hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / kernel / sched / sched.h
blob4f310592b1ba246edb6b27b6eef776367078774b
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 #include <linux/tick.h>
10 #include "cpupri.h"
11 #include "cpuacct.h"
13 struct rq;
15 extern __read_mostly int scheduler_running;
17 extern unsigned long calc_load_update;
18 extern atomic_long_t calc_load_tasks;
20 extern long calc_load_fold_active(struct rq *this_rq);
21 extern void update_cpu_load_active(struct rq *this_rq);
24 * Convert user-nice values [ -20 ... 0 ... 19 ]
25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
26 * and back.
28 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
29 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
30 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
33 * 'User priority' is the nice value converted to something we
34 * can work with better when scaling various scheduler parameters,
35 * it's a [ 0 ... 39 ] range.
37 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
38 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
39 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
42 * Helpers for converting nanosecond timing to jiffy resolution
44 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
47 * Increase resolution of nice-level calculations for 64-bit architectures.
48 * The extra resolution improves shares distribution and load balancing of
49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
50 * hierarchies, especially on larger systems. This is not a user-visible change
51 * and does not change the user-interface for setting shares/weights.
53 * We increase resolution only if we have enough bits to allow this increased
54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
56 * increased costs.
58 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
59 # define SCHED_LOAD_RESOLUTION 10
60 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
61 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
62 #else
63 # define SCHED_LOAD_RESOLUTION 0
64 # define scale_load(w) (w)
65 # define scale_load_down(w) (w)
66 #endif
68 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
69 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
71 #define NICE_0_LOAD SCHED_LOAD_SCALE
72 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
75 * These are the 'tuning knobs' of the scheduler:
79 * single value that denotes runtime == period, ie unlimited time.
81 #define RUNTIME_INF ((u64)~0ULL)
83 static inline int rt_policy(int policy)
85 if (policy == SCHED_FIFO || policy == SCHED_RR)
86 return 1;
87 return 0;
90 static inline int task_has_rt_policy(struct task_struct *p)
92 return rt_policy(p->policy);
96 * This is the priority-queue data structure of the RT scheduling class:
98 struct rt_prio_array {
99 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
100 struct list_head queue[MAX_RT_PRIO];
103 struct rt_bandwidth {
104 /* nests inside the rq lock: */
105 raw_spinlock_t rt_runtime_lock;
106 ktime_t rt_period;
107 u64 rt_runtime;
108 struct hrtimer rt_period_timer;
111 extern struct mutex sched_domains_mutex;
113 #ifdef CONFIG_CGROUP_SCHED
115 #include <linux/cgroup.h>
117 struct cfs_rq;
118 struct rt_rq;
120 extern struct list_head task_groups;
122 struct cfs_bandwidth {
123 #ifdef CONFIG_CFS_BANDWIDTH
124 raw_spinlock_t lock;
125 ktime_t period;
126 u64 quota, runtime;
127 s64 hierarchal_quota;
128 u64 runtime_expires;
130 int idle, timer_active;
131 struct hrtimer period_timer, slack_timer;
132 struct list_head throttled_cfs_rq;
134 /* statistics */
135 int nr_periods, nr_throttled;
136 u64 throttled_time;
137 #endif
140 /* task group related information */
141 struct task_group {
142 struct cgroup_subsys_state css;
144 #ifdef CONFIG_FAIR_GROUP_SCHED
145 /* schedulable entities of this group on each cpu */
146 struct sched_entity **se;
147 /* runqueue "owned" by this group on each cpu */
148 struct cfs_rq **cfs_rq;
149 unsigned long shares;
151 #ifdef CONFIG_SMP
152 atomic_long_t load_avg;
153 atomic_t runnable_avg;
154 #endif
155 #endif
157 #ifdef CONFIG_RT_GROUP_SCHED
158 struct sched_rt_entity **rt_se;
159 struct rt_rq **rt_rq;
161 struct rt_bandwidth rt_bandwidth;
162 #endif
164 struct rcu_head rcu;
165 struct list_head list;
167 struct task_group *parent;
168 struct list_head siblings;
169 struct list_head children;
171 #ifdef CONFIG_SCHED_AUTOGROUP
172 struct autogroup *autogroup;
173 #endif
175 struct cfs_bandwidth cfs_bandwidth;
178 #ifdef CONFIG_FAIR_GROUP_SCHED
179 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
182 * A weight of 0 or 1 can cause arithmetics problems.
