hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / kernel / rtmutex.c
blob51a83343df68e3cffb865fcc33ce9c689dbaa363
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 * started by Ingo Molnar and Thomas Gleixner.
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
11 * See Documentation/rt-mutex-design.txt for details.
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/timer.h>
19 #include "rtmutex_common.h"
22 * lock->owner state tracking:
24 * lock->owner holds the task_struct pointer of the owner. Bit 0
25 * is used to keep track of the "lock has waiters" state.
27 * owner bit0
28 * NULL 0 lock is free (fast acquire possible)
29 * NULL 1 lock is free and has waiters and the top waiter
30 * is going to take the lock*
31 * taskpointer 0 lock is held (fast release possible)
32 * taskpointer 1 lock is held and has waiters**
34 * The fast atomic compare exchange based acquire and release is only
35 * possible when bit 0 of lock->owner is 0.
37 * (*) It also can be a transitional state when grabbing the lock
38 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
39 * we need to set the bit0 before looking at the lock, and the owner may be
40 * NULL in this small time, hence this can be a transitional state.
42 * (**) There is a small time when bit 0 is set but there are no
43 * waiters. This can happen when grabbing the lock in the slow path.
44 * To prevent a cmpxchg of the owner releasing the lock, we need to
45 * set this bit before looking at the lock.
48 static void
49 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 unsigned long val = (unsigned long)owner;
53 if (rt_mutex_has_waiters(lock))
54 val |= RT_MUTEX_HAS_WAITERS;
56 lock->owner = (struct task_struct *)val;
59 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 lock->owner = (struct task_struct *)
62 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
65 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 if (!rt_mutex_has_waiters(lock))
68 clear_rt_mutex_waiters(lock);
72 * We can speed up the acquire/release, if the architecture
73 * supports cmpxchg and if there's no debugging state to be set up
75 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
76 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
77 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 unsigned long owner, *p = (unsigned long *) &lock->owner;
81 do {
82 owner = *p;
83 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
87 * Safe fastpath aware unlock:
88 * 1) Clear the waiters bit
89 * 2) Drop lock->wait_lock
90 * 3) Try to unlock the lock with cmpxchg
92 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
93 __releases(lock->wait_lock)
95 struct task_struct *owner = rt_mutex_owner(lock);
97 clear_rt_mutex_waiters(lock);
98 raw_spin_unlock(&lock->wait_lock);
100 * If a new waiter comes in between the unlock and the cmpxchg
101 * we have two situations:
103 * unlock(wait_lock);
104 * lock(wait_lock);
105 * cmpxchg(p, owner, 0) == owner
106 * mark_rt_mutex_waiters(lock);
107 * acquire(lock);
108 * or:
110 * unlock(wait_lock);
111 * lock(wait_lock);
112 * mark_rt_mutex_waiters(lock);
114 * cmpxchg(p, owner, 0) != owner
115 * enqueue_waiter();
116 * unlock(wait_lock);
117 * lock(wait_lock);
118 * wake waiter();
119 * unlock(wait_lock);
120 * lock(wait_lock);
121 * acquire(lock);
123 return rt_mutex_cmpxchg(lock, owner, NULL);
126 #else
127 # define rt_mutex_cmpxchg(l,c,n) (0)
128 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130 lock->owner = (struct task_struct *)
131 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
135 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
138 __releases(lock->wait_lock)
140 lock->owner = NULL;
141 raw_spin_unlock(&lock->wait_lock);
142 return true;
144 #endif
147 * Calculate task priority from the waiter list priority
149 * Return task->normal_prio when the waiter list is empty or when
150 * the waiter is not allowed to do priority boosting
152 int rt_mutex_getprio(struct task_struct *task)
154 if (likely(!task_has_pi_waiters(task)))
155 return task->normal_prio;
157 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
158 task->normal_prio);
162 * Adjust the priority of a task, after its pi_waiters got modified.
164 * This can be both boosting and unboosting. task->pi_lock must be held.
