2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
9 * Modified by Nadia Derbey to make it RCU safe.
11 * Small id to pointer translation service.
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
41 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
44 /* Leave the possibility of an incomplete final layer */
45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
47 /* Number of id_layer structs to leave in free list */
48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
50 static struct kmem_cache
*idr_layer_cache
;
51 static DEFINE_PER_CPU(struct idr_layer
*, idr_preload_head
);
52 static DEFINE_PER_CPU(int, idr_preload_cnt
);
53 static DEFINE_SPINLOCK(simple_ida_lock
);
55 /* the maximum ID which can be allocated given idr->layers */
56 static int idr_max(int layers
)
58 int bits
= min_t(int, layers
* IDR_BITS
, MAX_IDR_SHIFT
);
60 return (1 << bits
) - 1;
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
68 static int idr_layer_prefix_mask(int layer
)
70 return ~idr_max(layer
+ 1);
73 static struct idr_layer
*get_from_free_list(struct idr
*idp
)
78 spin_lock_irqsave(&idp
->lock
, flags
);
79 if ((p
= idp
->id_free
)) {
80 idp
->id_free
= p
->ary
[0];
84 spin_unlock_irqrestore(&idp
->lock
, flags
);
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
101 static struct idr_layer
*idr_layer_alloc(gfp_t gfp_mask
, struct idr
*layer_idr
)
103 struct idr_layer
*new;
105 /* this is the old path, bypass to get_from_free_list() */
107 return get_from_free_list(layer_idr
);
110 * Try to allocate directly from kmem_cache. We want to try this
111 * before preload buffer; otherwise, non-preloading idr_alloc()
112 * users will end up taking advantage of preloading ones. As the
113 * following is allowed to fail for preloaded cases, suppress
116 new = kmem_cache_zalloc(idr_layer_cache
, gfp_mask
| __GFP_NOWARN
);
121 * Try to fetch one from the per-cpu preload buffer if in process
122 * context. See idr_preload() for details.
124 if (!in_interrupt()) {
126 new = __this_cpu_read(idr_preload_head
);
128 __this_cpu_write(idr_preload_head
, new->ary
[0]);
129 __this_cpu_dec(idr_preload_cnt
);
138 * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so
139 * that memory allocation failure warning is printed as intended.
141 return kmem_cache_zalloc(idr_layer_cache
, gfp_mask
);
144 static void idr_layer_rcu_free(struct rcu_head
*head
)
146 struct idr_layer
*layer
;
148 layer
= container_of(head
, struct idr_layer
, rcu_head
);
149 kmem_cache_free(idr_layer_cache
, layer
);
152 static inline void free_layer(struct idr
*idr
, struct idr_layer
*p
)
154 if (idr
->hint
&& idr
->hint
== p
)
155 RCU_INIT_POINTER(idr
->hint
, NULL
);
156 call_rcu(&p
->rcu_head
, idr_layer_rcu_free
);
159 /* only called when idp->lock is held */
160 static void __move_to_free_list(struct idr
*idp
, struct idr_layer
*p
)
162 p
->ary
[0] = idp
->id_free
;
167 static void move_to_free_list(struct idr
*idp
, struct idr_layer
*p
)
172 * Depends on the return element being zeroed.
174 spin_lock_irqsave(&idp
->lock
, flags
);
175 __move_to_free_list(idp
, p
);
176 spin_unlock_irqrestore(&idp
->lock
, flags
);
179 static void idr_mark_full(struct idr_layer
**pa
, int id
)
181 struct idr_layer
*p
= pa
[0];
184 __set_bit(id
& IDR_MASK
, p
->bitmap
);
186 * If this layer is full mark the bit in the layer above to
187 * show that this part of the radix tree is full. This may
188 * complete the layer above and require walking up the radix
191 while (bitmap_full(p
->bitmap
, IDR_SIZE
)) {
195 __set_bit((id
& IDR_MASK
), p
->bitmap
);
199 int __idr_pre_get(struct idr
*idp
, gfp_t gfp_mask
)
201 while (idp
->id_free_cnt
< MAX_IDR_FREE
) {
202 struct idr_layer
*new;
203 new = kmem_cache_zalloc(idr_layer_cache
, gfp_mask
);
206 move_to_free_list(idp
, new);
210 EXPORT_SYMBOL(__idr_pre_get
);
213 * sub_alloc - try to allocate an id without growing the tree depth
215 * @starting_id: id to start search at
216 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
217 * @gfp_mask: allocation mask for idr_layer_alloc()
218 * @layer_idr: optional idr passed to idr_layer_alloc()
220 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
221 * growing its depth. Returns
223 * the allocated id >= 0 if successful,
224 * -EAGAIN if the tree needs to grow for allocation to succeed,
225 * -ENOSPC if the id space is exhausted,
226 * -ENOMEM if more idr_layers need to be allocated.
