hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / kernel / futex.c
blobf94695c9d38b6246c40dc94d13bd0d10a11c7821
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
67 #include <asm/futex.h>
69 #include "rtmutex_common.h"
71 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
72 int __read_mostly futex_cmpxchg_enabled;
73 #endif
75 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
78 * Futex flags used to encode options to functions and preserve them across
79 * restarts.
81 #define FLAGS_SHARED 0x01
82 #define FLAGS_CLOCKRT 0x02
83 #define FLAGS_HAS_TIMEOUT 0x04
86 * Priority Inheritance state:
88 struct futex_pi_state {
90 * list of 'owned' pi_state instances - these have to be
91 * cleaned up in do_exit() if the task exits prematurely:
93 struct list_head list;
96 * The PI object:
98 struct rt_mutex pi_mutex;
100 struct task_struct *owner;
101 atomic_t refcount;
103 union futex_key key;
107 * struct futex_q - The hashed futex queue entry, one per waiting task
108 * @list: priority-sorted list of tasks waiting on this futex
109 * @task: the task waiting on the futex
110 * @lock_ptr: the hash bucket lock
111 * @key: the key the futex is hashed on
112 * @pi_state: optional priority inheritance state
113 * @rt_waiter: rt_waiter storage for use with requeue_pi
114 * @requeue_pi_key: the requeue_pi target futex key
115 * @bitset: bitset for the optional bitmasked wakeup
117 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
118 * we can wake only the relevant ones (hashed queues may be shared).
120 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
121 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
122 * The order of wakeup is always to make the first condition true, then
123 * the second.
125 * PI futexes are typically woken before they are removed from the hash list via
126 * the rt_mutex code. See unqueue_me_pi().
128 struct futex_q {
129 struct plist_node list;
131 struct task_struct *task;
132 spinlock_t *lock_ptr;
133 union futex_key key;
134 struct futex_pi_state *pi_state;
135 struct rt_mutex_waiter *rt_waiter;
136 union futex_key *requeue_pi_key;
137 u32 bitset;
140 static const struct futex_q futex_q_init = {
141 /* list gets initialized in queue_me()*/
142 .key = FUTEX_KEY_INIT,
143 .bitset = FUTEX_BITSET_MATCH_ANY
147 * Hash buckets are shared by all the futex_keys that hash to the same
148 * location. Each key may have multiple futex_q structures, one for each task
149 * waiting on a futex.
151 struct futex_hash_bucket {
152 spinlock_t lock;
153 struct plist_head chain;
156 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
159 * We hash on the keys returned from get_futex_key (see below).
161 static struct futex_hash_bucket *hash_futex(union futex_key *key)
163 u32 hash = jhash2((u32*)&key->both.word,
164 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
165 key->both.offset);
166 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
170 * Return 1 if two futex_keys are equal, 0 otherwise.
172 static inline int match_futex(union futex_key *key1, union futex_key *key2)
174 return (key1 && key2
175 && key1->both.word == key2->both.word
176 && key1->both.ptr == key2->both.ptr
177 && key1->both.offset == key2->both.offset);
181 * Take a reference to the resource addressed by a key.
182 * Can be called while holding spinlocks.
185 static void get_futex_key_refs(union futex_key *key)
187 if (!key->both.ptr)
188 return;
190 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
191 case FUT_OFF_INODE:
192 ihold(key->shared.inode);
193 break;
194 case FUT_OFF_MMSHARED:
195 atomic_inc(&key->private.mm->mm_count);
196 break;
201 * Drop a reference to the resource addressed by a key.
202 * The hash bucket spinlock must not be held.
204 static void drop_futex_key_refs(union futex_key *key)
206 if (!key->both.ptr) {
207 /* If we're here then we tried to put a key we failed to get */
208 WARN_ON_ONCE(1);
209 return;
212 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
213 case FUT_OFF_INODE:
214 iput(key->shared.inode);
215 break;
216 case FUT_OFF_MMSHARED:
217 mmdrop(key->private.mm);
218 break;
223 * get_futex_key() - Get parameters which are the keys for a futex
224 * @uaddr: virtual address of the futex
225 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
226 * @key: address where result is stored.
227 * @rw: mapping needs to be read/write (values: VERIFY_READ,
228 * VERIFY_WRITE)
230 * Return: a negative error code or 0
232 * The key words are stored in *key on success.
234 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
235 * offset_within_page). For private mappings, it's (uaddr, current->mm).
236 * We can usually work out the index without swapping in the page.
238 * lock_page() might sleep, the caller should not hold a spinlock.
240 static int
241 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
243 unsigned long address = (unsigned long)uaddr;
244 struct mm_struct *mm = current->mm;
245 struct page *page, *page_head;
246 int err, ro = 0;
249 * The futex address must be "naturally" aligned.
251 key->both.offset = address % PAGE_SIZE;
252 if (unlikely((address % sizeof(u32)) != 0))
253 return -EINVAL;
254 address -= key->both.offset;
256 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
257 return -EFAULT;
260 * PROCESS_PRIVATE futexes are fast.
261 * As the mm cannot disappear under us and the 'key' only needs
262 * virtual address, we dont even have to find the underlying vma.
263 * Note : We do have to check 'uaddr' is a valid user address,
264 * but access_ok() should be faster than find_vma()
266 if (!fshared) {
267 key->private.mm = mm;
268 key->private.address = address;
269 get_futex_key_refs(key);
270 return 0;
273 again:
274 err = get_user_pages_fast(address, 1, 1, &page);
276 * If write access is not required (eg. FUTEX_WAIT), try
277 * and get read-only access.
279 if (err == -EFAULT && rw == VERIFY_READ) {
280 err = get_user_pages_fast(address, 1, 0, &page);
281 ro = 1;
283 if (err < 0)
284 return err;
285 else
286 err = 0;
288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
289 page_head = page;
290 if (unlikely(PageTail(page))) {
291 put_page(page);
292 /* serialize against __split_huge_page_splitting() */
293 local_irq_disable();
294 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
295 page_head = compound_head(page);
297 * page_head is valid pointer but we must pin
298 * it before taking the PG_lock and/or
299 * PG_compound_lock. The moment we re-enable
300 * irqs __split_huge_page_splitting() can
301 * return and the head page can be freed from
302 * under us. We can't take the PG_lock and/or
303 * PG_compound_lock on a page that could be
304 * freed from under us.
306 if (page != page_head) {
307 get_page(page_head);
308 put_page(page);
310 local_irq_enable();
311 } else {
312 local_irq_enable();
313 goto again;
316 #else
317 page_head = compound_head(page);
318 if (page != page_head) {
319 get_page(page_head);
320 put_page(page);
322 #endif
324 lock_page(page_head);
327 * If page_head->mapping is NULL, then it cannot be a PageAnon
328 * page; but it might be the ZERO_PAGE or in the gate area or
329 * in a special mapping (all cases which we are happy to fail);
330 * or it may have been a good file page when get_user_pages_fast
331 * found it, but truncated or holepunched or subjected to
332 * invalidate_complete_page2 before we got the page lock (also
333 * cases which we are happy to fail). And we hold a reference,
334 * so refcount care in invalidate_complete_page's remove_mapping
335 * prevents drop_caches from setting mapping to NULL beneath us.
337 * The case we do have to guard against is when memory pressure made
338 * shmem_writepage move it from filecache to swapcache beneath us:
339 * an unlikely race, but we do need to retry for page_head->mapping.
341 if (!page_head->mapping) {
342 int shmem_swizzled = PageSwapCache(page_head);
343 unlock_page(page_head);
344 put_page(page_head);
345 if (shmem_swizzled)
346 goto again;
347 return -EFAULT;
351 * Private mappings are handled in a simple way.
353 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
354 * it's a read-only handle, it's expected that futexes attach to
355 * the object not the particular process.
357 if (PageAnon(page_head)) {
359 * A RO anonymous page will never change and thus doesn't make
360 * sense for futex operations.
362 if (ro) {
363 err = -EFAULT;
364 goto out;
367 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
368 key->private.mm = mm;
369 key->private.address = address;
370 } else {
371 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
372 key->shared.inode = page_head->mapping->host;
373 key->shared.pgoff = basepage_index(page);
376 get_futex_key_refs(key);
378 out:
379 unlock_page(page_head);
380 put_page(page_head);
381 return err;
384 static inline void put_futex_key(union futex_key *key)
386 drop_futex_key_refs(key);
390 * fault_in_user_writeable() - Fault in user address and verify RW access
391 * @uaddr: pointer to faulting user space address
393 * Slow path to fixup the fault we just took in the atomic write
394 * access to @uaddr.
396 * We have no generic implementation of a non-destructive write to the
397 * user address. We know that we faulted in the atomic pagefault
398 * disabled section so we can as well avoid the #PF overhead by
399 * calling get_user_pages() right away.
401 static int fault_in_user_writeable(u32 __user *uaddr)
403 struct mm_struct *mm = current->mm;
404 int ret;
406 down_read(&mm->mmap_sem);
407 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
408 FAULT_FLAG_WRITE);
409 up_read(&mm->mmap_sem);
411 return ret < 0 ? ret : 0;
415 * futex_top_waiter() - Return the highest priority waiter on a futex
416 * @hb: the hash bucket the futex_q's reside in
417 * @key: the futex key (to distinguish it from other futex futex_q's)
419 * Must be called with the hb lock held.