183 * A weight of a cfs_rq is the sum of weights of which entities
184 * are queued on this cfs_rq, so a weight of a entity should not be
185 * too large, so as the shares value of a task group.
186 * (The default weight is 1024 - so there's no practical
187 * limitation from this.)
189 #define MIN_SHARES (1UL << 1)
190 #define MAX_SHARES (1UL << 18)
191 #endif
193 typedef int (*tg_visitor)(struct task_group *, void *);
195 extern int walk_tg_tree_from(struct task_group *from,
196 tg_visitor down, tg_visitor up, void *data);
199 * Iterate the full tree, calling @down when first entering a node and @up when
200 * leaving it for the final time.
202 * Caller must hold rcu_lock or sufficient equivalent.
204 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206 return walk_tg_tree_from(&root_task_group, down, up, data);
209 extern int tg_nop(struct task_group *tg, void *data);
211 extern void free_fair_sched_group(struct task_group *tg);
212 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
213 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
214 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
215 struct sched_entity *se, int cpu,
216 struct sched_entity *parent);
217 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
218 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
221 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
222 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224 extern void free_rt_sched_group(struct task_group *tg);
225 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
226 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
227 struct sched_rt_entity *rt_se, int cpu,
228 struct sched_rt_entity *parent);
230 extern struct task_group *sched_create_group(struct task_group *parent);
231 extern void sched_online_group(struct task_group *tg,
232 struct task_group *parent);
233 extern void sched_destroy_group(struct task_group *tg);
234 extern void sched_offline_group(struct task_group *tg);
236 extern void sched_move_task(struct task_struct *tsk);
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
240 #endif
242 #else /* CONFIG_CGROUP_SCHED */
244 struct cfs_bandwidth { };
246 #endif /* CONFIG_CGROUP_SCHED */
248 /* CFS-related fields in a runqueue */
249 struct cfs_rq {
250 struct load_weight load;
251 unsigned int nr_running, h_nr_running;
253 u64 exec_clock;
254 u64 min_vruntime;
255 #ifndef CONFIG_64BIT
256 u64 min_vruntime_copy;
257 #endif
259 struct rb_root tasks_timeline;
260 struct rb_node *rb_leftmost;
263 * 'curr' points to currently running entity on this cfs_rq.
264 * It is set to NULL otherwise (i.e when none are currently running).
266 struct sched_entity *curr, *next, *last, *skip;
268 #ifdef CONFIG_SCHED_DEBUG
269 unsigned int nr_spread_over;
270 #endif
272 #ifdef CONFIG_SMP
274 * CFS Load tracking
275 * Under CFS, load is tracked on a per-entity basis and aggregated up.
276 * This allows for the description of both thread and group usage (in
277 * the FAIR_GROUP_SCHED case).
279 unsigned long runnable_load_avg, blocked_load_avg;
280 atomic64_t decay_counter;
281 u64 last_decay;
282 atomic_long_t removed_load;
284 #ifdef CONFIG_FAIR_GROUP_SCHED
285 /* Required to track per-cpu representation of a task_group */
286 u32 tg_runnable_contrib;
287 unsigned long tg_load_contrib;
290 * h_load = weight * f(tg)
292 * Where f(tg) is the recursive weight fraction assigned to
293 * this group.
295 unsigned long h_load;
296 u64 last_h_load_update;
297 struct sched_entity *h_load_next;
298 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #endif /* CONFIG_SMP */
301 #ifdef CONFIG_FAIR_GROUP_SCHED
302 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
305 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
306 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
307 * (like users, containers etc.)
309 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
310 * list is used during load balance.
