2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
50 #include <linux/freezer.h>
52 #include <asm/uaccess.h>
54 #include <trace/events/timer.h>
59 * There are more clockids then hrtimer bases. Thus, we index
60 * into the timer bases by the hrtimer_base_type enum. When trying
61 * to reach a base using a clockid, hrtimer_clockid_to_base()
62 * is used to convert from clockid to the proper hrtimer_base_type.
64 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
67 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
71 .index
= HRTIMER_BASE_MONOTONIC
,
72 .clockid
= CLOCK_MONOTONIC
,
73 .get_time
= &ktime_get
,
74 .resolution
= KTIME_LOW_RES
,
77 .index
= HRTIMER_BASE_REALTIME
,
78 .clockid
= CLOCK_REALTIME
,
79 .get_time
= &ktime_get_real
,
80 .resolution
= KTIME_LOW_RES
,
83 .index
= HRTIMER_BASE_BOOTTIME
,
84 .clockid
= CLOCK_BOOTTIME
,
85 .get_time
= &ktime_get_boottime
,
86 .resolution
= KTIME_LOW_RES
,
89 .index
= HRTIMER_BASE_TAI
,
91 .get_time
= &ktime_get_clocktai
,
92 .resolution
= KTIME_LOW_RES
,
97 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
98 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
99 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
100 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
101 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
104 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
106 return hrtimer_clock_to_base_table
[clock_id
];
111 * Get the coarse grained time at the softirq based on xtime and
114 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
116 ktime_t xtim
, mono
, boot
;
117 struct timespec xts
, tom
, slp
;
120 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
121 tai_offset
= timekeeping_get_tai_offset();
123 xtim
= timespec_to_ktime(xts
);
124 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
125 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
126 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
127 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
128 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
129 base
->clock_base
[HRTIMER_BASE_TAI
].softirq_time
=
130 ktime_add(xtim
, ktime_set(tai_offset
, 0));
134 * Functions and macros which are different for UP/SMP systems are kept in a
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
152 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
153 unsigned long *flags
)
155 struct hrtimer_clock_base
*base
;
159 if (likely(base
!= NULL
)) {
160 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
161 if (likely(base
== timer
->base
))
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
172 * Get the preferred target CPU for NOHZ
174 static int hrtimer_get_target(int this_cpu
, int pinned
)
176 #ifdef CONFIG_NO_HZ_COMMON
177 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
178 return get_nohz_timer_target();
184 * With HIGHRES=y we do not migrate the timer when it is expiring
185 * before the next event on the target cpu because we cannot reprogram
186 * the target cpu hardware and we would cause it to fire late.
188 * Called with cpu_base->lock of target cpu held.
191 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
193 #ifdef CONFIG_HIGH_RES_TIMERS
196 if (!new_base
->cpu_base
->hres_active
)
199 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
200 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
207 * Switch the timer base to the current CPU when possible.
209 static inline struct hrtimer_clock_base
*
210 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
213 struct hrtimer_clock_base
*new_base
;
214 struct hrtimer_cpu_base
*new_cpu_base
;
215 int this_cpu
= smp_processor_id();
216 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
217 int basenum
= base
->index
;
220 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
221 new_base
= &new_cpu_base
->clock_base
[basenum
];
223 if (base
!= new_base
) {
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
233 if (unlikely(hrtimer_callback_running(timer
)))
236 /* See the comment in lock_timer_base() */
238 raw_spin_unlock(&base
->cpu_base
->lock
);
239 raw_spin_lock(&new_base
->cpu_base
->lock
);
241 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
243 raw_spin_unlock(&new_base
->cpu_base
->lock
);
244 raw_spin_lock(&base
->cpu_base
->lock
);
248 timer
->base
= new_base
;
250 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
258 #else /* CONFIG_SMP */
260 static inline struct hrtimer_clock_base
*
261 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
263 struct hrtimer_clock_base
*base
= timer
->base
;
265 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
270 # define switch_hrtimer_base(t, b, p) (b)
272 #endif /* !CONFIG_SMP */
275 * Functions for the union type storage format of ktime_t which are
276 * too large for inlining:
278 #if BITS_PER_LONG < 64
279 # ifndef CONFIG_KTIME_SCALAR
281 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
283 * @nsec: the scalar nsec value to add
285 * Returns the sum of kt and nsec in ktime_t format
287 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
291 if (likely(nsec
< NSEC_PER_SEC
)) {
294 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
296 /* Make sure nsec fits into long */
297 if (unlikely(nsec
> KTIME_SEC_MAX
))
298 return (ktime_t
){ .tv64
= KTIME_MAX
};
300 tmp
= ktime_set((long)nsec
, rem
);
303 return ktime_add(kt
, tmp
);
306 EXPORT_SYMBOL_GPL(ktime_add_ns
);
309 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
311 * @nsec: the scalar nsec value to subtract
313 * Returns the subtraction of @nsec from @kt in ktime_t format
315 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
319 if (likely(nsec
< NSEC_PER_SEC
)) {
322 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
324 tmp
= ktime_set((long)nsec
, rem
);
327 return ktime_sub(kt
, tmp
);
330 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
331 # endif /* !CONFIG_KTIME_SCALAR */
334 * Divide a ktime value by a nanosecond value
336 u64
ktime_divns(const ktime_t kt
, s64 div
)
341 dclc