421 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
422 union futex_key *key)
424 struct futex_q *this;
426 plist_for_each_entry(this, &hb->chain, list) {
427 if (match_futex(&this->key, key))
428 return this;
430 return NULL;
433 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
434 u32 uval, u32 newval)
436 int ret;
438 pagefault_disable();
439 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
440 pagefault_enable();
442 return ret;
445 static int get_futex_value_locked(u32 *dest, u32 __user *from)
447 int ret;
449 pagefault_disable();
450 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
451 pagefault_enable();
453 return ret ? -EFAULT : 0;
458 * PI code:
460 static int refill_pi_state_cache(void)
462 struct futex_pi_state *pi_state;
464 if (likely(current->pi_state_cache))
465 return 0;
467 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
469 if (!pi_state)
470 return -ENOMEM;
472 INIT_LIST_HEAD(&pi_state->list);
473 /* pi_mutex gets initialized later */
474 pi_state->owner = NULL;
475 atomic_set(&pi_state->refcount, 1);
476 pi_state->key = FUTEX_KEY_INIT;
478 current->pi_state_cache = pi_state;
480 return 0;
483 static struct futex_pi_state * alloc_pi_state(void)
485 struct futex_pi_state *pi_state = current->pi_state_cache;
487 WARN_ON(!pi_state);
488 current->pi_state_cache = NULL;
490 return pi_state;
493 static void free_pi_state(struct futex_pi_state *pi_state)
495 if (!atomic_dec_and_test(&pi_state->refcount))
496 return;
499 * If pi_state->owner is NULL, the owner is most probably dying
500 * and has cleaned up the pi_state already
502 if (pi_state->owner) {
503 raw_spin_lock_irq(&pi_state->owner->pi_lock);
504 list_del_init(&pi_state->list);
505 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
507 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
510 if (current->pi_state_cache)
511 kfree(pi_state);
512 else {
514 * pi_state->list is already empty.
515 * clear pi_state->owner.
516 * refcount is at 0 - put it back to 1.
518 pi_state->owner = NULL;
519 atomic_set(&pi_state->refcount, 1);
520 current->pi_state_cache = pi_state;
525 * Look up the task based on what TID userspace gave us.
526 * We dont trust it.
528 static struct task_struct * futex_find_get_task(pid_t pid)
530 struct task_struct *p;
532 rcu_read_lock();
533 p = find_task_by_vpid(pid);
534 if (p)
535 get_task_struct(p);
537 rcu_read_unlock();
539 return p;
543 * This task is holding PI mutexes at exit time => bad.
544 * Kernel cleans up PI-state, but userspace is likely hosed.
545 * (Robust-futex cleanup is separate and might save the day for userspace.)
547 void exit_pi_state_list(struct task_struct *curr)
549 struct list_head *next, *head = &curr->pi_state_list;
550 struct futex_pi_state *pi_state;
551 struct futex_hash_bucket *hb;
552 union futex_key key = FUTEX_KEY_INIT;
554 if (!futex_cmpxchg_enabled)
555 return;
557 * We are a ZOMBIE and nobody can enqueue itself on
558 * pi_state_list anymore, but we have to be careful
559 * versus waiters unqueueing themselves:
561 raw_spin_lock_irq(&curr->pi_lock);
562 while (!list_empty(head)) {
564 next = head->next;
565 pi_state = list_entry(next, struct futex_pi_state, list);
566 key = pi_state->key;
567 hb = hash_futex(&key);
568 raw_spin_unlock_irq(&curr->pi_lock);
570 spin_lock(&hb->lock);
572 raw_spin_lock_irq(&curr->pi_lock);
574 * We dropped the pi-lock, so re-check whether this
575 * task still owns the PI-state:
577 if (head->next != next) {
578 spin_unlock(&hb->lock);
579 continue;
582 WARN_ON(pi_state->owner != curr);
583 WARN_ON(list_empty(&pi_state->list));
584 list_del_init(&pi_state->list);
585 pi_state->owner = NULL;
586 raw_spin_unlock_irq(&curr->pi_lock);
588 rt_mutex_unlock(&pi_state->pi_mutex);
590 spin_unlock(&hb->lock);
592 raw_spin_lock_irq(&curr->pi_lock);
594 raw_spin_unlock_irq(&curr->pi_lock);
598 * We need to check the following states:
600 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
602 * [1] NULL | --- | --- | 0 | 0/1 | Valid
603 * [2] NULL | --- | --- | >0 | 0/1 | Valid
605 * [3] Found | NULL | -- | Any | 0/1 | Invalid
607 * [4] Found | Found | NULL | 0 | 1 | Valid
608 * [5] Found | Found | NULL | >0 | 1 | Invalid
610 * [6] Found | Found | task | 0 | 1 | Valid
612 * [7] Found | Found | NULL | Any | 0 | Invalid
614 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
615 * [9] Found | Found | task | 0 | 0 | Invalid
616 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
618 * [1] Indicates that the kernel can acquire the futex atomically. We
619 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
621 * [2] Valid, if TID does not belong to a kernel thread. If no matching
622 * thread is found then it indicates that the owner TID has died.
624 * [3] Invalid. The waiter is queued on a non PI futex
626 * [4] Valid state after exit_robust_list(), which sets the user space
627 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
629 * [5] The user space value got manipulated between exit_robust_list()
630 * and exit_pi_state_list()
632 * [6] Valid state after exit_pi_state_list() which sets the new owner in
633 * the pi_state but cannot access the user space value.
635 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
637 * [8] Owner and user space value match
639 * [9] There is no transient state which sets the user space TID to 0
640 * except exit_robust_list(), but this is indicated by the
641 * FUTEX_OWNER_DIED bit. See [4]
643 * [10] There is no transient state which leaves owner and user space
644 * TID out of sync.
646 static int
647 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
648 union futex_key *key, struct futex_pi_state **ps)
650 struct futex_pi_state *pi_state = NULL;
651 struct futex_q *this, *next;
652 struct plist_head *head;
653 struct task_struct *p;
654 pid_t pid = uval & FUTEX_TID_MASK;
656 head = &hb->chain;
658 plist_for_each_entry_safe(this, next, head, list) {
659 if (match_futex(&this->key, key)) {
661 * Sanity check the waiter before increasing
662 * the refcount and attaching to it.
664 pi_state = this->pi_state;
666 * Userspace might have messed up non-PI and
667 * PI futexes [3]
669 if (unlikely(!pi_state))
670 return -EINVAL;
672 WARN_ON(!atomic_read(&pi_state->refcount));
675 * Handle the owner died case:
677 if (uval & FUTEX_OWNER_DIED) {
679 * exit_pi_state_list sets owner to NULL and
680 * wakes the topmost waiter. The task which
681 * acquires the pi_state->rt_mutex will fixup
682 * owner.
684 if (!pi_state->owner) {
686 * No pi state owner, but the user
687 * space TID is not 0. Inconsistent
688 * state. [5]
690 if (pid)
691 return -EINVAL;
693 * Take a ref on the state and
694 * return. [4]
696 goto out_state;
700 * If TID is 0, then either the dying owner
701 * has not yet executed exit_pi_state_list()
702 * or some waiter acquired the rtmutex in the
703 * pi state, but did not yet fixup the TID in
704 * user space.
706 * Take a ref on the state and return. [6]
708 if (!pid)
709 goto out_state;
710 } else {
712 * If the owner died bit is not set,
713 * then the pi_state must have an
714 * owner. [7]
716 if (!pi_state->owner)
717 return -EINVAL;
721 * Bail out if user space manipulated the
722 * futex value. If pi state exists then the
723 * owner TID must be the same as the user
724 * space TID. [9/10]
726 if (pid != task_pid_vnr(pi_state->owner))
727 return -EINVAL;
729 out_state:
730 atomic_inc(&pi_state->refcount);
731 *ps = pi_state;
732 return 0;
737 * We are the first waiter - try to look up the real owner and attach
738 * the new pi_state to it, but bail out when TID = 0 [1]
740 if (!pid)
741 return -ESRCH;
742 p = futex_find_get_task(pid);
743 if (!p)
744 return -ESRCH;
746 if (!p->mm) {
747 put_task_struct(p);
748 return -EPERM;
752 * We need to look at the task state flags to figure out,
753 * whether the task is exiting. To protect against the do_exit
754 * change of the task flags, we do this protected by
755 * p->pi_lock:
757 raw_spin_lock_irq(&p->pi_lock);
758 if (unlikely(p->flags & PF_EXITING)) {
760 * The task is on the way out. When PF_EXITPIDONE is
761 * set, we know that the task has finished the
762 * cleanup:
764 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
766 raw_spin_unlock_irq(&p->pi_lock);
767 put_task_struct(p);
768 return ret;
772 * No existing pi state. First waiter. [2]
774 pi_state = alloc_pi_state();
777 * Initialize the pi_mutex in locked state and make 'p'
778 * the owner of it:
780 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
782 /* Store the key for possible exit cleanups: */
783 pi_state->key = *key;
785 WARN_ON(!list_empty(&pi_state->list));
786 list_add(&pi_state->list, &p->pi_state_list);
787 pi_state->owner = p;
788 raw_spin_unlock_irq(&p->pi_lock);
790 put_task_struct(p);
792 *ps = pi_state;
794 return 0;
798 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
799 * @uaddr: the pi futex user address
800 * @hb: the pi futex hash bucket
801 * @key: the futex key associated with uaddr and hb
802 * @ps: the pi_state pointer where we store the result of the
803 * lookup
804 * @task: the task to perform the atomic lock work for. This will
805 * be "current" except in the case of requeue pi.