312 int on_list;
313 struct list_head leaf_cfs_rq_list;
314 struct task_group *tg; /* group that "owns" this runqueue */
316 #ifdef CONFIG_CFS_BANDWIDTH
317 int runtime_enabled;
318 u64 runtime_expires;
319 s64 runtime_remaining;
321 u64 throttled_clock, throttled_clock_task;
322 u64 throttled_clock_task_time;
323 int throttled, throttle_count;
324 struct list_head throttled_list;
325 #endif /* CONFIG_CFS_BANDWIDTH */
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
329 static inline int rt_bandwidth_enabled(void)
331 return sysctl_sched_rt_runtime >= 0;
334 /* Real-Time classes' related field in a runqueue: */
335 struct rt_rq {
336 struct rt_prio_array active;
337 unsigned int rt_nr_running;
338 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
339 struct {
340 int curr; /* highest queued rt task prio */
341 #ifdef CONFIG_SMP
342 int next; /* next highest */
343 #endif
344 } highest_prio;
345 #endif
346 #ifdef CONFIG_SMP
347 unsigned long rt_nr_migratory;
348 unsigned long rt_nr_total;
349 int overloaded;
350 struct plist_head pushable_tasks;
351 #endif
352 int rt_throttled;
353 u64 rt_time;
354 u64 rt_runtime;
355 /* Nests inside the rq lock: */
356 raw_spinlock_t rt_runtime_lock;
358 #ifdef CONFIG_RT_GROUP_SCHED
359 unsigned long rt_nr_boosted;
361 struct rq *rq;
362 struct task_group *tg;
363 #endif
366 #ifdef CONFIG_SMP
369 * We add the notion of a root-domain which will be used to define per-domain
370 * variables. Each exclusive cpuset essentially defines an island domain by
371 * fully partitioning the member cpus from any other cpuset. Whenever a new
372 * exclusive cpuset is created, we also create and attach a new root-domain
373 * object.
376 struct root_domain {
377 atomic_t refcount;
378 atomic_t rto_count;
379 struct rcu_head rcu;
380 cpumask_var_t span;
381 cpumask_var_t online;
384 * The "RT overload" flag: it gets set if a CPU has more than
385 * one runnable RT task.
387 cpumask_var_t rto_mask;
388 struct cpupri cpupri;
391 extern struct root_domain def_root_domain;
393 #endif /* CONFIG_SMP */
396 * This is the main, per-CPU runqueue data structure.
398 * Locking rule: those places that want to lock multiple runqueues
399 * (such as the load balancing or the thread migration code), lock
400 * acquire operations must be ordered by ascending &runqueue.
402 struct rq {
403 /* runqueue lock: */
404 raw_spinlock_t lock;
407 * nr_running and cpu_load should be in the same cacheline because
408 * remote CPUs use both these fields when doing load calculation.
410 unsigned int nr_running;
411 #define CPU_LOAD_IDX_MAX 5
412 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
413 unsigned long last_load_update_tick;
414 #ifdef CONFIG_NO_HZ_COMMON
415 u64 nohz_stamp;
416 unsigned long nohz_flags;
417 #endif
418 #ifdef CONFIG_NO_HZ_FULL
419 unsigned long last_sched_tick;
420 #endif
421 int skip_clock_update;
423 /* capture load from *all* tasks on this cpu: */
424 struct load_weight load;
425 unsigned long nr_load_updates;
426 u64 nr_switches;
428 struct cfs_rq cfs;
429 struct rt_rq rt;
431 #ifdef CONFIG_FAIR_GROUP_SCHED
432 /* list of leaf cfs_rq on this cpu: */
433 struct list_head leaf_cfs_rq_list;
434 #endif /* CONFIG_FAIR_GROUP_SCHED */
436 #ifdef CONFIG_RT_GROUP_SCHED
437 struct list_head leaf_rt_rq_list;
438 #endif
441 * This is part of a global counter where only the total sum
442 * over all CPUs matters. A task can increase this counter on
443 * one CPU and if it got migrated afterwards it may decrease
444 * it on another CPU. Always updated under the runqueue lock:
446 unsigned long nr_uninterruptible;
448 struct task_struct *curr, *idle, *stop;
449 unsigned long next_balance;
450 struct mm_struct *prev_mm;
452 u64 clock;
453 u64 clock_task;
455 atomic_t nr_iowait;
457 #ifdef CONFIG_SMP
458 struct root_domain *rd;
459 struct sched_domain *sd;
461 unsigned long cpu_power;
463 unsigned char idle_balance;
464 /* For active balancing */
465 int post_schedule;
466 int active_balance;
467 int push_cpu;
468 struct cpu_stop_work active_balance_work;
469 /* cpu of this runqueue: */
470 int cpu;
471 int online;
473 struct list_head cfs_tasks;
475 u64 rt_avg;
476 u64 age_stamp;
477 u64 idle_stamp;
478 u64 avg_idle;
479 #endif
481 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
482 u64 prev_irq_time;
483 #endif
484 #ifdef CONFIG_PARAVIRT
485 u64 prev_steal_time;
486 #endif
487 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
488 u64 prev_steal_time_rq;
489 #endif
491 /* calc_load related fields */
492 unsigned long calc_load_update;
493 long calc_load_active;