= ktime_to_ns(kt
);
342 /* Make sure the divisor is less than 2^32: */
348 do_div(dclc
, (unsigned long) div
);
352 #endif /* BITS_PER_LONG >= 64 */
355 * Add two ktime values and do a safety check for overflow:
357 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
359 ktime_t res
= ktime_add(lhs
, rhs
);
362 * We use KTIME_SEC_MAX here, the maximum timeout which we can
363 * return to user space in a timespec:
365 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
366 res
= ktime_set(KTIME_SEC_MAX
, 0);
371 EXPORT_SYMBOL_GPL(ktime_add_safe
);
373 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
375 static struct debug_obj_descr hrtimer_debug_descr
;
377 static void *hrtimer_debug_hint(void *addr
)
379 return ((struct hrtimer
*) addr
)->function
;
383 * fixup_init is called when:
384 * - an active object is initialized
386 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
388 struct hrtimer
*timer
= addr
;
391 case ODEBUG_STATE_ACTIVE
:
392 hrtimer_cancel(timer
);
393 debug_object_init(timer
, &hrtimer_debug_descr
);
401 * fixup_activate is called when:
402 * - an active object is activated
403 * - an unknown object is activated (might be a statically initialized object)
405 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
409 case ODEBUG_STATE_NOTAVAILABLE
:
413 case ODEBUG_STATE_ACTIVE
:
422 * fixup_free is called when:
423 * - an active object is freed
425 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
427 struct hrtimer
*timer
= addr
;
430 case ODEBUG_STATE_ACTIVE
:
431 hrtimer_cancel(timer
);
432 debug_object_free(timer
, &hrtimer_debug_descr
);
439 static struct debug_obj_descr hrtimer_debug_descr
= {
441 .debug_hint
= hrtimer_debug_hint
,
442 .fixup_init
= hrtimer_fixup_init
,
443 .fixup_activate
= hrtimer_fixup_activate
,
444 .fixup_free
= hrtimer_fixup_free
,
447 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
449 debug_object_init(timer
, &hrtimer_debug_descr
);
452 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
454 debug_object_activate(timer
, &hrtimer_debug_descr
);
457 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
459 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
462 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
464 debug_object_free(timer
, &hrtimer_debug_descr
);
467 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
468 enum hrtimer_mode mode
);
470 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
471 enum hrtimer_mode mode
)
473 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
474 __hrtimer_init(timer
, clock_id
, mode
);
476 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
478 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
480 debug_object_free(timer
, &hrtimer_debug_descr
);
484 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
485 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
486 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
490 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
491 enum hrtimer_mode mode
)
493 debug_hrtimer_init(timer
);
494 trace_hrtimer_init(timer
, clockid
, mode
);
497 static inline void debug_activate(struct hrtimer
*timer
)
499 debug_hrtimer_activate(timer
);
500 trace_hrtimer_start(timer
);
503 static inline void debug_deactivate(struct hrtimer
*timer
)
505 debug_hrtimer_deactivate(timer
);
506 trace_hrtimer_cancel(timer
);
509 /* High resolution timer related functions */
510 #ifdef CONFIG_HIGH_RES_TIMERS
513 * High resolution timer enabled ?
515 static int hrtimer_hres_enabled __read_mostly
= 1;
518 * Enable / Disable high resolution mode
520 static int __init
setup_hrtimer_hres(char *str
)
522 if (!strcmp(str
, "off"))
523 hrtimer_hres_enabled
= 0;
524 else if (!strcmp(str
, "on"))
525 hrtimer_hres_enabled
= 1;
531 __setup("highres=", setup_hrtimer_hres
);
534 * hrtimer_high_res_enabled - query, if the highres mode is enabled
536 static inline int hrtimer_is_hres_enabled(void)
538 return hrtimer_hres_enabled
;
542 * Is the high resolution mode active ?
544 static inline int hrtimer_hres_active(void)
546 return __this_cpu_read(hrtimer_bases
.hres_active
);
550 * Reprogram the event source with checking both queues for the
552 * Called with interrupts disabled and base->lock held
555 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
558 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
559 ktime_t expires
, expires_next
;
561 expires_next
.tv64
= KTIME_MAX
;
563 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
564 struct hrtimer
*timer
;
565 struct timerqueue_node
*next
;
567 next
= timerqueue_getnext(&base
->active
);
570 timer
= container_of(next
, struct hrtimer
, node
);
572 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
574 * clock_was_set() has changed base->offset so the
575 * result might be negative. Fix it up to prevent a
576 * false positive in clockevents_program_event()
578 if (expires
.tv64
< 0)
580 if (expires
.tv64
< expires_next
.tv64
)
581 expires_next
= expires
;
584 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
587 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
590 * If a hang was detected in the last timer interrupt then we
591 * leave the hang delay active in the hardware. We want the
592 * system to make progress. That also prevents the following
594 * T1 expires 50ms from now
595 * T2 expires 5s from now
597 * T1 is removed, so this code is called and would reprogram
598 * the hardware to 5s from now. Any hrtimer_start after that
599 * will not reprogram the hardware due to hang_detected being
600 * set. So we'd effectivly block all timers until the T2 event
603 if (cpu_base
->hang_detected
)
606 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
607 tick_program_event(cpu_base
->expires_next
, 1);
611 * Shared reprogramming for clock_realtime and clock_monotonic
613 * When a timer is enqueued and expires earlier than the already enqueued
614 * timers, we have to check, whether it expires earlier than the timer for
615 * which the clock event device was armed.
