hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / fs / namespace.c
blob7c67de88f3f1bf4c405584ba8969bf803d143be1
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static struct rw_semaphore namespace_sem;
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
56 DEFINE_BRLOCK(vfsmount_lock);
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
72 static int mnt_alloc_id(struct mount *mnt)
74 int res;
76 retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
78 spin_lock(&mnt_id_lock);
79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
80 if (!res)
81 mnt_id_start = mnt->mnt_id + 1;
82 spin_unlock(&mnt_id_lock);
83 if (res == -EAGAIN)
84 goto retry;
86 return res;
89 static void mnt_free_id(struct mount *mnt)
91 int id = mnt->mnt_id;
92 spin_lock(&mnt_id_lock);
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
96 spin_unlock(&mnt_id_lock);
100 * Allocate a new peer group ID
102 * mnt_group_ida is protected by namespace_sem
104 static int mnt_alloc_group_id(struct mount *mnt)
106 int res;
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
113 &mnt->mnt_group_id);
114 if (!res)
115 mnt_group_start = mnt->mnt_group_id + 1;
117 return res;
121 * Release a peer group ID
123 void mnt_release_group_id(struct mount *mnt)
125 int id = mnt->mnt_group_id;
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
129 mnt->mnt_group_id = 0;
133 * vfsmount lock must be held for read
135 static inline void mnt_add_count(struct mount *mnt, int n)
137 #ifdef CONFIG_SMP
138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
139 #else
140 preempt_disable();
141 mnt->mnt_count += n;
142 preempt_enable();
143 #endif
147 * vfsmount lock must be held for write
149 unsigned int mnt_get_count(struct mount *mnt)
151 #ifdef CONFIG_SMP
152 unsigned int count = 0;
153 int cpu;
155 for_each_possible_cpu(cpu) {
156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
159 return count;
160 #else
161 return mnt->mnt_count;
162 #endif
165 static struct mount *alloc_vfsmnt(const char *name)
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
169 int err;
171 err = mnt_alloc_id(mnt);
172 if (err)
173 goto out_free_cache;
175 if (name) {
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
178 goto out_free_id;
181 #ifdef CONFIG_SMP
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
184 goto out_free_devname;
186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
187 #else
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
190 #endif
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
200 #ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
202 #endif
204 return mnt;
206 #ifdef CONFIG_SMP
207 out_free_devname:
208 kfree(mnt->mnt_devname);
209 #endif
210 out_free_id:
211 mnt_free_id(mnt);
212 out_free_cache:
213 kmem_cache_free(mnt_cache, mnt);
214 return NULL;
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
223 * a filesystem.
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
234 * r/w.
236 int __mnt_is_readonly(struct vfsmount *mnt)
238 if (mnt->mnt_flags & MNT_READONLY)
239 return 1;
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 return 1;
242 return 0;
244 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
246 static inline void mnt_inc_writers(struct mount *mnt)
248 #ifdef CONFIG_SMP
249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
250 #else
251 mnt->mnt_writers++;
252 #endif
255 static inline void mnt_dec_writers(struct mount *mnt)
257 #ifdef CONFIG_SMP
258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
259 #else
260 mnt->mnt_writers--;
261 #endif
264 static unsigned int mnt_get_writers(struct mount *mnt)
266 #ifdef CONFIG_SMP
267 unsigned int count = 0;
268 int cpu;
270 for_each_possible_cpu(cpu) {
271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
274 return count;
275 #else
276 return mnt->mnt_writers;
277 #endif
280 static int mnt_is_readonly(struct vfsmount *mnt)
282 if (mnt->mnt_sb->s_readonly_remount)
283 return 1;
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 smp_rmb();
286 return __mnt_is_readonly(mnt);
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
296 * __mnt_want_write - get write access to a mount without freeze protection
297 * @m: the mount on which to take a write
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
305 int __mnt_want_write(struct vfsmount *m)
307 struct mount *mnt = real_mount(m);
308 int ret = 0;
310 preempt_disable();
311 mnt_inc_writers(mnt);
313 * The store to mnt_inc_writers must be visible before we pass
314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
317 smp_mb();
318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
319 cpu_relax();
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
325 smp_rmb();
326 if (mnt_is_readonly(m)) {
327 mnt_dec_writers(mnt);
328 ret = -EROFS;
330 preempt_enable();
332 return ret;
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
344 int mnt_want_write(struct vfsmount *m)
346 int ret;
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
350 if (ret)
351 sb_end_write(m->mnt_sb);
352 return ret;
354 EXPORT_SYMBOL_GPL(mnt_want_write);
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
368 int mnt_clone_write(struct vfsmount *mnt)
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
372 return -EROFS;
373 preempt_disable();
374 mnt_inc_writers(real_mount(mnt));
375 preempt_enable();
376 return 0;
378 EXPORT_SYMBOL_GPL(mnt_clone_write);
381 * __mnt_want_write_file - get write access to a file's mount
382 * @file: the file who's mount on which to take a write
384 * This is like __mnt_want_write, but it takes a file and can
385 * do some optimisations if the file is open for write already
387 int __mnt_want_write_file(struct file *file)
389 struct inode *inode = file_inode(file);
391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
392 return __mnt_want_write(file->f_path.mnt);
393 else
394 return mnt_clone_write(file->f_path.mnt);
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
404 int mnt_want_write_file(struct file *file)
406 int ret;
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
410 if (ret)
411 sb_end_write(file->f_path.mnt->mnt_sb);
412 return ret;
414 EXPORT_SYMBOL_GPL(mnt_want_write_file);
417 * __mnt_drop_write - give up write access to a mount
418 * @mnt: the mount on which to give up write access
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
422 * __mnt_want_write() call above.
424 void __mnt_drop_write(struct vfsmount *mnt)
426 preempt_disable();
427 mnt_dec_writers(real_mount(mnt));
428 preempt_enable();
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
439 void mnt_drop_write(struct vfsmount *mnt)
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
444 EXPORT_SYMBOL_GPL(mnt_drop_write);
446 void __mnt_drop_write_file(struct file *file)
448 __mnt_drop_write(file->f_path.mnt);
451 void mnt_drop_write_file(struct file *file)
453 mnt_drop_write(file->f_path.mnt);
455 EXPORT_SYMBOL(mnt_drop_write_file);
457 static int mnt_make_readonly(struct mount *mnt)
459 int ret = 0;
461 br_write_lock(&vfsmount_lock);
462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
467 smp_mb();
470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
485 if (mnt_get_writers(mnt) > 0)
486 ret = -EBUSY;
487 else
488 mnt->mnt.mnt_flags |= MNT_READONLY;
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
493 smp_wmb();
494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
495 br_write_unlock(&vfsmount_lock);
496 return ret;
499 static void __mnt_unmake_readonly(struct mount *mnt)
501 br_write_lock(&vfsmount_lock);
502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
503 br_write_unlock(&vfsmount_lock);
506 int sb_prepare_remount_readonly(struct super_block *sb)
508 struct mount *mnt;
509 int err = 0;
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
513 return -EBUSY;
515 br_write_lock(&vfsmount_lock);
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 smp_mb();
520 if (mnt_get_writers(mnt) > 0) {
521 err = -EBUSY;
522 break;
526 if (!err && atomic_long_read(&sb->s_remove_count))
527 err = -EBUSY;
529 if (!err) {
530 sb->s_readonly_remount = 1;
531 smp_wmb();
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
537 br_write_unlock(&vfsmount_lock);
539 return err;
542 static void free_vfsmnt(struct mount *mnt)
544 kfree(mnt->mnt_devname);
545 mnt_free_id(mnt);
546 #ifdef CONFIG_SMP
547 free_percpu(mnt->mnt_pcp);
548 #endif
549 kmem_cache_free(mnt_cache, mnt);
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
555 * vfsmount_lock must be held for read or write.
557 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
558 int dir)
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
562 struct mount *p, *found = NULL;
564 for (;;) {
565 tmp = dir ? tmp->next : tmp->prev;
566 p = NULL;
567 if (tmp == head)
568 break;
569 p = list_entry(tmp, struct mount, mnt_hash);
570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
571 found = p;
572 break;
575 return found;
579 * lookup_mnt - Return the first child mount mounted at path
581 * "First" means first mounted chronologically. If you create the
582 * following mounts:
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
592 * lookup_mnt takes a reference to the found vfsmount.