806 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
808 * Return:
809 * 0 - ready to wait;
810 * 1 - acquired the lock;
811 * <0 - error
813 * The hb->lock and futex_key refs shall be held by the caller.
815 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
816 union futex_key *key,
817 struct futex_pi_state **ps,
818 struct task_struct *task, int set_waiters)
820 int lock_taken, ret, force_take = 0;
821 u32 uval, newval, curval, vpid = task_pid_vnr(task);
823 retry:
824 ret = lock_taken = 0;
827 * To avoid races, we attempt to take the lock here again
828 * (by doing a 0 -> TID atomic cmpxchg), while holding all
829 * the locks. It will most likely not succeed.
831 newval = vpid;
832 if (set_waiters)
833 newval |= FUTEX_WAITERS;
835 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
836 return -EFAULT;
839 * Detect deadlocks.
841 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
842 return -EDEADLK;
845 * Surprise - we got the lock, but we do not trust user space at all.
847 if (unlikely(!curval)) {
849 * We verify whether there is kernel state for this
850 * futex. If not, we can safely assume, that the 0 ->
851 * TID transition is correct. If state exists, we do
852 * not bother to fixup the user space state as it was
853 * corrupted already.
855 return futex_top_waiter(hb, key) ? -EINVAL : 1;
858 uval = curval;
861 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
862 * to wake at the next unlock.
864 newval = curval | FUTEX_WAITERS;
867 * Should we force take the futex? See below.
869 if (unlikely(force_take)) {
871 * Keep the OWNER_DIED and the WAITERS bit and set the
872 * new TID value.
874 newval = (curval & ~FUTEX_TID_MASK) | vpid;
875 force_take = 0;
876 lock_taken = 1;
879 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
880 return -EFAULT;
881 if (unlikely(curval != uval))
882 goto retry;
885 * We took the lock due to forced take over.
887 if (unlikely(lock_taken))
888 return 1;
891 * We dont have the lock. Look up the PI state (or create it if
892 * we are the first waiter):
894 ret = lookup_pi_state(uval, hb, key, ps);
896 if (unlikely(ret)) {
897 switch (ret) {
898 case -ESRCH:
900 * We failed to find an owner for this
901 * futex. So we have no pi_state to block
902 * on. This can happen in two cases:
904 * 1) The owner died
905 * 2) A stale FUTEX_WAITERS bit
907 * Re-read the futex value.
909 if (get_futex_value_locked(&curval, uaddr))
910 return -EFAULT;
913 * If the owner died or we have a stale
914 * WAITERS bit the owner TID in the user space
915 * futex is 0.
917 if (!(curval & FUTEX_TID_MASK)) {
918 force_take = 1;
919 goto retry;
921 default:
922 break;
926 return ret;
930 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
931 * @q: The futex_q to unqueue
933 * The q->lock_ptr must not be NULL and must be held by the caller.
935 static void __unqueue_futex(struct futex_q *q)
937 struct futex_hash_bucket *hb;
939 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
940 || WARN_ON(plist_node_empty(&q->list)))
941 return;
943 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
944 plist_del(&q->list, &hb->chain);
948 * The hash bucket lock must be held when this is called.
949 * Afterwards, the futex_q must not be accessed.
951 static void wake_futex(struct futex_q *q)
953 struct task_struct *p = q->task;
955 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
956 return;
959 * We set q->lock_ptr = NULL _before_ we wake up the task. If
960 * a non-futex wake up happens on another CPU then the task
961 * might exit and p would dereference a non-existing task
962 * struct. Prevent this by holding a reference on p across the
963 * wake up.
965 get_task_struct(p);
967 __unqueue_futex(q);
969 * The waiting task can free the futex_q as soon as
970 * q->lock_ptr = NULL is written, without taking any locks. A
971 * memory barrier is required here to prevent the following
972 * store to lock_ptr from getting ahead of the plist_del.
974 smp_wmb();
975 q->lock_ptr = NULL;
977 wake_up_state(p, TASK_NORMAL);
978 put_task_struct(p);
981 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
983 struct task_struct *new_owner;
984 struct futex_pi_state *pi_state = this->pi_state;
985 u32 uninitialized_var(curval), newval;
986 int ret = 0;
988 if (!pi_state)
989 return -EINVAL;
992 * If current does not own the pi_state then the futex is
993 * inconsistent and user space fiddled with the futex value.
995 if (pi_state->owner != current)
996 return -EINVAL;
998 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
999 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1002 * It is possible that the next waiter (the one that brought
1003 * this owner to the kernel) timed out and is no longer
1004 * waiting on the lock.
1006 if (!new_owner)
1007 new_owner = this->task;
1010 * We pass it to the next owner. The WAITERS bit is always
1011 * kept enabled while there is PI state around. We cleanup the
1012 * owner died bit, because we are the owner.
1014 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1016 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1017 ret = -EFAULT;
1018 else if (curval != uval)
1019 ret = -EINVAL;
1020 if (ret) {
1021 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1022 return ret;
1025 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1026 WARN_ON(list_empty(&pi_state->list));
1027 list_del_init(&pi_state->list);
1028 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1030 raw_spin_lock_irq(&new_owner->pi_lock);
1031 WARN_ON(!list_empty(&pi_state->list));
1032 list_add(&pi_state->list, &new_owner->pi_state_list);
1033 pi_state->owner = new_owner;
1034 raw_spin_unlock_irq(&new_owner->pi_lock);
1036 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1037 rt_mutex_unlock(&pi_state->pi_mutex);
1039 return 0;
1042 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1044 u32 uninitialized_var(oldval);
1047 * There is no waiter, so we unlock the futex. The owner died
1048 * bit has not to be preserved here. We are the owner:
1050 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1051 return -EFAULT;
1052 if (oldval != uval)
1053 return -EAGAIN;
1055 return 0;
1059 * Express the locking dependencies for lockdep:
1061 static inline void
1062 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1064 if (hb1 <= hb2) {
1065 spin_lock(&hb1->lock);
1066 if (hb1 < hb2)
1067 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1068 } else { /* hb1 > hb2 */
1069 spin_lock(&hb2->lock);
1070 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1074 static inline void
1075 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1077 spin_unlock(&hb1->lock);
1078 if (hb1 != hb2)
1079 spin_unlock(&hb2->lock);
1083 * Wake up waiters matching bitset queued on this futex (uaddr).
1085 static int
1086 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1088 struct futex_hash_bucket *hb;
1089 struct futex_q *this, *next;
1090 struct plist_head *head;
1091 union futex_key key = FUTEX_KEY_INIT;
1092 int ret;
1094 if (!bitset)
1095 return -EINVAL;
1097 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1098 if (unlikely(ret != 0))
1099 goto out;
1101 hb = hash_futex(&key);
1102 spin_lock(&hb->lock);
1103 head = &hb->chain;
1105 plist_for_each_entry_safe(this, next, head, list) {
1106 if (match_futex (&this->key, &key)) {
1107 if (this->pi_state || this->rt_waiter) {
1108 ret = -EINVAL;
1109 break;
1112 /* Check if one of the bits is set in both bitsets */
1113 if (!(this->bitset & bitset))
1114 continue;
1116 wake_futex(this);
1117 if (++ret >= nr_wake)
1118 break;
1122 spin_unlock(&hb->lock);
1123 put_futex_key(&key);
1124 out:
1125 return ret;
1129 * Wake up all waiters hashed on the physical page that is mapped
1130 * to this virtual address:
1132 static int
1133 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1134 int nr_wake, int nr_wake2, int op)
1136 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1137 struct futex_hash_bucket *hb1, *hb2;
1138 struct plist_head *head;
1139 struct futex_q *this, *next;
1140 int ret, op_ret;
1142 retry:
1143 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1144 if (unlikely(ret != 0))
1145 goto out;
1146 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1147 if (unlikely(ret != 0))
1148 goto out_put_key1;
1150 hb1 = hash_futex(&key1);
1151 hb2 = hash_futex(&key2);
1153 retry_private:
1154 double_lock_hb(hb1, hb2);
1155 op_ret = futex_atomic_op_inuser(op, uaddr2);
1156 if (unlikely(op_ret < 0)) {
1158 double_unlock_hb(hb1, hb2);
1160 #ifndef CONFIG_MMU
1162 * we don't get EFAULT from MMU faults if we don't have an MMU,
1163 * but we might get them from range checking
1165 ret = op_ret;
1166 goto out_put_keys;
1167 #endif
1169 if (unlikely(op_ret != -EFAULT)) {
1170 ret = op_ret;
1171 goto out_put_keys;
1174 ret = fault_in_user_writeable(uaddr2);
1175 if (ret)
1176 goto out_put_keys;
1178 if (!(flags & FLAGS_SHARED))
1179 goto retry_private;
1181 put_futex_key(&key2);
1182 put_futex_key(&key1);
1183 goto retry;
1186 head = &hb1->chain;
1188 plist_for_each_entry_safe(this, next, head, list) {
1189 if (match_futex (&this->key, &key1)) {
1190 if (this->pi_state || this->rt_waiter) {
1191 ret = -EINVAL;
1192 goto out_unlock;
1194 wake_futex(this);
1195 if (++ret >= nr_wake)
1196 break;
1200 if (op_ret > 0) {
1201 head = &hb2->chain;
1203 op_ret = 0;
1204 plist_for_each_entry_safe(this, next, head, list) {
1205 if (match_futex (&this->key, &key2)) {
1206 if (this->pi_state || this->rt_waiter) {
1207 ret = -EINVAL;
1208 goto out_unlock;
1210 wake_futex(this);
1211 if (++op_ret >= nr_wake2)
1212 break;
1215 ret += op_ret;
1218 out_unlock:
1219 double_unlock_hb(hb1, hb2);
1220 out_put_keys:
1221 put_futex_key(&key2);
1222 out_put_key1:
1223 put_futex_key(&key1);
1224 out:
1225 return ret;
1229 * requeue_futex() - Requeue a futex_q from one hb to another
1230 * @q: the futex_q to requeue
1231 * @hb1: the source hash_bucket
1232 * @hb2: the target hash_bucket
1233 * @key2: the new key for the requeued futex_q
1235 static inline
1236 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1237 struct futex_hash_bucket *hb2, union futex_key *key2)
1241 * If key1 and key2 hash to the same bucket, no need to
1242 * requeue.