495 #ifdef CONFIG_SCHED_HRTICK
496 #ifdef CONFIG_SMP
497 int hrtick_csd_pending;
498 struct call_single_data hrtick_csd;
499 #endif
500 struct hrtimer hrtick_timer;
501 #endif
503 #ifdef CONFIG_SCHEDSTATS
504 /* latency stats */
505 struct sched_info rq_sched_info;
506 unsigned long long rq_cpu_time;
507 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
509 /* sys_sched_yield() stats */
510 unsigned int yld_count;
512 /* schedule() stats */
513 unsigned int sched_count;
514 unsigned int sched_goidle;
516 /* try_to_wake_up() stats */
517 unsigned int ttwu_count;
518 unsigned int ttwu_local;
519 #endif
521 #ifdef CONFIG_SMP
522 struct llist_head wake_list;
523 #endif
525 struct sched_avg avg;
528 static inline int cpu_of(struct rq *rq)
530 #ifdef CONFIG_SMP
531 return rq->cpu;
532 #else
533 return 0;
534 #endif
537 DECLARE_PER_CPU(struct rq, runqueues);
539 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
540 #define this_rq() (&__get_cpu_var(runqueues))
541 #define task_rq(p) cpu_rq(task_cpu(p))
542 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
543 #define raw_rq() (&__raw_get_cpu_var(runqueues))
545 static inline u64 rq_clock(struct rq *rq)
547 return rq->clock;
550 static inline u64 rq_clock_task(struct rq *rq)
552 return rq->clock_task;
555 #ifdef CONFIG_SMP
557 #define rcu_dereference_check_sched_domain(p) \
558 rcu_dereference_check((p), \
559 lockdep_is_held(&sched_domains_mutex))
562 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
563 * See detach_destroy_domains: synchronize_sched for details.
565 * The domain tree of any CPU may only be accessed from within
566 * preempt-disabled sections.
568 #define for_each_domain(cpu, __sd) \
569 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
570 __sd; __sd = __sd->parent)
572 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
575 * highest_flag_domain - Return highest sched_domain containing flag.
576 * @cpu: The cpu whose highest level of sched domain is to
577 * be returned.
578 * @flag: The flag to check for the highest sched_domain
579 * for the given cpu.
581 * Returns the highest sched_domain of a cpu which contains the given flag.
583 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
585 struct sched_domain *sd, *hsd = NULL;
587 for_each_domain(cpu, sd) {
588 if (!(sd->flags & flag))
589 break;
590 hsd = sd;
593 return hsd;
596 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
597 DECLARE_PER_CPU(int, sd_llc_size);
598 DECLARE_PER_CPU(int, sd_llc_id);
599 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
600 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
602 struct sched_group_power {
603 atomic_t ref;
605 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
606 * single CPU.
608 unsigned int power, power_orig;
609 unsigned long next_update;
611 * Number of busy cpus in this group.
613 atomic_t nr_busy_cpus;
615 unsigned long cpumask[0]; /* iteration mask */
618 struct sched_group {
619 struct sched_group *next; /* Must be a circular list */
620 atomic_t ref;
622 unsigned int group_weight;
623 struct sched_group_power *sgp;
626 * The CPUs this group covers.
628 * NOTE: this field is variable length. (Allocated dynamically
629 * by attaching extra space to the end of the structure,
630 * depending on how many CPUs the kernel has booted up with)
632 unsigned long cpumask[0];
635 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
637 return to_cpumask(sg->cpumask);
641 * cpumask masking which cpus in the group are allowed to iterate up the domain
642 * tree.
644 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
646 return to_cpumask(sg->sgp->cpumask);
650 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
651 * @group: The group whose first cpu is to be returned.
653 static inline unsigned int group_first_cpu(struct sched_group *group)
655 return cpumask_first(sched_group_cpus(group));
658 extern int group_balance_cpu(struct sched_group *sg);
660 #endif /* CONFIG_SMP */
662 #include "stats.h"
663 #include "auto_group.h"
665 #ifdef CONFIG_CGROUP_SCHED
668 * Return the group to which this tasks belongs.
670 * We cannot use task_css() and friends because the cgroup subsystem
671 * changes that value before the cgroup_subsys::attach() method is called,
672 * therefore we cannot pin it and might observe the wrong value.
674 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
675 * core changes this before calling sched_move_task().
677 * Instead we use a 'copy' which is updated from sched_move_task() while
678 * holding both task_struct::pi_lock and rq::lock.