228 static int sub_alloc(struct idr
*idp
, int *starting_id
, struct idr_layer
**pa
,
229 gfp_t gfp_mask
, struct idr
*layer_idr
)
232 struct idr_layer
*p
, *new;
242 * We run around this while until we reach the leaf node...
244 n
= (id
>> (IDR_BITS
*l
)) & IDR_MASK
;
245 m
= find_next_zero_bit(p
->bitmap
, IDR_SIZE
, n
);
247 /* no space available go back to previous layer. */
250 id
= (id
| ((1 << (IDR_BITS
* l
)) - 1)) + 1;
252 /* if already at the top layer, we need to grow */
253 if (id
> idr_max(idp
->layers
)) {
260 /* If we need to go up one layer, continue the
261 * loop; otherwise, restart from the top.
263 sh
= IDR_BITS
* (l
+ 1);
264 if (oid
>> sh
== id
>> sh
)
271 id
= ((id
>> sh
) ^ n
^ m
) << sh
;
273 if ((id
>= MAX_IDR_BIT
) || (id
< 0))
278 * Create the layer below if it is missing.
281 new = idr_layer_alloc(gfp_mask
, layer_idr
);
285 new->prefix
= id
& idr_layer_prefix_mask(new->layer
);
286 rcu_assign_pointer(p
->ary
[m
], new);
297 static int idr_get_empty_slot(struct idr
*idp
, int starting_id
,
298 struct idr_layer
**pa
, gfp_t gfp_mask
,
299 struct idr
*layer_idr
)
301 struct idr_layer
*p
, *new;
308 layers
= idp
->layers
;
310 if (!(p
= idr_layer_alloc(gfp_mask
, layer_idr
)))
316 * Add a new layer to the top of the tree if the requested
317 * id is larger than the currently allocated space.
319 while (id
> idr_max(layers
)) {
322 /* special case: if the tree is currently empty,
323 * then we grow the tree by moving the top node
327 WARN_ON_ONCE(p
->prefix
);
330 if (!(new = idr_layer_alloc(gfp_mask
, layer_idr
))) {
332 * The allocation failed. If we built part of
333 * the structure tear it down.
335 spin_lock_irqsave(&idp
->lock
, flags
);
336 for (new = p
; p
&& p
!= idp
->top
; new = p
) {
340 bitmap_clear(new->bitmap
, 0, IDR_SIZE
);
341 __move_to_free_list(idp
, new);
343 spin_unlock_irqrestore(&idp
->lock
, flags
);
348 new->layer
= layers
-1;
349 new->prefix
= id
& idr_layer_prefix_mask(new->layer
);
350 if (bitmap_full(p
->bitmap
, IDR_SIZE
))
351 __set_bit(0, new->bitmap
);
354 rcu_assign_pointer(idp
->top
, p
);
355 idp
->layers
= layers
;
356 v
= sub_alloc(idp
, &id
, pa
, gfp_mask
, layer_idr
);
363 * @id and @pa are from a successful allocation from idr_get_empty_slot().
364 * Install the user pointer @ptr and mark the slot full.
