
->fs_root
->node
));
1912 btrfs_set_backup_fs_root_level(root_backup
,
1913 btrfs_header_level(info
->fs_root
->node
));
1916 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1917 btrfs_set_backup_dev_root_gen(root_backup
,
1918 btrfs_header_generation(info
->dev_root
->node
));
1919 btrfs_set_backup_dev_root_level(root_backup
,
1920 btrfs_header_level(info
->dev_root
->node
));
1922 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1923 btrfs_set_backup_csum_root_gen(root_backup
,
1924 btrfs_header_generation(info
->csum_root
->node
));
1925 btrfs_set_backup_csum_root_level(root_backup
,
1926 btrfs_header_level(info
->csum_root
->node
));
1928 btrfs_set_backup_total_bytes(root_backup
,
1929 btrfs_super_total_bytes(info
->super_copy
));
1930 btrfs_set_backup_bytes_used(root_backup
,
1931 btrfs_super_bytes_used(info
->super_copy
));
1932 btrfs_set_backup_num_devices(root_backup
,
1933 btrfs_super_num_devices(info
->super_copy
));
1936 * if we don't copy this out to the super_copy, it won't get remembered
1937 * for the next commit
1939 memcpy(&info
->super_copy
->super_roots
,
1940 &info
->super_for_commit
->super_roots
,
1941 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1945 * this copies info out of the root backup array and back into
1946 * the in-memory super block. It is meant to help iterate through
1947 * the array, so you send it the number of backups you've already
1948 * tried and the last backup index you used.
1950 * this returns -1 when it has tried all the backups
1952 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1953 struct btrfs_super_block
*super
,
1954 int *num_backups_tried
, int *backup_index
)
1956 struct btrfs_root_backup
*root_backup
;
1957 int newest
= *backup_index
;
1959 if (*num_backups_tried
== 0) {
1960 u64 gen
= btrfs_super_generation(super
);
1962 newest
= find_newest_super_backup(info
, gen
);
1966 *backup_index
= newest
;
1967 *num_backups_tried
= 1;
1968 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1969 /* we've tried all the backups, all done */
1972 /* jump to the next oldest backup */
1973 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1974 BTRFS_NUM_BACKUP_ROOTS
;
1975 *backup_index
= newest
;
1976 *num_backups_tried
+= 1;
1978 root_backup
= super
->super_roots
+ newest
;
1980 btrfs_set_super_generation(super
,
1981 btrfs_backup_tree_root_gen(root_backup
));
1982 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1983 btrfs_set_super_root_level(super
,
1984 btrfs_backup_tree_root_level(root_backup
));
1985 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1988 * fixme: the total bytes and num_devices need to match or we should
1991 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1992 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1996 /* helper to cleanup workers */
1997 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1999 btrfs_stop_workers(&fs_info
->generic_worker
);
2000 btrfs_stop_workers(&fs_info
->fixup_workers
);
2001 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2002 btrfs_stop_workers(&fs_info
->workers
);
2003 btrfs_stop_workers(&fs_info
->endio_workers
);
2004 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2005 btrfs_stop_workers(&fs_info
->endio_raid56_workers
);
2006 btrfs_stop_workers(&fs_info
->rmw_workers
);
2007 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2008 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2009 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2010 btrfs_stop_workers(&fs_info
->submit_workers
);
2011 btrfs_stop_workers(&fs_info
->delayed_workers
);
2012 btrfs_stop_workers(&fs_info
->caching_workers
);
2013 btrfs_stop_workers(&fs_info
->readahead_workers
);
2014 btrfs_stop_workers(&fs_info
->flush_workers
);
2015 btrfs_stop_workers(&fs_info
->qgroup_rescan_workers
);
2018 /* helper to cleanup tree roots */
2019 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2021 free_extent_buffer(info
->tree_root
->node
);
2022 free_extent_buffer(info
->tree_root
->commit_root
);
2023 info
->tree_root
->node
= NULL
;
2024 info
->tree_root
->commit_root
= NULL
;
2026 if (info
->dev_root
) {
2027 free_extent_buffer(info
->dev_root
->node
);
2028 free_extent_buffer(info
->dev_root
->commit_root
);
2029 info
->dev_root
->node
= NULL
;
2030 info
->dev_root
->commit_root
= NULL
;
2032 if (info
->extent_root
) {
2033 free_extent_buffer(info
->extent_root
->node
);
2034 free_extent_buffer(info
->extent_root
->commit_root
);
2035 info
->extent_root
->node
= NULL
;
2036 info
->extent_root
->commit_root
= NULL
;
2038 if (info
->csum_root
) {
2039 free_extent_buffer(info
->csum_root
->node
);
2040 free_extent_buffer(info
->csum_root
->commit_root
);
2041 info
->csum_root
->node
= NULL
;
2042 info
->csum_root
->commit_root
= NULL
;
2044 if (info
->quota_root
) {
2045 free_extent_buffer(info
->quota_root
->node
);
2046 free_extent_buffer(info
->quota_root
->commit_root
);
2047 info
->quota_root
->node
= NULL
;
2048 info
->quota_root
->commit_root
= NULL
;
2050 if (info
->uuid_root
) {
2051 free_extent_buffer(info
->uuid_root
->node
);
2052 free_extent_buffer(info
->uuid_root
->commit_root
);
2053 info
->uuid_root
->node
= NULL
;
2054 info
->uuid_root
->commit_root
= NULL
;
2057 free_extent_buffer(info
->chunk_root
->node
);
2058 free_extent_buffer(info
->chunk_root
->commit_root
);
2059 info
->chunk_root
->node
= NULL
;
2060 info
->chunk_root
->commit_root
= NULL
;
2064 static void del_fs_roots(struct btrfs_fs_info
*fs_info
)
2067 struct btrfs_root
*gang
[8];
2070 while (!list_empty(&fs_info
->dead_roots
)) {
2071 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2072 struct btrfs_root
, root_list
);
2073 list_del(&gang
[0]->root_list
);
2075 if (gang
[0]->in_radix
) {
2076 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2078 free_extent_buffer(gang
[0]->node
);
2079 free_extent_buffer(gang
[0]->commit_root
);
2080 btrfs_put_fs_root(gang
[0]);
2085 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2090 for (i
= 0; i
< ret
; i
++)
2091 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2095 int open_ctree(struct super_block
*sb
,
2096 struct btrfs_fs_devices
*fs_devices
,
2106 struct btrfs_key location
;
2107 struct buffer_head
*bh
;
2108 struct btrfs_super_block
*disk_super
;
2109 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2110 struct btrfs_root
*tree_root
;
2111 struct btrfs_root
*extent_root
;
2112 struct btrfs_root
*csum_root
;
2113 struct btrfs_root
*chunk_root
;
2114 struct btrfs_root
*dev_root
;
2115 struct btrfs_root
*quota_root
;
2116 struct btrfs_root
*uuid_root
;
2117 struct btrfs_root
*log_tree_root
;
2120 int num_backups_tried
= 0;
2121 int backup_index
= 0;
2122 bool create_uuid_tree
;
2123 bool check_uuid_tree
;
2125 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
2126 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
2127 if (!tree_root
|| !chunk_root
) {
2132 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2138 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2144 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0);
2149 fs_info
->dirty_metadata_batch
= PAGE_CACHE_SIZE
*
2150 (1 + ilog2(nr_cpu_ids
));
2152 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0);
2155 goto fail_dirty_metadata_bytes
;
2158 fs_info
->btree_inode
= new_inode(sb
);
2159 if (!fs_info
->btree_inode
) {
2161 goto fail_delalloc_bytes
;
2164 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2166 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2167 INIT_LIST_HEAD(&fs_info
->trans_list
);
2168 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2169 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2170 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2171 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2172 spin_lock_init(&fs_info
->delalloc_root_lock
);
2173 spin_lock_init(&fs_info
->trans_lock
);