1244 if (likely(&hb1->chain != &hb2->chain)) {
1245 plist_del(&q->list, &hb1->chain);
1246 plist_add(&q->list, &hb2->chain);
1247 q->lock_ptr = &hb2->lock;
1249 get_futex_key_refs(key2);
1250 q->key = *key2;
1254 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1255 * @q: the futex_q
1256 * @key: the key of the requeue target futex
1257 * @hb: the hash_bucket of the requeue target futex
1259 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1260 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1261 * to the requeue target futex so the waiter can detect the wakeup on the right
1262 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1263 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1264 * to protect access to the pi_state to fixup the owner later. Must be called
1265 * with both q->lock_ptr and hb->lock held.
1267 static inline
1268 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1269 struct futex_hash_bucket *hb)
1271 get_futex_key_refs(key);
1272 q->key = *key;
1274 __unqueue_futex(q);
1276 WARN_ON(!q->rt_waiter);
1277 q->rt_waiter = NULL;
1279 q->lock_ptr = &hb->lock;
1281 wake_up_state(q->task, TASK_NORMAL);
1285 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1286 * @pifutex: the user address of the to futex
1287 * @hb1: the from futex hash bucket, must be locked by the caller
1288 * @hb2: the to futex hash bucket, must be locked by the caller
1289 * @key1: the from futex key
1290 * @key2: the to futex key
1291 * @ps: address to store the pi_state pointer
1292 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1294 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1295 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1296 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1297 * hb1 and hb2 must be held by the caller.
1299 * Return:
1300 * 0 - failed to acquire the lock atomically;
1301 * >0 - acquired the lock, return value is vpid of the top_waiter
1302 * <0 - error
1304 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1305 struct futex_hash_bucket *hb1,
1306 struct futex_hash_bucket *hb2,
1307 union futex_key *key1, union futex_key *key2,
1308 struct futex_pi_state **ps, int set_waiters)
1310 struct futex_q *top_waiter = NULL;
1311 u32 curval;
1312 int ret, vpid;
1314 if (get_futex_value_locked(&curval, pifutex))
1315 return -EFAULT;
1318 * Find the top_waiter and determine if there are additional waiters.
1319 * If the caller intends to requeue more than 1 waiter to pifutex,
1320 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1321 * as we have means to handle the possible fault. If not, don't set
1322 * the bit unecessarily as it will force the subsequent unlock to enter
1323 * the kernel.
1325 top_waiter = futex_top_waiter(hb1, key1);
1327 /* There are no waiters, nothing for us to do. */
1328 if (!top_waiter)
1329 return 0;
1331 /* Ensure we requeue to the expected futex. */
1332 if (!match_futex(top_waiter->requeue_pi_key, key2))
1333 return -EINVAL;
1336 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1337 * the contended case or if set_waiters is 1. The pi_state is returned
1338 * in ps in contended cases.
1340 vpid = task_pid_vnr(top_waiter->task);
1341 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1342 set_waiters);
1343 if (ret == 1) {
1344 requeue_pi_wake_futex(top_waiter, key2, hb2);
1345 return vpid;
1347 return ret;
1351 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1352 * @uaddr1: source futex user address
1353 * @flags: futex flags (FLAGS_SHARED, etc.)
1354 * @uaddr2: target futex user address
1355 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1356 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1357 * @cmpval: @uaddr1 expected value (or %NULL)
1358 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1359 * pi futex (pi to pi requeue is not supported)
1361 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1362 * uaddr2 atomically on behalf of the top waiter.
1364 * Return:
1365 * >=0 - on success, the number of tasks requeued or woken;
1366 * <0 - on error
1368 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1369 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1370 u32 *cmpval, int requeue_pi)
1372 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1373 int drop_count = 0, task_count = 0, ret;
1374 struct futex_pi_state *pi_state = NULL;
1375 struct futex_hash_bucket *hb1, *hb2;
1376 struct plist_head *head1;
1377 struct futex_q *this, *next;
1379 if (requeue_pi) {
1381 * Requeue PI only works on two distinct uaddrs. This
1382 * check is only valid for private futexes. See below.
1384 if (uaddr1 == uaddr2)
1385 return -EINVAL;
1388 * requeue_pi requires a pi_state, try to allocate it now
1389 * without any locks in case it fails.
1391 if (refill_pi_state_cache())
1392 return -ENOMEM;
1394 * requeue_pi must wake as many tasks as it can, up to nr_wake
1395 * + nr_requeue, since it acquires the rt_mutex prior to
1396 * returning to userspace, so as to not leave the rt_mutex with
1397 * waiters and no owner. However, second and third wake-ups
1398 * cannot be predicted as they involve race conditions with the
1399 * first wake and a fault while looking up the pi_state. Both
1400 * pthread_cond_signal() and pthread_cond_broadcast() should
1401 * use nr_wake=1.
1403 if (nr_wake != 1)
1404 return -EINVAL;
1407 retry:
1408 if (pi_state != NULL) {
1410 * We will have to lookup the pi_state again, so free this one
1411 * to keep the accounting correct.
1413 free_pi_state(pi_state);
1414 pi_state = NULL;
1417 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1418 if (unlikely(ret != 0))
1419 goto out;
1420 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1421 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1422 if (unlikely(ret != 0))
1423 goto out_put_key1;
1426 * The check above which compares uaddrs is not sufficient for
1427 * shared futexes. We need to compare the keys:
1429 if (requeue_pi && match_futex(&key1, &key2)) {
1430 ret = -EINVAL;
1431 goto out_put_keys;
1434 hb1 = hash_futex(&key1);
1435 hb2 = hash_futex(&key2);
1437 retry_private:
1438 double_lock_hb(hb1, hb2);
1440 if (likely(cmpval != NULL)) {
1441 u32 curval;
1443 ret = get_futex_value_locked(&curval, uaddr1);
1445 if (unlikely(ret)) {
1446 double_unlock_hb(hb1, hb2);
1448 ret = get_user(curval, uaddr1);
1449 if (ret)
1450 goto out_put_keys;
1452 if (!(flags & FLAGS_SHARED))
1453 goto retry_private;
1455 put_futex_key(&key2);
1456 put_futex_key(&key1);
1457 goto retry;
1459 if (curval != *cmpval) {
1460 ret = -EAGAIN;
1461 goto out_unlock;
1465 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1467 * Attempt to acquire uaddr2 and wake the top waiter. If we
1468 * intend to requeue waiters, force setting the FUTEX_WAITERS
1469 * bit. We force this here where we are able to easily handle
1470 * faults rather in the requeue loop below.
1472 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1473 &key2, &pi_state, nr_requeue);
1476 * At this point the top_waiter has either taken uaddr2 or is
1477 * waiting on it. If the former, then the pi_state will not
1478 * exist yet, look it up one more time to ensure we have a
1479 * reference to it. If the lock was taken, ret contains the
1480 * vpid of the top waiter task.
1482 if (ret > 0) {
1483 WARN_ON(pi_state);
1484 drop_count++;
1485 task_count++;
1487 * If we acquired the lock, then the user
1488 * space value of uaddr2 should be vpid. It
1489 * cannot be changed by the top waiter as it
1490 * is blocked on hb2 lock if it tries to do
1491 * so. If something fiddled with it behind our
1492 * back the pi state lookup might unearth
1493 * it. So we rather use the known value than
1494 * rereading and handing potential crap to
1495 * lookup_pi_state.
1497 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1500 switch (ret) {
1501 case 0:
1502 break;
1503 case -EFAULT:
1504 double_unlock_hb(hb1, hb2);
1505 put_futex_key(&key2);
1506 put_futex_key(&key1);
1507 ret = fault_in_user_writeable(uaddr2);
1508 if (!ret)
1509 goto retry;
1510 goto out;
1511 case -EAGAIN:
1512 /* The owner was exiting, try again. */
1513 double_unlock_hb(hb1, hb2);
1514 put_futex_key(&key2);
1515 put_futex_key(&key1);
1516 cond_resched();
1517 goto retry;
1518 default:
1519 goto out_unlock;
1523 head1 = &hb1->chain;
1524 plist_for_each_entry_safe(this, next, head1, list) {
1525 if (task_count - nr_wake >= nr_requeue)
1526 break;
1528 if (!match_futex(&this->key, &key1))
1529 continue;
1532 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1533 * be paired with each other and no other futex ops.