366 static void idr_fill_slot(struct idr
*idr
, void *ptr
, int id
,
367 struct idr_layer
**pa
)
369 /* update hint used for lookup, cleared from free_layer() */
370 rcu_assign_pointer(idr
->hint
, pa
[0]);
372 rcu_assign_pointer(pa
[0]->ary
[id
& IDR_MASK
], (struct idr_layer
*)ptr
);
374 idr_mark_full(pa
, id
);
377 int __idr_get_new_above(struct idr
*idp
, void *ptr
, int starting_id
, int *id
)
379 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
382 rv
= idr_get_empty_slot(idp
, starting_id
, pa
, 0, idp
);
384 return rv
== -ENOMEM
? -EAGAIN
: rv
;
386 idr_fill_slot(idp
, ptr
, rv
, pa
);
390 EXPORT_SYMBOL(__idr_get_new_above
);
393 * idr_preload - preload for idr_alloc()
394 * @gfp_mask: allocation mask to use for preloading
396 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
397 * process context and each idr_preload() invocation should be matched with
398 * idr_preload_end(). Note that preemption is disabled while preloaded.
400 * The first idr_alloc() in the preloaded section can be treated as if it
401 * were invoked with @gfp_mask used for preloading. This allows using more
402 * permissive allocation masks for idrs protected by spinlocks.
404 * For example, if idr_alloc() below fails, the failure can be treated as
405 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
407 * idr_preload(GFP_KERNEL);
410 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
417 void idr_preload(gfp_t gfp_mask
)
420 * Consuming preload buffer from non-process context breaks preload
421 * allocation guarantee. Disallow usage from those contexts.
423 WARN_ON_ONCE(in_interrupt());
424 might_sleep_if(gfp_mask
& __GFP_WAIT
);
429 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
430 * return value from idr_alloc() needs to be checked for failure
431 * anyway. Silently give up if allocation fails. The caller can
432 * treat failures from idr_alloc() as if idr_alloc() were called
433 * with @gfp_mask which should be enough.
435 while (__this_cpu_read(idr_preload_cnt
) < MAX_IDR_FREE
) {
436 struct idr_layer
*new;
439 new = kmem_cache_zalloc(idr_layer_cache
, gfp_mask
);
444 /* link the new one to per-cpu preload list */
445 new->ary
[0] = __this_cpu_read(idr_preload_head
);
446 __this_cpu_write(idr_preload_head
, new);
447 __this_cpu_inc(idr_preload_cnt
);
450 EXPORT_SYMBOL(idr_preload
);
453 * idr_alloc - allocate new idr entry
454 * @idr: the (initialized) idr
455 * @ptr: pointer to be associated with the new id
456 * @start: the minimum id (inclusive)
457 * @end: the maximum id (exclusive, <= 0 for max)
458 * @gfp_mask: memory allocation flags
460 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
461 * available in the specified range, returns -ENOSPC. On memory allocation
462 * failure, returns -ENOMEM.
464 * Note that @end is treated as max when <= 0. This is to always allow
465 * using @start + N as @end as long as N is inside integer range.
467 * The user is responsible for exclusively synchronizing all operations
468 * which may modify @idr. However, read-only accesses such as idr_find()
469 * or iteration can be performed under RCU read lock provided the user
470 * destroys @ptr in RCU-safe way after removal from idr.
472 int idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp_mask
)
474 int max
= end
> 0 ? end
- 1 : INT_MAX
; /* inclusive upper limit */
475 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
478 might_sleep_if(gfp_mask
& __GFP_WAIT
);
481 if (WARN_ON_ONCE(start
< 0))
483 if (unlikely(max
< start
))
487 id
= idr_get_empty_slot(idr
, start
, pa
, gfp_mask
, NULL
);
488 if (unlikely(id
< 0))
490 if (unlikely(id
> max
))
493 idr_fill_slot(idr
, ptr
, id
, pa
);
496 EXPORT_SYMBOL_GPL(idr_alloc
);
499 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
500 * @idr: the (initialized) idr
501 * @ptr: pointer to be associated with the new id
502 * @start: the minimum id (inclusive)
503 * @end: the maximum id (exclusive, <= 0 for max)
504 * @gfp_mask: memory allocation flags
506 * Essentially the same as idr_alloc, but prefers to allocate progressively
507 * higher ids if it can. If the "cur" counter wraps, then it will start again
508 * at the "start" end of the range and allocate one that has already been used.