2174 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2175 spin_lock_init(&fs_info
->delayed_iput_lock
);
2176 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2177 spin_lock_init(&fs_info
->free_chunk_lock
);
2178 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2179 spin_lock_init(&fs_info
->super_lock
);
2180 rwlock_init(&fs_info
->tree_mod_log_lock
);
2181 mutex_init(&fs_info
->reloc_mutex
);
2182 seqlock_init(&fs_info
->profiles_lock
);
2184 init_completion(&fs_info
->kobj_unregister
);
2185 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2186 INIT_LIST_HEAD(&fs_info
->space_info
);
2187 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2188 btrfs_mapping_init(&fs_info
->mapping_tree
);
2189 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2190 BTRFS_BLOCK_RSV_GLOBAL
);
2191 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2192 BTRFS_BLOCK_RSV_DELALLOC
);
2193 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2194 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2195 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2196 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2197 BTRFS_BLOCK_RSV_DELOPS
);
2198 atomic_set(&fs_info
->nr_async_submits
, 0);
2199 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2200 atomic_set(&fs_info
->async_submit_draining
, 0);
2201 atomic_set(&fs_info
->nr_async_bios
, 0);
2202 atomic_set(&fs_info
->defrag_running
, 0);
2203 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2205 fs_info
->max_inline
= 8192 * 1024;
2206 fs_info
->metadata_ratio
= 0;
2207 fs_info
->defrag_inodes
= RB_ROOT
;
2208 fs_info
->free_chunk_space
= 0;
2209 fs_info
->tree_mod_log
= RB_ROOT
;
2210 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2212 /* readahead state */
2213 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
2214 spin_lock_init(&fs_info
->reada_lock
);
2216 fs_info
->thread_pool_size
= min_t(unsigned long,
2217 num_online_cpus() + 2, 8);
2219 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2220 spin_lock_init(&fs_info
->ordered_root_lock
);
2221 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2223 if (!fs_info
->delayed_root
) {
2227 btrfs_init_delayed_root(fs_info
->delayed_root
);
2229 mutex_init(&fs_info
->scrub_lock
);
2230 atomic_set(&fs_info
->scrubs_running
, 0);
2231 atomic_set(&fs_info
->scrub_pause_req
, 0);
2232 atomic_set(&fs_info
->scrubs_paused
, 0);
2233 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2234 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2235 init_rwsem(&fs_info
->scrub_super_lock
);
2236 fs_info
->scrub_workers_refcnt
= 0;
2237 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2238 fs_info
->check_integrity_print_mask
= 0;
2241 spin_lock_init(&fs_info
->balance_lock
);
2242 mutex_init(&fs_info
->balance_mutex
);
2243 atomic_set(&fs_info
->balance_running
, 0);
2244 atomic_set(&fs_info
->balance_pause_req
, 0);
2245 atomic_set(&fs_info
->balance_cancel_req
, 0);
2246 fs_info
->balance_ctl
= NULL
;
2247 init_waitqueue_head(&fs_info
->balance_wait_q
);
2249 sb
->s_blocksize
= 4096;
2250 sb
->s_blocksize_bits
= blksize_bits(4096);
2251 sb
->s_bdi
= &fs_info
->bdi
;
2253 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2254 set_nlink(fs_info
->btree_inode
, 1);
2256 * we set the i_size on the btree inode to the max possible int.
2257 * the real end of the address space is determined by all of
2258 * the devices in the system
2260 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2261 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2262 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2264 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2265 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2266 fs_info
->btree_inode
->i_mapping
);
2267 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2268 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2270 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2272 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2273 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2274 sizeof(struct btrfs_key
));
2275 set_bit(BTRFS_INODE_DUMMY
,
2276 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2277 insert_inode_hash(fs_info
->btree_inode
);
2279 spin_lock_init(&fs_info
->block_group_cache_lock
);
2280 fs_info
->block_group_cache_tree
= RB_ROOT
;
2281 fs_info
->first_logical_byte
= (u64
)-1;
2283 extent_io_tree_init(&fs_info
->freed_extents
[0],
2284 fs_info
->btree_inode
->i_mapping
);
2285 extent_io_tree_init(&fs_info
->freed_extents
[1],
2286 fs_info
->btree_inode
->i_mapping
);
2287 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2288 fs_info
->do_barriers
= 1;
2291 mutex_init(&fs_info
->ordered_operations_mutex
);
2292 mutex_init(&fs_info
->ordered_extent_flush_mutex
);
2293 mutex_init(&fs_info
->tree_log_mutex
);
2294 mutex_init(&fs_info
->chunk_mutex
);
2295 mutex_init(&fs_info
->transaction_kthread_mutex
);
2296 mutex_init(&fs_info
->cleaner_mutex
);
2297 mutex_init(&fs_info
->volume_mutex
);
2298 init_rwsem(&fs_info
->extent_commit_sem
);
2299 init_rwsem(&fs_info
->cleanup_work_sem
);
2300 init_rwsem(&fs_info
->subvol_sem
);
2301 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2302 fs_info
->dev_replace
.lock_owner
= 0;
2303 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2304 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2305 mutex_init(&fs_info
->dev_replace
.lock_management_lock
);
2306 mutex_init(&fs_info
->dev_replace
.lock
);
2308 spin_lock_init(&fs_info
->qgroup_lock
);
2309 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2310 fs_info
->qgroup_tree
= RB_ROOT
;
2311 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2312 fs_info
->qgroup_seq
= 1;
2313 fs_info
->quota_enabled
= 0;
2314 fs_info
->pending_quota_state
= 0;
2315 fs_info
->qgroup_ulist
= NULL
;
2316 mutex_init(&fs_info
->qgroup_rescan_lock
);
2318 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2319 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2321 init_waitqueue_head(&fs_info
->transaction_throttle
);
2322 init_waitqueue_head(&fs_info
->transaction_wait
);
2323 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2324 init_waitqueue_head(&fs_info
->async_submit_wait
);
2326 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2332 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2333 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2335 invalidate_bdev(fs_devices
->latest_bdev
);
2338 * Read super block and check the signature bytes only
2340 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2347 * We want to check superblock checksum, the type is stored inside.
2348 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2350 if (btrfs_check_super_csum(bh
->b_data
)) {
2351 printk(KERN_ERR
"btrfs: superblock checksum mismatch\n");
2357 * super_copy is zeroed at allocation time and we never touch the
2358 * following bytes up to INFO_SIZE, the checksum is calculated from
2359 * the whole block of INFO_SIZE
2361 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2362 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2363 sizeof(*fs_info
->super_for_commit
));
2366 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2368 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2370 printk(KERN_ERR
"btrfs: superblock contains fatal errors\n");
2375 disk_super
= fs_info
->super_copy
;
2376 if (!btrfs_super_root(disk_super
))
2379 /* check FS state, whether FS is broken. */
2380 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2381 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2384 * run through our array of backup supers and setup
2385 * our ring pointer to the oldest one
2387 generation
= btrfs_super_generation(disk_super
);
2388 find_oldest_super_backup(fs_info
, generation
);
2391 * In the long term, we'll store the compression type in the super
2392 * block, and it'll be used for per file compression control.