166 static void __rt_mutex_adjust_prio(struct task_struct *task)
168 int prio = rt_mutex_getprio(task);
170 if (task->prio != prio)
171 rt_mutex_setprio(task, prio);
175 * Adjust task priority (undo boosting). Called from the exit path of
176 * rt_mutex_slowunlock() and rt_mutex_slowlock().
178 * (Note: We do this outside of the protection of lock->wait_lock to
179 * allow the lock to be taken while or before we readjust the priority
180 * of task. We do not use the spin_xx_mutex() variants here as we are
181 * outside of the debug path.)
183 static void rt_mutex_adjust_prio(struct task_struct *task)
185 unsigned long flags;
187 raw_spin_lock_irqsave(&task->pi_lock, flags);
188 __rt_mutex_adjust_prio(task);
189 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
193 * Max number of times we'll walk the boosting chain:
195 int max_lock_depth = 1024;
197 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
199 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
203 * Adjust the priority chain. Also used for deadlock detection.
204 * Decreases task's usage by one - may thus free the task.
206 * @task: the task owning the mutex (owner) for which a chain walk is
207 * probably needed
208 * @deadlock_detect: do we have to carry out deadlock detection?
209 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
210 * things for a task that has just got its priority adjusted, and
211 * is waiting on a mutex)
212 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
213 * we dropped its pi_lock. Is never dereferenced, only used for
214 * comparison to detect lock chain changes.
215 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
216 * its priority to the mutex owner (can be NULL in the case
217 * depicted above or if the top waiter is gone away and we are
218 * actually deboosting the owner)
219 * @top_task: the current top waiter
221 * Returns 0 or -EDEADLK.
223 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
224 int deadlock_detect,
225 struct rt_mutex *orig_lock,
226 struct rt_mutex *next_lock,
227 struct rt_mutex_waiter *orig_waiter,
228 struct task_struct *top_task)
230 struct rt_mutex *lock;
231 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
232 int detect_deadlock, ret = 0, depth = 0;
233 unsigned long flags;
235 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
236 deadlock_detect);
239 * The (de)boosting is a step by step approach with a lot of
240 * pitfalls. We want this to be preemptible and we want hold a
241 * maximum of two locks per step. So we have to check
242 * carefully whether things change under us.
244 again:
245 if (++depth > max_lock_depth) {
246 static int prev_max;
249 * Print this only once. If the admin changes the limit,
250 * print a new message when reaching the limit again.
252 if (prev_max != max_lock_depth) {
253 prev_max = max_lock_depth;
254 printk(KERN_WARNING "Maximum lock depth %d reached "
255 "task: %s (%d)\n", max_lock_depth,
256 top_task->comm, task_pid_nr(top_task));
258 put_task_struct(task);
260 return -EDEADLK;
262 retry:
264 * Task can not go away as we did a get_task() before !
266 raw_spin_lock_irqsave(&task->pi_lock, flags);
268 waiter = task->pi_blocked_on;
270 * Check whether the end of the boosting chain has been
271 * reached or the state of the chain has changed while we
272 * dropped the locks.
274 if (!waiter)
275 goto out_unlock_pi;
278 * Check the orig_waiter state. After we dropped the locks,
279 * the previous owner of the lock might have released the lock.
281 if (orig_waiter && !rt_mutex_owner(orig_lock))
282 goto out_unlock_pi;
285 * We dropped all locks after taking a refcount on @task, so
286 * the task might have moved on in the lock chain or even left
287 * the chain completely and blocks now on an unrelated lock or
288 * on @orig_lock.
290 * We stored the lock on which @task was blocked in @next_lock,
291 * so we can detect the chain change.
293 if (next_lock != waiter->lock)
294 goto out_unlock_pi;
297 * Drop out, when the task has no waiters. Note,
298 * top_waiter can be NULL, when we are in the deboosting
299 * mode!
301 if (top_waiter) {
302 if (!task_has_pi_waiters(task))
303 goto out_unlock_pi;
305 * If deadlock detection is off, we stop here if we
306 * are not the top pi waiter of the task.
308 if (!detect_deadlock && top_waiter != task_top_pi_waiter(task))
309 goto out_unlock_pi;
313 * When deadlock detection is off then we check, if further
314 * priority adjustment is necessary.