594 struct vfsmount *lookup_mnt(struct path *path)
596 struct mount *child_mnt;
598 br_read_lock(&vfsmount_lock);
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 if (child_mnt) {
601 mnt_add_count(child_mnt, 1);
602 br_read_unlock(&vfsmount_lock);
603 return &child_mnt->mnt;
604 } else {
605 br_read_unlock(&vfsmount_lock);
606 return NULL;
610 static struct mountpoint *new_mountpoint(struct dentry *dentry)
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
614 int ret;
616 list_for_each_entry(mp, chain, m_hash) {
617 if (mp->m_dentry == dentry) {
618 /* might be worth a WARN_ON() */
619 if (d_unlinked(dentry))
620 return ERR_PTR(-ENOENT);
621 mp->m_count++;
622 return mp;
626 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
627 if (!mp)
628 return ERR_PTR(-ENOMEM);
630 ret = d_set_mounted(dentry);
631 if (ret) {
632 kfree(mp);
633 return ERR_PTR(ret);
636 mp->m_dentry = dentry;
637 mp->m_count = 1;
638 list_add(&mp->m_hash, chain);
639 return mp;
642 static void put_mountpoint(struct mountpoint *mp)
644 if (!--mp->m_count) {
645 struct dentry *dentry = mp->m_dentry;
646 spin_lock(&dentry->d_lock);
647 dentry->d_flags &= ~DCACHE_MOUNTED;
648 spin_unlock(&dentry->d_lock);
649 list_del(&mp->m_hash);
650 kfree(mp);
654 static inline int check_mnt(struct mount *mnt)
656 return mnt->mnt_ns == current->nsproxy->mnt_ns;
660 * vfsmount lock must be held for write
662 static void touch_mnt_namespace(struct mnt_namespace *ns)
664 if (ns) {
665 ns->event = ++event;
666 wake_up_interruptible(&ns->poll);
671 * vfsmount lock must be held for write
673 static void __touch_mnt_namespace(struct mnt_namespace *ns)
675 if (ns && ns->event != event) {
676 ns->event = event;
677 wake_up_interruptible(&ns->poll);
682 * vfsmount lock must be held for write
684 static void detach_mnt(struct mount *mnt, struct path *old_path)
686 old_path->dentry = mnt->mnt_mountpoint;
687 old_path->mnt = &mnt->mnt_parent->mnt;
688 mnt->mnt_parent = mnt;
689 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
690 list_del_init(&mnt->mnt_child);
691 list_del_init(&mnt->mnt_hash);
692 put_mountpoint(mnt->mnt_mp);
693 mnt->mnt_mp = NULL;
697 * vfsmount lock must be held for write
699 void mnt_set_mountpoint(struct mount *mnt,
700 struct mountpoint *mp,
701 struct mount *child_mnt)
703 mp->m_count++;
704 mnt_add_count(mnt, 1); /* essentially, that's mntget */
705 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
706 child_mnt->mnt_parent = mnt;
707 child_mnt->mnt_mp = mp;
711 * vfsmount lock must be held for write
713 static void attach_mnt(struct mount *mnt,
714 struct mount *parent,
715 struct mountpoint *mp)
717 mnt_set_mountpoint(parent, mp, mnt);
718 list_add_tail(&mnt->mnt_hash, mount_hashtable +
719 hash(&parent->mnt, mp->m_dentry));
720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
724 * vfsmount lock must be held for write
726 static void commit_tree(struct mount *mnt)
728 struct mount *parent = mnt->mnt_parent;
729 struct mount *m;
730 LIST_HEAD(head);
731 struct mnt_namespace *n = parent->mnt_ns;
733 BUG_ON(parent == mnt);
735 list_add_tail(&head, &mnt->mnt_list);
736 list_for_each_entry(m, &head, mnt_list)
737 m->mnt_ns = n;
739 list_splice(&head, n->list.prev);
741 list_add_tail(&mnt->mnt_hash, mount_hashtable +
742 hash(&parent->mnt, mnt->mnt_mountpoint));
743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
744 touch_mnt_namespace(n);
747 static struct mount *next_mnt(struct mount *p, struct mount *root)
749 struct list_head *next = p->mnt_mounts.next;
750 if (next == &p->mnt_mounts) {
751 while (1) {
752 if (p == root)
753 return NULL;
754 next = p->mnt_child.next;
755 if (next != &p->mnt_parent->mnt_mounts)
756 break;
757 p = p->mnt_parent;
760 return list_entry(next, struct mount, mnt_child);
763 static struct mount *skip_mnt_tree(struct mount *p)
765 struct list_head *prev = p->mnt_mounts.prev;
766 while (prev != &p->mnt_mounts) {
767 p = list_entry(prev, struct mount, mnt_child);
768 prev = p->mnt_mounts.prev;
770 return p;
773 struct vfsmount *
774 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
776 struct mount *mnt;
777 struct dentry *root;
779 if (!type)
780 return ERR_PTR(-ENODEV);
782 mnt = alloc_vfsmnt(name);
783 if (!mnt)
784 return ERR_PTR(-ENOMEM);
786 if (flags & MS_KERNMOUNT)
787 mnt->mnt.mnt_flags = MNT_INTERNAL;
789 root = mount_fs(type, flags, name, data);
790 if (IS_ERR(root)) {
791 free_vfsmnt(mnt);
792 return ERR_CAST(root);
795 mnt->mnt.mnt_root = root;
796 mnt->mnt.mnt_sb = root->d_sb;
797 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
798 mnt->mnt_parent = mnt;
799 br_write_lock(&vfsmount_lock);
800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
801 br_write_unlock(&vfsmount_lock);
802 return &mnt->mnt;
804 EXPORT_SYMBOL_GPL(vfs_kern_mount);
806 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
807 int flag)
809 struct super_block *sb = old->mnt.mnt_sb;
810 struct mount *mnt;
811 int err;
813 mnt = alloc_vfsmnt(old->mnt_devname);
814 if (!mnt)
815 return ERR_PTR(-ENOMEM);
817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
818 mnt->mnt_group_id = 0; /* not a peer of original */
819 else
820 mnt->mnt_group_id = old->mnt_group_id;
822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 err = mnt_alloc_group_id(mnt);
824 if (err)
825 goto out_free;
828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
829 /* Don't allow unprivileged users to change mount flags */
830 if (flag & CL_UNPRIVILEGED) {
831 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
833 if (mnt->mnt.mnt_flags & MNT_READONLY)
834 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
836 if (mnt->mnt.mnt_flags & MNT_NODEV)
837 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
839 if (mnt->mnt.mnt_flags & MNT_NOSUID)
840 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
842 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
843 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
846 /* Don't allow unprivileged users to reveal what is under a mount */
847 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
848 mnt->mnt.mnt_flags |= MNT_LOCKED;
850 atomic_inc(&sb->s_active);
851 mnt->mnt.mnt_sb = sb;
852 mnt->mnt.mnt_root = dget(root);
853 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
854 mnt->mnt_parent = mnt;
855 br_write_lock(&vfsmount_lock);
856 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
857 br_write_unlock(&vfsmount_lock);
859 if ((flag & CL_SLAVE) ||
860 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
861 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
862 mnt->mnt_master = old;
863 CLEAR_MNT_SHARED(mnt);
864 } else if (!(flag & CL_PRIVATE)) {
865 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
866 list_add(&mnt->mnt_share, &old->mnt_share);
867 if (IS_MNT_SLAVE(old))
868 list_add(&mnt->mnt_slave, &old->mnt_slave);
869 mnt->mnt_master = old->mnt_master;
871 if (flag & CL_MAKE_SHARED)
872 set_mnt_shared(mnt);
874 /* stick the duplicate mount on the same expiry list
875 * as the original if that was on one */
876 if (flag & CL_EXPIRE) {
877 if (!list_empty(&old->mnt_expire))
878 list_add(&mnt->mnt_expire, &old->mnt_expire);
881 return mnt;
883 out_free:
884 free_vfsmnt(mnt);
885 return ERR_PTR(err);
888 static inline void mntfree(struct mount *mnt)
890 struct vfsmount *m = &mnt->mnt;
891 struct super_block *sb = m->mnt_sb;
894 * This probably indicates that somebody messed
895 * up a mnt_want/drop_write() pair. If this
896 * happens, the filesystem was probably unable
897 * to make r/w->r/o transitions.
900 * The locking used to deal with mnt_count decrement provides barriers,
901 * so mnt_get_writers() below is safe.
903 WARN_ON(mnt_get_writers(mnt));
904 fsnotify_vfsmount_delete(m);
905 dput(m->mnt_root);
906 free_vfsmnt(mnt);
907 deactivate_super(sb);
910 static void mntput_no_expire(struct mount *mnt)
912 put_again:
913 #ifdef CONFIG_SMP
914 br_read_lock(&vfsmount_lock);
915 if (likely(mnt->mnt_ns)) {
916 /* shouldn't be the last one */
917 mnt_add_count(mnt, -1);
918 br_read_unlock(&vfsmount_lock);
919 return;
921 br_read_unlock(&vfsmount_lock);
923 br_write_lock(&vfsmount_lock);
924 mnt_add_count(mnt, -1);
925 if (mnt_get_count(mnt)) {
926 br_write_unlock(&vfsmount_lock);
927 return;
929 #else
930 mnt_add_count(mnt, -1);
931 if (likely(mnt_get_count(mnt)))
932 return;
933 br_write_lock(&vfsmount_lock);
934 #endif
935 if (unlikely(mnt->mnt_pinned)) {
936 mnt_add_count(mnt, mnt->mnt_pinned + 1);
937 mnt->mnt_pinned = 0;
938 br_write_unlock(&vfsmount_lock);
939 acct_auto_close_mnt(&mnt->mnt);
940 goto put_again;
943 list_del(&mnt->mnt_instance);
944 br_write_unlock(&vfsmount_lock);
945 mntfree(mnt);
948 void mntput(struct vfsmount *mnt)
950 if (mnt) {
951 struct mount *m = real_mount(mnt);
952 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
953 if (unlikely(m->mnt_expiry_mark))
954 m->mnt_expiry_mark = 0;
955 mntput_no_expire(m);
958 EXPORT_SYMBOL(mntput);
960 struct vfsmount *mntget(struct vfsmount *mnt)
962 if (mnt)
963 mnt_add_count(real_mount(mnt), 1);
964 return mnt;
966 EXPORT_SYMBOL(mntget);
968 void mnt_pin(struct vfsmount *mnt)
970 br_write_lock(&vfsmount_lock);
971 real_mount(mnt)->mnt_pinned++;
972 br_write_unlock(&vfsmount_lock);
974 EXPORT_SYMBOL(mnt_pin);
976 void mnt_unpin(struct vfsmount *m)
978 struct mount *mnt = real_mount(m);
979 br_write_lock(&vfsmount_lock);
980 if (mnt->mnt_pinned) {
981 mnt_add_count(mnt, 1);
982 mnt->mnt_pinned--;
984 br_write_unlock(&vfsmount_lock);
986 EXPORT_SYMBOL(mnt_unpin);
988 static inline void mangle(struct seq_file *m, const char *s)
990 seq_escape(m, s, " \t\n\\");
994 * Simple .show_options callback for filesystems which don't want to
995 * implement more complex mount option showing.