2394 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2396 ret
= btrfs_parse_options(tree_root
, options
);
2402 features
= btrfs_super_incompat_flags(disk_super
) &
2403 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2405 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2406 "unsupported optional features (%Lx).\n",
2412 if (btrfs_super_leafsize(disk_super
) !=
2413 btrfs_super_nodesize(disk_super
)) {
2414 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2415 "blocksizes don't match. node %d leaf %d\n",
2416 btrfs_super_nodesize(disk_super
),
2417 btrfs_super_leafsize(disk_super
));
2421 if (btrfs_super_leafsize(disk_super
) > BTRFS_MAX_METADATA_BLOCKSIZE
) {
2422 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2423 "blocksize (%d) was too large\n",
2424 btrfs_super_leafsize(disk_super
));
2429 features
= btrfs_super_incompat_flags(disk_super
);
2430 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2431 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2432 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2434 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2435 printk(KERN_ERR
"btrfs: has skinny extents\n");
2438 * flag our filesystem as having big metadata blocks if
2439 * they are bigger than the page size
2441 if (btrfs_super_leafsize(disk_super
) > PAGE_CACHE_SIZE
) {
2442 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2443 printk(KERN_INFO
"btrfs flagging fs with big metadata feature\n");
2444 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2447 nodesize
= btrfs_super_nodesize(disk_super
);
2448 leafsize
= btrfs_super_leafsize(disk_super
);
2449 sectorsize
= btrfs_super_sectorsize(disk_super
);
2450 stripesize
= btrfs_super_stripesize(disk_super
);
2451 fs_info
->dirty_metadata_batch
= leafsize
* (1 + ilog2(nr_cpu_ids
));
2452 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2455 * mixed block groups end up with duplicate but slightly offset
2456 * extent buffers for the same range. It leads to corruptions
2458 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2459 (sectorsize
!= leafsize
)) {
2460 printk(KERN_WARNING
"btrfs: unequal leaf/node/sector sizes "
2461 "are not allowed for mixed block groups on %s\n",
2467 * Needn't use the lock because there is no other task which will
2470 btrfs_set_super_incompat_flags(disk_super
, features
);
2472 features
= btrfs_super_compat_ro_flags(disk_super
) &
2473 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2474 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2475 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2476 "unsupported option features (%Lx).\n",
2482 btrfs_init_workers(&fs_info
->generic_worker
,
2483 "genwork", 1, NULL
);
2485 btrfs_init_workers(&fs_info
->workers
, "worker",
2486 fs_info
->thread_pool_size
,
2487 &fs_info
->generic_worker
);
2489 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2490 fs_info
->thread_pool_size
, NULL
);
2492 btrfs_init_workers(&fs_info
->flush_workers
, "flush_delalloc",
2493 fs_info
->thread_pool_size
, NULL
);
2495 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2496 min_t(u64
, fs_devices
->num_devices
,
2497 fs_info
->thread_pool_size
), NULL
);
2499 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2500 fs_info
->thread_pool_size
, NULL
);
2502 /* a higher idle thresh on the submit workers makes it much more
2503 * likely that bios will be send down in a sane order to the
2506 fs_info
->submit_workers
.idle_thresh
= 64;
2508 fs_info
->workers
.idle_thresh
= 16;
2509 fs_info
->workers
.ordered
= 1;
2511 fs_info
->delalloc_workers
.idle_thresh
= 2;
2512 fs_info
->delalloc_workers
.ordered
= 1;
2514 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2515 &fs_info
->generic_worker
);
2516 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2517 fs_info
->thread_pool_size
,
2518 &fs_info
->generic_worker
);
2519 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2520 fs_info
->thread_pool_size
,
2521 &fs_info
->generic_worker
);
2522 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2523 "endio-meta-write", fs_info
->thread_pool_size
,
2524 &fs_info
->generic_worker
);
2525 btrfs_init_workers(&fs_info
->endio_raid56_workers
,
2526 "endio-raid56", fs_info
->thread_pool_size
,
2527 &fs_info
->generic_worker
);
2528 btrfs_init_workers(&fs_info
->rmw_workers
,
2529 "rmw", fs_info
->thread_pool_size
,
2530 &fs_info
->generic_worker
);
2531 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2532 fs_info
->thread_pool_size
,
2533 &fs_info
->generic_worker
);
2534 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2535 1, &fs_info
->generic_worker
);
2536 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2537 fs_info
->thread_pool_size
,
2538 &fs_info
->generic_worker
);
2539 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2540 fs_info
->thread_pool_size
,
2541 &fs_info
->generic_worker
);
2542 btrfs_init_workers(&fs_info
->qgroup_rescan_workers
, "qgroup-rescan", 1,
2543 &fs_info
->generic_worker
);
2546 * endios are largely parallel and should have a very
2549 fs_info
->endio_workers
.idle_thresh
= 4;
2550 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2551 fs_info
->endio_raid56_workers
.idle_thresh
= 4;
2552 fs_info
->rmw_workers
.idle_thresh
= 2;
2554 fs_info
->endio_write_workers
.idle_thresh
= 2;
2555 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2556 fs_info
->readahead_workers
.idle_thresh
= 2;
2559 * btrfs_start_workers can really only fail because of ENOMEM so just
2560 * return -ENOMEM if any of these fail.