680 static inline struct task_group *task_group(struct task_struct *p)
682 return p->sched_task_group;
685 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
686 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
688 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
689 struct task_group *tg = task_group(p);
690 #endif
692 #ifdef CONFIG_FAIR_GROUP_SCHED
693 p->se.cfs_rq = tg->cfs_rq[cpu];
694 p->se.parent = tg->se[cpu];
695 #endif
697 #ifdef CONFIG_RT_GROUP_SCHED
698 p->rt.rt_rq = tg->rt_rq[cpu];
699 p->rt.parent = tg->rt_se[cpu];
700 #endif
703 #else /* CONFIG_CGROUP_SCHED */
705 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
706 static inline struct task_group *task_group(struct task_struct *p)
708 return NULL;
711 #endif /* CONFIG_CGROUP_SCHED */
713 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
715 set_task_rq(p, cpu);
716 #ifdef CONFIG_SMP
718 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
719 * successfuly executed on another CPU. We must ensure that updates of
720 * per-task data have been completed by this moment.
722 smp_wmb();
723 task_thread_info(p)->cpu = cpu;
724 #endif
728 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
730 #ifdef CONFIG_SCHED_DEBUG
731 # include <linux/static_key.h>
732 # define const_debug __read_mostly
733 #else
734 # define const_debug const
735 #endif
737 extern const_debug unsigned int sysctl_sched_features;
739 #define SCHED_FEAT(name, enabled) \
740 __SCHED_FEAT_##name ,
742 enum {
743 #include "features.h"
744 __SCHED_FEAT_NR,
747 #undef SCHED_FEAT
749 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
750 static __always_inline bool static_branch__true(struct static_key *key)
752 return static_key_true(key); /* Not out of line branch. */
755 static __always_inline bool static_branch__false(struct static_key *key)
757 return static_key_false(key); /* Out of line branch. */
760 #define SCHED_FEAT(name, enabled) \
761 static __always_inline bool static_branch_##name(struct static_key *key) \
763 return static_branch__##enabled(key); \
766 #include "features.h"
768 #undef SCHED_FEAT
770 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
771 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
772 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
773 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
774 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
776 #ifdef CONFIG_NUMA_BALANCING
777 #define sched_feat_numa(x) sched_feat(x)
778 #ifdef CONFIG_SCHED_DEBUG
779 #define numabalancing_enabled sched_feat_numa(NUMA)
780 #else
781 extern bool numabalancing_enabled;
782 #endif /* CONFIG_SCHED_DEBUG */
783 #else
784 #define sched_feat_numa(x) (0)
785 #define numabalancing_enabled (0)
786 #endif /* CONFIG_NUMA_BALANCING */
788 static inline u64 global_rt_period(void)
790 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
793 static inline u64 global_rt_runtime(void)
795 if (sysctl_sched_rt_runtime < 0)
796 return RUNTIME_INF;
798 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
803 static inline int task_current(struct rq *rq, struct task_struct *p)
805 return rq->curr == p;
808 static inline int task_running(struct rq *rq, struct task_struct *p)
810 #ifdef CONFIG_SMP
811 return p->on_cpu;
812 #else
813 return task_current(rq, p);
814 #endif
818 #ifndef prepare_arch_switch
819 # define prepare_arch_switch(next) do { } while (0)
820 #endif
821 #ifndef finish_arch_switch
822 # define finish_arch_switch(prev) do { } while (0)
823 #endif
824 #ifndef finish_arch_post_lock_switch
825 # define finish_arch_post_lock_switch() do { } while (0)
826 #endif
828 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
829 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
831 #ifdef CONFIG_SMP
833 * We can optimise this out completely for !SMP, because the
834 * SMP rebalancing from interrupt is the only thing that cares
835 * here.
837 next->on_cpu = 1;
838 #endif
841 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
843 #ifdef CONFIG_SMP
845 * After ->on_cpu is cleared, the task can be moved to a different CPU.
846 * We must ensure this doesn't happen until the switch is completely
847 * finished.
849 smp_wmb();
850 prev->on_cpu = 0;
851 #endif
852 #ifdef CONFIG_DEBUG_SPINLOCK
853 /* this is a valid case when another task releases the spinlock */
854 rq->lock.owner = current;
855 #endif
857 * If we are tracking spinlock dependencies then we have to
858 * fix up the runqueue lock - which gets 'carried over' from
859 * prev into current:
861 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
863 raw_spin_unlock_irq(&rq->lock);
866 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
867 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
869 #ifdef CONFIG_SMP
871 * We can optimise this out completely for !SMP, because the
872 * SMP rebalancing from interrupt is the only thing that cares
873 * here.