1535 * We should never be requeueing a futex_q with a pi_state,
1536 * which is awaiting a futex_unlock_pi().
1538 if ((requeue_pi && !this->rt_waiter) ||
1539 (!requeue_pi && this->rt_waiter) ||
1540 this->pi_state) {
1541 ret = -EINVAL;
1542 break;
1546 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1547 * lock, we already woke the top_waiter. If not, it will be
1548 * woken by futex_unlock_pi().
1550 if (++task_count <= nr_wake && !requeue_pi) {
1551 wake_futex(this);
1552 continue;
1555 /* Ensure we requeue to the expected futex for requeue_pi. */
1556 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1557 ret = -EINVAL;
1558 break;
1562 * Requeue nr_requeue waiters and possibly one more in the case
1563 * of requeue_pi if we couldn't acquire the lock atomically.
1565 if (requeue_pi) {
1566 /* Prepare the waiter to take the rt_mutex. */
1567 atomic_inc(&pi_state->refcount);
1568 this->pi_state = pi_state;
1569 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1570 this->rt_waiter,
1571 this->task, 1);
1572 if (ret == 1) {
1573 /* We got the lock. */
1574 requeue_pi_wake_futex(this, &key2, hb2);
1575 drop_count++;
1576 continue;
1577 } else if (ret) {
1578 /* -EDEADLK */
1579 this->pi_state = NULL;
1580 free_pi_state(pi_state);
1581 goto out_unlock;
1584 requeue_futex(this, hb1, hb2, &key2);
1585 drop_count++;
1588 out_unlock:
1589 double_unlock_hb(hb1, hb2);
1592 * drop_futex_key_refs() must be called outside the spinlocks. During
1593 * the requeue we moved futex_q's from the hash bucket at key1 to the
1594 * one at key2 and updated their key pointer. We no longer need to
1595 * hold the references to key1.
1597 while (--drop_count >= 0)
1598 drop_futex_key_refs(&key1);
1600 out_put_keys:
1601 put_futex_key(&key2);
1602 out_put_key1:
1603 put_futex_key(&key1);
1604 out:
1605 if (pi_state != NULL)
1606 free_pi_state(pi_state);
1607 return ret ? ret : task_count;
1610 /* The key must be already stored in q->key. */
1611 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1612 __acquires(&hb->lock)
1614 struct futex_hash_bucket *hb;
1616 hb = hash_futex(&q->key);
1617 q->lock_ptr = &hb->lock;
1619 spin_lock(&hb->lock);
1620 return hb;
1623 static inline void
1624 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1625 __releases(&hb->lock)
1627 spin_unlock(&hb->lock);
1631 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1632 * @q: The futex_q to enqueue
1633 * @hb: The destination hash bucket
1635 * The hb->lock must be held by the caller, and is released here. A call to
1636 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1637 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1638 * or nothing if the unqueue is done as part of the wake process and the unqueue
1639 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1640 * an example).
1642 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1643 __releases(&hb->lock)
1645 int prio;
1648 * The priority used to register this element is
1649 * - either the real thread-priority for the real-time threads
1650 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1651 * - or MAX_RT_PRIO for non-RT threads.
1652 * Thus, all RT-threads are woken first in priority order, and
1653 * the others are woken last, in FIFO order.
1655 prio = min(current->normal_prio, MAX_RT_PRIO);
1657 plist_node_init(&q->list, prio);
1658 plist_add(&q->list, &hb->chain);
1659 q->task = current;
1660 spin_unlock(&hb->lock);
1664 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1665 * @q: The futex_q to unqueue
1667 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1668 * be paired with exactly one earlier call to queue_me().
1670 * Return:
1671 * 1 - if the futex_q was still queued (and we removed unqueued it);
1672 * 0 - if the futex_q was already removed by the waking thread
1674 static int unqueue_me(struct futex_q *q)
1676 spinlock_t *lock_ptr;
1677 int ret = 0;
1679 /* In the common case we don't take the spinlock, which is nice. */
1680 retry:
1681 lock_ptr = q->lock_ptr;
1682 barrier();
1683 if (lock_ptr != NULL) {
1684 spin_lock(lock_ptr);
1686 * q->lock_ptr can change between reading it and
1687 * spin_lock(), causing us to take the wrong lock. This
1688 * corrects the race condition.
1690 * Reasoning goes like this: if we have the wrong lock,
1691 * q->lock_ptr must have changed (maybe several times)
1692 * between reading it and the spin_lock(). It can
1693 * change again after the spin_lock() but only if it was
1694 * already changed before the spin_lock(). It cannot,
1695 * however, change back to the original value. Therefore
1696 * we can detect whether we acquired the correct lock.
1698 if (unlikely(lock_ptr != q->lock_ptr)) {
1699 spin_unlock(lock_ptr);
1700 goto retry;
1702 __unqueue_futex(q);
1704 BUG_ON(q->pi_state);
1706 spin_unlock(lock_ptr);
1707 ret = 1;
1710 drop_futex_key_refs(&q->key);
1711 return ret;
1715 * PI futexes can not be requeued and must remove themself from the
1716 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1717 * and dropped here.
1719 static void unqueue_me_pi(struct futex_q *q)
1720 __releases(q->lock_ptr)
1722 __unqueue_futex(q);
1724 BUG_ON(!q->pi_state);
1725 free_pi_state(q->pi_state);
1726 q->pi_state = NULL;
1728 spin_unlock(q->lock_ptr);
1732 * Fixup the pi_state owner with the new owner.
1734 * Must be called with hash bucket lock held and mm->sem held for non
1735 * private futexes.
1737 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1738 struct task_struct *newowner)
1740 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1741 struct futex_pi_state *pi_state = q->pi_state;
1742 struct task_struct *oldowner = pi_state->owner;
1743 u32 uval, uninitialized_var(curval), newval;
1744 int ret;
1746 /* Owner died? */
1747 if (!pi_state->owner)
1748 newtid |= FUTEX_OWNER_DIED;
1751 * We are here either because we stole the rtmutex from the
1752 * previous highest priority waiter or we are the highest priority
1753 * waiter but failed to get the rtmutex the first time.
1754 * We have to replace the newowner TID in the user space variable.
1755 * This must be atomic as we have to preserve the owner died bit here.
1757 * Note: We write the user space value _before_ changing the pi_state
1758 * because we can fault here. Imagine swapped out pages or a fork
1759 * that marked all the anonymous memory readonly for cow.
1761 * Modifying pi_state _before_ the user space value would
1762 * leave the pi_state in an inconsistent state when we fault
1763 * here, because we need to drop the hash bucket lock to
1764 * handle the fault. This might be observed in the PID check
1765 * in lookup_pi_state.
1767 retry:
1768 if (get_futex_value_locked(&uval, uaddr))
1769 goto handle_fault;
1771 while (1) {
1772 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1774 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1775 goto handle_fault;
1776 if (curval == uval)
1777 break;
1778 uval = curval;
1782 * We fixed up user space. Now we need to fix the pi_state
1783 * itself.
1785 if (pi_state->owner != NULL) {
1786 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1787 WARN_ON(list_empty(&pi_state->list));
1788 list_del_init(&pi_state->list);
1789 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1792 pi_state->owner = newowner;
1794 raw_spin_lock_irq(&newowner->pi_lock);
1795 WARN_ON(!list_empty(&pi_state->list));
1796 list_add(&pi_state->list, &newowner->pi_state_list);
1797 raw_spin_unlock_irq(&newowner->pi_lock);
1798 return 0;
1801 * To handle the page fault we need to drop the hash bucket
1802 * lock here. That gives the other task (either the highest priority
1803 * waiter itself or the task which stole the rtmutex) the
1804 * chance to try the fixup of the pi_state. So once we are
1805 * back from handling the fault we need to check the pi_state
1806 * after reacquiring the hash bucket lock and before trying to
1807 * do another fixup. When the fixup has been done already we
1808 * simply return.
1810 handle_fault:
1811 spin_unlock(q->lock_ptr);
1813 ret = fault_in_user_writeable(uaddr);
1815 spin_lock(q->lock_ptr);
1818 * Check if someone else fixed it for us:
1820 if (pi_state->owner != oldowner)
1821 return 0;
1823 if (ret)
1824 return ret;
1826 goto retry;
1829 static long futex_wait_restart(struct restart_block *restart);
1832 * fixup_owner() - Post lock pi_state and corner case management
1833 * @uaddr: user address of the futex
1834 * @q: futex_q (contains pi_state and access to the rt_mutex)
1835 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1837 * After attempting to lock an rt_mutex, this function is called to cleanup
1838 * the pi_state owner as well as handle race conditions that may allow us to
1839 * acquire the lock. Must be called with the hb lock held.
1841 * Return:
1842 * 1 - success, lock taken;
1843 * 0 - success, lock not taken;
1844 * <0 - on error (-EFAULT)
1846 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1848 struct task_struct *owner;
1849 int ret = 0;
1851 if (locked) {
1853 * Got the lock. We might not be the anticipated owner if we
1854 * did a lock-steal - fix up the PI-state in that case:
1856 if (q->pi_state->owner != current)
1857 ret = fixup_pi_state_owner(uaddr, q, current);
1858 goto out;
1862 * Catch the rare case, where the lock was released when we were on the
1863 * way back before we locked the hash bucket.