2562 ret
= btrfs_start_workers(&fs_info
->workers
);
2563 ret
|= btrfs_start_workers(&fs_info
->generic_worker
);
2564 ret
|= btrfs_start_workers(&fs_info
->submit_workers
);
2565 ret
|= btrfs_start_workers(&fs_info
->delalloc_workers
);
2566 ret
|= btrfs_start_workers(&fs_info
->fixup_workers
);
2567 ret
|= btrfs_start_workers(&fs_info
->endio_workers
);
2568 ret
|= btrfs_start_workers(&fs_info
->endio_meta_workers
);
2569 ret
|= btrfs_start_workers(&fs_info
->rmw_workers
);
2570 ret
|= btrfs_start_workers(&fs_info
->endio_raid56_workers
);
2571 ret
|= btrfs_start_workers(&fs_info
->endio_meta_write_workers
);
2572 ret
|= btrfs_start_workers(&fs_info
->endio_write_workers
);
2573 ret
|= btrfs_start_workers(&fs_info
->endio_freespace_worker
);
2574 ret
|= btrfs_start_workers(&fs_info
->delayed_workers
);
2575 ret
|= btrfs_start_workers(&fs_info
->caching_workers
);
2576 ret
|= btrfs_start_workers(&fs_info
->readahead_workers
);
2577 ret
|= btrfs_start_workers(&fs_info
->flush_workers
);
2578 ret
|= btrfs_start_workers(&fs_info
->qgroup_rescan_workers
);
2581 goto fail_sb_buffer
;
2584 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2585 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2586 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2588 tree_root
->nodesize
= nodesize
;
2589 tree_root
->leafsize
= leafsize
;
2590 tree_root
->sectorsize
= sectorsize
;
2591 tree_root
->stripesize
= stripesize
;
2593 sb
->s_blocksize
= sectorsize
;
2594 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2596 if (btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
2597 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
2598 goto fail_sb_buffer
;
2601 if (sectorsize
!= PAGE_SIZE
) {
2602 printk(KERN_WARNING
"btrfs: Incompatible sector size(%lu) "
2603 "found on %s\n", (unsigned long)sectorsize
, sb
->s_id
);
2604 goto fail_sb_buffer
;
2607 mutex_lock(&fs_info
->chunk_mutex
);
2608 ret
= btrfs_read_sys_array(tree_root
);
2609 mutex_unlock(&fs_info
->chunk_mutex
);
2611 printk(KERN_WARNING
"btrfs: failed to read the system "
2612 "array on %s\n", sb
->s_id
);
2613 goto fail_sb_buffer
;
2616 blocksize
= btrfs_level_size(tree_root
,
2617 btrfs_super_chunk_root_level(disk_super
));
2618 generation
= btrfs_super_chunk_root_generation(disk_super
);
2620 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2621 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2623 chunk_root
->node
= read_tree_block(chunk_root
,
2624 btrfs_super_chunk_root(disk_super
),
2625 blocksize
, generation
);
2626 if (!chunk_root
->node
||
2627 !test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2628 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2630 goto fail_tree_roots
;
2632 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2633 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2635 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2636 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2638 ret
= btrfs_read_chunk_tree(chunk_root
);
2640 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2642 goto fail_tree_roots
;
2646 * keep the device that is marked to be the target device for the
2647 * dev_replace procedure
2649 btrfs_close_extra_devices(fs_info
, fs_devices
, 0);
2651 if (!fs_devices
->latest_bdev
) {
2652 printk(KERN_CRIT
"btrfs: failed to read devices on %s\n",
2654 goto fail_tree_roots
;
2658 blocksize
= btrfs_level_size(tree_root
,
2659 btrfs_super_root_level(disk_super
));
2660 generation
= btrfs_super_generation(disk_super
);
2662 tree_root
->node
= read_tree_block(tree_root
,
2663 btrfs_super_root(disk_super
),
2664 blocksize
, generation
);
2665 if (!tree_root
->node
||
2666 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2667 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2670 goto recovery_tree_root
;
2673 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2674 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2676 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2677 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2678 location
.offset
= 0;
2680 extent_root
= btrfs_read_tree_root(tree_root
, &location
);
2681 if (IS_ERR(extent_root
)) {
2682 ret
= PTR_ERR(extent_root
);
2683 goto recovery_tree_root
;
2685 extent_root
->track_dirty
= 1;
2686 fs_info
->extent_root
= extent_root
;
2688 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2689 dev_root
= btrfs_read_tree_root(tree_root
, &location
);
2690 if (IS_ERR(dev_root
)) {
2691 ret
= PTR_ERR(dev_root
);
2692 goto recovery_tree_root
;
2694 dev_root
->track_dirty
= 1;
2695 fs_info
->dev_root
= dev_root
;
2696 btrfs_init_devices_late(fs_info
);
2698 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2699 csum_root
= btrfs_read_tree_root(tree_root
, &location
);
2700 if (IS_ERR(csum_root
)) {
2701 ret
= PTR_ERR(csum_root
);
2702 goto recovery_tree_root
;
2704 csum_root
->track_dirty
= 1;
2705 fs_info
->csum_root
= csum_root
;
2707 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2708 quota_root
= btrfs_read_tree_root(tree_root
, &location
);
2709 if (!IS_ERR(quota_root
)) {
2710 quota_root
->track_dirty
= 1;
2711 fs_info
->quota_enabled
= 1;
2712 fs_info
->pending_quota_state
= 1;
2713 fs_info
->quota_root
= quota_root
;
2716 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2717 uuid_root
= btrfs_read_tree_root(tree_root
, &location
);
2718 if (IS_ERR(uuid_root
)) {
2719 ret
= PTR_ERR(uuid_root
);
2721 goto recovery_tree_root
;
2722 create_uuid_tree
= true;
2723 check_uuid_tree
= false;
2725 uuid_root
->track_dirty
= 1;
2726 fs_info
->uuid_root
= uuid_root
;
2727 create_uuid_tree
= false;
2729 generation
!= btrfs_super_uuid_tree_generation(disk_super
);
2732 fs_info
->generation
= generation
;
2733 fs_info
->last_trans_committed
= generation
;
2735 ret
= btrfs_recover_balance(fs_info
);
2737 printk(KERN_WARNING
"btrfs: failed to recover balance\n");
2738 goto fail_block_groups
;
2741 ret
= btrfs_init_dev_stats(fs_info
);
2743 printk(KERN_ERR
"btrfs: failed to init dev_stats: %d\n",
2745 goto fail_block_groups
;
2748 ret
= btrfs_init_dev_replace(fs_info
);
2750 pr_err("btrfs: failed to init dev_replace: %d\n", ret
);
2751 goto fail_block_groups
;
2754 btrfs_close_extra_devices(fs_info
, fs_devices
, 1);
2756 ret
= btrfs_init_space_info(fs_info
);
2758 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2759 goto fail_block_groups
;
2762 ret
= btrfs_read_block_groups(extent_root
);
2764 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2765 goto fail_block_groups
;
2767 fs_info
->num_tolerated_disk_barrier_failures
=
2768 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2769 if (fs_info
->fs_devices
->missing_devices
>
2770 fs_info
->num_tolerated_disk_barrier_failures
&&
2771 !(sb
->s_flags
& MS_RDONLY
)) {
2773 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2774 goto fail_block_groups
;
2777 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2779 if (IS_ERR(fs_info
->cleaner_kthread
))
2780 goto fail_block_groups
;
2782 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2784 "btrfs-transaction");
2785 if (IS_ERR(fs_info
->transaction_kthread
))
2788 if (!btrfs_test_opt(tree_root
, SSD
) &&
2789 !btrfs_test_opt(tree_root
, NOSSD
) &&
2790 !fs_info
->fs_devices
->rotating
) {
2791 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2793 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2796 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2797 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2798 ret
= btrfsic_mount(tree_root
, fs_devices
,
2799 btrfs_test_opt(tree_root
,
2800 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2802 fs_info
->check_integrity_print_mask
);
2804 printk(KERN_WARNING
"btrfs: failed to initialize"
2805 " integrity check module %s\n", sb
->s_id
);
2808 ret
= btrfs_read_qgroup_config(fs_info
);
2810 goto fail_trans_kthread
;
2812 /* do not make disk changes in broken FS */
2813 if (btrfs_super_log_root(disk_super
) != 0) {
2814 u64 bytenr
= btrfs_super_log_root(disk_super
);
2816 if (fs_devices