316 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
317 goto out_unlock_pi;
319 lock = waiter->lock;
320 if (!raw_spin_trylock(&lock->wait_lock)) {
321 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
322 cpu_relax();
323 goto retry;
327 * Deadlock detection. If the lock is the same as the original
328 * lock which caused us to walk the lock chain or if the
329 * current lock is owned by the task which initiated the chain
330 * walk, we detected a deadlock.
332 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
333 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
334 raw_spin_unlock(&lock->wait_lock);
335 ret = -EDEADLK;
336 goto out_unlock_pi;
339 top_waiter = rt_mutex_top_waiter(lock);
341 /* Requeue the waiter */
342 plist_del(&waiter->list_entry, &lock->wait_list);
343 waiter->list_entry.prio = task->prio;
344 plist_add(&waiter->list_entry, &lock->wait_list);
346 /* Release the task */
347 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
348 if (!rt_mutex_owner(lock)) {
350 * If the requeue above changed the top waiter, then we need
351 * to wake the new top waiter up to try to get the lock.
354 if (top_waiter != rt_mutex_top_waiter(lock))
355 wake_up_process(rt_mutex_top_waiter(lock)->task);
356 raw_spin_unlock(&lock->wait_lock);
357 goto out_put_task;
359 put_task_struct(task);
361 /* Grab the next task */
362 task = rt_mutex_owner(lock);
363 get_task_struct(task);
364 raw_spin_lock_irqsave(&task->pi_lock, flags);
366 if (waiter == rt_mutex_top_waiter(lock)) {
367 /* Boost the owner */
368 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
369 waiter->pi_list_entry.prio = waiter->list_entry.prio;
370 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
371 __rt_mutex_adjust_prio(task);
373 } else if (top_waiter == waiter) {
374 /* Deboost the owner */
375 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
376 waiter = rt_mutex_top_waiter(lock);
377 waiter->pi_list_entry.prio = waiter->list_entry.prio;
378 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
379 __rt_mutex_adjust_prio(task);
383 * Check whether the task which owns the current lock is pi
384 * blocked itself. If yes we store a pointer to the lock for
385 * the lock chain change detection above. After we dropped
386 * task->pi_lock next_lock cannot be dereferenced anymore.
388 next_lock = task_blocked_on_lock(task);
390 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
392 top_waiter = rt_mutex_top_waiter(lock);
393 raw_spin_unlock(&lock->wait_lock);
396 * We reached the end of the lock chain. Stop right here. No
397 * point to go back just to figure that out.
399 if (!next_lock)
400 goto out_put_task;
402 if (!detect_deadlock && waiter != top_waiter)
403 goto out_put_task;
405 goto again;
407 out_unlock_pi:
408 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
409 out_put_task:
410 put_task_struct(task);
412 return ret;
416 * Try to take an rt-mutex
418 * Must be called with lock->wait_lock held.
420 * @lock: the lock to be acquired.
421 * @task: the task which wants to acquire the lock
422 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
424 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
425 struct rt_mutex_waiter *waiter)
428 * We have to be careful here if the atomic speedups are
429 * enabled, such that, when
430 * - no other waiter is on the lock
431 * - the lock has been released since we did the cmpxchg
432 * the lock can be released or taken while we are doing the
433 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
435 * The atomic acquire/release aware variant of
436 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
437 * the WAITERS bit, the atomic release / acquire can not
438 * happen anymore and lock->wait_lock protects us from the
439 * non-atomic case.
441 * Note, that this might set lock->owner =
442 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
443 * any more. This is fixed up when we take the ownership.
444 * This is the transitional state explained at the top of this file.
446 mark_rt_mutex_waiters(lock);
448 if (rt_mutex_owner(lock))
449 return 0;
452 * It will get the lock because of one of these conditions:
453 * 1) there is no waiter
454 * 2) higher priority than waiters
455 * 3) it is top waiter
457 if (rt_mutex_has_waiters(lock)) {
458 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
459 if (!waiter || waiter != rt_mutex_top_waiter(lock))
460 return 0;
464 if (waiter || rt_mutex_has_waiters(lock)) {
465 unsigned long flags;
466 struct rt_mutex_waiter *top;
468 raw_spin_lock_irqsave(&task->pi_lock, flags);
470 /* remove the queued waiter. */
471 if (waiter) {
472 plist_del(&waiter->list_entry, &lock->wait_list);
473 task->pi_blocked_on = NULL;
477 * We have to enqueue the top waiter(if it exists) into
478 * task->pi_waiters list.