510 int idr_alloc_cyclic(struct idr
*idr
, void *ptr
, int start
, int end
,
515 id
= idr_alloc(idr
, ptr
, max(start
, idr
->cur
), end
, gfp_mask
);
517 id
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
);
523 EXPORT_SYMBOL(idr_alloc_cyclic
);
525 static void idr_remove_warning(int id
)
527 WARN(1, "idr_remove called for id=%d which is not allocated.\n", id
);
530 static void sub_remove(struct idr
*idp
, int shift
, int id
)
532 struct idr_layer
*p
= idp
->top
;
533 struct idr_layer
**pa
[MAX_IDR_LEVEL
+ 1];
534 struct idr_layer
***paa
= &pa
[0];
535 struct idr_layer
*to_free
;
541 while ((shift
> 0) && p
) {
542 n
= (id
>> shift
) & IDR_MASK
;
543 __clear_bit(n
, p
->bitmap
);
549 if (likely(p
!= NULL
&& test_bit(n
, p
->bitmap
))) {
550 __clear_bit(n
, p
->bitmap
);
551 rcu_assign_pointer(p
->ary
[n
], NULL
);
553 while(*paa
&& ! --((**paa
)->count
)){
555 free_layer(idp
, to_free
);
562 free_layer(idp
, to_free
);
564 idr_remove_warning(id
);
568 * idr_remove - remove the given id and free its slot
572 void idr_remove(struct idr
*idp
, int id
)
575 struct idr_layer
*to_free
;
580 sub_remove(idp
, (idp
->layers
- 1) * IDR_BITS
, id
);
581 if (idp
->top
&& idp
->top
->count
== 1 && (idp
->layers
> 1) &&
584 * Single child at leftmost slot: we can shrink the tree.
585 * This level is not needed anymore since when layers are
586 * inserted, they are inserted at the top of the existing
590 p
= idp
->top
->ary
[0];
591 rcu_assign_pointer(idp
->top
, p
);
594 bitmap_clear(to_free
->bitmap
, 0, IDR_SIZE
);
595 free_layer(idp
, to_free
);
597 while (idp
->id_free_cnt
>= MAX_IDR_FREE
) {
598 p
= get_from_free_list(idp
);
600 * Note: we don't call the rcu callback here, since the only
601 * layers that fall into the freelist are those that have been
604 kmem_cache_free(idr_layer_cache
, p
);
608 EXPORT_SYMBOL(idr_remove
);
610 void __idr_remove_all(struct idr
*idp
)
615 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
616 struct idr_layer
**paa
= &pa
[0];
618 n
= idp
->layers
* IDR_BITS
;
620 rcu_assign_pointer(idp
->top
, NULL
);
621 max
= idr_max(idp
->layers
);
624 while (id
>= 0 && id
<= max
) {
625 while (n
> IDR_BITS
&& p
) {
628 p
= p
->ary
[(id
>> n
) & IDR_MASK
];
633 /* Get the highest bit that the above add changed from 0->1. */
634 while (n
< fls(id
^ bt_mask
)) {
643 EXPORT_SYMBOL(__idr_remove_all
);
646 * idr_destroy - release all cached layers within an idr tree
649 * Free all id mappings and all idp_layers. After this function, @idp is
650 * completely unused and can be freed / recycled. The caller is
651 * responsible for ensuring that no one else accesses @idp during or after
654 * A typical clean-up sequence for objects stored in an idr tree will use
655 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
656 * free up the id mappings and cached idr_layers.
658 void idr_destroy(struct idr
*idp
)
660 __idr_remove_all(idp
);
662 while (idp
->id_free_cnt
) {
663 struct idr_layer
*p
= get_from_free_list(idp
);
664 kmem_cache_free(idr_layer_cache
, p
);
667 EXPORT_SYMBOL(idr_destroy
);
669 void *idr_find_slowpath(struct idr
*idp
, int id
)
677 p
= rcu_dereference_raw(idp
->top
);
680 n
= (p
->layer
+1) * IDR_BITS
;
682 if (id
> idr_max(p
->layer
+ 1))
688 BUG_ON(n
!= p
->layer
*IDR_BITS
);
689 p
= rcu_dereference_raw(p
->ary
[(id
>> n
) & IDR_MASK
]);
693 EXPORT_SYMBOL(idr_find_slowpath
);
696 * idr_for_each - iterate through all stored pointers
698 * @fn: function to be called for each pointer
699 * @data: data passed back to callback function
701 * Iterate over the pointers registered with the given idr. The
702 * callback function will be called for each pointer currently
703 * registered, passing the id, the pointer and the data pointer passed
704 * to this function. It is not safe to modify the idr tree while in
705 * the callback, so functions such as idr_get_new and idr_remove are
708 * We check the return of @fn each time. If it returns anything other
709 * than %0, we break out and return that value.