1865 if (q->pi_state->owner == current) {
1867 * Try to get the rt_mutex now. This might fail as some other
1868 * task acquired the rt_mutex after we removed ourself from the
1869 * rt_mutex waiters list.
1871 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1872 locked = 1;
1873 goto out;
1877 * pi_state is incorrect, some other task did a lock steal and
1878 * we returned due to timeout or signal without taking the
1879 * rt_mutex. Too late.
1881 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1882 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1883 if (!owner)
1884 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1885 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1886 ret = fixup_pi_state_owner(uaddr, q, owner);
1887 goto out;
1891 * Paranoia check. If we did not take the lock, then we should not be
1892 * the owner of the rt_mutex.
1894 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1895 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1896 "pi-state %p\n", ret,
1897 q->pi_state->pi_mutex.owner,
1898 q->pi_state->owner);
1900 out:
1901 return ret ? ret : locked;
1905 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1906 * @hb: the futex hash bucket, must be locked by the caller
1907 * @q: the futex_q to queue up on
1908 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1910 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1911 struct hrtimer_sleeper *timeout)
1914 * The task state is guaranteed to be set before another task can
1915 * wake it. set_current_state() is implemented using set_mb() and
1916 * queue_me() calls spin_unlock() upon completion, both serializing
1917 * access to the hash list and forcing another memory barrier.
1919 set_current_state(TASK_INTERRUPTIBLE);
1920 queue_me(q, hb);
1922 /* Arm the timer */
1923 if (timeout) {
1924 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1925 if (!hrtimer_active(&timeout->timer))
1926 timeout->task = NULL;
1930 * If we have been removed from the hash list, then another task
1931 * has tried to wake us, and we can skip the call to schedule().
1933 if (likely(!plist_node_empty(&q->list))) {
1935 * If the timer has already expired, current will already be
1936 * flagged for rescheduling. Only call schedule if there
1937 * is no timeout, or if it has yet to expire.
1939 if (!timeout || timeout->task)
1940 freezable_schedule();
1942 __set_current_state(TASK_RUNNING);
1946 * futex_wait_setup() - Prepare to wait on a futex
1947 * @uaddr: the futex userspace address
1948 * @val: the expected value
1949 * @flags: futex flags (FLAGS_SHARED, etc.)
1950 * @q: the associated futex_q
1951 * @hb: storage for hash_bucket pointer to be returned to caller
1953 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1954 * compare it with the expected value. Handle atomic faults internally.
1955 * Return with the hb lock held and a q.key reference on success, and unlocked
1956 * with no q.key reference on failure.
1958 * Return:
1959 * 0 - uaddr contains val and hb has been locked;
1960 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1962 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1963 struct futex_q *q, struct futex_hash_bucket **hb)
1965 u32 uval;
1966 int ret;
1969 * Access the page AFTER the hash-bucket is locked.
1970 * Order is important:
1972 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1973 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1975 * The basic logical guarantee of a futex is that it blocks ONLY
1976 * if cond(var) is known to be true at the time of blocking, for
1977 * any cond. If we locked the hash-bucket after testing *uaddr, that
1978 * would open a race condition where we could block indefinitely with
1979 * cond(var) false, which would violate the guarantee.
1981 * On the other hand, we insert q and release the hash-bucket only
1982 * after testing *uaddr. This guarantees that futex_wait() will NOT
1983 * absorb a wakeup if *uaddr does not match the desired values
1984 * while the syscall executes.
1986 retry:
1987 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1988 if (unlikely(ret != 0))
1989 return ret;
1991 retry_private:
1992 *hb = queue_lock(q);
1994 ret = get_futex_value_locked(&uval, uaddr);
1996 if (ret) {
1997 queue_unlock(q, *hb);
1999 ret = get_user(uval, uaddr);
2000 if (ret)
2001 goto out;
2003 if (!(flags & FLAGS_SHARED))
2004 goto retry_private;
2006 put_futex_key(&q->key);
2007 goto retry;
2010 if (uval != val) {
2011 queue_unlock(q, *hb);
2012 ret = -EWOULDBLOCK;
2015 out:
2016 if (ret)
2017 put_futex_key(&q->key);
2018 return ret;
2021 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2022 ktime_t *abs_time, u32 bitset)
2024 struct hrtimer_sleeper timeout, *to = NULL;
2025 struct restart_block *restart;
2026 struct futex_hash_bucket *hb;
2027 struct futex_q q = futex_q_init;
2028 int ret;
2030 if (!bitset)
2031 return -EINVAL;
2032 q.bitset = bitset;
2034 if (abs_time) {
2035 to = &timeout;
2037 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2038 CLOCK_REALTIME : CLOCK_MONOTONIC,
2039 HRTIMER_MODE_ABS);
2040 hrtimer_init_sleeper(to, current);
2041 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2042 current->timer_slack_ns);
2045 retry:
2047 * Prepare to wait on uaddr. On success, holds hb lock and increments
2048 * q.key refs.
2050 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2051 if (ret)
2052 goto out;
2054 /* queue_me and wait for wakeup, timeout, or a signal. */
2055 futex_wait_queue_me(hb, &q, to);
2057 /* If we were woken (and unqueued), we succeeded, whatever. */
2058 ret = 0;
2059 /* unqueue_me() drops q.key ref */
2060 if (!unqueue_me(&q))
2061 goto out;
2062 ret = -ETIMEDOUT;
2063 if (to && !to->task)
2064 goto out;
2067 * We expect signal_pending(current), but we might be the
2068 * victim of a spurious wakeup as well.
2070 if (!signal_pending(current))
2071 goto retry;
2073 ret = -ERESTARTSYS;
2074 if (!abs_time)
2075 goto out;
2077 restart = &current_thread_info()->restart_block;
2078 restart->fn = futex_wait_restart;
2079 restart->futex.uaddr = uaddr;
2080 restart->futex.val = val;
2081 restart->futex.time = abs_time->tv64;
2082 restart->futex.bitset = bitset;
2083 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2085 ret = -ERESTART_RESTARTBLOCK;
2087 out:
2088 if (to) {
2089 hrtimer_cancel(&to->timer);
2090 destroy_hrtimer_on_stack(&to->timer);
2092 return ret;
2096 static long futex_wait_restart(struct restart_block *restart)
2098 u32 __user *uaddr = restart->futex.uaddr;
2099 ktime_t t, *tp = NULL;
2101 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2102 t.tv64 = restart->futex.time;
2103 tp = &t;
2105 restart->fn = do_no_restart_syscall;
2107 return (long)futex_wait(uaddr, restart->futex.flags,
2108 restart->futex.val, tp, restart->futex.bitset);
2113 * Userspace tried a 0 -> TID atomic transition of the futex value
2114 * and failed. The kernel side here does the whole locking operation:
2115 * if there are waiters then it will block, it does PI, etc. (Due to
2116 * races the kernel might see a 0 value of the futex too.)
2118 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2119 ktime_t *time, int trylock)
2121 struct hrtimer_sleeper timeout, *to = NULL;
2122 struct futex_hash_bucket *hb;
2123 struct futex_q q = futex_q_init;
2124 int res, ret;
2126 if (refill_pi_state_cache())
2127 return -ENOMEM;
2129 if (time) {
2130 to = &timeout;
2131 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2132 HRTIMER_MODE_ABS);
2133 hrtimer_init_sleeper(to, current);
2134 hrtimer_set_expires(&to->timer, *time);
2137 retry:
2138 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2139 if (unlikely(ret != 0))
2140 goto out;
2142 retry_private:
2143 hb = queue_lock(&q);
2145 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2146 if (unlikely(ret)) {
2147 switch (ret) {
2148 case 1:
2149 /* We got the lock. */
2150 ret = 0;
2151 goto out_unlock_put_key;
2152 case -EFAULT:
2153 goto uaddr_faulted;
2154 case -EAGAIN:
2156 * Task is exiting and we just wait for the
2157 * exit to complete.
2159 queue_unlock(&q, hb);
2160 put_futex_key(&q.key);
2161 cond_resched();
2162 goto retry;
2163 default:
2164 goto out_unlock_put_key;
2169 * Only actually queue now that the atomic ops are done:
2171 queue_me(&q, hb);
2173 WARN_ON(!q.pi_state);
2175 * Block on the PI mutex:
2177 if (!trylock)
2178 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2179 else {
2180 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2181 /* Fixup the trylock return value: */
2182 ret = ret ? 0 : -EWOULDBLOCK;
2185 spin_lock(q.lock_ptr);
2187 * Fixup the pi_state owner and possibly acquire the lock if we
2188 * haven't already.
2190 res = fixup_owner(uaddr, &q, !ret);
2192 * If fixup_owner() returned an error, proprogate that. If it acquired
2193 * the lock, clear our -ETIMEDOUT or -EINTR.
2195 if (res)
2196 ret = (res < 0) ? res : 0;
2199 * If fixup_owner() faulted and was unable to handle the fault, unlock
2200 * it and return the fault to userspace.
2202 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2203 rt_mutex_unlock(&q.pi_state->pi_mutex);
2205 /* Unqueue and drop the lock */
2206 unqueue_me_pi(&q);
2208 goto out_put_key;
2210 out_unlock_put_key:
2211 queue_unlock(&q, hb);
2213 out_put_key:
2214 put_futex_key(&q.key);
2215 out:
2216 if (to)
2217 destroy_hrtimer_on_stack(&to->timer);
2218 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2220 uaddr_faulted:
2221 queue_unlock(&q, hb);
2223 ret = fault_in_user_writeable(uaddr);
2224 if (ret)
2225 goto out_put_key;
2227 if (!(flags & FLAGS_SHARED))
2228 goto retry_private;
2230 put_futex_key(&q.key);
2231 goto retry;
2235 * Userspace attempted a TID -> 0 atomic transition, and failed.