617 * Called with interrupts disabled and base->cpu_base.lock held
619 static int hrtimer_reprogram(struct hrtimer
*timer
,
620 struct hrtimer_clock_base
*base
)
622 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
623 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
626 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
629 * When the callback is running, we do not reprogram the clock event
630 * device. The timer callback is either running on a different CPU or
631 * the callback is executed in the hrtimer_interrupt context. The
632 * reprogramming is handled either by the softirq, which called the
633 * callback or at the end of the hrtimer_interrupt.
635 if (hrtimer_callback_running(timer
))
639 * CLOCK_REALTIME timer might be requested with an absolute
640 * expiry time which is less than base->offset. Nothing wrong
641 * about that, just avoid to call into the tick code, which
642 * has now objections against negative expiry values.
644 if (expires
.tv64
< 0)
647 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
651 * If a hang was detected in the last timer interrupt then we
652 * do not schedule a timer which is earlier than the expiry
653 * which we enforced in the hang detection. We want the system
656 if (cpu_base
->hang_detected
)
660 * Clockevents returns -ETIME, when the event was in the past.
662 res
= tick_program_event(expires
, 0);
663 if (!IS_ERR_VALUE(res
))
664 cpu_base
->expires_next
= expires
;
669 * Initialize the high resolution related parts of cpu_base
671 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
673 base
->expires_next
.tv64
= KTIME_MAX
;
674 base
->hres_active
= 0;
678 * When High resolution timers are active, try to reprogram. Note, that in case
679 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
680 * check happens. The timer gets enqueued into the rbtree. The reprogramming
681 * and expiry check is done in the hrtimer_interrupt or in the softirq.
683 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
684 struct hrtimer_clock_base
*base
)
686 return base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
);
689 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
691 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
692 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
693 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
695 return ktime_get_update_offsets(offs_real
, offs_boot
, offs_tai
);
699 * Retrigger next event is called after clock was set
701 * Called with interrupts disabled via on_each_cpu()
703 static void retrigger_next_event(void *arg
)
705 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
707 if (!hrtimer_hres_active())
710 raw_spin_lock(&base
->lock
);
711 hrtimer_update_base(base
);
712 hrtimer_force_reprogram(base
, 0);
713 raw_spin_unlock(&base
->lock
);
717 * Switch to high resolution mode
719 static int hrtimer_switch_to_hres(void)
721 int i
, cpu
= smp_processor_id();
722 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
725 if (base
->hres_active
)
728 local_irq_save(flags
);
730 if (tick_init_highres()) {
731 local_irq_restore(flags
);
732 printk(KERN_WARNING
"Could not switch to high resolution "
733 "mode on CPU %d\n", cpu
);
736 base
->hres_active
= 1;
737 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
738 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
740 tick_setup_sched_timer();
741 /* "Retrigger" the interrupt to get things going */
742 retrigger_next_event(NULL
);
743 local_irq_restore(flags
);
747 static void clock_was_set_work(struct work_struct
*work
)
752 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
755 * Called from timekeeping and resume code to reprogramm the hrtimer
756 * interrupt device on all cpus.
758 void clock_was_set_delayed(void)
760 schedule_work(&hrtimer_work
);
765 static inline int hrtimer_hres_active(void) { return 0; }
766 static inline int hrtimer_is_hres_enabled(void) { return 0; }
767 static inline int hrtimer_switch_to_hres(void) { return 0; }
769 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
770 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
771 struct hrtimer_clock_base
*base
)
775 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
776 static inline void retrigger_next_event(void *arg
) { }
778 #endif /* CONFIG_HIGH_RES_TIMERS */
781 * Clock realtime was set
783 * Change the offset of the realtime clock vs. the monotonic
786 * We might have to reprogram the high resolution timer interrupt. On
787 * SMP we call the architecture specific code to retrigger _all_ high
788 * resolution timer interrupts. On UP we just disable interrupts and
789 * call the high resolution interrupt code.