997 * See also save_mount_options().
999 int generic_show_options(struct seq_file *m, struct dentry *root)
1001 const char *options;
1003 rcu_read_lock();
1004 options = rcu_dereference(root->d_sb->s_options);
1006 if (options != NULL && options[0]) {
1007 seq_putc(m, ',');
1008 mangle(m, options);
1010 rcu_read_unlock();
1012 return 0;
1014 EXPORT_SYMBOL(generic_show_options);
1017 * If filesystem uses generic_show_options(), this function should be
1018 * called from the fill_super() callback.
1020 * The .remount_fs callback usually needs to be handled in a special
1021 * way, to make sure, that previous options are not overwritten if the
1022 * remount fails.
1024 * Also note, that if the filesystem's .remount_fs function doesn't
1025 * reset all options to their default value, but changes only newly
1026 * given options, then the displayed options will not reflect reality
1027 * any more.
1029 void save_mount_options(struct super_block *sb, char *options)
1031 BUG_ON(sb->s_options);
1032 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1034 EXPORT_SYMBOL(save_mount_options);
1036 void replace_mount_options(struct super_block *sb, char *options)
1038 char *old = sb->s_options;
1039 rcu_assign_pointer(sb->s_options, options);
1040 if (old) {
1041 synchronize_rcu();
1042 kfree(old);
1045 EXPORT_SYMBOL(replace_mount_options);
1047 #ifdef CONFIG_PROC_FS
1048 /* iterator; we want it to have access to namespace_sem, thus here... */
1049 static void *m_start(struct seq_file *m, loff_t *pos)
1051 struct proc_mounts *p = proc_mounts(m);
1053 down_read(&namespace_sem);
1054 return seq_list_start(&p->ns->list, *pos);
1057 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1059 struct proc_mounts *p = proc_mounts(m);
1061 return seq_list_next(v, &p->ns->list, pos);
1064 static void m_stop(struct seq_file *m, void *v)
1066 up_read(&namespace_sem);
1069 static int m_show(struct seq_file *m, void *v)
1071 struct proc_mounts *p = proc_mounts(m);
1072 struct mount *r = list_entry(v, struct mount, mnt_list);
1073 return p->show(m, &r->mnt);
1076 const struct seq_operations mounts_op = {
1077 .start = m_start,
1078 .next = m_next,
1079 .stop = m_stop,
1080 .show = m_show,
1082 #endif /* CONFIG_PROC_FS */
1085 * may_umount_tree - check if a mount tree is busy
1086 * @mnt: root of mount tree
1088 * This is called to check if a tree of mounts has any
1089 * open files, pwds, chroots or sub mounts that are
1090 * busy.
1092 int may_umount_tree(struct vfsmount *m)
1094 struct mount *mnt = real_mount(m);
1095 int actual_refs = 0;
1096 int minimum_refs = 0;
1097 struct mount *p;
1098 BUG_ON(!m);
1100 /* write lock needed for mnt_get_count */
1101 br_write_lock(&vfsmount_lock);
1102 for (p = mnt; p; p = next_mnt(p, mnt)) {
1103 actual_refs += mnt_get_count(p);
1104 minimum_refs += 2;
1106 br_write_unlock(&vfsmount_lock);
1108 if (actual_refs > minimum_refs)
1109 return 0;
1111 return 1;
1114 EXPORT_SYMBOL(may_umount_tree);
1117 * may_umount - check if a mount point is busy
1118 * @mnt: root of mount
1120 * This is called to check if a mount point has any
1121 * open files, pwds, chroots or sub mounts. If the
1122 * mount has sub mounts this will return busy
1123 * regardless of whether the sub mounts are busy.
1125 * Doesn't take quota and stuff into account. IOW, in some cases it will
1126 * give false negatives. The main reason why it's here is that we need
1127 * a non-destructive way to look for easily umountable filesystems.
1129 int may_umount(struct vfsmount *mnt)
1131 int ret = 1;
1132 down_read(&namespace_sem);
1133 br_write_lock(&vfsmount_lock);
1134 if (propagate_mount_busy(real_mount(mnt), 2))
1135 ret = 0;
1136 br_write_unlock(&vfsmount_lock);
1137 up_read(&namespace_sem);
1138 return ret;
1141 EXPORT_SYMBOL(may_umount);
1143 static LIST_HEAD(unmounted); /* protected by namespace_sem */
1145 static void namespace_unlock(void)
1147 struct mount *mnt;
1148 LIST_HEAD(head);
1150 if (likely(list_empty(&unmounted))) {
1151 up_write(&namespace_sem);
1152 return;
1155 list_splice_init(&unmounted, &head);
1156 up_write(&namespace_sem);
1158 while (!list_empty(&head)) {
1159 mnt = list_first_entry(&head, struct mount, mnt_hash);
1160 list_del_init(&mnt->mnt_hash);
1161 if (mnt_has_parent(mnt)) {
1162 struct dentry *dentry;
1163 struct mount *m;
1165 br_write_lock(&vfsmount_lock);
1166 dentry = mnt->mnt_mountpoint;
1167 m = mnt->mnt_parent;
1168 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1169 mnt->mnt_parent = mnt;
1170 m->mnt_ghosts--;
1171 br_write_unlock(&vfsmount_lock);
1172 dput(dentry);
1173 mntput(&m->mnt);
1175 mntput(&mnt->mnt);
1179 static inline void namespace_lock(void)
1181 down_write(&namespace_sem);
1185 * vfsmount lock must be held for write
1186 * namespace_sem must be held for write
1188 void umount_tree(struct mount *mnt, int propagate)
1190 LIST_HEAD(tmp_list);
1191 struct mount *p;
1193 for (p = mnt; p; p = next_mnt(p, mnt))
1194 list_move(&p->mnt_hash, &tmp_list);
1196 if (propagate)
1197 propagate_umount(&tmp_list);
1199 list_for_each_entry(p, &tmp_list, mnt_hash) {
1200 list_del_init(&p->mnt_expire);
1201 list_del_init(&p->mnt_list);
1202 __touch_mnt_namespace(p->mnt_ns);
1203 p->mnt_ns = NULL;
1204 list_del_init(&p->mnt_child);
1205 if (mnt_has_parent(p)) {
1206 p->mnt_parent->mnt_ghosts++;
1207 put_mountpoint(p->mnt_mp);
1208 p->mnt_mp = NULL;
1210 change_mnt_propagation(p, MS_PRIVATE);
1212 list_splice(&tmp_list, &unmounted);
1215 static void shrink_submounts(struct mount *mnt);
1217 static int do_umount(struct mount *mnt, int flags)
1219 struct super_block *sb = mnt->mnt.mnt_sb;
1220 int retval;
1222 retval = security_sb_umount(&mnt->mnt, flags);
1223 if (retval)
1224 return retval;
1227 * Allow userspace to request a mountpoint be expired rather than
1228 * unmounting unconditionally. Unmount only happens if:
1229 * (1) the mark is already set (the mark is cleared by mntput())
1230 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1232 if (flags & MNT_EXPIRE) {
1233 if (&mnt->mnt == current->fs->root.mnt ||
1234 flags & (MNT_FORCE | MNT_DETACH))
1235 return -EINVAL;
1238 * probably don't strictly need the lock here if we examined
1239 * all race cases, but it's a slowpath.
1241 br_write_lock(&vfsmount_lock);
1242 if (mnt_get_count(mnt) != 2) {
1243 br_write_unlock(&vfsmount_lock);
1244 return -EBUSY;
1246 br_write_unlock(&vfsmount_lock);
1248 if (!xchg(&mnt->mnt_expiry_mark, 1))
1249 return -EAGAIN;
1253 * If we may have to abort operations to get out of this
1254 * mount, and they will themselves hold resources we must
1255 * allow the fs to do things. In the Unix tradition of
1256 * 'Gee thats tricky lets do it in userspace' the umount_begin
1257 * might fail to complete on the first run through as other tasks
1258 * must return, and the like. Thats for the mount program to worry
1259 * about for the moment.
1262 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1263 sb->s_op->umount_begin(sb);
1267 * No sense to grab the lock for this test, but test itself looks
1268 * somewhat bogus. Suggestions for better replacement?
1269 * Ho-hum... In principle, we might treat that as umount + switch
1270 * to rootfs. GC would eventually take care of the old vfsmount.