->rw_devices
== 0) {
2817 printk(KERN_WARNING
"Btrfs log replay required "
2823 btrfs_level_size(tree_root
,
2824 btrfs_super_log_root_level(disk_super
));
2826 log_tree_root
= btrfs_alloc_root(fs_info
);
2827 if (!log_tree_root
) {
2832 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2833 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2835 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2838 if (!log_tree_root
->node
||
2839 !extent_buffer_uptodate(log_tree_root
->node
)) {
2840 printk(KERN_ERR
"btrfs: failed to read log tree\n");
2841 free_extent_buffer(log_tree_root
->node
);
2842 kfree(log_tree_root
);
2843 goto fail_trans_kthread
;
2845 /* returns with log_tree_root freed on success */
2846 ret
= btrfs_recover_log_trees(log_tree_root
);
2848 btrfs_error(tree_root
->fs_info
, ret
,
2849 "Failed to recover log tree");
2850 free_extent_buffer(log_tree_root
->node
);
2851 kfree(log_tree_root
);
2852 goto fail_trans_kthread
;
2855 if (sb
->s_flags
& MS_RDONLY
) {
2856 ret
= btrfs_commit_super(tree_root
);
2858 goto fail_trans_kthread
;
2862 ret
= btrfs_find_orphan_roots(tree_root
);
2864 goto fail_trans_kthread
;
2866 if (!(sb
->s_flags
& MS_RDONLY
)) {
2867 ret
= btrfs_cleanup_fs_roots(fs_info
);
2869 goto fail_trans_kthread
;
2871 ret
= btrfs_recover_relocation(tree_root
);
2874 "btrfs: failed to recover relocation\n");
2880 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2881 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2882 location
.offset
= 0;
2884 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2885 if (IS_ERR(fs_info
->fs_root
)) {
2886 err
= PTR_ERR(fs_info
->fs_root
);
2890 if (sb
->s_flags
& MS_RDONLY
)
2893 down_read(&fs_info
->cleanup_work_sem
);
2894 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
2895 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
2896 up_read(&fs_info
->cleanup_work_sem
);
2897 close_ctree(tree_root
);
2900 up_read(&fs_info
->cleanup_work_sem
);
2902 ret
= btrfs_resume_balance_async(fs_info
);
2904 printk(KERN_WARNING
"btrfs: failed to resume balance\n");
2905 close_ctree(tree_root
);
2909 ret
= btrfs_resume_dev_replace_async(fs_info
);
2911 pr_warn("btrfs: failed to resume dev_replace\n");
2912 close_ctree(tree_root
);
2916 btrfs_qgroup_rescan_resume(fs_info
);
2918 if (create_uuid_tree
) {
2919 pr_info("btrfs: creating UUID tree\n");
2920 ret
= btrfs_create_uuid_tree(fs_info
);
2922 pr_warn("btrfs: failed to create the UUID tree %d\n",
2924 close_ctree(tree_root
);
2927 } else if (check_uuid_tree
||
2928 btrfs_test_opt(tree_root
, RESCAN_UUID_TREE
)) {
2929 pr_info("btrfs: checking UUID tree\n");
2930 ret
= btrfs_check_uuid_tree(fs_info
);
2932 pr_warn("btrfs: failed to check the UUID tree %d\n",
2934 close_ctree(tree_root
);
2938 fs_info
->update_uuid_tree_gen
= 1;
2944 btrfs_free_qgroup_config(fs_info
);
2946 kthread_stop(fs_info
->transaction_kthread
);
2947 btrfs_cleanup_transaction(fs_info
->tree_root
);
2948 del_fs_roots(fs_info
);
2950 kthread_stop(fs_info
->cleaner_kthread
);
2953 * make sure we're done with the btree inode before we stop our
2956 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2959 btrfs_put_block_group_cache(fs_info
);
2960 btrfs_free_block_groups(fs_info
);
2963 free_root_pointers(fs_info
, 1);
2964 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2967 btrfs_stop_all_workers(fs_info
);
2970 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2972 iput(fs_info
->btree_inode
);
2973 fail_delalloc_bytes
:
2974 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
2975 fail_dirty_metadata_bytes
:
2976 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
2978 bdi_destroy(&fs_info
->bdi
);
2980 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2982 btrfs_free_stripe_hash_table(fs_info
);
2983 btrfs_close_devices(fs_info
->fs_devices
);
2987 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2988 goto fail_tree_roots
;
2990 free_root_pointers(fs_info
, 0);
2992 /* don't use the log in recovery mode, it won't be valid */
2993 btrfs_set_super_log_root(disk_super
, 0);
2995 /* we can't trust the free space cache either */
2996 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2998 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2999 &num_backups_tried
, &backup_index
);
3001 goto fail_block_groups
;
3002 goto retry_root_backup
;
3005 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3008 set_buffer_uptodate(bh
);
3010 struct btrfs_device
*device
= (struct btrfs_device
*)
3013 printk_ratelimited_in_rcu(KERN_WARNING
"lost page write due to "
3014 "I/O error on %s\n",
3015 rcu_str_deref(device
->name
));
3016 /* note, we dont' set_buffer_write_io_error because we have
3017 * our own ways of dealing with the IO errors
3019 clear_buffer_uptodate(bh
);
3020 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3026 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3028 struct buffer_head
*bh
;
3029 struct buffer_head
*latest
= NULL
;
3030 struct btrfs_super_block
*super
;
3035 /* we would like to check all the supers, but that would make
3036 * a btrfs mount succeed after a mkfs from a different FS.
3037 * So, we need to add a special mount option to scan for
3038 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3040 for (i
= 0; i
< 1; i
++) {
3041 bytenr
= btrfs_sb_offset(i
);
3042 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3043 i_size_read(bdev
->bd_inode
))
3045 bh
= __bread(bdev
, bytenr
/ 4096,
3046 BTRFS_SUPER_INFO_SIZE
);
3050 super
= (struct btrfs_super_block
*)bh
->b_data
;
3051 if (btrfs_super_bytenr(super
) != bytenr
||
3052 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3057 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3060 transid
= btrfs_super_generation(super
);
3069 * this should be called twice, once with wait == 0 and
3070 * once with wait == 1. When wait == 0 is done, all the buffer heads
3071 * we write are pinned.
3073 * They are released when wait == 1 is done.
3074 * max_mirrors must be the same for both runs, and it indicates how
3075 * many supers on this one device should be written.
3077 * max_mirrors == 0 means to write them all.
3079 static int write_dev_supers(struct btrfs_device
*device
,
3080 struct btrfs_super_block
*sb
,
3081 int do_barriers
, int wait
, int max_mirrors
)
3083 struct buffer_head
*bh
;
3090 if (max_mirrors
== 0)
3091 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3093 for (i
= 0; i
< max_mirrors
; i
++) {
3094 bytenr
= btrfs_sb_offset(i
);
3095 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
3099 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3100 BTRFS_SUPER_INFO_SIZE
);
3106 if (!buffer_uptodate(bh
))
3109 /* drop our reference */
3112 /* drop the reference from the wait == 0 run */
3116 btrfs_set_super_bytenr(sb
, bytenr
);
3119 crc
= btrfs_csum_data((char *)sb
+
3120 BTRFS_CSUM_SIZE
, crc
,
3121 BTRFS_SUPER_INFO_SIZE
-
3123 btrfs_csum_final(crc
, sb
->csum
);
3126 * one reference for us, and we leave it for the
3129 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3130 BTRFS_SUPER_INFO_SIZE
);
3132 printk(KERN_ERR
"btrfs: couldn't get super "
3133 "buffer head for bytenr %Lu\n", bytenr
);
3138 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3140 /* one reference for submit_bh */
3143 set_buffer_uptodate(bh
);
3145 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3146 bh
->b_private
= device
;
3150 * we fua the first super. The others we allow
3153 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
3157 return errors
< i
? 0 : -1;
3161 * endio for the write_dev_flush, this will wake anyone waiting
3162 * for the barrier when it is done
3164 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
3167 if (err
== -EOPNOTSUPP
)
3168 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
3169 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3171 if (bio
->bi_private
)
3172 complete(bio
->bi_private
);
3177 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3178 * sent down. With wait == 1, it waits for the previous flush.