791 void clock_was_set(void)
793 #ifdef CONFIG_HIGH_RES_TIMERS
794 /* Retrigger the CPU local events everywhere */
795 on_each_cpu(retrigger_next_event
, NULL
, 1);
797 timerfd_clock_was_set();
801 * During resume we might have to reprogram the high resolution timer
802 * interrupt on all online CPUs. However, all other CPUs will be
803 * stopped with IRQs interrupts disabled so the clock_was_set() call
806 void hrtimers_resume(void)
808 WARN_ONCE(!irqs_disabled(),
809 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
811 /* Retrigger on the local CPU */
812 retrigger_next_event(NULL
);
813 /* And schedule a retrigger for all others */
814 clock_was_set_delayed();
817 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
819 #ifdef CONFIG_TIMER_STATS
820 if (timer
->start_site
)
822 timer
->start_site
= __builtin_return_address(0);
823 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
824 timer
->start_pid
= current
->pid
;
828 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
830 #ifdef CONFIG_TIMER_STATS
831 timer
->start_site
= NULL
;
835 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
837 #ifdef CONFIG_TIMER_STATS
838 if (likely(!timer_stats_active
))
840 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
841 timer
->function
, timer
->start_comm
, 0);
846 * Counterpart to lock_hrtimer_base above:
849 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
851 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
855 * hrtimer_forward - forward the timer expiry
856 * @timer: hrtimer to forward
857 * @now: forward past this time
858 * @interval: the interval to forward
860 * Forward the timer expiry so it will expire in the future.
861 * Returns the number of overruns.
863 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
868 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
873 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
874 interval
.tv64
= timer
->base
->resolution
.tv64
;
876 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
877 s64 incr
= ktime_to_ns(interval
);
879 orun
= ktime_divns(delta
, incr
);
880 hrtimer_add_expires_ns(timer
, incr
* orun
);
881 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
884 * This (and the ktime_add() below) is the
885 * correction for exact:
889 hrtimer_add_expires(timer
, interval
);
893 EXPORT_SYMBOL_GPL(hrtimer_forward
);
896 * enqueue_hrtimer - internal function to (re)start a timer
898 * The timer is inserted in expiry order. Insertion into the
899 * red black tree is O(log(n)). Must hold the base lock.
901 * Returns 1 when the new timer is the leftmost timer in the tree.
903 static int enqueue_hrtimer(struct hrtimer
*timer
,
904 struct hrtimer_clock_base
*base
)
906 debug_activate(timer
);
908 timerqueue_add(&base
->active
, &timer
->node
);
909 base
->cpu_base
->active_bases
|= 1 << base
->index
;
912 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
913 * state of a possibly running callback.
915 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
917 return (&timer
->node
== base
->active
.next
);
921 * __remove_hrtimer - internal function to remove a timer
923 * Caller must hold the base lock.
925 * High resolution timer mode reprograms the clock event device when the
926 * timer is the one which expires next. The caller can disable this by setting
927 * reprogram to zero. This is useful, when the context does a reprogramming
928 * anyway (e.g. timer interrupt)
930 static void __remove_hrtimer(struct hrtimer
*timer
,
931 struct hrtimer_clock_base
*base
,
932 unsigned long newstate
, int reprogram
)
934 struct timerqueue_node
*next_timer
;
935 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
938 next_timer
= timerqueue_getnext(&base
->active
);
939 timerqueue_del(&base
->active
, &timer
->node
);
940 if (&timer
->node
== next_timer
) {
941 #ifdef CONFIG_HIGH_RES_TIMERS
942 /* Reprogram the clock event device. if enabled */
943 if (reprogram
&& hrtimer_hres_active()) {
946 expires
= ktime_sub(hrtimer_get_expires(timer
),
948 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
949 hrtimer_force_reprogram(base
->cpu_base
, 1);
953 if (!timerqueue_getnext(&base
->active
))
954 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
956 timer
->state
= newstate
;
960 * remove hrtimer, called with base lock held
963 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
965 if (hrtimer_is_queued(timer
)) {
970 * Remove the timer and force reprogramming when high
971 * resolution mode is active and the timer is on the current
972 * CPU. If we remove a timer on another CPU, reprogramming is
973 * skipped. The interrupt event on this CPU is fired and
974 * reprogramming happens in the interrupt handler. This is a
975 * rare case and less expensive than a smp call.
977 debug_deactivate(timer
);
978 timer_stats_hrtimer_clear_start_info(timer
);
979 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
981 * We must preserve the CALLBACK state flag here,
982 * otherwise we could move the timer base in
983 * switch_hrtimer_base.
985 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
986 __remove_hrtimer(timer
, base
, state
, reprogram
);
992 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
993 unsigned long delta_ns
, const enum hrtimer_mode mode
,
996 struct hrtimer_clock_base
*base
, *new_base
;
1000 base
= lock_hrtimer_base(timer
, &flags
);
1002 /* Remove an active timer from the queue: */
1003 ret
= remove_hrtimer(timer
, base
);
1005 if (mode
& HRTIMER_MODE_REL
) {
1006 tim
= ktime_add_safe(tim
, base
->get_time());
1008 * CONFIG_TIME_LOW_RES is a temporary way for architectures
1009 * to signal that they simply return xtime in
1010 * do_gettimeoffset(). In this case we want to round up by
1011 * resolution when starting a relative timer, to avoid short
1012 * timeouts. This will go away with the GTOD framework.
1014 #ifdef CONFIG_TIME_LOW_RES
1015 tim
= ktime_add_safe(tim
, base
->resolution
);
1019 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
1021 /* Switch the timer base, if necessary: */
1022 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
1024 timer_stats_hrtimer_set_start_info(timer
);
1026 leftmost
= enqueue_hrtimer(timer
, new_base
);
1029 * Only allow reprogramming if the new base is on this CPU.
1030 * (it might still be on another CPU if the timer was pending)
1032 * XXX send_remote_softirq() ?