875 next->on_cpu = 1;
876 #endif
877 raw_spin_unlock(&rq->lock);
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882 #ifdef CONFIG_SMP
884 * After ->on_cpu is cleared, the task can be moved to a different CPU.
885 * We must ensure this doesn't happen until the switch is completely
886 * finished.
888 smp_wmb();
889 prev->on_cpu = 0;
890 #endif
891 local_irq_enable();
893 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
896 * wake flags
898 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
899 #define WF_FORK 0x02 /* child wakeup after fork */
900 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
903 * To aid in avoiding the subversion of "niceness" due to uneven distribution
904 * of tasks with abnormal "nice" values across CPUs the contribution that
905 * each task makes to its run queue's load is weighted according to its
906 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
907 * scaled version of the new time slice allocation that they receive on time
908 * slice expiry etc.
911 #define WEIGHT_IDLEPRIO 3
912 #define WMULT_IDLEPRIO 1431655765
915 * Nice levels are multiplicative, with a gentle 10% change for every
916 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
917 * nice 1, it will get ~10% less CPU time than another CPU-bound task
918 * that remained on nice 0.
920 * The "10% effect" is relative and cumulative: from _any_ nice level,
921 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
922 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
923 * If a task goes up by ~10% and another task goes down by ~10% then
924 * the relative distance between them is ~25%.)
926 static const int prio_to_weight[40] = {
927 /* -20 */ 88761, 71755, 56483, 46273, 36291,
928 /* -15 */ 29154, 23254, 18705, 14949, 11916,
929 /* -10 */ 9548, 7620, 6100, 4904, 3906,
930 /* -5 */ 3121, 2501, 1991, 1586, 1277,
931 /* 0 */ 1024, 820, 655, 526, 423,
932 /* 5 */ 335, 272, 215, 172, 137,
933 /* 10 */ 110, 87, 70, 56, 45,
934 /* 15 */ 36, 29, 23, 18, 15,
938 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
940 * In cases where the weight does not change often, we can use the
941 * precalculated inverse to speed up arithmetics by turning divisions
942 * into multiplications:
944 static const u32 prio_to_wmult[40] = {
945 /* -20 */ 48388, 59856, 76040, 92818, 118348,
946 /* -15 */ 147320, 184698, 229616, 287308, 360437,
947 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
948 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
949 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
950 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
951 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
952 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
955 #define ENQUEUE_WAKEUP 1
956 #define ENQUEUE_HEAD 2
957 #ifdef CONFIG_SMP
958 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
959 #else
960 #define ENQUEUE_WAKING 0
961 #endif
963 #define DEQUEUE_SLEEP 1
965 struct sched_class {
966 const struct sched_class *next;
968 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
969 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
970 void (*yield_task) (struct rq *rq);
971 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
973 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
975 struct task_struct * (*pick_next_task) (struct rq *rq);
976 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
978 #ifdef CONFIG_SMP
979 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
980 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
982 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
983 void (*post_schedule) (struct rq *this_rq);
984 void (*task_waking) (struct task_struct *task);
985 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
987 void (*set_cpus_allowed)(struct task_struct *p,
988 const struct cpumask *newmask);
990 void (*rq_online)(struct rq *rq);
991 void (*rq_offline)(struct rq *rq);
992 #endif
994 void (*set_curr_task) (struct rq *rq);
995 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
996 void (*task_fork) (struct task_struct *p);
998 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
999 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1000 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1001 int oldprio);
1003 unsigned int (*get_rr_interval) (struct rq *rq,
1004 struct task_struct *task);
1006 #ifdef CONFIG_FAIR_GROUP_SCHED
1007 void (*task_move_group) (struct task_struct *p, int on_rq);
1008 #endif
1011 #define sched_class_highest (&stop_sched_class)
1012 #define for_each_class(class) \