3180 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3183 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3188 if (device
->nobarriers
)
3192 bio
= device
->flush_bio
;
3196 wait_for_completion(&device
->flush_wait
);
3198 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
3199 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3200 rcu_str_deref(device
->name
));
3201 device
->nobarriers
= 1;
3202 } else if (!bio_flagged(bio
, BIO_UPTODATE
)) {
3204 btrfs_dev_stat_inc_and_print(device
,
3205 BTRFS_DEV_STAT_FLUSH_ERRS
);
3208 /* drop the reference from the wait == 0 run */
3210 device
->flush_bio
= NULL
;
3216 * one reference for us, and we leave it for the
3219 device
->flush_bio
= NULL
;
3220 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3224 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3225 bio
->bi_bdev
= device
->bdev
;
3226 init_completion(&device
->flush_wait
);
3227 bio
->bi_private
= &device
->flush_wait
;
3228 device
->flush_bio
= bio
;
3231 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
3237 * send an empty flush down to each device in parallel,
3238 * then wait for them
3240 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3242 struct list_head
*head
;
3243 struct btrfs_device
*dev
;
3244 int errors_send
= 0;
3245 int errors_wait
= 0;
3248 /* send down all the barriers */
3249 head
= &info
->fs_devices
->devices
;
3250 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3257 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3260 ret
= write_dev_flush(dev
, 0);
3265 /* wait for all the barriers */
3266 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3273 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3276 ret
= write_dev_flush(dev
, 1);
3280 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3281 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3286 int btrfs_calc_num_tolerated_disk_barrier_failures(
3287 struct btrfs_fs_info
*fs_info
)
3289 struct btrfs_ioctl_space_info space
;
3290 struct btrfs_space_info
*sinfo
;
3291 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3292 BTRFS_BLOCK_GROUP_SYSTEM
,
3293 BTRFS_BLOCK_GROUP_METADATA
,
3294 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3298 int num_tolerated_disk_barrier_failures
=
3299 (int)fs_info
->fs_devices
->num_devices
;
3301 for (i
= 0; i
< num_types
; i
++) {
3302 struct btrfs_space_info
*tmp
;
3306 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3307 if (tmp
->flags
== types
[i
]) {
3317 down_read(&sinfo
->groups_sem
);
3318 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3319 if (!list_empty(&sinfo
->block_groups
[c
])) {
3322 btrfs_get_block_group_info(
3323 &sinfo
->block_groups
[c
], &space
);
3324 if (space
.total_bytes
== 0 ||
3325 space
.used_bytes
== 0)
3327 flags
= space
.flags
;
3330 * 0: if dup, single or RAID0 is configured for
3331 * any of metadata, system or data, else
3332 * 1: if RAID5 is configured, or if RAID1 or
3333 * RAID10 is configured and only two mirrors
3335 * 2: if RAID6 is configured, else
3336 * num_mirrors - 1: if RAID1 or RAID10 is
3337 * configured and more than
3338 * 2 mirrors are used.
3340 if (num_tolerated_disk_barrier_failures
> 0 &&
3341 ((flags
& (BTRFS_BLOCK_GROUP_DUP
|
3342 BTRFS_BLOCK_GROUP_RAID0
)) ||
3343 ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
)
3345 num_tolerated_disk_barrier_failures
= 0;
3346 else if (num_tolerated_disk_barrier_failures
> 1) {
3347 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3348 BTRFS_BLOCK_GROUP_RAID5
|
3349 BTRFS_BLOCK_GROUP_RAID10
)) {
3350 num_tolerated_disk_barrier_failures
= 1;
3352 BTRFS_BLOCK_GROUP_RAID6
) {
3353 num_tolerated_disk_barrier_failures
= 2;
3358 up_read(&sinfo
->groups_sem
);
3361 return num_tolerated_disk_barrier_failures
;
3364 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3366 struct list_head
*head
;
3367 struct btrfs_device
*dev
;
3368 struct btrfs_super_block
*sb
;
3369 struct btrfs_dev_item
*dev_item
;
3373 int total_errors
= 0;
3376 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
3377 backup_super_roots(root
->fs_info
);
3379 sb
= root
->fs_info
->super_for_commit
;
3380 dev_item
= &sb
->dev_item
;
3382 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3383 head
= &root
->fs_info
->fs_devices
->devices
;
3384 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3387 ret
= barrier_all_devices(root
->fs_info
);
3390 &root
->fs_info
->fs_devices
->device_list_mutex
);
3391 btrfs_error(root
->fs_info
, ret
,
3392 "errors while submitting device barriers.");
3397 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3402 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3405 btrfs_set_stack_device_generation(dev_item
, 0);
3406 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3407 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3408 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
3409 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
3410 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3411 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3412 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3413 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3414 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3416 flags
= btrfs_super_flags(sb
);
3417 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3419 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3423 if (total_errors
> max_errors
) {
3424 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
3426 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3428 /* FUA is masked off if unsupported and can't be the reason */
3429 btrfs_error(root
->fs_info
, -EIO
,
3430 "%d errors while writing supers", total_errors
);
3435 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3438 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3441 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3445 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3446 if (total_errors
> max_errors
) {
3447 btrfs_error(root
->fs_info
, -EIO
,
3448 "%d errors while writing supers", total_errors
);
3454 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3455 struct btrfs_root
*root
, int max_mirrors
)
3459 ret
= write_all_supers(root
, max_mirrors
);
3463 /* Drop a fs root from the radix tree and free it. */
3464 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3465 struct btrfs_root
*root
)
3467 spin_lock(&fs_info
->fs_roots_radix_lock
);
3468 radix_tree_delete(&fs_info
->fs_roots_radix
,
3469 (unsigned long)root
->root_key
.objectid
);
3470 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3472 if (btrfs_root_refs(&root
->root_item
) == 0)
3473 synchronize_srcu(&fs_info
->subvol_srcu
);
3475 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3476 btrfs_free_log(NULL
, root
);
3477 btrfs_free_log_root_tree(NULL
, fs_info
);
3480 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3481 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3485 static void free_fs_root(struct btrfs_root
*root
)
3487 iput(root
->cache_inode
);
3488 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3489 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3490 root
->orphan_block_rsv
= NULL
;
3492 free_anon_bdev(root
->anon_dev
);
3493 free_extent_buffer(root
->node
);
3494 free_extent_buffer(root