2236 * This is the in-kernel slowpath: we look up the PI state (if any),
2237 * and do the rt-mutex unlock.
2239 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2241 struct futex_hash_bucket *hb;
2242 struct futex_q *this, *next;
2243 struct plist_head *head;
2244 union futex_key key = FUTEX_KEY_INIT;
2245 u32 uval, vpid = task_pid_vnr(current);
2246 int ret;
2248 retry:
2249 if (get_user(uval, uaddr))
2250 return -EFAULT;
2252 * We release only a lock we actually own:
2254 if ((uval & FUTEX_TID_MASK) != vpid)
2255 return -EPERM;
2257 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2258 if (unlikely(ret != 0))
2259 goto out;
2261 hb = hash_futex(&key);
2262 spin_lock(&hb->lock);
2265 * To avoid races, try to do the TID -> 0 atomic transition
2266 * again. If it succeeds then we can return without waking
2267 * anyone else up. We only try this if neither the waiters nor
2268 * the owner died bit are set.
2270 if (!(uval & ~FUTEX_TID_MASK) &&
2271 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2272 goto pi_faulted;
2274 * Rare case: we managed to release the lock atomically,
2275 * no need to wake anyone else up:
2277 if (unlikely(uval == vpid))
2278 goto out_unlock;
2281 * Ok, other tasks may need to be woken up - check waiters
2282 * and do the wakeup if necessary:
2284 head = &hb->chain;
2286 plist_for_each_entry_safe(this, next, head, list) {
2287 if (!match_futex (&this->key, &key))
2288 continue;
2289 ret = wake_futex_pi(uaddr, uval, this);
2291 * The atomic access to the futex value
2292 * generated a pagefault, so retry the
2293 * user-access and the wakeup:
2295 if (ret == -EFAULT)
2296 goto pi_faulted;
2297 goto out_unlock;
2300 * No waiters - kernel unlocks the futex:
2302 ret = unlock_futex_pi(uaddr, uval);
2303 if (ret == -EFAULT)
2304 goto pi_faulted;
2306 out_unlock:
2307 spin_unlock(&hb->lock);
2308 put_futex_key(&key);
2310 out:
2311 return ret;
2313 pi_faulted:
2314 spin_unlock(&hb->lock);
2315 put_futex_key(&key);
2317 ret = fault_in_user_writeable(uaddr);
2318 if (!ret)
2319 goto retry;
2321 return ret;
2325 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2326 * @hb: the hash_bucket futex_q was original enqueued on
2327 * @q: the futex_q woken while waiting to be requeued
2328 * @key2: the futex_key of the requeue target futex
2329 * @timeout: the timeout associated with the wait (NULL if none)
2331 * Detect if the task was woken on the initial futex as opposed to the requeue
2332 * target futex. If so, determine if it was a timeout or a signal that caused
2333 * the wakeup and return the appropriate error code to the caller. Must be
2334 * called with the hb lock held.
2336 * Return:
2337 * 0 = no early wakeup detected;
2338 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2340 static inline
2341 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2342 struct futex_q *q, union futex_key *key2,
2343 struct hrtimer_sleeper *timeout)
2345 int ret = 0;
2348 * With the hb lock held, we avoid races while we process the wakeup.
2349 * We only need to hold hb (and not hb2) to ensure atomicity as the
2350 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2351 * It can't be requeued from uaddr2 to something else since we don't
2352 * support a PI aware source futex for requeue.
2354 if (!match_futex(&q->key, key2)) {
2355 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2357 * We were woken prior to requeue by a timeout or a signal.
2358 * Unqueue the futex_q and determine which it was.
2360 plist_del(&q->list, &hb->chain);
2362 /* Handle spurious wakeups gracefully */
2363 ret = -EWOULDBLOCK;
2364 if (timeout && !timeout->task)
2365 ret = -ETIMEDOUT;
2366 else if (signal_pending(current))
2367 ret = -ERESTARTNOINTR;
2369 return ret;
2373 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2374 * @uaddr: the futex we initially wait on (non-pi)
2375 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2376 * the same type, no requeueing from private to shared, etc.
2377 * @val: the expected value of uaddr
2378 * @abs_time: absolute timeout
2379 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2380 * @uaddr2: the pi futex we will take prior to returning to user-space
2382 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2383 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2384 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2385 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2386 * without one, the pi logic would not know which task to boost/deboost, if
2387 * there was a need to.
2389 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2390 * via the following--
2391 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2392 * 2) wakeup on uaddr2 after a requeue
2393 * 3) signal
2394 * 4) timeout
2396 * If 3, cleanup and return -ERESTARTNOINTR.
2398 * If 2, we may then block on trying to take the rt_mutex and return via:
2399 * 5) successful lock
2400 * 6) signal
2401 * 7) timeout
2402 * 8) other lock acquisition failure
2404 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2406 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2408 * Return:
2409 * 0 - On success;
2410 * <0 - On error
2412 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2413 u32 val, ktime_t *abs_time, u32 bitset,
2414 u32 __user *uaddr2)
2416 struct hrtimer_sleeper timeout, *to = NULL;
2417 struct rt_mutex_waiter rt_waiter;
2418 struct rt_mutex *pi_mutex = NULL;
2419 struct futex_hash_bucket *hb;
2420 union futex_key key2 = FUTEX_KEY_INIT;
2421 struct futex_q q = futex_q_init;
2422 int res, ret;
2424 if (uaddr == uaddr2)
2425 return -EINVAL;
2427 if (!bitset)
2428 return -EINVAL;
2430 if (abs_time) {
2431 to = &timeout;
2432 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2433 CLOCK_REALTIME : CLOCK_MONOTONIC,
2434 HRTIMER_MODE_ABS);
2435 hrtimer_init_sleeper(to, current);
2436 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2437 current->timer_slack_ns);
2441 * The waiter is allocated on our stack, manipulated by the requeue
2442 * code while we sleep on uaddr.
2444 debug_rt_mutex_init_waiter(&rt_waiter);
2445 rt_waiter.task = NULL;
2447 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2448 if (unlikely(ret != 0))
2449 goto out;
2451 q.bitset = bitset;
2452 q.rt_waiter = &rt_waiter;
2453 q.requeue_pi_key = &key2;
2456 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2457 * count.
2459 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2460 if (ret)
2461 goto out_key2;
2464 * The check above which compares uaddrs is not sufficient for
2465 * shared futexes. We need to compare the keys:
2467 if (match_futex(&q.key, &key2)) {
2468 ret = -EINVAL;
2469 goto out_put_keys;
2472 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2473 futex_wait_queue_me(hb, &q, to);
2475 spin_lock(&hb->lock);
2476 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2477 spin_unlock(&hb->lock);
2478 if (ret)
2479 goto out_put_keys;
2482 * In order for us to be here, we know our q.key == key2, and since
2483 * we took the hb->lock above, we also know that futex_requeue() has
2484 * completed and we no longer have to concern ourselves with a wakeup
2485 * race with the atomic proxy lock acquisition by the requeue code. The
2486 * futex_requeue dropped our key1 reference and incremented our key2
2487 * reference count.
2490 /* Check if the requeue code acquired the second futex for us. */
2491 if (!q.rt_waiter) {
2493 * Got the lock. We might not be the anticipated owner if we
2494 * did a lock-steal - fix up the PI-state in that case.
2496 if (q.pi_state && (q.pi_state->owner != current)) {
2497 spin_lock(q.lock_ptr);
2498 ret = fixup_pi_state_owner(uaddr2, &q, current);
2499 spin_unlock(q.lock_ptr);
2501 } else {
2503 * We have been woken up by futex_unlock_pi(), a timeout, or a
2504 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2505 * the pi_state.
2507 WARN_ON(!q.pi_state);
2508 pi_mutex = &q.pi_state->pi_mutex;
2509 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2510 debug_rt_mutex_free_waiter(&rt_waiter);
2512 spin_lock(q.lock_ptr);
2514 * Fixup the pi_state owner and possibly acquire the lock if we
2515 * haven't already.
2517 res = fixup_owner(uaddr2, &q, !ret);
2519 * If fixup_owner() returned an error, proprogate that. If it
2520 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2522 if (res)
2523 ret = (res < 0) ? res : 0;
2525 /* Unqueue and drop the lock. */
2526 unqueue_me_pi(&q);
2530 * If fixup_pi_state_owner() faulted and was unable to handle the
2531 * fault, unlock the rt_mutex and return the fault to userspace.
2533 if (ret == -EFAULT) {
2534 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2535 rt_mutex_unlock(pi_mutex);
2536 } else if (ret == -EINTR) {
2538 * We've already been requeued, but cannot restart by calling
2539 * futex_lock_pi() directly. We could restart this syscall, but
2540 * it would detect that the user space "val" changed and return
2541 * -EWOULDBLOCK. Save the overhead of the restart and return
2542 * -EWOULDBLOCK directly.