480 if (rt_mutex_has_waiters(lock)) {
481 top = rt_mutex_top_waiter(lock);
482 top->pi_list_entry.prio = top->list_entry.prio;
483 plist_add(&top->pi_list_entry, &task->pi_waiters);
485 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
488 /* We got the lock. */
489 debug_rt_mutex_lock(lock);
491 rt_mutex_set_owner(lock, task);
493 rt_mutex_deadlock_account_lock(lock, task);
495 return 1;
499 * Task blocks on lock.
501 * Prepare waiter and propagate pi chain
503 * This must be called with lock->wait_lock held.
505 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
506 struct rt_mutex_waiter *waiter,
507 struct task_struct *task,
508 int detect_deadlock)
510 struct task_struct *owner = rt_mutex_owner(lock);
511 struct rt_mutex_waiter *top_waiter = waiter;
512 struct rt_mutex *next_lock;
513 int chain_walk = 0, res;
514 unsigned long flags;
517 * Early deadlock detection. We really don't want the task to
518 * enqueue on itself just to untangle the mess later. It's not
519 * only an optimization. We drop the locks, so another waiter
520 * can come in before the chain walk detects the deadlock. So
521 * the other will detect the deadlock and return -EDEADLOCK,
522 * which is wrong, as the other waiter is not in a deadlock
523 * situation.
525 if (owner == task)
526 return -EDEADLK;
528 raw_spin_lock_irqsave(&task->pi_lock, flags);
529 __rt_mutex_adjust_prio(task);
530 waiter->task = task;
531 waiter->lock = lock;
532 plist_node_init(&waiter->list_entry, task->prio);
533 plist_node_init(&waiter->pi_list_entry, task->prio);
535 /* Get the top priority waiter on the lock */
536 if (rt_mutex_has_waiters(lock))
537 top_waiter = rt_mutex_top_waiter(lock);
538 plist_add(&waiter->list_entry, &lock->wait_list);
540 task->pi_blocked_on = waiter;
542 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
544 if (!owner)
545 return 0;
547 raw_spin_lock_irqsave(&owner->pi_lock, flags);
548 if (waiter == rt_mutex_top_waiter(lock)) {
549 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
550 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
552 __rt_mutex_adjust_prio(owner);
553 if (owner->pi_blocked_on)
554 chain_walk = 1;
555 } else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) {
556 chain_walk = 1;
559 /* Store the lock on which owner is blocked or NULL */
560 next_lock = task_blocked_on_lock(owner);
562 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
564 * Even if full deadlock detection is on, if the owner is not
565 * blocked itself, we can avoid finding this out in the chain
566 * walk.
568 if (!chain_walk || !next_lock)
569 return 0;
572 * The owner can't disappear while holding a lock,
573 * so the owner struct is protected by wait_lock.
574 * Gets dropped in rt_mutex_adjust_prio_chain()!
576 get_task_struct(owner);
578 raw_spin_unlock(&lock->wait_lock);
580 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock,
581 next_lock, waiter, task);
583 raw_spin_lock(&lock->wait_lock);
585 return res;
589 * Wake up the next waiter on the lock.
591 * Remove the top waiter from the current tasks pi waiter list and
592 * wake it up.
594 * Called with lock->wait_lock held.
596 static void wakeup_next_waiter(struct rt_mutex *lock)
598 struct rt_mutex_waiter *waiter;
599 unsigned long flags;
601 raw_spin_lock_irqsave(&current->pi_lock, flags);
603 waiter = rt_mutex_top_waiter(lock);
606 * Remove it from current->pi_waiters. We do not adjust a
607 * possible priority boost right now. We execute wakeup in the
608 * boosted mode and go back to normal after releasing
609 * lock->wait_lock.