1034 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
)
1035 && hrtimer_enqueue_reprogram(timer
, new_base
)) {
1038 * We need to drop cpu_base->lock to avoid a
1039 * lock ordering issue vs. rq->lock.
1041 raw_spin_unlock(&new_base
->cpu_base
->lock
);
1042 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1043 local_irq_restore(flags
);
1046 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1050 unlock_hrtimer_base(timer
, &flags
);
1056 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1057 * @timer: the timer to be added
1059 * @delta_ns: "slack" range for the timer
1060 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1061 * relative (HRTIMER_MODE_REL)
1065 * 1 when the timer was active
1067 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1068 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1070 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1072 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1075 * hrtimer_start - (re)start an hrtimer on the current CPU
1076 * @timer: the timer to be added
1078 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1079 * relative (HRTIMER_MODE_REL)
1083 * 1 when the timer was active
1086 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1088 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1090 EXPORT_SYMBOL_GPL(hrtimer_start
);
1094 * hrtimer_try_to_cancel - try to deactivate a timer
1095 * @timer: hrtimer to stop
1098 * 0 when the timer was not active
1099 * 1 when the timer was active
1100 * -1 when the timer is currently excuting the callback function and
1103 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1105 struct hrtimer_clock_base
*base
;
1106 unsigned long flags
;
1109 base
= lock_hrtimer_base(timer
, &flags
);
1111 if (!hrtimer_callback_running(timer
))
1112 ret
= remove_hrtimer(timer
, base
);
1114 unlock_hrtimer_base(timer
, &flags
);
1119 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1122 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1123 * @timer: the timer to be cancelled
1126 * 0 when the timer was not active
1127 * 1 when the timer was active
1129 int hrtimer_cancel(struct hrtimer
*timer
)
1132 int ret
= hrtimer_try_to_cancel(timer
);
1139 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1142 * hrtimer_get_remaining - get remaining time for the timer
1143 * @timer: the timer to read
1145 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1147 unsigned long flags
;
1150 lock_hrtimer_base(timer
, &flags
);
1151 rem
= hrtimer_expires_remaining(timer
);
1152 unlock_hrtimer_base(timer
, &flags
);
1156 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1158 #ifdef CONFIG_NO_HZ_COMMON
1160 * hrtimer_get_next_event - get the time until next expiry event
1162 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1165 ktime_t
hrtimer_get_next_event(void)
1167 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1168 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1169 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1170 unsigned long flags
;
1173 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1175 if (!hrtimer_hres_active()) {
1176 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1177 struct hrtimer
*timer
;
1178 struct timerqueue_node
*next
;
1180 next
= timerqueue_getnext(&base
->active
);
1184 timer
= container_of(next
, struct hrtimer
, node
);
1185 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1186 delta
= ktime_sub(delta
, base
->get_time());
1187 if (delta
.tv64
< mindelta
.tv64
)
1188 mindelta
.tv64
= delta
.tv64
;
1192 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1194 if (mindelta
.tv64
< 0)
1200 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1201 enum hrtimer_mode mode
)
1203 struct hrtimer_cpu_base
*cpu_base
;
1206 memset(timer
, 0, sizeof(struct hrtimer
));
1208 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1210 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1211 clock_id
= CLOCK_MONOTONIC
;
1213 base
= hrtimer_clockid_to_base(clock_id
);
1214 timer
->base
= &cpu_base
->clock_base
[base
];
1215 timerqueue_init(&timer
->node
);
1217 #ifdef CONFIG_TIMER_STATS
1218 timer
->start_site
= NULL
;
1219 timer
->start_pid
= -1;
1220 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1225 * hrtimer_init - initialize a timer to the given clock
1226 * @timer: the timer to be initialized
1227 * @clock_id: the clock to be used
1228 * @mode: timer mode abs/rel
1230 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1231 enum hrtimer_mode mode
)
1233 debug_init(timer
, clock_id
, mode
);
1234 __hrtimer_init(timer
, clock_id
, mode
);
1236 EXPORT_SYMBOL_GPL(hrtimer_init
);
1239 * hrtimer_get_res - get the timer resolution for a clock
1240 * @which_clock: which clock to query
1241 * @tp: pointer to timespec variable to store the resolution
1243 * Store the resolution of the clock selected by @which_clock in the
1244 * variable pointed to by @tp.