->commit_root
);
3495 kfree(root
->free_ino_ctl
);
3496 kfree(root
->free_ino_pinned
);
3498 btrfs_put_fs_root(root
);
3501 void btrfs_free_fs_root(struct btrfs_root
*root
)
3506 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3508 u64 root_objectid
= 0;
3509 struct btrfs_root
*gang
[8];
3514 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3515 (void **)gang
, root_objectid
,
3520 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3521 for (i
= 0; i
< ret
; i
++) {
3524 root_objectid
= gang
[i
]->root_key
.objectid
;
3525 err
= btrfs_orphan_cleanup(gang
[i
]);
3534 int btrfs_commit_super(struct btrfs_root
*root
)
3536 struct btrfs_trans_handle
*trans
;
3539 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3540 btrfs_run_delayed_iputs(root
);
3541 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3542 wake_up_process(root
->fs_info
->cleaner_kthread
);
3544 /* wait until ongoing cleanup work done */
3545 down_write(&root
->fs_info
->cleanup_work_sem
);
3546 up_write(&root
->fs_info
->cleanup_work_sem
);
3548 trans
= btrfs_join_transaction(root
);
3550 return PTR_ERR(trans
);
3551 ret
= btrfs_commit_transaction(trans
, root
);
3554 /* run commit again to drop the original snapshot */
3555 trans
= btrfs_join_transaction(root
);
3557 return PTR_ERR(trans
);
3558 ret
= btrfs_commit_transaction(trans
, root
);
3561 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
3563 btrfs_error(root
->fs_info
, ret
,
3564 "Failed to sync btree inode to disk.");
3568 ret
= write_ctree_super(NULL
, root
, 0);
3572 int close_ctree(struct btrfs_root
*root
)
3574 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3577 fs_info
->closing
= 1;
3580 /* wait for the uuid_scan task to finish */
3581 down(&fs_info
->uuid_tree_rescan_sem
);
3582 /* avoid complains from lockdep et al., set sem back to initial state */
3583 up(&fs_info
->uuid_tree_rescan_sem
);
3585 /* pause restriper - we want to resume on mount */
3586 btrfs_pause_balance(fs_info
);
3588 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3590 btrfs_scrub_cancel(fs_info
);
3592 /* wait for any defraggers to finish */
3593 wait_event(fs_info
->transaction_wait
,
3594 (atomic_read(&fs_info
->defrag_running
) == 0));
3596 /* clear out the rbtree of defraggable inodes */
3597 btrfs_cleanup_defrag_inodes(fs_info
);
3599 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3600 ret
= btrfs_commit_super(root
);
3602 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3605 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3606 btrfs_error_commit_super(root
);
3608 btrfs_put_block_group_cache(fs_info
);
3610 kthread_stop(fs_info
->transaction_kthread
);
3611 kthread_stop(fs_info
->cleaner_kthread
);
3613 fs_info
->closing
= 2;
3616 btrfs_free_qgroup_config(root
->fs_info
);
3618 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3619 printk(KERN_INFO
"btrfs: at unmount delalloc count %lld\n",
3620 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3623 btrfs_free_block_groups(fs_info
);
3626 * we must make sure there is not any read request to
3627 * submit after we stopping all workers.
3629 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3630 btrfs_stop_all_workers(fs_info
);
3632 del_fs_roots(fs_info
);
3634 free_root_pointers(fs_info
, 1);
3636 iput(fs_info
->btree_inode
);
3638 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3639 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3640 btrfsic_unmount(root
, fs_info
->fs_devices
);
3643 btrfs_close_devices(fs_info
->fs_devices
);
3644 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3646 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3647 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3648 bdi_destroy(&fs_info
->bdi
);
3649 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3651 btrfs_free_stripe_hash_table(fs_info
);
3653 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3654 root
->orphan_block_rsv
= NULL
;
3659 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3663 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3665 ret
= extent_buffer_uptodate(buf
);
3669 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3670 parent_transid
, atomic
);
3676 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3678 return set_extent_buffer_uptodate(buf
);
3681 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3683 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3684 u64 transid
= btrfs_header_generation(buf
);
3687 btrfs_assert_tree_locked(buf
);
3688 if (transid
!= root
->fs_info
->generation
)
3689 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3690 "found %llu running %llu\n",
3691 buf
->start
, transid
, root
->fs_info
->generation
);
3692 was_dirty
= set_extent_buffer_dirty(buf
);
3694 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
3696 root
->fs_info
->dirty_metadata_batch
);
3699 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3703 * looks as though older kernels can get into trouble with
3704 * this code, they end up stuck in balance_dirty_pages forever
3708 if (current
->flags
& PF_MEMALLOC
)
3712 btrfs_balance_delayed_items(root
);
3714 ret
= percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
3715 BTRFS_DIRTY_METADATA_THRESH
);
3717 balance_dirty_pages_ratelimited(
3718 root
->fs_info
->btree_inode
->i_mapping
);
3723 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3725 __btrfs_btree_balance_dirty(root
, 1);
3728 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3730 __btrfs_btree_balance_dirty(root
, 0);
3733 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3735 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3736 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3739 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3743 * Placeholder for checks
3748 static void btrfs_error_commit_super(struct btrfs_root
*root
)
3750 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3751 btrfs_run_delayed_iputs(root
);
3752 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3754 down_write(&root
->fs_info
->cleanup_work_sem
);
3755 up_write(&root
->fs_info
->cleanup_work_sem
);
3757 /* cleanup FS via transaction */
3758 btrfs_cleanup_transaction(root
);
3761 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
3762 struct btrfs_root
*root
)
3764 struct btrfs_inode
*btrfs_inode
;
3765 struct list_head splice
;
3767 INIT_LIST_HEAD(&splice
);
3769 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3770 spin_lock(&root
->fs_info
->ordered_root_lock
);
3772 list_splice_init(&t
->ordered_operations
, &splice
);
3773 while (!list_empty(&splice
)) {
3774 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3775 ordered_operations
);
3777 list_del_init(&btrfs_inode
->ordered_operations
);
3778 spin_unlock(&root
->fs_info
->ordered_root_lock
);
3780 btrfs_invalidate_inodes(btrfs_inode
->root
);
3782 spin_lock(&root
->fs_info
->ordered_root_lock
);
3785 spin_unlock(&root
->fs_info
->ordered_root_lock
);
3786 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3789 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3791 struct btrfs_ordered_extent
*ordered
;
3793 spin_lock(&root
->ordered_extent_lock
);
3795 * This will just short circuit the ordered completion stuff which will
3796 * make sure the ordered extent gets properly cleaned up.