1271 * Actually it makes sense, especially if rootfs would contain a
1272 * /reboot - static binary that would close all descriptors and
1273 * call reboot(9). Then init(8) could umount root and exec /reboot.
1275 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1277 * Special case for "unmounting" root ...
1278 * we just try to remount it readonly.
1280 down_write(&sb->s_umount);
1281 if (!(sb->s_flags & MS_RDONLY))
1282 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1283 up_write(&sb->s_umount);
1284 return retval;
1287 namespace_lock();
1288 br_write_lock(&vfsmount_lock);
1289 event++;
1291 if (!(flags & MNT_DETACH))
1292 shrink_submounts(mnt);
1294 retval = -EBUSY;
1295 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1296 if (!list_empty(&mnt->mnt_list))
1297 umount_tree(mnt, 1);
1298 retval = 0;
1300 br_write_unlock(&vfsmount_lock);
1301 namespace_unlock();
1302 return retval;
1306 * Is the caller allowed to modify his namespace?
1308 static inline bool may_mount(void)
1310 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1314 * Now umount can handle mount points as well as block devices.
1315 * This is important for filesystems which use unnamed block devices.
1317 * We now support a flag for forced unmount like the other 'big iron'
1318 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1321 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1323 struct path path;
1324 struct mount *mnt;
1325 int retval;
1326 int lookup_flags = 0;
1328 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1329 return -EINVAL;
1331 if (!may_mount())
1332 return -EPERM;
1334 if (!(flags & UMOUNT_NOFOLLOW))
1335 lookup_flags |= LOOKUP_FOLLOW;
1337 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1338 if (retval)
1339 goto out;
1340 mnt = real_mount(path.mnt);
1341 retval = -EINVAL;
1342 if (path.dentry != path.mnt->mnt_root)
1343 goto dput_and_out;
1344 if (!check_mnt(mnt))
1345 goto dput_and_out;
1346 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1347 goto dput_and_out;
1349 retval = do_umount(mnt, flags);
1350 dput_and_out:
1351 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1352 dput(path.dentry);
1353 mntput_no_expire(mnt);
1354 out:
1355 return retval;
1358 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1361 * The 2.0 compatible umount. No flags.
1363 SYSCALL_DEFINE1(oldumount, char __user *, name)
1365 return sys_umount(name, 0);
1368 #endif
1370 static bool is_mnt_ns_file(struct dentry *dentry)
1372 /* Is this a proxy for a mount namespace? */
1373 struct inode *inode = dentry->d_inode;
1374 struct proc_ns *ei;
1376 if (!proc_ns_inode(inode))
1377 return false;
1379 ei = get_proc_ns(inode);
1380 if (ei->ns_ops != &mntns_operations)
1381 return false;
1383 return true;
1386 static bool mnt_ns_loop(struct dentry *dentry)
1388 /* Could bind mounting the mount namespace inode cause a
1389 * mount namespace loop?
1391 struct mnt_namespace *mnt_ns;
1392 if (!is_mnt_ns_file(dentry))
1393 return false;
1395 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1396 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1399 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1400 int flag)
1402 struct mount *res, *p, *q, *r, *parent;
1404 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1405 return ERR_PTR(-EINVAL);
1407 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1408 return ERR_PTR(-EINVAL);
1410 res = q = clone_mnt(mnt, dentry, flag);
1411 if (IS_ERR(q))
1412 return q;
1414 q->mnt.mnt_flags &= ~MNT_LOCKED;
1415 q->mnt_mountpoint = mnt->mnt_mountpoint;
1417 p = mnt;
1418 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1419 struct mount *s;
1420 if (!is_subdir(r->mnt_mountpoint, dentry))
1421 continue;
1423 for (s = r; s; s = next_mnt(s, r)) {
1424 if (!(flag & CL_COPY_UNBINDABLE) &&
1425 IS_MNT_UNBINDABLE(s)) {
1426 s = skip_mnt_tree(s);
1427 continue;
1429 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1430 is_mnt_ns_file(s->mnt.mnt_root)) {
1431 s = skip_mnt_tree(s);
1432 continue;
1434 while (p != s->mnt_parent) {
1435 p = p->mnt_parent;
1436 q = q->mnt_parent;
1438 p = s;
1439 parent = q;
1440 q = clone_mnt(p, p->mnt.mnt_root, flag);
1441 if (IS_ERR(q))
1442 goto out;
1443 br_write_lock(&vfsmount_lock);
1444 list_add_tail(&q->mnt_list, &res->mnt_list);
1445 attach_mnt(q, parent, p->mnt_mp);
1446 br_write_unlock(&vfsmount_lock);
1449 return res;
1450 out:
1451 if (res) {
1452 br_write_lock(&vfsmount_lock);
1453 umount_tree(res, 0);
1454 br_write_unlock(&vfsmount_lock);
1456 return q;
1459 /* Caller should check returned pointer for errors */
1461 struct vfsmount *collect_mounts(struct path *path)
1463 struct mount *tree;
1464 namespace_lock();
1465 tree = copy_tree(real_mount(path->mnt), path->dentry,
1466 CL_COPY_ALL | CL_PRIVATE);
1467 namespace_unlock();
1468 if (IS_ERR(tree))
1469 return ERR_CAST(tree);
1470 return &tree->mnt;
1473 void drop_collected_mounts(struct vfsmount *mnt)
1475 namespace_lock();
1476 br_write_lock(&vfsmount_lock);
1477 umount_tree(real_mount(mnt), 0);
1478 br_write_unlock(&vfsmount_lock);
1479 namespace_unlock();
1482 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1483 struct vfsmount *root)
1485 struct mount *mnt;
1486 int res = f(root, arg);
1487 if (res)
1488 return res;
1489 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1490 res = f(&mnt->mnt, arg);
1491 if (res)
1492 return res;
1494 return 0;
1497 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1499 struct mount *p;
1501 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1502 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1503 mnt_release_group_id(p);
1507 static int invent_group_ids(struct mount *mnt, bool recurse)
1509 struct mount *p;
1511 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1512 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1513 int err = mnt_alloc_group_id(p);
1514 if (err) {
1515 cleanup_group_ids(mnt, p);
1516 return err;
1521 return 0;
1525 * @source_mnt : mount tree to be attached
1526 * @nd : place the mount tree @source_mnt is attached
1527 * @parent_nd : if non-null, detach the source_mnt from its parent and
1528 * store the parent mount and mountpoint dentry.
1529 * (done when source_mnt is moved)
1531 * NOTE: in the table below explains the semantics when a source mount
1532 * of a given type is attached to a destination mount of a given type.
1533 * ---------------------------------------------------------------------------
1534 * | BIND MOUNT OPERATION |
1535 * |**************************************************************************
1536 * | source-->| shared | private | slave | unbindable |
1537 * | dest | | | | |
1538 * | | | | | | |
1539 * | v | | | | |
1540 * |**************************************************************************
1541 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1542 * | | | | | |
1543 * |non-shared| shared (+) | private | slave (*) | invalid |
1544 * ***************************************************************************
1545 * A bind operation clones the source mount and mounts the clone on the
1546 * destination mount.
1548 * (++) the cloned mount is propagated to all the mounts in the propagation
1549 * tree of the destination mount and the cloned mount is added to
1550 * the peer group of the source mount.
1551 * (+) the cloned mount is created under the destination mount and is marked
1552 * as shared. The cloned mount is added to the peer group of the source
1553 * mount.
1554 * (+++) the mount is propagated to all the mounts in the propagation tree
1555 * of the destination mount and the cloned mount is made slave
1556 * of the same master as that of the source mount. The cloned mount
1557 * is marked as 'shared and slave'.
1558 * (*) the cloned mount is made a slave of the same master as that of the
1559 * source mount.
1561 * ---------------------------------------------------------------------------
1562 * | MOVE MOUNT OPERATION |
1563 * |**************************************************************************
1564 * | source-->| shared | private | slave | unbindable |
1565 * | dest | | | | |
1566 * | | | | | | |
1567 * | v | | | | |
1568 * |**************************************************************************
1569 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1570 * | | | | | |
1571 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1572 * ***************************************************************************
1574 * (+) the mount is moved to the destination. And is then propagated to
1575 * all the mounts in the propagation tree of the destination mount.
1576 * (+*) the mount is moved to the destination.
1577 * (+++) the mount is moved to the destination and is then propagated to
1578 * all the mounts belonging to the destination mount's propagation tree.
1579 * the mount is marked as 'shared and slave'.
1580 * (*) the mount continues to be a slave at the new location.
1582 * if the source mount is a tree, the operations explained above is
1583 * applied to each mount in the tree.
1584 * Must be called without spinlocks held, since this function can sleep
1585 * in allocations.