1246 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1248 struct hrtimer_cpu_base
*cpu_base
;
1249 int base
= hrtimer_clockid_to_base(which_clock
);
1251 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1252 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1256 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1258 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1260 struct hrtimer_clock_base
*base
= timer
->base
;
1261 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1262 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1265 WARN_ON(!irqs_disabled());
1267 debug_deactivate(timer
);
1268 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1269 timer_stats_account_hrtimer(timer
);
1270 fn
= timer
->function
;
1273 * Because we run timers from hardirq context, there is no chance
1274 * they get migrated to another cpu, therefore its safe to unlock
1277 raw_spin_unlock(&cpu_base
->lock
);
1278 trace_hrtimer_expire_entry(timer
, now
);
1279 restart
= fn(timer
);
1280 trace_hrtimer_expire_exit(timer
);
1281 raw_spin_lock(&cpu_base
->lock
);
1284 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1285 * we do not reprogramm the event hardware. Happens either in
1286 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1288 if (restart
!= HRTIMER_NORESTART
) {
1289 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1290 enqueue_hrtimer(timer
, base
);
1293 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1295 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1298 #ifdef CONFIG_HIGH_RES_TIMERS
1301 * High resolution timer interrupt
1302 * Called with interrupts disabled
1304 void hrtimer_interrupt(struct clock_event_device
*dev
)
1306 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1307 ktime_t expires_next
, now
, entry_time
, delta
;
1310 BUG_ON(!cpu_base
->hres_active
);
1311 cpu_base
->nr_events
++;
1312 dev
->next_event
.tv64
= KTIME_MAX
;
1314 raw_spin_lock(&cpu_base
->lock
);
1315 entry_time
= now
= hrtimer_update_base(cpu_base
);
1317 expires_next
.tv64
= KTIME_MAX
;
1319 * We set expires_next to KTIME_MAX here with cpu_base->lock
1320 * held to prevent that a timer is enqueued in our queue via
1321 * the migration code. This does not affect enqueueing of
1322 * timers which run their callback and need to be requeued on
1325 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1327 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1328 struct hrtimer_clock_base
*base
;
1329 struct timerqueue_node
*node
;
1332 if (!(cpu_base
->active_bases
& (1 << i
)))
1335 base
= cpu_base
->clock_base
+ i
;
1336 basenow
= ktime_add(now
, base
->offset
);
1338 while ((node
= timerqueue_getnext(&base
->active
))) {
1339 struct hrtimer
*timer
;
1341 timer
= container_of(node
, struct hrtimer
, node
);
1344 * The immediate goal for using the softexpires is
1345 * minimizing wakeups, not running timers at the
1346 * earliest interrupt after their soft expiration.
1347 * This allows us to avoid using a Priority Search
1348 * Tree, which can answer a stabbing querry for
1349 * overlapping intervals and instead use the simple
1350 * BST we already have.
1351 * We don't add extra wakeups by delaying timers that
1352 * are right-of a not yet expired timer, because that
1353 * timer will have to trigger a wakeup anyway.
1356 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1359 expires
= ktime_sub(hrtimer_get_expires(timer
),
1361 if (expires
.tv64
< 0)
1362 expires
.tv64
= KTIME_MAX
;
1363 if (expires
.tv64
< expires_next
.tv64
)
1364 expires_next
= expires
;
1368 __run_hrtimer(timer
, &basenow
);
1373 * Store the new expiry value so the migration code can verify
1376 cpu_base
->expires_next
= expires_next
;
1377 raw_spin_unlock(&cpu_base
->lock
);
1379 /* Reprogramming necessary ? */
1380 if (expires_next
.tv64
== KTIME_MAX
||
1381 !tick_program_event(expires_next
, 0)) {
1382 cpu_base
->hang_detected
= 0;
1387 * The next timer was already expired due to:
1389 * - long lasting callbacks
1390 * - being scheduled away when running in a VM
1392 * We need to prevent that we loop forever in the hrtimer
1393 * interrupt routine. We give it 3 attempts to avoid
1394 * overreacting on some spurious event.
1396 * Acquire base lock for updating the offsets and retrieving
1399 raw_spin_lock(&cpu_base
->lock
);
1400 now
= hrtimer_update_base(cpu_base
);
1401 cpu_base
->nr_retries
++;
1405 * Give the system a chance to do something else than looping
1406 * here. We stored the entry time, so we know exactly how long
1407 * we spent here. We schedule the next event this amount of
1410 cpu_base
->nr_hangs
++;
1411 cpu_base
->hang_detected
= 1;
1412 raw_spin_unlock(&cpu_base
->lock
);
1413 delta
= ktime_sub(now
, entry_time
);
1414 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1415 cpu_base
->max_hang_time
= delta
;
1417 * Limit it to a sensible value as we enforce a longer
1418 * delay. Give the CPU at least 100ms to catch up.
1420 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1421 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1423 expires_next
= ktime_add(now
, delta
);
1424 tick_program_event(expires_next
, 1);
1425 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1426 ktime_to_ns(delta
));
1430 * local version of hrtimer_peek_ahead_timers() called with interrupts
1433 static void __hrtimer_peek_ahead_timers(void)
1435 struct tick_device
*td
;
1437 if (!hrtimer_hres_active())
1440 td
= &__get_cpu_var(tick_cpu_device
);
1441 if (td
&& td
->evtdev
)
1442 hrtimer_interrupt(td
->evtdev
);
1446 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1448 * hrtimer_peek_ahead_timers will peek at the timer queue of
1449 * the current cpu and check if there are any timers for which
1450 * the soft expires time has passed. If any such timers exist,
1451 * they are run immediately and then removed from the timer queue.