611 plist_del(&waiter->pi_list_entry, &current->pi_waiters);
614 * As we are waking up the top waiter, and the waiter stays
615 * queued on the lock until it gets the lock, this lock
616 * obviously has waiters. Just set the bit here and this has
617 * the added benefit of forcing all new tasks into the
618 * slow path making sure no task of lower priority than
619 * the top waiter can steal this lock.
621 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
623 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
626 * It's safe to dereference waiter as it cannot go away as
627 * long as we hold lock->wait_lock. The waiter task needs to
628 * acquire it in order to dequeue the waiter.
630 wake_up_process(waiter->task);
634 * Remove a waiter from a lock and give up
636 * Must be called with lock->wait_lock held and
637 * have just failed to try_to_take_rt_mutex().
639 static void remove_waiter(struct rt_mutex *lock,
640 struct rt_mutex_waiter *waiter)
642 int first = (waiter == rt_mutex_top_waiter(lock));
643 struct task_struct *owner = rt_mutex_owner(lock);
644 struct rt_mutex *next_lock = NULL;
645 unsigned long flags;
647 raw_spin_lock_irqsave(&current->pi_lock, flags);
648 plist_del(&waiter->list_entry, &lock->wait_list);
649 current->pi_blocked_on = NULL;
650 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
652 if (!owner)
653 return;
655 if (first) {
657 raw_spin_lock_irqsave(&owner->pi_lock, flags);
659 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
661 if (rt_mutex_has_waiters(lock)) {
662 struct rt_mutex_waiter *next;
664 next = rt_mutex_top_waiter(lock);
665 plist_add(&next->pi_list_entry, &owner->pi_waiters);
667 __rt_mutex_adjust_prio(owner);
669 /* Store the lock on which owner is blocked or NULL */
670 next_lock = task_blocked_on_lock(owner);
672 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
675 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
677 if (!next_lock)
678 return;
680 /* gets dropped in rt_mutex_adjust_prio_chain()! */
681 get_task_struct(owner);
683 raw_spin_unlock(&lock->wait_lock);
685 rt_mutex_adjust_prio_chain(owner, 0, lock, next_lock, NULL, current);
687 raw_spin_lock(&lock->wait_lock);
691 * Recheck the pi chain, in case we got a priority setting
693 * Called from sched_setscheduler
695 void rt_mutex_adjust_pi(struct task_struct *task)
697 struct rt_mutex_waiter *waiter;
698 struct rt_mutex *next_lock;
699 unsigned long flags;
701 raw_spin_lock_irqsave(&task->pi_lock, flags);
703 waiter = task->pi_blocked_on;
704 if (!waiter || waiter->list_entry.prio == task->prio) {
705 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
706 return;
708 next_lock = waiter->lock;
709 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
711 /* gets dropped in rt_mutex_adjust_prio_chain()! */
712 get_task_struct(task);
714 rt_mutex_adjust_prio_chain(task, 0, NULL, next_lock, NULL, task);
718 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
719 * @lock: the rt_mutex to take
720 * @state: the state the task should block in (TASK_INTERRUPTIBLE
721 * or TASK_UNINTERRUPTIBLE)
722 * @timeout: the pre-initialized and started timer, or NULL for none
723 * @waiter: the pre-initialized rt_mutex_waiter
725 * lock->wait_lock must be held by the caller.
727 static int __sched
728 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
729 struct hrtimer_sleeper *timeout,
730 struct rt_mutex_waiter *waiter)
732 int ret = 0;
734 for (;;) {
735 /* Try to acquire the lock: */
736 if (try_to_take_rt_mutex(lock, current, waiter))
737 break;
740 * TASK_INTERRUPTIBLE checks for signals and
741 * timeout. Ignored otherwise.
743 if (unlikely(state == TASK_INTERRUPTIBLE)) {
744 /* Signal pending? */
745 if (signal_pending(current))
746 ret = -EINTR;
747 if (timeout && !timeout->task)
748 ret = -ETIMEDOUT;
749 if (ret)
750 break;
753 raw_spin_unlock(&lock->wait_lock);
755 debug_rt_mutex_print_deadlock(waiter);
757 schedule_rt_mutex(lock);
759 raw_spin_lock(&lock->wait_lock);
760 set_current_state(state);
763 return ret;
766 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
767 struct rt_mutex_waiter *w)
770 * If the result is not -EDEADLOCK or the caller requested
771 * deadlock detection, nothing to do here.