1587 static int attach_recursive_mnt(struct mount *source_mnt,
1588 struct mount *dest_mnt,
1589 struct mountpoint *dest_mp,
1590 struct path *parent_path)
1592 LIST_HEAD(tree_list);
1593 struct mount *child, *p;
1594 int err;
1596 if (IS_MNT_SHARED(dest_mnt)) {
1597 err = invent_group_ids(source_mnt, true);
1598 if (err)
1599 goto out;
1601 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1602 if (err)
1603 goto out_cleanup_ids;
1605 br_write_lock(&vfsmount_lock);
1607 if (IS_MNT_SHARED(dest_mnt)) {
1608 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1609 set_mnt_shared(p);
1611 if (parent_path) {
1612 detach_mnt(source_mnt, parent_path);
1613 attach_mnt(source_mnt, dest_mnt, dest_mp);
1614 touch_mnt_namespace(source_mnt->mnt_ns);
1615 } else {
1616 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1617 commit_tree(source_mnt);
1620 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1621 list_del_init(&child->mnt_hash);
1622 commit_tree(child);
1624 br_write_unlock(&vfsmount_lock);
1626 return 0;
1628 out_cleanup_ids:
1629 if (IS_MNT_SHARED(dest_mnt))
1630 cleanup_group_ids(source_mnt, NULL);
1631 out:
1632 return err;
1635 static struct mountpoint *lock_mount(struct path *path)
1637 struct vfsmount *mnt;
1638 struct dentry *dentry = path->dentry;
1639 retry:
1640 mutex_lock(&dentry->d_inode->i_mutex);
1641 if (unlikely(cant_mount(dentry))) {
1642 mutex_unlock(&dentry->d_inode->i_mutex);
1643 return ERR_PTR(-ENOENT);
1645 namespace_lock();
1646 mnt = lookup_mnt(path);
1647 if (likely(!mnt)) {
1648 struct mountpoint *mp = new_mountpoint(dentry);
1649 if (IS_ERR(mp)) {
1650 namespace_unlock();
1651 mutex_unlock(&dentry->d_inode->i_mutex);
1652 return mp;
1654 return mp;
1656 namespace_unlock();
1657 mutex_unlock(&path->dentry->d_inode->i_mutex);
1658 path_put(path);
1659 path->mnt = mnt;
1660 dentry = path->dentry = dget(mnt->mnt_root);
1661 goto retry;
1664 static void unlock_mount(struct mountpoint *where)
1666 struct dentry *dentry = where->m_dentry;
1667 put_mountpoint(where);
1668 namespace_unlock();
1669 mutex_unlock(&dentry->d_inode->i_mutex);
1672 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1674 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1675 return -EINVAL;
1677 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1678 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1679 return -ENOTDIR;
1681 return attach_recursive_mnt(mnt, p, mp, NULL);
1685 * Sanity check the flags to change_mnt_propagation.
1688 static int flags_to_propagation_type(int flags)
1690 int type = flags & ~(MS_REC | MS_SILENT);
1692 /* Fail if any non-propagation flags are set */
1693 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1694 return 0;
1695 /* Only one propagation flag should be set */
1696 if (!is_power_of_2(type))
1697 return 0;
1698 return type;
1702 * recursively change the type of the mountpoint.
1704 static int do_change_type(struct path *path, int flag)
1706 struct mount *m;
1707 struct mount *mnt = real_mount(path->mnt);
1708 int recurse = flag & MS_REC;
1709 int type;
1710 int err = 0;
1712 if (path->dentry != path->mnt->mnt_root)
1713 return -EINVAL;
1715 type = flags_to_propagation_type(flag);
1716 if (!type)
1717 return -EINVAL;
1719 namespace_lock();
1720 if (type == MS_SHARED) {
1721 err = invent_group_ids(mnt, recurse);
1722 if (err)
1723 goto out_unlock;
1726 br_write_lock(&vfsmount_lock);
1727 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1728 change_mnt_propagation(m, type);
1729 br_write_unlock(&vfsmount_lock);
1731 out_unlock:
1732 namespace_unlock();
1733 return err;
1736 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1738 struct mount *child;
1739 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1740 if (!is_subdir(child->mnt_mountpoint, dentry))
1741 continue;
1743 if (child->mnt.mnt_flags & MNT_LOCKED)
1744 return true;
1746 return false;
1750 * do loopback mount.
1752 static int do_loopback(struct path *path, const char *old_name,
1753 int recurse)
1755 struct path old_path;
1756 struct mount *mnt = NULL, *old, *parent;
1757 struct mountpoint *mp;
1758 int err;
1759 if (!old_name || !*old_name)
1760 return -EINVAL;
1761 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1762 if (err)
1763 return err;
1765 err = -EINVAL;
1766 if (mnt_ns_loop(old_path.dentry))
1767 goto out;
1769 mp = lock_mount(path);
1770 err = PTR_ERR(mp);
1771 if (IS_ERR(mp))
1772 goto out;
1774 old = real_mount(old_path.mnt);
1775 parent = real_mount(path->mnt);
1777 err = -EINVAL;
1778 if (IS_MNT_UNBINDABLE(old))
1779 goto out2;
1781 if (!check_mnt(parent) || !check_mnt(old))
1782 goto out2;
1784 if (!recurse && has_locked_children(old, old_path.dentry))
1785 goto out2;
1787 if (recurse)
1788 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1789 else
1790 mnt = clone_mnt(old, old_path.dentry, 0);
1792 if (IS_ERR(mnt)) {
1793 err = PTR_ERR(mnt);
1794 goto out2;
1797 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1799 err = graft_tree(mnt, parent, mp);
1800 if (err) {
1801 br_write_lock(&vfsmount_lock);
1802 umount_tree(mnt, 0);
1803 br_write_unlock(&vfsmount_lock);
1805 out2:
1806 unlock_mount(mp);
1807 out:
1808 path_put(&old_path);
1809 return err;
1812 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1814 int error = 0;
1815 int readonly_request = 0;
1817 if (ms_flags & MS_RDONLY)
1818 readonly_request = 1;
1819 if (readonly_request == __mnt_is_readonly(mnt))
1820 return 0;
1822 if (readonly_request)
1823 error = mnt_make_readonly(real_mount(mnt));
1824 else
1825 __mnt_unmake_readonly(real_mount(mnt));
1826 return error;
1830 * change filesystem flags. dir should be a physical root of filesystem.
1831 * If you've mounted a non-root directory somewhere and want to do remount
1832 * on it - tough luck.
1834 static int do_remount(struct path *path, int flags, int mnt_flags,
1835 void *data)
1837 int err;
1838 struct super_block *sb = path->mnt->mnt_sb;
1839 struct mount *mnt = real_mount(path->mnt);
1841 if (!check_mnt(mnt))
1842 return -EINVAL;
1844 if (path->dentry != path->mnt->mnt_root)
1845 return -EINVAL;
1847 /* Don't allow changing of locked mnt flags.
1849 * No locks need to be held here while testing the various
1850 * MNT_LOCK flags because those flags can never be cleared
1851 * once they are set.
1853 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1854 !(mnt_flags & MNT_READONLY)) {
1855 return -EPERM;
1857 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1858 !(mnt_flags & MNT_NODEV)) {
1859 return -EPERM;
1861 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1862 !(mnt_flags & MNT_NOSUID)) {
1863 return -EPERM;
1865 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1866 !(mnt_flags & MNT_NOEXEC)) {
1867 return -EPERM;
1869 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1870 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1871 return -EPERM;
1874 err = security_sb_remount(sb, data);
1875 if (err)
1876 return err;
1878 down_write(&sb->s_umount);
1879 if (flags & MS_BIND)
1880 err = change_mount_flags(path->mnt, flags);
1881 else if (!capable(CAP_SYS_ADMIN))
1882 err = -EPERM;
1883 else
1884 err = do_remount_sb(sb, flags, data, 0);
1885 if (!err) {
1886 br_write_lock(&vfsmount_lock);
1887 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1888 mnt->mnt.mnt_flags = mnt_flags;
1889 br_write_unlock(&vfsmount_lock);
1891 up_write(&sb->s_umount);
1892 if (!err) {
1893 br_write_lock(&vfsmount_lock);
1894 touch_mnt_namespace(mnt->mnt_ns);
1895 br_write_unlock(&vfsmount_lock);
1897 return err;
1900 static inline int tree_contains_unbindable(struct mount *mnt)
1902 struct mount *p;
1903 for (p = mnt; p; p = next_mnt(p, mnt)) {
1904 if (IS_MNT_UNBINDABLE(p))
1905 return 1;
1907 return 0;
1910 static int do_move_mount(struct path *path, const char *old_name)
1912 struct path old_path, parent_path;
1913 struct mount *p;
1914 struct mount *old;
1915 struct mountpoint *mp;
1916 int err;
1917 if (!old_name || !*old_name)
1918 return -EINVAL;
1919 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1920 if (err)
1921 return err;
1923 mp = lock_mount(path);
1924 err = PTR_ERR(mp);
1925 if (IS_ERR(mp))
1926 goto out;
1928 old = real_mount(old_path.mnt);
1929 p = real_mount(path->mnt);
1931 err = -EINVAL;
1932 if (!check_mnt(p) || !check_mnt(old))
1933 goto out1;
1935 if (old->mnt.mnt_flags & MNT_LOCKED)
1936 goto out1;
1938 err = -EINVAL;
1939 if (old_path.dentry != old_path.mnt->mnt_root)
1940 goto out1;
1942 if (!mnt_has_parent(old))
1943 goto out1;
1945 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1946 S_ISDIR(old_path.dentry->d_inode->i_mode))
1947 goto out1;
1949 * Don't move a mount residing in a shared parent.
1951 if (IS_MNT_SHARED(old->mnt_parent))
1952 goto out1;
1954 * Don't move a mount tree containing unbindable mounts to a destination
1955 * mount which is shared.