3798 list_for_each_entry(ordered
, &root
->ordered_extents
,
3800 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
3801 spin_unlock(&root
->ordered_extent_lock
);
3804 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
3806 struct btrfs_root
*root
;
3807 struct list_head splice
;
3809 INIT_LIST_HEAD(&splice
);
3811 spin_lock(&fs_info
->ordered_root_lock
);
3812 list_splice_init(&fs_info
->ordered_roots
, &splice
);
3813 while (!list_empty(&splice
)) {
3814 root
= list_first_entry(&splice
, struct btrfs_root
,
3816 list_move_tail(&root
->ordered_root
,
3817 &fs_info
->ordered_roots
);
3819 btrfs_destroy_ordered_extents(root
);
3821 cond_resched_lock(&fs_info
->ordered_root_lock
);
3823 spin_unlock(&fs_info
->ordered_root_lock
);
3826 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3827 struct btrfs_root
*root
)
3829 struct rb_node
*node
;
3830 struct btrfs_delayed_ref_root
*delayed_refs
;
3831 struct btrfs_delayed_ref_node
*ref
;
3834 delayed_refs
= &trans
->delayed_refs
;
3836 spin_lock(&delayed_refs
->lock
);
3837 if (delayed_refs
->num_entries
== 0) {
3838 spin_unlock(&delayed_refs
->lock
);
3839 printk(KERN_INFO
"delayed_refs has NO entry\n");
3843 while ((node
= rb_first(&delayed_refs
->root
)) != NULL
) {
3844 struct btrfs_delayed_ref_head
*head
= NULL
;
3845 bool pin_bytes
= false;
3847 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3848 atomic_set(&ref
->refs
, 1);
3849 if (btrfs_delayed_ref_is_head(ref
)) {
3851 head
= btrfs_delayed_node_to_head(ref
);
3852 if (!mutex_trylock(&head
->mutex
)) {
3853 atomic_inc(&ref
->refs
);
3854 spin_unlock(&delayed_refs
->lock
);
3856 /* Need to wait for the delayed ref to run */
3857 mutex_lock(&head
->mutex
);
3858 mutex_unlock(&head
->mutex
);
3859 btrfs_put_delayed_ref(ref
);
3861 spin_lock(&delayed_refs
->lock
);
3865 if (head
->must_insert_reserved
)
3867 btrfs_free_delayed_extent_op(head
->extent_op
);
3868 delayed_refs
->num_heads
--;
3869 if (list_empty(&head
->cluster
))
3870 delayed_refs
->num_heads_ready
--;
3871 list_del_init(&head
->cluster
);
3875 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
3876 delayed_refs
->num_entries
--;
3877 spin_unlock(&delayed_refs
->lock
);
3880 btrfs_pin_extent(root
, ref
->bytenr
,
3882 mutex_unlock(&head
->mutex
);
3884 btrfs_put_delayed_ref(ref
);
3887 spin_lock(&delayed_refs
->lock
);
3890 spin_unlock(&delayed_refs
->lock
);
3895 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3897 struct btrfs_inode
*btrfs_inode
;
3898 struct list_head splice
;
3900 INIT_LIST_HEAD(&splice
);
3902 spin_lock(&root
->delalloc_lock
);
3903 list_splice_init(&root
->delalloc_inodes
, &splice
);
3905 while (!list_empty(&splice
)) {
3906 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
3909 list_del_init(&btrfs_inode
->delalloc_inodes
);
3910 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
3911 &btrfs_inode
->runtime_flags
);
3912 spin_unlock(&root
->delalloc_lock
);
3914 btrfs_invalidate_inodes(btrfs_inode
->root
);
3916 spin_lock(&root
->delalloc_lock
);
3919 spin_unlock(&root
->delalloc_lock
);
3922 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
3924 struct btrfs_root
*root
;
3925 struct list_head splice
;
3927 INIT_LIST_HEAD(&splice
);
3929 spin_lock(&fs_info
->delalloc_root_lock
);
3930 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
3931 while (!list_empty(&splice
)) {
3932 root
= list_first_entry(&splice
, struct btrfs_root
,
3934 list_del_init(&root
->delalloc_root
);
3935 root
= btrfs_grab_fs_root(root
);
3937 spin_unlock(&fs_info
->delalloc_root_lock
);
3939 btrfs_destroy_delalloc_inodes(root
);
3940 btrfs_put_fs_root(root
);
3942 spin_lock(&fs_info
->delalloc_root_lock
);
3944 spin_unlock(&fs_info
->delalloc_root_lock
);
3947 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3948 struct extent_io_tree
*dirty_pages
,
3952 struct extent_buffer
*eb
;
3957 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3962 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3963 while (start
<= end
) {
3964 eb
= btrfs_find_tree_block(root
, start
,
3966 start
+= root
->leafsize
;
3969 wait_on_extent_buffer_writeback(eb
);
3971 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3973 clear_extent_buffer_dirty(eb
);
3974 free_extent_buffer_stale(eb
);
3981 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3982 struct extent_io_tree
*pinned_extents
)
3984 struct extent_io_tree
*unpin
;
3990 unpin
= pinned_extents
;
3993 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3994 EXTENT_DIRTY
, NULL
);
3999 if (btrfs_test_opt(root
, DISCARD
))
4000 ret
= btrfs_error_discard_extent(root
, start
,
4004 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4005 btrfs_error_unpin_extent_range(root
, start
, end
);
4010 if (unpin
== &root
->fs_info
->freed_extents
[0])
4011 unpin
= &root
->fs_info
->freed_extents
[1];
4013 unpin
= &root
->fs_info
->freed_extents
[0];
4021 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4022 struct btrfs_root
*root
)
4024 btrfs_destroy_ordered_operations(cur_trans
, root
);
4026 btrfs_destroy_delayed_refs(cur_trans
, root
);
4027 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
4028 cur_trans
->dirty_pages
.dirty_bytes
);
4030 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4031 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4033 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4034 wake_up(&root
->fs_info
->transaction_wait
);
4036 btrfs_destroy_delayed_inodes(root
);
4037 btrfs_assert_delayed_root_empty(root
);
4039 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
4041 btrfs_destroy_pinned_extent(root
,
4042 root
->fs_info
->pinned_extents
);
4044 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4045 wake_up(&cur_trans
->commit_wait
);
4048 memset(cur_trans, 0, sizeof(*cur_trans));
4049 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4053 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
4055 struct btrfs_transaction
*t
;
4057 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
4059 spin_lock(&root
->fs_info
->trans_lock
);
4060 while (!list_empty(&root
->fs_info
->trans_list
)) {
4061 t
= list_first_entry(&root
->fs_info
->trans_list
,
4062 struct btrfs_transaction
, list
);
4063 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4064 atomic_inc(&t
->use_count
);
4065 spin_unlock(&root
->fs_info
->trans_lock
);
4066 btrfs_wait_for_commit(root
, t
->transid
);
4067 btrfs_put_transaction(t
);
4068 spin_lock(&root
->fs_info
->trans_lock
);
4071 if (t
== root
->fs_info
->running_transaction
) {
4072 t
->state
= TRANS_STATE_COMMIT_DOING
;
4073 spin_unlock(&root
->fs_info
->trans_lock
);
4075 * We wait for 0 num_writers since we don't hold a trans
4076 * handle open currently for this transaction.
4078 wait_event(t
->writer_wait
,
4079 atomic_read(&t
->num_writers
) == 0);
4081 spin_unlock(&root
->fs_info
->trans_lock
);
4083 btrfs_cleanup_one_transaction(t
, root
);
4085 spin_lock(&root
->fs_info
->trans_lock
);
4086 if (t
== root
->fs_info
->running_transaction
)
4087 root
->fs_info
->running_transaction
= NULL
;
4088 list_del_init(&t
->list
);
4089 spin_unlock(&root
->fs_info
->trans_lock
);
4091 btrfs_put_transaction(t
);
4092 trace_btrfs_transaction_commit(root
);
4093 spin_lock(&root
->fs_info
->trans_lock
);
4095 spin_unlock(&root
->fs_info
->trans_lock
);
4096 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4097 btrfs_destroy_delayed_inodes(root
);
4098 btrfs_assert_delayed_root_empty(root
);
4099 btrfs_destroy_pinned_extent(root
, root
->fs_info
->pinned_extents
);
4100 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4101 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4106 static struct extent_io_ops btree_extent_io_ops
= {
4107 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4108 .readpage_io_failed_hook
= btree_io_failed_hook
,
4109 .submit_bio_hook
= btree_submit_bio_hook
,
4110 /* note we're sharing with inode.c for the merge bio hook */
4111 .merge_bio_hook
= btrfs_merge_bio_hook
,