2544 ret = -EWOULDBLOCK;
2547 out_put_keys:
2548 put_futex_key(&q.key);
2549 out_key2:
2550 put_futex_key(&key2);
2552 out:
2553 if (to) {
2554 hrtimer_cancel(&to->timer);
2555 destroy_hrtimer_on_stack(&to->timer);
2557 return ret;
2561 * Support for robust futexes: the kernel cleans up held futexes at
2562 * thread exit time.
2564 * Implementation: user-space maintains a per-thread list of locks it
2565 * is holding. Upon do_exit(), the kernel carefully walks this list,
2566 * and marks all locks that are owned by this thread with the
2567 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2568 * always manipulated with the lock held, so the list is private and
2569 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2570 * field, to allow the kernel to clean up if the thread dies after
2571 * acquiring the lock, but just before it could have added itself to
2572 * the list. There can only be one such pending lock.
2576 * sys_set_robust_list() - Set the robust-futex list head of a task
2577 * @head: pointer to the list-head
2578 * @len: length of the list-head, as userspace expects
2580 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2581 size_t, len)
2583 if (!futex_cmpxchg_enabled)
2584 return -ENOSYS;
2586 * The kernel knows only one size for now:
2588 if (unlikely(len != sizeof(*head)))
2589 return -EINVAL;
2591 current->robust_list = head;
2593 return 0;
2597 * sys_get_robust_list() - Get the robust-futex list head of a task
2598 * @pid: pid of the process [zero for current task]
2599 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2600 * @len_ptr: pointer to a length field, the kernel fills in the header size
2602 SYSCALL_DEFINE3(get_robust_list, int, pid,
2603 struct robust_list_head __user * __user *, head_ptr,
2604 size_t __user *, len_ptr)
2606 struct robust_list_head __user *head;
2607 unsigned long ret;
2608 struct task_struct *p;
2610 if (!futex_cmpxchg_enabled)
2611 return -ENOSYS;
2613 rcu_read_lock();
2615 ret = -ESRCH;
2616 if (!pid)
2617 p = current;
2618 else {
2619 p = find_task_by_vpid(pid);
2620 if (!p)
2621 goto err_unlock;
2624 ret = -EPERM;
2625 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2626 goto err_unlock;
2628 head = p->robust_list;
2629 rcu_read_unlock();
2631 if (put_user(sizeof(*head), len_ptr))
2632 return -EFAULT;
2633 return put_user(head, head_ptr);
2635 err_unlock:
2636 rcu_read_unlock();
2638 return ret;
2642 * Process a futex-list entry, check whether it's owned by the
2643 * dying task, and do notification if so:
2645 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2647 u32 uval, uninitialized_var(nval), mval;
2649 retry:
2650 if (get_user(uval, uaddr))
2651 return -1;
2653 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2655 * Ok, this dying thread is truly holding a futex
2656 * of interest. Set the OWNER_DIED bit atomically
2657 * via cmpxchg, and if the value had FUTEX_WAITERS
2658 * set, wake up a waiter (if any). (We have to do a
2659 * futex_wake() even if OWNER_DIED is already set -
2660 * to handle the rare but possible case of recursive
2661 * thread-death.) The rest of the cleanup is done in
2662 * userspace.
2664 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2666 * We are not holding a lock here, but we want to have
2667 * the pagefault_disable/enable() protection because
2668 * we want to handle the fault gracefully. If the
2669 * access fails we try to fault in the futex with R/W
2670 * verification via get_user_pages. get_user() above
2671 * does not guarantee R/W access. If that fails we
2672 * give up and leave the futex locked.
2674 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2675 if (fault_in_user_writeable(uaddr))
2676 return -1;
2677 goto retry;
2679 if (nval != uval)
2680 goto retry;
2683 * Wake robust non-PI futexes here. The wakeup of
2684 * PI futexes happens in exit_pi_state():
2686 if (!pi && (uval & FUTEX_WAITERS))
2687 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2689 return 0;
2693 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2695 static inline int fetch_robust_entry(struct robust_list __user **entry,
2696 struct robust_list __user * __user *head,
2697 unsigned int *pi)
2699 unsigned long uentry;
2701 if (get_user(uentry, (unsigned long __user *)head))
2702 return -EFAULT;
2704 *entry = (void __user *)(uentry & ~1UL);
2705 *pi = uentry & 1;
2707 return 0;
2711 * Walk curr->robust_list (very carefully, it's a userspace list!)
2712 * and mark any locks found there dead, and notify any waiters.
2714 * We silently return on any sign of list-walking problem.
2716 void exit_robust_list(struct task_struct *curr)
2718 struct robust_list_head __user *head = curr->robust_list;
2719 struct robust_list __user *entry, *next_entry, *pending;
2720 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2721 unsigned int uninitialized_var(next_pi);
2722 unsigned long futex_offset;
2723 int rc;
2725 if (!futex_cmpxchg_enabled)
2726 return;
2729 * Fetch the list head (which was registered earlier, via
2730 * sys_set_robust_list()):
2732 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2733 return;
2735 * Fetch the relative futex offset:
2737 if (get_user(futex_offset, &head->futex_offset))
2738 return;
2740 * Fetch any possibly pending lock-add first, and handle it
2741 * if it exists:
2743 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2744 return;
2746 next_entry = NULL; /* avoid warning with gcc */
2747 while (entry != &head->list) {
2749 * Fetch the next entry in the list before calling
2750 * handle_futex_death:
2752 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2754 * A pending lock might already be on the list, so
2755 * don't process it twice:
2757 if (entry != pending)
2758 if (handle_futex_death((void __user *)entry + futex_offset,
2759 curr, pi))
2760 return;
2761 if (rc)
2762 return;
2763 entry = next_entry;
2764 pi = next_pi;
2766 * Avoid excessively long or circular lists:
2768 if (!--limit)
2769 break;
2771 cond_resched();
2774 if (pending)
2775 handle_futex_death((void __user *)pending + futex_offset,
2776 curr, pip);
2779 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2780 u32 __user *uaddr2, u32 val2, u32 val3)
2782 int cmd = op & FUTEX_CMD_MASK;
2783 unsigned int flags = 0;
2785 if (!(op & FUTEX_PRIVATE_FLAG))
2786 flags |= FLAGS_SHARED;
2788 if (op & FUTEX_CLOCK_REALTIME) {
2789 flags |= FLAGS_CLOCKRT;
2790 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2791 return -ENOSYS;
2794 switch (cmd) {
2795 case FUTEX_LOCK_PI:
2796 case FUTEX_UNLOCK_PI:
2797 case FUTEX_TRYLOCK_PI:
2798 case FUTEX_WAIT_REQUEUE_PI:
2799 case FUTEX_CMP_REQUEUE_PI:
2800 if (!futex_cmpxchg_enabled)
2801 return -ENOSYS;
2804 switch (cmd) {
2805 case FUTEX_WAIT:
2806 val3 = FUTEX_BITSET_MATCH_ANY;
2807 case FUTEX_WAIT_BITSET:
2808 return futex_wait(uaddr, flags, val, timeout, val3);
2809 case FUTEX_WAKE:
2810 val3 = FUTEX_BITSET_MATCH_ANY;
2811 case FUTEX_WAKE_BITSET:
2812 return futex_wake(uaddr, flags, val, val3);
2813 case FUTEX_REQUEUE:
2814 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2815 case FUTEX_CMP_REQUEUE:
2816 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2817 case FUTEX_WAKE_OP:
2818 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2819 case FUTEX_LOCK_PI:
2820 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2821 case FUTEX_UNLOCK_PI:
2822 return futex_unlock_pi(uaddr, flags);
2823 case FUTEX_TRYLOCK_PI:
2824 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2825 case FUTEX_WAIT_REQUEUE_PI:
2826 val3 = FUTEX_BITSET_MATCH_ANY;
2827 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2828 uaddr2);
2829 case FUTEX_CMP_REQUEUE_PI:
2830 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2832 return -ENOSYS;
2836 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2837 struct timespec __user *, utime, u32 __user *, uaddr2,
2838 u32, val3)
2840 struct timespec ts;
2841 ktime_t t, *tp = NULL;
2842 u32 val2 = 0;
2843 int cmd = op & FUTEX_CMD_MASK;
2845 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2846 cmd == FUTEX_WAIT_BITSET ||
2847 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2848 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2849 return -EFAULT;
2850 if (!timespec_valid(&ts))
2851 return -EINVAL;
2853 t = timespec_to_ktime(ts);
2854 if (cmd == FUTEX_WAIT)
2855 t = ktime_add_safe(ktime_get(), t);
2856 tp = &t;
2859 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2860 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2862 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2863 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2864 val2 = (u32) (unsigned long) utime;
2866 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2869 static void __init futex_detect_cmpxchg(void)
2871 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2872 u32 curval;
2875 * This will fail and we want it. Some arch implementations do
2876 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2877 * functionality. We want to know that before we call in any
2878 * of the complex code paths. Also we want to prevent
2879 * registration of robust lists in that case. NULL is
2880 * guaranteed to fault and we get -EFAULT on functional
2881 * implementation, the non-functional ones will return
2882 * -ENOSYS.
2884 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2885 futex_cmpxchg_enabled = 1;
2886 #endif
2889 static int __init futex_init(void)
2891 int i;
2893 futex_detect_cmpxchg();
2895 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2896 plist_head_init(&futex_queues[i].chain);
2897 spin_lock_init(&futex_queues[i].lock);
2900 return 0;
2902 __initcall(futex_init);