711 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
713 int idr_for_each(struct idr
*idp
,
714 int (*fn
)(int id
, void *p
, void *data
), void *data
)
716 int n
, id
, max
, error
= 0;
718 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
719 struct idr_layer
**paa
= &pa
[0];
721 n
= idp
->layers
* IDR_BITS
;
722 p
= rcu_dereference_raw(idp
->top
);
723 max
= idr_max(idp
->layers
);
726 while (id
>= 0 && id
<= max
) {
730 p
= rcu_dereference_raw(p
->ary
[(id
>> n
) & IDR_MASK
]);
734 error
= fn(id
, (void *)p
, data
);
740 while (n
< fls(id
)) {
748 EXPORT_SYMBOL(idr_for_each
);
751 * idr_get_next - lookup next object of id to given id.
753 * @nextidp: pointer to lookup key
755 * Returns pointer to registered object with id, which is next number to
756 * given id. After being looked up, *@nextidp will be updated for the next
759 * This function can be called under rcu_read_lock(), given that the leaf
760 * pointers lifetimes are correctly managed.
762 void *idr_get_next(struct idr
*idp
, int *nextidp
)
764 struct idr_layer
*p
, *pa
[MAX_IDR_LEVEL
+ 1];
765 struct idr_layer
**paa
= &pa
[0];
770 p
= rcu_dereference_raw(idp
->top
);
773 n
= (p
->layer
+ 1) * IDR_BITS
;
774 max
= idr_max(p
->layer
+ 1);
776 while (id
>= 0 && id
<= max
) {
780 p
= rcu_dereference_raw(p
->ary
[(id
>> n
) & IDR_MASK
]);
789 * Proceed to the next layer at the current level. Unlike
790 * idr_for_each(), @id isn't guaranteed to be aligned to
791 * layer boundary at this point and adding 1 << n may
792 * incorrectly skip IDs. Make sure we jump to the
793 * beginning of the next layer using round_up().
795 id
= round_up(id
+ 1, 1 << n
);
796 while (n
< fls(id
)) {
803 EXPORT_SYMBOL(idr_get_next
);
807 * idr_replace - replace pointer for given id
809 * @ptr: pointer you want associated with the id
812 * Replace the pointer registered with an id and return the old value.
813 * A %-ENOENT return indicates that @id was not found.
814 * A %-EINVAL return indicates that @id was not within valid constraints.
816 * The caller must serialize with writers.
818 void *idr_replace(struct idr
*idp
, void *ptr
, int id
)
821 struct idr_layer
*p
, *old_p
;
824 return ERR_PTR(-EINVAL
);
828 return ERR_PTR(-EINVAL
);
830 if (id
> idr_max(p
->layer
+ 1))
831 return ERR_PTR(-EINVAL
);
833 n
= p
->layer
* IDR_BITS
;
834 while ((n
> 0) && p
) {
835 p
= p
->ary
[(id
>> n
) & IDR_MASK
];
840 if (unlikely(p
== NULL
|| !test_bit(n
, p
->bitmap
)))
841 return ERR_PTR(-ENOENT
);
844 rcu_assign_pointer(p
->ary
[n
], ptr
);
848 EXPORT_SYMBOL(idr_replace
);
850 void __init
idr_init_cache(void)
852 idr_layer_cache
= kmem_cache_create("idr_layer_cache",
853 sizeof(struct idr_layer
), 0, SLAB_PANIC
, NULL
);
857 * idr_init - initialize idr handle
860 * This function is use to set up the handle (@idp) that you will pass
861 * to the rest of the functions.