1957 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1958 goto out1;
1959 err = -ELOOP;
1960 for (; mnt_has_parent(p); p = p->mnt_parent)
1961 if (p == old)
1962 goto out1;
1964 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1965 if (err)
1966 goto out1;
1968 /* if the mount is moved, it should no longer be expire
1969 * automatically */
1970 list_del_init(&old->mnt_expire);
1971 out1:
1972 unlock_mount(mp);
1973 out:
1974 if (!err)
1975 path_put(&parent_path);
1976 path_put(&old_path);
1977 return err;
1980 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1982 int err;
1983 const char *subtype = strchr(fstype, '.');
1984 if (subtype) {
1985 subtype++;
1986 err = -EINVAL;
1987 if (!subtype[0])
1988 goto err;
1989 } else
1990 subtype = "";
1992 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1993 err = -ENOMEM;
1994 if (!mnt->mnt_sb->s_subtype)
1995 goto err;
1996 return mnt;
1998 err:
1999 mntput(mnt);
2000 return ERR_PTR(err);
2004 * add a mount into a namespace's mount tree
2006 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2008 struct mountpoint *mp;
2009 struct mount *parent;
2010 int err;
2012 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
2014 mp = lock_mount(path);
2015 if (IS_ERR(mp))
2016 return PTR_ERR(mp);
2018 parent = real_mount(path->mnt);
2019 err = -EINVAL;
2020 if (unlikely(!check_mnt(parent))) {
2021 /* that's acceptable only for automounts done in private ns */
2022 if (!(mnt_flags & MNT_SHRINKABLE))
2023 goto unlock;
2024 /* ... and for those we'd better have mountpoint still alive */
2025 if (!parent->mnt_ns)
2026 goto unlock;
2029 /* Refuse the same filesystem on the same mount point */
2030 err = -EBUSY;
2031 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2032 path->mnt->mnt_root == path->dentry)
2033 goto unlock;
2035 err = -EINVAL;
2036 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2037 goto unlock;
2039 newmnt->mnt.mnt_flags = mnt_flags;
2040 err = graft_tree(newmnt, parent, mp);
2042 unlock:
2043 unlock_mount(mp);
2044 return err;
2048 * create a new mount for userspace and request it to be added into the
2049 * namespace's tree
2051 static int do_new_mount(struct path *path, const char *fstype, int flags,
2052 int mnt_flags, const char *name, void *data)
2054 struct file_system_type *type;
2055 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2056 struct vfsmount *mnt;
2057 int err;
2059 if (!fstype)
2060 return -EINVAL;
2062 type = get_fs_type(fstype);
2063 if (!type)
2064 return -ENODEV;
2066 if (user_ns != &init_user_ns) {
2067 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2068 put_filesystem(type);
2069 return -EPERM;
2071 /* Only in special cases allow devices from mounts
2072 * created outside the initial user namespace.
2074 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2075 flags |= MS_NODEV;
2076 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2080 mnt = vfs_kern_mount(type, flags, name, data);
2081 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2082 !mnt->mnt_sb->s_subtype)
2083 mnt = fs_set_subtype(mnt, fstype);
2085 put_filesystem(type);
2086 if (IS_ERR(mnt))
2087 return PTR_ERR(mnt);
2089 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2090 if (err)
2091 mntput(mnt);
2092 return err;
2095 int finish_automount(struct vfsmount *m, struct path *path)
2097 struct mount *mnt = real_mount(m);
2098 int err;
2099 /* The new mount record should have at least 2 refs to prevent it being
2100 * expired before we get a chance to add it
2102 BUG_ON(mnt_get_count(mnt) < 2);
2104 if (m->mnt_sb == path->mnt->mnt_sb &&
2105 m->mnt_root == path->dentry) {
2106 err = -ELOOP;
2107 goto fail;
2110 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2111 if (!err)
2112 return 0;
2113 fail:
2114 /* remove m from any expiration list it may be on */
2115 if (!list_empty(&mnt->mnt_expire)) {
2116 namespace_lock();
2117 br_write_lock(&vfsmount_lock);
2118 list_del_init(&mnt->mnt_expire);
2119 br_write_unlock(&vfsmount_lock);
2120 namespace_unlock();
2122 mntput(m);
2123 mntput(m);
2124 return err;
2128 * mnt_set_expiry - Put a mount on an expiration list
2129 * @mnt: The mount to list.
2130 * @expiry_list: The list to add the mount to.
2132 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2134 namespace_lock();
2135 br_write_lock(&vfsmount_lock);
2137 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2139 br_write_unlock(&vfsmount_lock);
2140 namespace_unlock();
2142 EXPORT_SYMBOL(mnt_set_expiry);
2145 * process a list of expirable mountpoints with the intent of discarding any
2146 * mountpoints that aren't in use and haven't been touched since last we came
2147 * here
2149 void mark_mounts_for_expiry(struct list_head *mounts)
2151 struct mount *mnt, *next;
2152 LIST_HEAD(graveyard);
2154 if (list_empty(mounts))
2155 return;
2157 namespace_lock();
2158 br_write_lock(&vfsmount_lock);
2160 /* extract from the expiration list every vfsmount that matches the
2161 * following criteria:
2162 * - only referenced by its parent vfsmount
2163 * - still marked for expiry (marked on the last call here; marks are
2164 * cleared by mntput())
2166 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2167 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2168 propagate_mount_busy(mnt, 1))
2169 continue;
2170 list_move(&mnt->mnt_expire, &graveyard);
2172 while (!list_empty(&graveyard)) {
2173 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2174 touch_mnt_namespace(mnt->mnt_ns);
2175 umount_tree(mnt, 1);
2177 br_write_unlock(&vfsmount_lock);
2178 namespace_unlock();
2181 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2184 * Ripoff of 'select_parent()'
2186 * search the list of submounts for a given mountpoint, and move any
2187 * shrinkable submounts to the 'graveyard' list.
2189 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2191 struct mount *this_parent = parent;
2192 struct list_head *next;
2193 int found = 0;
2195 repeat:
2196 next = this_parent->mnt_mounts.next;
2197 resume:
2198 while (next != &this_parent->mnt_mounts) {
2199 struct list_head *tmp = next;
2200 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2202 next = tmp->next;
2203 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2204 continue;
2206 * Descend a level if the d_mounts list is non-empty.
2208 if (!list_empty(&mnt->mnt_mounts)) {
2209 this_parent = mnt;
2210 goto repeat;
2213 if (!propagate_mount_busy(mnt, 1)) {
2214 list_move_tail(&mnt->mnt_expire, graveyard);
2215 found++;
2219 * All done at this level ... ascend and resume the search
2221 if (this_parent != parent) {
2222 next = this_parent->mnt_child.next;
2223 this_parent = this_parent->mnt_parent;
2224 goto resume;
2226 return found;
2230 * process a list of expirable mountpoints with the intent of discarding any
2231 * submounts of a specific parent mountpoint
2233 * vfsmount_lock must be held for write
2235 static void shrink_submounts(struct mount *mnt)
2237 LIST_HEAD(graveyard);
2238 struct mount *m;
2240 /* extract submounts of 'mountpoint' from the expiration list */
2241 while (select_submounts(mnt, &graveyard)) {
2242 while (!list_empty(&graveyard)) {
2243 m = list_first_entry(&graveyard, struct mount,
2244 mnt_expire);
2245 touch_mnt_namespace(m->mnt_ns);
2246 umount_tree(m, 1);
2252 * Some copy_from_user() implementations do not return the exact number of
2253 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2254 * Note that this function differs from copy_from_user() in that it will oops
2255 * on bad values of `to', rather than returning a short copy.
2257 static long exact_copy_from_user(void *to, const void __user * from,
2258 unsigned long n)
2260 char *t = to;
2261 const char __user *f = from;
2262 char c;
2264 if (!access_ok(VERIFY_READ, from, n))
2265 return n;
2267 while (n) {
2268 if (__get_user(c, f)) {
2269 memset(t, 0, n);
2270 break;
2272 *t++ = c;
2273 f++;
2274 n--;
2276 return n;
2279 int copy_mount_options(const void __user * data, unsigned long *where)
2281 int i;
2282 unsigned long page;
2283 unsigned long size;
2285 *where = 0;
2286 if (!data)
2287 return 0;
2289 if (!(page = __get_free_page(GFP_KERNEL)))
2290 return -ENOMEM;
2292 /* We only care that *some* data at the address the user
2293 * gave us is valid. Just in case, we'll zero
2294 * the remainder of the page.
2296 /* copy_from_user cannot cross TASK_SIZE ! */
2297 size = TASK_SIZE - (unsigned long)data;
2298 if (size > PAGE_SIZE)
2299 size = PAGE_SIZE;
2301 i = size - exact_copy_from_user((void *)page, data, size);
2302 if (!i) {
2303 free_page(page);
2304 return -EFAULT;
2306 if (i != PAGE_SIZE)
2307 memset((char *)page + i, 0, PAGE_SIZE - i);
2308 *where = page;
2309 return 0;
2312 int copy_mount_string(const void __user *data, char **where)
2314 char *tmp;
2316 if (!data) {
2317 *where = NULL;
2318 return 0;
2321 tmp = strndup_user(data, PAGE_SIZE);
2322 if (IS_ERR(tmp))
2323 return PTR_ERR(tmp);
2325 *where = tmp;
2326 return 0;
2330 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2331 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2333 * data is a (void *) that can point to any structure up to
2334 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2335 * information (or be NULL).