1454 void hrtimer_peek_ahead_timers(void)
1456 unsigned long flags
;
1458 local_irq_save(flags
);
1459 __hrtimer_peek_ahead_timers();
1460 local_irq_restore(flags
);
1463 static void run_hrtimer_softirq(struct softirq_action
*h
)
1465 hrtimer_peek_ahead_timers();
1468 #else /* CONFIG_HIGH_RES_TIMERS */
1470 static inline void __hrtimer_peek_ahead_timers(void) { }
1472 #endif /* !CONFIG_HIGH_RES_TIMERS */
1475 * Called from timer softirq every jiffy, expire hrtimers:
1477 * For HRT its the fall back code to run the softirq in the timer
1478 * softirq context in case the hrtimer initialization failed or has
1479 * not been done yet.
1481 void hrtimer_run_pending(void)
1483 if (hrtimer_hres_active())
1487 * This _is_ ugly: We have to check in the softirq context,
1488 * whether we can switch to highres and / or nohz mode. The
1489 * clocksource switch happens in the timer interrupt with
1490 * xtime_lock held. Notification from there only sets the
1491 * check bit in the tick_oneshot code, otherwise we might
1492 * deadlock vs. xtime_lock.
1494 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1495 hrtimer_switch_to_hres();
1499 * Called from hardirq context every jiffy
1501 void hrtimer_run_queues(void)
1503 struct timerqueue_node
*node
;
1504 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1505 struct hrtimer_clock_base
*base
;
1506 int index
, gettime
= 1;
1508 if (hrtimer_hres_active())
1511 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1512 base
= &cpu_base
->clock_base
[index
];
1513 if (!timerqueue_getnext(&base
->active
))
1517 hrtimer_get_softirq_time(cpu_base
);
1521 raw_spin_lock(&cpu_base
->lock
);
1523 while ((node
= timerqueue_getnext(&base
->active
))) {
1524 struct hrtimer
*timer
;
1526 timer
= container_of(node
, struct hrtimer
, node
);
1527 if (base
->softirq_time
.tv64
<=
1528 hrtimer_get_expires_tv64(timer
))
1531 __run_hrtimer(timer
, &base
->softirq_time
);
1533 raw_spin_unlock(&cpu_base
->lock
);
1538 * Sleep related functions:
1540 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1542 struct hrtimer_sleeper
*t
=
1543 container_of(timer
, struct hrtimer_sleeper
, timer
);
1544 struct task_struct
*task
= t
->task
;
1548 wake_up_process(task
);
1550 return HRTIMER_NORESTART
;
1553 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1555 sl
->timer
.function
= hrtimer_wakeup
;
1558 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1560 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1562 hrtimer_init_sleeper(t
, current
);
1565 set_current_state(TASK_INTERRUPTIBLE
);
1566 hrtimer_start_expires(&t
->timer
, mode
);
1567 if (!hrtimer_active(&t
->timer
))
1570 if (likely(t
->task
))
1571 freezable_schedule();
1573 hrtimer_cancel(&t
->timer
);
1574 mode
= HRTIMER_MODE_ABS
;
1576 } while (t
->task
&& !signal_pending(current
));
1578 __set_current_state(TASK_RUNNING
);
1580 return t
->task
== NULL
;
1583 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1585 struct timespec rmt
;
1588 rem
= hrtimer_expires_remaining(timer
);
1591 rmt
= ktime_to_timespec(rem
);
1593 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1599 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1601 struct hrtimer_sleeper t
;
1602 struct timespec __user
*rmtp
;
1605 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1607 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1609 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1612 rmtp
= restart
->nanosleep
.rmtp
;
1614 ret
= update_rmtp(&t
.timer
, rmtp
);
1619 /* The other values in restart are already filled in */
1620 ret
= -ERESTART_RESTARTBLOCK
;
1622 destroy_hrtimer_on_stack(&t
.timer
);
1626 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1627 const enum hrtimer_mode mode
, const clockid_t clockid
)
1629 struct restart_block
*restart
;
1630 struct hrtimer_sleeper t
;
1632 unsigned long slack
;
1634 slack
= current
->timer_slack_ns
;
1635 if (rt_task(current
))
1638 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1639 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1640 if (do_nanosleep(&t
, mode
))
1643 /* Absolute timers do not update the rmtp value and restart: */
1644 if (mode
== HRTIMER_MODE_ABS
) {
1645 ret
= -ERESTARTNOHAND
;
1650 ret
= update_rmtp(&t
.timer
, rmtp
);
1655 restart
= ¤t_thread_info()->restart_block
;
1656 restart
->fn
= hrtimer_nanosleep_restart
;
1657 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1658 restart
->nanosleep
.rmtp
= rmtp
;
1659 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1661 ret
= -ERESTART_RESTARTBLOCK
;
1663 destroy_hrtimer_on_stack(&t
.timer
);
1667 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1668 struct timespec __user
*, rmtp
)
1672 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1675 if (!timespec_valid(&tu
))
1678 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1682 * Functions related to boot-time initialization:
1684 static void init_hrtimers_cpu(int cpu
)
1686 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1689 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1690 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1691 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1694 hrtimer_init_hres(cpu_base
);
1697 #ifdef CONFIG_HOTPLUG_CPU
1699 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1700 struct hrtimer_clock_base
*new_base
)
1702 struct hrtimer
*timer
;
1703 struct timerqueue_node
*node
;
1705 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1706 timer
= container_of(node
, struct hrtimer
, node
);
1707 BUG_ON(hrtimer_callback_running(timer
));
1708 debug_deactivate(timer
);
1711 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1712 * timer could be seen as !active and just vanish away
1713 * under us on another CPU
1715 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1716 timer
->base
= new_base
;
1718 * Enqueue the timers on the new cpu. This does not
1719 * reprogram the event device in case the timer
1720 * expires before the earliest on this CPU, but we run
1721 * hrtimer_interrupt after we migrated everything to
1722 * sort out already expired timers and reprogram the
1725 enqueue_hrtimer(timer
, new_base
);
1727 /* Clear the migration state bit */
1728 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1732 static void migrate_hrtimers(int scpu
)
1734 struct hrtimer_cpu_base
*old_base
, *new_base
;
1737 BUG_ON(cpu_online(scpu
));
1738 tick_cancel_sched_timer(scpu
);
1740 local_irq_disable();
1741 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1742 new_base
= &__get_cpu_var(hrtimer_bases
);
1744 * The caller is globally serialized and nobody else
1745 * takes two locks at once, deadlock is not possible.