863 void idr_init(struct idr
*idp
)
865 memset(idp
, 0, sizeof(struct idr
));
866 spin_lock_init(&idp
->lock
);
868 EXPORT_SYMBOL(idr_init
);
872 * DOC: IDA description
873 * IDA - IDR based ID allocator
875 * This is id allocator without id -> pointer translation. Memory
876 * usage is much lower than full blown idr because each id only
877 * occupies a bit. ida uses a custom leaf node which contains
878 * IDA_BITMAP_BITS slots.
880 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
883 static void free_bitmap(struct ida
*ida
, struct ida_bitmap
*bitmap
)
887 if (!ida
->free_bitmap
) {
888 spin_lock_irqsave(&ida
->idr
.lock
, flags
);
889 if (!ida
->free_bitmap
) {
890 ida
->free_bitmap
= bitmap
;
893 spin_unlock_irqrestore(&ida
->idr
.lock
, flags
);
900 * ida_pre_get - reserve resources for ida allocation
902 * @gfp_mask: memory allocation flag
904 * This function should be called prior to locking and calling the
905 * following function. It preallocates enough memory to satisfy the
906 * worst possible allocation.
908 * If the system is REALLY out of memory this function returns %0,
911 int ida_pre_get(struct ida
*ida
, gfp_t gfp_mask
)
913 /* allocate idr_layers */
914 if (!__idr_pre_get(&ida
->idr
, gfp_mask
))
917 /* allocate free_bitmap */
918 if (!ida
->free_bitmap
) {
919 struct ida_bitmap
*bitmap
;
921 bitmap
= kmalloc(sizeof(struct ida_bitmap
), gfp_mask
);
925 free_bitmap(ida
, bitmap
);
930 EXPORT_SYMBOL(ida_pre_get
);
933 * ida_get_new_above - allocate new ID above or equal to a start id
935 * @starting_id: id to start search at
936 * @p_id: pointer to the allocated handle
938 * Allocate new ID above or equal to @starting_id. It should be called
939 * with any required locks.
941 * If memory is required, it will return %-EAGAIN, you should unlock
942 * and go back to the ida_pre_get() call. If the ida is full, it will
945 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
947 int ida_get_new_above(struct ida
*ida
, int starting_id
, int *p_id
)
949 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
950 struct ida_bitmap
*bitmap
;
952 int idr_id
= starting_id
/ IDA_BITMAP_BITS
;
953 int offset
= starting_id
% IDA_BITMAP_BITS
;
957 /* get vacant slot */
958 t
= idr_get_empty_slot(&ida
->idr
, idr_id
, pa
, 0, &ida
->idr
);
960 return t
== -ENOMEM
? -EAGAIN
: t
;
962 if (t
* IDA_BITMAP_BITS
>= MAX_IDR_BIT
)
969 /* if bitmap isn't there, create a new one */
970 bitmap
= (void *)pa
[0]->ary
[idr_id
& IDR_MASK
];
972 spin_lock_irqsave(&ida
->idr
.lock
, flags
);
973 bitmap
= ida
->free_bitmap
;
974 ida
->free_bitmap
= NULL
;
975 spin_unlock_irqrestore(&ida
->idr
.lock
, flags
);
980 memset(bitmap
, 0, sizeof(struct ida_bitmap
));
981 rcu_assign_pointer(pa
[0]->ary
[idr_id
& IDR_MASK
],
986 /* lookup for empty slot */
987 t
= find_next_zero_bit(bitmap
->bitmap
, IDA_BITMAP_BITS
, offset
);
988 if (t
== IDA_BITMAP_BITS
) {
989 /* no empty slot after offset, continue to the next chunk */
995 id
= idr_id
* IDA_BITMAP_BITS
+ t
;
996 if (id
>= MAX_IDR_BIT
)
999 __set_bit(t
, bitmap
->bitmap
);
1000 if (++bitmap
->nr_busy
== IDA_BITMAP_BITS
)
1001 idr_mark_full(pa
, idr_id
);
1005 /* Each leaf node can handle nearly a thousand slots and the
1006 * whole idea of ida is to have small memory foot print.