2337 * Pre-0.97 versions of mount() didn't have a flags word.
2338 * When the flags word was introduced its top half was required
2339 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2340 * Therefore, if this magic number is present, it carries no information
2341 * and must be discarded.
2343 long do_mount(const char *dev_name, const char *dir_name,
2344 const char *type_page, unsigned long flags, void *data_page)
2346 struct path path;
2347 int retval = 0;
2348 int mnt_flags = 0;
2350 /* Discard magic */
2351 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2352 flags &= ~MS_MGC_MSK;
2354 /* Basic sanity checks */
2356 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2357 return -EINVAL;
2359 if (data_page)
2360 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2362 /* ... and get the mountpoint */
2363 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2364 if (retval)
2365 return retval;
2367 retval = security_sb_mount(dev_name, &path,
2368 type_page, flags, data_page);
2369 if (!retval && !may_mount())
2370 retval = -EPERM;
2371 if (retval)
2372 goto dput_out;
2374 /* Default to relatime unless overriden */
2375 if (!(flags & MS_NOATIME))
2376 mnt_flags |= MNT_RELATIME;
2378 /* Separate the per-mountpoint flags */
2379 if (flags & MS_NOSUID)
2380 mnt_flags |= MNT_NOSUID;
2381 if (flags & MS_NODEV)
2382 mnt_flags |= MNT_NODEV;
2383 if (flags & MS_NOEXEC)
2384 mnt_flags |= MNT_NOEXEC;
2385 if (flags & MS_NOATIME)
2386 mnt_flags |= MNT_NOATIME;
2387 if (flags & MS_NODIRATIME)
2388 mnt_flags |= MNT_NODIRATIME;
2389 if (flags & MS_STRICTATIME)
2390 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2391 if (flags & MS_RDONLY)
2392 mnt_flags |= MNT_READONLY;
2394 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2395 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2396 MS_STRICTATIME);
2398 if (flags & MS_REMOUNT)
2399 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2400 data_page);
2401 else if (flags & MS_BIND)
2402 retval = do_loopback(&path, dev_name, flags & MS_REC);
2403 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2404 retval = do_change_type(&path, flags);
2405 else if (flags & MS_MOVE)
2406 retval = do_move_mount(&path, dev_name);
2407 else
2408 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2409 dev_name, data_page);
2410 dput_out:
2411 path_put(&path);
2412 return retval;
2415 static void free_mnt_ns(struct mnt_namespace *ns)
2417 proc_free_inum(ns->proc_inum);
2418 put_user_ns(ns->user_ns);
2419 kfree(ns);
2423 * Assign a sequence number so we can detect when we attempt to bind
2424 * mount a reference to an older mount namespace into the current
2425 * mount namespace, preventing reference counting loops. A 64bit
2426 * number incrementing at 10Ghz will take 12,427 years to wrap which
2427 * is effectively never, so we can ignore the possibility.
2429 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2431 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2433 struct mnt_namespace *new_ns;
2434 int ret;
2436 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2437 if (!new_ns)
2438 return ERR_PTR(-ENOMEM);
2439 ret = proc_alloc_inum(&new_ns->proc_inum);
2440 if (ret) {
2441 kfree(new_ns);
2442 return ERR_PTR(ret);
2444 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2445 atomic_set(&new_ns->count, 1);
2446 new_ns->root = NULL;
2447 INIT_LIST_HEAD(&new_ns->list);
2448 init_waitqueue_head(&new_ns->poll);
2449 new_ns->event = 0;
2450 new_ns->user_ns = get_user_ns(user_ns);
2451 return new_ns;
2455 * Allocate a new namespace structure and populate it with contents
2456 * copied from the namespace of the passed in task structure.
2458 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2459 struct user_namespace *user_ns, struct fs_struct *fs)
2461 struct mnt_namespace *new_ns;
2462 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2463 struct mount *p, *q;
2464 struct mount *old = mnt_ns->root;
2465 struct mount *new;
2466 int copy_flags;
2468 new_ns = alloc_mnt_ns(user_ns);
2469 if (IS_ERR(new_ns))
2470 return new_ns;
2472 namespace_lock();
2473 /* First pass: copy the tree topology */
2474 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2475 if (user_ns != mnt_ns->user_ns)
2476 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2477 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2478 if (IS_ERR(new)) {
2479 namespace_unlock();
2480 free_mnt_ns(new_ns);
2481 return ERR_CAST(new);
2483 new_ns->root = new;
2484 br_write_lock(&vfsmount_lock);
2485 list_add_tail(&new_ns->list, &new->mnt_list);
2486 br_write_unlock(&vfsmount_lock);
2489 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2490 * as belonging to new namespace. We have already acquired a private
2491 * fs_struct, so tsk->fs->lock is not needed.
2493 p = old;
2494 q = new;
2495 while (p) {
2496 q->mnt_ns = new_ns;
2497 if (fs) {
2498 if (&p->mnt == fs->root.mnt) {
2499 fs->root.mnt = mntget(&q->mnt);
2500 rootmnt = &p->mnt;
2502 if (&p->mnt == fs->pwd.mnt) {
2503 fs->pwd.mnt = mntget(&q->mnt);
2504 pwdmnt = &p->mnt;
2507 p = next_mnt(p, old);
2508 q = next_mnt(q, new);
2509 if (!q)
2510 break;
2511 while (p->mnt.mnt_root != q->mnt.mnt_root)
2512 p = next_mnt(p, old);
2514 namespace_unlock();
2516 if (rootmnt)
2517 mntput(rootmnt);
2518 if (pwdmnt)
2519 mntput(pwdmnt);
2521 return new_ns;
2524 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2525 struct user_namespace *user_ns, struct fs_struct *new_fs)
2527 struct mnt_namespace *new_ns;
2529 BUG_ON(!ns);
2530 get_mnt_ns(ns);
2532 if (!(flags & CLONE_NEWNS))
2533 return ns;
2535 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2537 put_mnt_ns(ns);
2538 return new_ns;
2542 * create_mnt_ns - creates a private namespace and adds a root filesystem
2543 * @mnt: pointer to the new root filesystem mountpoint
2545 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2547 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2548 if (!IS_ERR(new_ns)) {
2549 struct mount *mnt = real_mount(m);
2550 mnt->mnt_ns = new_ns;
2551 new_ns->root = mnt;
2552 list_add(&mnt->mnt_list, &new_ns->list);
2553 } else {
2554 mntput(m);
2556 return new_ns;
2559 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2561 struct mnt_namespace *ns;
2562 struct super_block *s;
2563 struct path path;
2564 int err;
2566 ns = create_mnt_ns(mnt);
2567 if (IS_ERR(ns))
2568 return ERR_CAST(ns);
2570 err = vfs_path_lookup(mnt->mnt_root, mnt,
2571 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2573 put_mnt_ns(ns);
2575 if (err)
2576 return ERR_PTR(err);
2578 /* trade a vfsmount reference for active sb one */
2579 s = path.mnt->mnt_sb;
2580 atomic_inc(&s->s_active);
2581 mntput(path.mnt);
2582 /* lock the sucker */
2583 down_write(&s->s_umount);
2584 /* ... and return the root of (sub)tree on it */
2585 return path.dentry;
2587 EXPORT_SYMBOL(mount_subtree);
2589 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2590 char __user *, type, unsigned long, flags, void __user *, data)
2592 int ret;
2593 char *kernel_type;
2594 struct filename *kernel_dir;
2595 char *kernel_dev;
2596 unsigned long data_page;
2598 ret = copy_mount_string(type, &kernel_type);
2599 if (ret < 0)
2600 goto out_type;
2602 kernel_dir = getname(dir_name);
2603 if (IS_ERR(kernel_dir)) {
2604 ret = PTR_ERR(kernel_dir);
2605 goto out_dir;
2608 ret = copy_mount_string(dev_name, &kernel_dev);
2609 if (ret < 0)
2610 goto out_dev;
2612 ret = copy_mount_options(data, &data_page);
2613 if (ret < 0)
2614 goto out_data;
2616 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2617 (void *) data_page);
2619 free_page(data_page);
2620 out_data:
2621 kfree(kernel_dev);
2622 out_dev:
2623 putname(kernel_dir);
2624 out_dir:
2625 kfree(kernel_type);
2626 out_type:
2627 return ret;
2631 * Return true if path is reachable from root
2633 * namespace_sem or vfsmount_lock is held
2635 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2636 const struct path *root)
2638 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2639 dentry = mnt->mnt_mountpoint;
2640 mnt = mnt->mnt_parent;
2642 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2645 int path_is_under(struct path *path1, struct path *path2)
2647 int res;
2648 br_read_lock(&vfsmount_lock);
2649 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2650 br_read_unlock(&vfsmount_lock);
2651 return res;
2653 EXPORT_SYMBOL(path_is_under);
2656 * pivot_root Semantics:
2657 * Moves the root file system of the current process to the directory put_old,
2658 * makes new_root as the new root file system of the current process, and sets
2659 * root/cwd of all processes which had them on the current root to new_root.
2661 * Restrictions:
2662 * The new_root and put_old must be directories, and must not be on the
2663 * same file system as the current process root. The put_old must be
2664 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2665 * pointed to by put_old must yield the same directory as new_root. No other
2666 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2668 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2669 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2670 * in this situation.