773 if (res != -EDEADLOCK || detect_deadlock)
774 return;
777 * Yell lowdly and stop the task right here.
779 rt_mutex_print_deadlock(w);
780 while (1) {
781 set_current_state(TASK_INTERRUPTIBLE);
782 schedule();
787 * Slow path lock function:
789 static int __sched
790 rt_mutex_slowlock(struct rt_mutex *lock, int state,
791 struct hrtimer_sleeper *timeout,
792 int detect_deadlock)
794 struct rt_mutex_waiter waiter;
795 int ret = 0;
797 debug_rt_mutex_init_waiter(&waiter);
799 raw_spin_lock(&lock->wait_lock);
801 /* Try to acquire the lock again: */
802 if (try_to_take_rt_mutex(lock, current, NULL)) {
803 raw_spin_unlock(&lock->wait_lock);
804 return 0;
807 set_current_state(state);
809 /* Setup the timer, when timeout != NULL */
810 if (unlikely(timeout)) {
811 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
812 if (!hrtimer_active(&timeout->timer))
813 timeout->task = NULL;
816 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
818 if (likely(!ret))
819 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
821 set_current_state(TASK_RUNNING);
823 if (unlikely(ret)) {
824 remove_waiter(lock, &waiter);
825 rt_mutex_handle_deadlock(ret, detect_deadlock, &waiter);
829 * try_to_take_rt_mutex() sets the waiter bit
830 * unconditionally. We might have to fix that up.
832 fixup_rt_mutex_waiters(lock);
834 raw_spin_unlock(&lock->wait_lock);
836 /* Remove pending timer: */
837 if (unlikely(timeout))
838 hrtimer_cancel(&timeout->timer);
840 debug_rt_mutex_free_waiter(&waiter);
842 return ret;
846 * Slow path try-lock function:
848 static inline int
849 rt_mutex_slowtrylock(struct rt_mutex *lock)
851 int ret = 0;
853 raw_spin_lock(&lock->wait_lock);
855 if (likely(rt_mutex_owner(lock) != current)) {
857 ret = try_to_take_rt_mutex(lock, current, NULL);
859 * try_to_take_rt_mutex() sets the lock waiters
860 * bit unconditionally. Clean this up.
862 fixup_rt_mutex_waiters(lock);
865 raw_spin_unlock(&lock->wait_lock);
867 return ret;
871 * Slow path to release a rt-mutex:
873 static void __sched
874 rt_mutex_slowunlock(struct rt_mutex *lock)
876 raw_spin_lock(&lock->wait_lock);
878 debug_rt_mutex_unlock(lock);
880 rt_mutex_deadlock_account_unlock(current);
883 * We must be careful here if the fast path is enabled. If we
884 * have no waiters queued we cannot set owner to NULL here
885 * because of:
887 * foo->lock->owner = NULL;
888 * rtmutex_lock(foo->lock); <- fast path
889 * free = atomic_dec_and_test(foo->refcnt);
890 * rtmutex_unlock(foo->lock); <- fast path
891 * if (free)
892 * kfree(foo);
893 * raw_spin_unlock(foo->lock->wait_lock);
895 * So for the fastpath enabled kernel:
897 * Nothing can set the waiters bit as long as we hold
898 * lock->wait_lock. So we do the following sequence:
900 * owner = rt_mutex_owner(lock);
901 * clear_rt_mutex_waiters(lock);
902 * raw_spin_unlock(&lock->wait_lock);
903 * if (cmpxchg(&lock->owner, owner, 0) == owner)
904 * return;
905 * goto retry;
907 * The fastpath disabled variant is simple as all access to
908 * lock->owner is serialized by lock->wait_lock:
910 * lock->owner = NULL;
911 * raw_spin_unlock(&lock->wait_lock);
913 while (!rt_mutex_has_waiters(lock)) {
914 /* Drops lock->wait_lock ! */
915 if (unlock_rt_mutex_safe(lock) == true)
916 return;
917 /* Relock the rtmutex and try again */
918 raw_spin_lock(&lock->wait_lock);
922 * The wakeup next waiter path does not suffer from the above
923 * race. See the comments there.