1007 * Throw away extra resources one by one after each successful
1010 if (ida
->idr
.id_free_cnt
|| ida
->free_bitmap
) {
1011 struct idr_layer
*p
= get_from_free_list(&ida
->idr
);
1013 kmem_cache_free(idr_layer_cache
, p
);
1018 EXPORT_SYMBOL(ida_get_new_above
);
1021 * ida_remove - remove the given ID
1025 void ida_remove(struct ida
*ida
, int id
)
1027 struct idr_layer
*p
= ida
->idr
.top
;
1028 int shift
= (ida
->idr
.layers
- 1) * IDR_BITS
;
1029 int idr_id
= id
/ IDA_BITMAP_BITS
;
1030 int offset
= id
% IDA_BITMAP_BITS
;
1032 struct ida_bitmap
*bitmap
;
1034 /* clear full bits while looking up the leaf idr_layer */
1035 while ((shift
> 0) && p
) {
1036 n
= (idr_id
>> shift
) & IDR_MASK
;
1037 __clear_bit(n
, p
->bitmap
);
1045 n
= idr_id
& IDR_MASK
;
1046 __clear_bit(n
, p
->bitmap
);
1048 bitmap
= (void *)p
->ary
[n
];
1049 if (!test_bit(offset
, bitmap
->bitmap
))
1052 /* update bitmap and remove it if empty */
1053 __clear_bit(offset
, bitmap
->bitmap
);
1054 if (--bitmap
->nr_busy
== 0) {
1055 __set_bit(n
, p
->bitmap
); /* to please idr_remove() */
1056 idr_remove(&ida
->idr
, idr_id
);
1057 free_bitmap(ida
, bitmap
);
1063 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id
);
1065 EXPORT_SYMBOL(ida_remove
);
1068 * ida_destroy - release all cached layers within an ida tree
1071 void ida_destroy(struct ida
*ida
)
1073 idr_destroy(&ida
->idr
);
1074 kfree(ida
->free_bitmap
);
1076 EXPORT_SYMBOL(ida_destroy
);
1079 * ida_simple_get - get a new id.
1080 * @ida: the (initialized) ida.
1081 * @start: the minimum id (inclusive, < 0x8000000)
1082 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1083 * @gfp_mask: memory allocation flags
1085 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1086 * On memory allocation failure, returns -ENOMEM.
1088 * Use ida_simple_remove() to get rid of an id.
1090 int ida_simple_get(struct ida
*ida
, unsigned int start
, unsigned int end
,
1095 unsigned long flags
;
1097 BUG_ON((int)start
< 0);
1098 BUG_ON((int)end
< 0);
1103 BUG_ON(end
< start
);
1108 if (!ida_pre_get(ida
, gfp_mask
))
1111 spin_lock_irqsave(&simple_ida_lock
, flags
);
1112 ret
= ida_get_new_above(ida
, start
, &id
);
1115 ida_remove(ida
, id
);
1121 spin_unlock_irqrestore(&simple_ida_lock
, flags
);
1123 if (unlikely(ret
== -EAGAIN
))
1128 EXPORT_SYMBOL(ida_simple_get
);
1131 * ida_simple_remove - remove an allocated id.
1132 * @ida: the (initialized) ida.
1133 * @id: the id returned by ida_simple_get.
1135 void ida_simple_remove(struct ida
*ida
, unsigned int id
)
1137 unsigned long flags
;
1139 BUG_ON((int)id
< 0);
1140 spin_lock_irqsave(&simple_ida_lock
, flags
);
1141 ida_remove(ida
, id
);
1142 spin_unlock_irqrestore(&simple_ida_lock
, flags
);
1144 EXPORT_SYMBOL(ida_simple_remove
);
1147 * ida_init - initialize ida handle
1150 * This function is use to set up the handle (@ida) that you will pass
1151 * to the rest of the functions.
1153 void ida_init(struct ida
*ida
)
1155 memset(ida
, 0, sizeof(struct ida
));
1156 idr_init(&ida
->idr
);
1159 EXPORT_SYMBOL(ida_init
);