2672 * Notes:
2673 * - we don't move root/cwd if they are not at the root (reason: if something
2674 * cared enough to change them, it's probably wrong to force them elsewhere)
2675 * - it's okay to pick a root that isn't the root of a file system, e.g.
2676 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2677 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2678 * first.
2680 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2681 const char __user *, put_old)
2683 struct path new, old, parent_path, root_parent, root;
2684 struct mount *new_mnt, *root_mnt, *old_mnt;
2685 struct mountpoint *old_mp, *root_mp;
2686 int error;
2688 if (!may_mount())
2689 return -EPERM;
2691 error = user_path_dir(new_root, &new);
2692 if (error)
2693 goto out0;
2695 error = user_path_dir(put_old, &old);
2696 if (error)
2697 goto out1;
2699 error = security_sb_pivotroot(&old, &new);
2700 if (error)
2701 goto out2;
2703 get_fs_root(current->fs, &root);
2704 old_mp = lock_mount(&old);
2705 error = PTR_ERR(old_mp);
2706 if (IS_ERR(old_mp))
2707 goto out3;
2709 error = -EINVAL;
2710 new_mnt = real_mount(new.mnt);
2711 root_mnt = real_mount(root.mnt);
2712 old_mnt = real_mount(old.mnt);
2713 if (IS_MNT_SHARED(old_mnt) ||
2714 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2715 IS_MNT_SHARED(root_mnt->mnt_parent))
2716 goto out4;
2717 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2718 goto out4;
2719 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2720 goto out4;
2721 error = -ENOENT;
2722 if (d_unlinked(new.dentry))
2723 goto out4;
2724 error = -EBUSY;
2725 if (new_mnt == root_mnt || old_mnt == root_mnt)
2726 goto out4; /* loop, on the same file system */
2727 error = -EINVAL;
2728 if (root.mnt->mnt_root != root.dentry)
2729 goto out4; /* not a mountpoint */
2730 if (!mnt_has_parent(root_mnt))
2731 goto out4; /* not attached */
2732 root_mp = root_mnt->mnt_mp;
2733 if (new.mnt->mnt_root != new.dentry)
2734 goto out4; /* not a mountpoint */
2735 if (!mnt_has_parent(new_mnt))
2736 goto out4; /* not attached */
2737 /* make sure we can reach put_old from new_root */
2738 if (!is_path_reachable(old_mnt, old.dentry, &new))
2739 goto out4;
2740 root_mp->m_count++; /* pin it so it won't go away */
2741 br_write_lock(&vfsmount_lock);
2742 detach_mnt(new_mnt, &parent_path);
2743 detach_mnt(root_mnt, &root_parent);
2744 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2745 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2746 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2748 /* mount old root on put_old */
2749 attach_mnt(root_mnt, old_mnt, old_mp);
2750 /* mount new_root on / */
2751 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2752 touch_mnt_namespace(current->nsproxy->mnt_ns);
2753 br_write_unlock(&vfsmount_lock);
2754 chroot_fs_refs(&root, &new);
2755 put_mountpoint(root_mp);
2756 error = 0;
2757 out4:
2758 unlock_mount(old_mp);
2759 if (!error) {
2760 path_put(&root_parent);
2761 path_put(&parent_path);
2763 out3:
2764 path_put(&root);
2765 out2:
2766 path_put(&old);
2767 out1:
2768 path_put(&new);
2769 out0:
2770 return error;
2773 static void __init init_mount_tree(void)
2775 struct vfsmount *mnt;
2776 struct mnt_namespace *ns;
2777 struct path root;
2778 struct file_system_type *type;
2780 type = get_fs_type("rootfs");
2781 if (!type)
2782 panic("Can't find rootfs type");
2783 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2784 put_filesystem(type);
2785 if (IS_ERR(mnt))
2786 panic("Can't create rootfs");
2788 ns = create_mnt_ns(mnt);
2789 if (IS_ERR(ns))
2790 panic("Can't allocate initial namespace");
2792 init_task.nsproxy->mnt_ns = ns;
2793 get_mnt_ns(ns);
2795 root.mnt = mnt;
2796 root.dentry = mnt->mnt_root;
2798 set_fs_pwd(current->fs, &root);
2799 set_fs_root(current->fs, &root);
2802 void __init mnt_init(void)
2804 unsigned u;
2805 int err;
2807 init_rwsem(&namespace_sem);
2809 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2810 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2812 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2813 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2815 if (!mount_hashtable || !mountpoint_hashtable)
2816 panic("Failed to allocate mount hash table\n");
2818 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2820 for (u = 0; u < HASH_SIZE; u++)
2821 INIT_LIST_HEAD(&mount_hashtable[u]);
2822 for (u = 0; u < HASH_SIZE; u++)
2823 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2825 br_lock_init(&vfsmount_lock);
2827 err = sysfs_init();
2828 if (err)
2829 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2830 __func__, err);
2831 fs_kobj = kobject_create_and_add("fs", NULL);
2832 if (!fs_kobj)
2833 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2834 init_rootfs();
2835 init_mount_tree();
2838 void put_mnt_ns(struct mnt_namespace *ns)
2840 if (!atomic_dec_and_test(&ns->count))
2841 return;
2842 namespace_lock();
2843 br_write_lock(&vfsmount_lock);
2844 umount_tree(ns->root, 0);
2845 br_write_unlock(&vfsmount_lock);
2846 namespace_unlock();
2847 free_mnt_ns(ns);
2850 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2852 struct vfsmount *mnt;
2853 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2854 if (!IS_ERR(mnt)) {
2856 * it is a longterm mount, don't release mnt until
2857 * we unmount before file sys is unregistered
2859 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2861 return mnt;
2863 EXPORT_SYMBOL_GPL(kern_mount_data);
2865 void kern_unmount(struct vfsmount *mnt)
2867 /* release long term mount so mount point can be released */
2868 if (!IS_ERR_OR_NULL(mnt)) {
2869 br_write_lock(&vfsmount_lock);
2870 real_mount(mnt)->mnt_ns = NULL;
2871 br_write_unlock(&vfsmount_lock);
2872 mntput(mnt);
2875 EXPORT_SYMBOL(kern_unmount);
2877 bool our_mnt(struct vfsmount *mnt)
2879 return check_mnt(real_mount(mnt));
2882 bool current_chrooted(void)
2884 /* Does the current process have a non-standard root */
2885 struct path ns_root;
2886 struct path fs_root;
2887 bool chrooted;
2889 /* Find the namespace root */
2890 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2891 ns_root.dentry = ns_root.mnt->mnt_root;
2892 path_get(&ns_root);
2893 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2896 get_fs_root(current->fs, &fs_root);
2898 chrooted = !path_equal(&fs_root, &ns_root);
2900 path_put(&fs_root);
2901 path_put(&ns_root);
2903 return chrooted;
2906 bool fs_fully_visible(struct file_system_type *type)
2908 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2909 struct mount *mnt;
2910 bool visible = false;
2912 if (unlikely(!ns))
2913 return false;
2915 namespace_lock();
2916 list_for_each_entry(mnt, &ns->list, mnt_list) {
2917 struct mount *child;
2918 if (mnt->mnt.mnt_sb->s_type != type)
2919 continue;
2921 /* This mount is not fully visible if there are any child mounts
2922 * that cover anything except for empty directories.
2924 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2925 struct inode *inode = child->mnt_mountpoint->d_inode;
2926 if (!S_ISDIR(inode->i_mode))
2927 goto next;
2928 if (inode->i_nlink > 2)
2929 goto next;
2931 visible = true;
2932 goto found;
2933 next: ;
2935 found:
2936 namespace_unlock();
2937 return visible;
2940 static void *mntns_get(struct task_struct *task)
2942 struct mnt_namespace *ns = NULL;
2943 struct nsproxy *nsproxy;
2945 rcu_read_lock();
2946 nsproxy = task_nsproxy(task);
2947 if (nsproxy) {
2948 ns = nsproxy->mnt_ns;
2949 get_mnt_ns(ns);
2951 rcu_read_unlock();
2953 return ns;
2956 static void mntns_put(void *ns)
2958 put_mnt_ns(ns);
2961 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2963 struct fs_struct *fs = current->fs;
2964 struct mnt_namespace *mnt_ns = ns;
2965 struct path root;
2967 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2968 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2969 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2970 return -EPERM;
2972 if (fs->users != 1)
2973 return -EINVAL;
2975 get_mnt_ns(mnt_ns);
2976 put_mnt_ns(nsproxy->mnt_ns);
2977 nsproxy->mnt_ns = mnt_ns;
2979 /* Find the root */
2980 root.mnt = &mnt_ns->root->mnt;
2981 root.dentry = mnt_ns->root->mnt.mnt_root;
2982 path_get(&root);
2983 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2986 /* Update the pwd and root */
2987 set_fs_pwd(fs, &root);
2988 set_fs_root(fs, &root);
2990 path_put(&root);
2991 return 0;
2994 static unsigned int mntns_inum(void *ns)
2996 struct mnt_namespace *mnt_ns = ns;
2997 return mnt_ns->proc_inum;
3000 const struct proc_ns_operations mntns_operations = {
3001 .name = "mnt",
3002 .type = CLONE_NEWNS,
3003 .get = mntns_get,
3004 .put = mntns_put,
3005 .install = mntns_install,
3006 .inum = mntns_inum,