1013 for (class = sched_class_highest; class; class = class->next)
1015 extern const struct sched_class stop_sched_class;
1016 extern const struct sched_class rt_sched_class;
1017 extern const struct sched_class fair_sched_class;
1018 extern const struct sched_class idle_sched_class;
1021 #ifdef CONFIG_SMP
1023 extern void update_group_power(struct sched_domain *sd, int cpu);
1025 extern void trigger_load_balance(struct rq *rq, int cpu);
1026 extern void idle_balance(int this_cpu, struct rq *this_rq);
1028 extern void idle_enter_fair(struct rq *this_rq);
1029 extern void idle_exit_fair(struct rq *this_rq);
1031 #else /* CONFIG_SMP */
1033 static inline void idle_balance(int cpu, struct rq *rq)
1037 #endif
1039 extern void sysrq_sched_debug_show(void);
1040 extern void sched_init_granularity(void);
1041 extern void update_max_interval(void);
1042 extern void init_sched_rt_class(void);
1043 extern void init_sched_fair_class(void);
1045 extern void resched_task(struct task_struct *p);
1046 extern void resched_cpu(int cpu);
1048 extern struct rt_bandwidth def_rt_bandwidth;
1049 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1051 extern void update_idle_cpu_load(struct rq *this_rq);
1053 extern void init_task_runnable_average(struct task_struct *p);
1055 #ifdef CONFIG_PARAVIRT
1056 static inline u64 steal_ticks(u64 steal)
1058 if (unlikely(steal > NSEC_PER_SEC))
1059 return div_u64(steal, TICK_NSEC);
1061 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1063 #endif
1065 static inline void inc_nr_running(struct rq *rq)
1067 rq->nr_running++;
1069 #ifdef CONFIG_NO_HZ_FULL
1070 if (rq->nr_running == 2) {
1071 if (tick_nohz_full_cpu(rq->cpu)) {
1072 /* Order rq->nr_running write against the IPI */
1073 smp_wmb();
1074 smp_send_reschedule(rq->cpu);
1077 #endif
1080 static inline void dec_nr_running(struct rq *rq)
1082 rq->nr_running--;
1085 static inline void rq_last_tick_reset(struct rq *rq)
1087 #ifdef CONFIG_NO_HZ_FULL
1088 rq->last_sched_tick = jiffies;
1089 #endif
1092 extern void update_rq_clock(struct rq *rq);
1094 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1095 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1097 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1099 extern const_debug unsigned int sysctl_sched_time_avg;
1100 extern const_debug unsigned int sysctl_sched_nr_migrate;
1101 extern const_debug unsigned int sysctl_sched_migration_cost;
1103 static inline u64 sched_avg_period(void)
1105 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1108 #ifdef CONFIG_SCHED_HRTICK
1111 * Use hrtick when:
1112 * - enabled by features
1113 * - hrtimer is actually high res
1115 static inline int hrtick_enabled(struct rq *rq)
1117 if (!sched_feat(HRTICK))
1118 return 0;
1119 if (!cpu_active(cpu_of(rq)))
1120 return 0;
1121 return hrtimer_is_hres_active(&rq->hrtick_timer);
1124 void hrtick_start(struct rq *rq, u64 delay);
1126 #else
1128 static inline int hrtick_enabled(struct rq *rq)
1130 return 0;
1133 #endif /* CONFIG_SCHED_HRTICK */
1135 #ifdef CONFIG_SMP
1136 extern void sched_avg_update(struct rq *rq);
1137 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1139 rq->rt_avg += rt_delta;
1140 sched_avg_update(rq);
1142 #else
1143 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1144 static inline void sched_avg_update(struct rq *rq) { }
1145 #endif
1147 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1149 #ifdef CONFIG_SMP
1150 #ifdef CONFIG_PREEMPT
1152 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1155 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1156 * way at the expense of forcing extra atomic operations in all
1157 * invocations. This assures that the double_lock is acquired using the
1158 * same underlying policy as the spinlock_t on this architecture, which
1159 * reduces latency compared to the unfair variant below. However, it
1160 * also adds more overhead and therefore may reduce throughput.
1162 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1163 __releases(this_rq->lock)
1164 __acquires(busiest->lock)
1165 __acquires(this_rq->lock)
1167 raw_spin_unlock(&this_rq->lock);
1168 double_rq_lock(this_rq, busiest);
1170 return 1;
1173 #else
1175 * Unfair double_lock_balance: Optimizes throughput at the expense of
1176 * latency by eliminating extra atomic operations when the locks are
1177 * already in proper order on entry. This favors lower cpu-ids and will
1178 * grant the double lock to lower cpus over higher ids under contention,
1179 * regardless of entry order into the function.