1747 raw_spin_lock(&new_base
->lock
);
1748 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1750 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1751 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1752 &new_base
->clock_base
[i
]);
1755 raw_spin_unlock(&old_base
->lock
);
1756 raw_spin_unlock(&new_base
->lock
);
1758 /* Check, if we got expired work to do */
1759 __hrtimer_peek_ahead_timers();
1763 #endif /* CONFIG_HOTPLUG_CPU */
1765 static int hrtimer_cpu_notify(struct notifier_block
*self
,
1766 unsigned long action
, void *hcpu
)
1768 int scpu
= (long)hcpu
;
1772 case CPU_UP_PREPARE
:
1773 case CPU_UP_PREPARE_FROZEN
:
1774 init_hrtimers_cpu(scpu
);
1777 #ifdef CONFIG_HOTPLUG_CPU
1779 case CPU_DYING_FROZEN
:
1780 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1783 case CPU_DEAD_FROZEN
:
1785 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1786 migrate_hrtimers(scpu
);
1798 static struct notifier_block hrtimers_nb
= {
1799 .notifier_call
= hrtimer_cpu_notify
,
1802 void __init
hrtimers_init(void)
1804 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1805 (void *)(long)smp_processor_id());
1806 register_cpu_notifier(&hrtimers_nb
);
1807 #ifdef CONFIG_HIGH_RES_TIMERS
1808 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1813 * schedule_hrtimeout_range_clock - sleep until timeout
1814 * @expires: timeout value (ktime_t)
1815 * @delta: slack in expires timeout (ktime_t)
1816 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1817 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1820 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1821 const enum hrtimer_mode mode
, int clock
)
1823 struct hrtimer_sleeper t
;
1826 * Optimize when a zero timeout value is given. It does not
1827 * matter whether this is an absolute or a relative time.
1829 if (expires
&& !expires
->tv64
) {
1830 __set_current_state(TASK_RUNNING
);
1835 * A NULL parameter means "infinite"
1839 __set_current_state(TASK_RUNNING
);
1843 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1844 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1846 hrtimer_init_sleeper(&t
, current
);
1848 hrtimer_start_expires(&t
.timer
, mode
);
1849 if (!hrtimer_active(&t
.timer
))
1855 hrtimer_cancel(&t
.timer
);
1856 destroy_hrtimer_on_stack(&t
.timer
);
1858 __set_current_state(TASK_RUNNING
);
1860 return !t
.task
? 0 : -EINTR
;
1864 * schedule_hrtimeout_range - sleep until timeout
1865 * @expires: timeout value (ktime_t)
1866 * @delta: slack in expires timeout (ktime_t)
1867 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1869 * Make the current task sleep until the given expiry time has
1870 * elapsed. The routine will return immediately unless
1871 * the current task state has been set (see set_current_state()).
1873 * The @delta argument gives the kernel the freedom to schedule the
1874 * actual wakeup to a time that is both power and performance friendly.
1875 * The kernel give the normal best effort behavior for "@expires+@delta",
1876 * but may decide to fire the timer earlier, but no earlier than @expires.
1878 * You can set the task state as follows -
1880 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1881 * pass before the routine returns.
1883 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1884 * delivered to the current task.
1886 * The current task state is guaranteed to be TASK_RUNNING when this
1889 * Returns 0 when the timer has expired otherwise -EINTR
1891 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1892 const enum hrtimer_mode mode
)
1894 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1897 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1900 * schedule_hrtimeout - sleep until timeout
1901 * @expires: timeout value (ktime_t)
1902 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1904 * Make the current task sleep until the given expiry time has
1905 * elapsed. The routine will return immediately unless
1906 * the current task state has been set (see set_current_state()).
1908 * You can set the task state as follows -
1910 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1911 * pass before the routine returns.
1913 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1914 * delivered to the current task.
1916 * The current task state is guaranteed to be TASK_RUNNING when this
1919 * Returns 0 when the timer has expired otherwise -EINTR
1921 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1922 const enum hrtimer_mode mode
)
1924 return schedule_hrtimeout_range(expires
, 0, mode
);
1926 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);