925 wakeup_next_waiter(lock);
927 raw_spin_unlock(&lock->wait_lock);
929 /* Undo pi boosting if necessary: */
930 rt_mutex_adjust_prio(current);
934 * debug aware fast / slowpath lock,trylock,unlock
936 * The atomic acquire/release ops are compiled away, when either the
937 * architecture does not support cmpxchg or when debugging is enabled.
939 static inline int
940 rt_mutex_fastlock(struct rt_mutex *lock, int state,
941 int detect_deadlock,
942 int (*slowfn)(struct rt_mutex *lock, int state,
943 struct hrtimer_sleeper *timeout,
944 int detect_deadlock))
946 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
947 rt_mutex_deadlock_account_lock(lock, current);
948 return 0;
949 } else
950 return slowfn(lock, state, NULL, detect_deadlock);
953 static inline int
954 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
955 struct hrtimer_sleeper *timeout, int detect_deadlock,
956 int (*slowfn)(struct rt_mutex *lock, int state,
957 struct hrtimer_sleeper *timeout,
958 int detect_deadlock))
960 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
961 rt_mutex_deadlock_account_lock(lock, current);
962 return 0;
963 } else
964 return slowfn(lock, state, timeout, detect_deadlock);
967 static inline int
968 rt_mutex_fasttrylock(struct rt_mutex *lock,
969 int (*slowfn)(struct rt_mutex *lock))
971 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
972 rt_mutex_deadlock_account_lock(lock, current);
973 return 1;
975 return slowfn(lock);
978 static inline void
979 rt_mutex_fastunlock(struct rt_mutex *lock,
980 void (*slowfn)(struct rt_mutex *lock))
982 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
983 rt_mutex_deadlock_account_unlock(current);
984 else
985 slowfn(lock);
989 * rt_mutex_lock - lock a rt_mutex
991 * @lock: the rt_mutex to be locked
993 void __sched rt_mutex_lock(struct rt_mutex *lock)
995 might_sleep();
997 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
999 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1002 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1004 * @lock: the rt_mutex to be locked
1005 * @detect_deadlock: deadlock detection on/off
1007 * Returns:
1008 * 0 on success
1009 * -EINTR when interrupted by a signal
1010 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
1012 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
1013 int detect_deadlock)
1015 might_sleep();
1017 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
1018 detect_deadlock, rt_mutex_slowlock);
1020 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1023 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1024 * the timeout structure is provided
1025 * by the caller
1027 * @lock: the rt_mutex to be locked
1028 * @timeout: timeout structure or NULL (no timeout)
1029 * @detect_deadlock: deadlock detection on/off
1031 * Returns:
1032 * 0 on success
1033 * -EINTR when interrupted by a signal
1034 * -ETIMEDOUT when the timeout expired
1035 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
1038 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
1039 int detect_deadlock)
1041 might_sleep();
1043 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1044 detect_deadlock, rt_mutex_slowlock);
1046 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1049 * rt_mutex_trylock - try to lock a rt_mutex
1051 * @lock: the rt_mutex to be locked
1053 * Returns 1 on success and 0 on contention
1055 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1057 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1059 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1062 * rt_mutex_unlock - unlock a rt_mutex
1064 * @lock: the rt_mutex to be unlocked
1066 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1068 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1070 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1073 * rt_mutex_destroy - mark a mutex unusable
1074 * @lock: the mutex to be destroyed
1076 * This function marks the mutex uninitialized, and any subsequent
1077 * use of the mutex is forbidden. The mutex must not be locked when
1078 * this function is called.
1080 void rt_mutex_destroy(struct rt_mutex *lock)
1082 WARN_ON(rt_mutex_is_locked(lock));
1083 #ifdef CONFIG_DEBUG_RT_MUTEXES
1084 lock->magic = NULL;
1085 #endif
1088 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1091 * __rt_mutex_init - initialize the rt lock
1093 * @lock: the rt lock to be initialized
1095 * Initialize the rt lock to unlocked state.
1097 * Initializing of a locked rt lock is not allowed
1099 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1101 lock->owner = NULL;
1102 raw_spin_lock_init(&lock->wait_lock);
1103 plist_head_init(&lock->wait_list);
1105 debug_rt_mutex_init(lock, name);
1107 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1110 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1111 * proxy owner
1113 * @lock: the rt_mutex to be locked
1114 * @proxy_owner:the task to set as owner
1116 * No locking. Caller has to do serializing itself
1117 * Special API call for PI-futex support
1119 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1120 struct task_struct *proxy_owner)
1122 __rt_mutex_init(lock, NULL);
1123 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1124 rt_mutex_set_owner(lock, proxy_owner);
1125 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1129 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1131 * @lock: the rt_mutex to be locked
1133 * No locking. Caller has to do serializing itself
1134 * Special API call for PI-futex support
1136 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1137 struct task_struct *proxy_owner)
1139 debug_rt_mutex_proxy_unlock(lock);
1140 rt_mutex_set_owner(lock, NULL);
1141 rt_mutex_deadlock_account_unlock(proxy_owner);
1145 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1146 * @lock: the rt_mutex to take
1147 * @waiter: the pre-initialized rt_mutex_waiter
1148 * @task: the task to prepare
1149 * @detect_deadlock: perform deadlock detection (1) or not (0)
1151 * Returns:
1152 * 0 - task blocked on lock
1153 * 1 - acquired the lock for task, caller should wake it up
1154 * <0 - error
1156 * Special API call for FUTEX_REQUEUE_PI support.
1158 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1159 struct rt_mutex_waiter *waiter,
1160 struct task_struct *task, int detect_deadlock)
1162 int ret;
1164 raw_spin_lock(&lock->wait_lock);
1166 if (try_to_take_rt_mutex(lock, task, NULL)) {
1167 raw_spin_unlock(&lock->wait_lock);
1168 return 1;
1171 /* We enforce deadlock detection for futexes */
1172 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1);
1174 if (ret && !rt_mutex_owner(lock)) {
1176 * Reset the return value. We might have
1177 * returned with -EDEADLK and the owner
1178 * released the lock while we were walking the
1179 * pi chain. Let the waiter sort it out.
1181 ret = 0;
1184 if (unlikely(ret))
1185 remove_waiter(lock, waiter);
1187 raw_spin_unlock(&lock->wait_lock);
1189 debug_rt_mutex_print_deadlock(waiter);
1191 return ret;
1195 * rt_mutex_next_owner - return the next owner of the lock
1197 * @lock: the rt lock query
1199 * Returns the next owner of the lock or NULL
1201 * Caller has to serialize against other accessors to the lock
1202 * itself.
1204 * Special API call for PI-futex support
1206 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1208 if (!rt_mutex_has_waiters(lock))
1209 return NULL;
1211 return rt_mutex_top_waiter(lock)->task;
1215 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1216 * @lock: the rt_mutex we were woken on
1217 * @to: the timeout, null if none. hrtimer should already have
1218 * been started.
1219 * @waiter: the pre-initialized rt_mutex_waiter
1220 * @detect_deadlock: perform deadlock detection (1) or not (0)
1222 * Complete the lock acquisition started our behalf by another thread.
1224 * Returns:
1225 * 0 - success
1226 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1228 * Special API call for PI-futex requeue support
1230 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1231 struct hrtimer_sleeper *to,
1232 struct rt_mutex_waiter *waiter,
1233 int detect_deadlock)
1235 int ret;
1237 raw_spin_lock(&lock->wait_lock);
1239 set_current_state(TASK_INTERRUPTIBLE);
1241 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1243 set_current_state(TASK_RUNNING);
1245 if (unlikely(ret))
1246 remove_waiter(lock, waiter);
1249 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1250 * have to fix that up.
1252 fixup_rt_mutex_waiters(lock);
1254 raw_spin_unlock(&lock->wait_lock);
1256 return ret;