1181 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1182 __releases(this_rq->lock)
1183 __acquires(busiest->lock)
1184 __acquires(this_rq->lock)
1186 int ret = 0;
1188 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1189 if (busiest < this_rq) {
1190 raw_spin_unlock(&this_rq->lock);
1191 raw_spin_lock(&busiest->lock);
1192 raw_spin_lock_nested(&this_rq->lock,
1193 SINGLE_DEPTH_NESTING);
1194 ret = 1;
1195 } else
1196 raw_spin_lock_nested(&busiest->lock,
1197 SINGLE_DEPTH_NESTING);
1199 return ret;
1202 #endif /* CONFIG_PREEMPT */
1205 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1207 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1209 if (unlikely(!irqs_disabled())) {
1210 /* printk() doesn't work good under rq->lock */
1211 raw_spin_unlock(&this_rq->lock);
1212 BUG_ON(1);
1215 return _double_lock_balance(this_rq, busiest);
1218 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1219 __releases(busiest->lock)
1221 raw_spin_unlock(&busiest->lock);
1222 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1226 * double_rq_lock - safely lock two runqueues
1228 * Note this does not disable interrupts like task_rq_lock,
1229 * you need to do so manually before calling.
1231 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1232 __acquires(rq1->lock)
1233 __acquires(rq2->lock)
1235 BUG_ON(!irqs_disabled());
1236 if (rq1 == rq2) {
1237 raw_spin_lock(&rq1->lock);
1238 __acquire(rq2->lock); /* Fake it out ;) */
1239 } else {
1240 if (rq1 < rq2) {
1241 raw_spin_lock(&rq1->lock);
1242 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1243 } else {
1244 raw_spin_lock(&rq2->lock);
1245 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1251 * double_rq_unlock - safely unlock two runqueues
1253 * Note this does not restore interrupts like task_rq_unlock,
1254 * you need to do so manually after calling.
1256 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1257 __releases(rq1->lock)
1258 __releases(rq2->lock)
1260 raw_spin_unlock(&rq1->lock);
1261 if (rq1 != rq2)
1262 raw_spin_unlock(&rq2->lock);
1263 else
1264 __release(rq2->lock);
1267 #else /* CONFIG_SMP */
1270 * double_rq_lock - safely lock two runqueues
1272 * Note this does not disable interrupts like task_rq_lock,
1273 * you need to do so manually before calling.
1275 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1276 __acquires(rq1->lock)
1277 __acquires(rq2->lock)
1279 BUG_ON(!irqs_disabled());
1280 BUG_ON(rq1 != rq2);
1281 raw_spin_lock(&rq1->lock);
1282 __acquire(rq2->lock); /* Fake it out ;) */
1286 * double_rq_unlock - safely unlock two runqueues
1288 * Note this does not restore interrupts like task_rq_unlock,
1289 * you need to do so manually after calling.
1291 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1292 __releases(rq1->lock)
1293 __releases(rq2->lock)
1295 BUG_ON(rq1 != rq2);
1296 raw_spin_unlock(&rq1->lock);
1297 __release(rq2->lock);
1300 #endif
1302 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1303 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1304 extern void print_cfs_stats(struct seq_file *m, int cpu);
1305 extern void print_rt_stats(struct seq_file *m, int cpu);
1307 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1308 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1310 extern void cfs_bandwidth_usage_inc(void);
1311 extern void cfs_bandwidth_usage_dec(void);
1313 #ifdef CONFIG_NO_HZ_COMMON
1314 enum rq_nohz_flag_bits {
1315 NOHZ_TICK_STOPPED,
1316 NOHZ_BALANCE_KICK,
1319 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1320 #endif
1322 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1324 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1325 DECLARE_PER_CPU(u64, cpu_softirq_time);
1327 #ifndef CONFIG_64BIT
1328 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1330 static inline void irq_time_write_begin(void)
1332 __this_cpu_inc(irq_time_seq.sequence);
1333 smp_wmb();
1336 static inline void irq_time_write_end(void)
1338 smp_wmb();
1339 __this_cpu_inc(irq_time_seq.sequence);
1342 static inline u64 irq_time_read(int cpu)
1344 u64 irq_time;
1345 unsigned seq;
1347 do {
1348 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1349 irq_time = per_cpu(cpu_softirq_time, cpu) +
1350 per_cpu(cpu_hardirq_time, cpu);
1351 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1353 return irq_time;
1355 #else /* CONFIG_64BIT */
1356 static inline void irq_time_write_begin(void)
1360 static inline void irq_time_write_end(void)
1364 static inline u64 irq_time_read(int cpu)
1366 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1368 #endif /* CONFIG_64BIT */
1369 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */