hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / lib / random32.c
blob01e8890d1089419668eb9cfc9d5764fabba89e4b
1 /*
2 This is a maximally equidistributed combined Tausworthe generator
3 based on code from GNU Scientific Library 1.5 (30 Jun 2004)
5 x_n = (s1_n ^ s2_n ^ s3_n)
7 s1_{n+1} = (((s1_n & 4294967294) <<12) ^ (((s1_n <<13) ^ s1_n) >>19))
8 s2_{n+1} = (((s2_n & 4294967288) << 4) ^ (((s2_n << 2) ^ s2_n) >>25))
9 s3_{n+1} = (((s3_n & 4294967280) <<17) ^ (((s3_n << 3) ^ s3_n) >>11))
11 The period of this generator is about 2^88.
13 From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
14 Generators", Mathematics of Computation, 65, 213 (1996), 203--213.
16 This is available on the net from L'Ecuyer's home page,
18 http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
19 ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
21 There is an erratum in the paper "Tables of Maximally
22 Equidistributed Combined LFSR Generators", Mathematics of
23 Computation, 68, 225 (1999), 261--269:
24 http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
26 ... the k_j most significant bits of z_j must be non-
27 zero, for each j. (Note: this restriction also applies to the
28 computer code given in [4], but was mistakenly not mentioned in
29 that paper.)
31 This affects the seeding procedure by imposing the requirement
32 s1 > 1, s2 > 7, s3 > 15.
36 #include <linux/types.h>
37 #include <linux/percpu.h>
38 #include <linux/export.h>
39 #include <linux/jiffies.h>
40 #include <linux/random.h>
42 static DEFINE_PER_CPU(struct rnd_state, net_rand_state);
44 /**
45 * prandom_u32_state - seeded pseudo-random number generator.
46 * @state: pointer to state structure holding seeded state.
48 * This is used for pseudo-randomness with no outside seeding.
49 * For more random results, use prandom_u32().
51 u32 prandom_u32_state(struct rnd_state *state)
53 #define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)
55 state->s1 = TAUSWORTHE(state->s1, 13, 19, 4294967294UL, 12);
56 state->s2 = TAUSWORTHE(state->s2, 2, 25, 4294967288UL, 4);
57 state->s3 = TAUSWORTHE(state->s3, 3, 11, 4294967280UL, 17);
59 return (state->s1 ^ state->s2 ^ state->s3);
61 EXPORT_SYMBOL(prandom_u32_state);
63 /**
64 * prandom_u32 - pseudo random number generator
66 * A 32 bit pseudo-random number is generated using a fast
67 * algorithm suitable for simulation. This algorithm is NOT
68 * considered safe for cryptographic use.
70 u32 prandom_u32(void)
72 unsigned long r;
73 struct rnd_state *state = &get_cpu_var(net_rand_state);
74 r = prandom_u32_state(state);
75 put_cpu_var(state);
76 return r;
78 EXPORT_SYMBOL(prandom_u32);
81 * prandom_bytes_state - get the requested number of pseudo-random bytes
83 * @state: pointer to state structure holding seeded state.
84 * @buf: where to copy the pseudo-random bytes to
85 * @bytes: the requested number of bytes
87 * This is used for pseudo-randomness with no outside seeding.
88 * For more random results, use prandom_bytes().
90 void prandom_bytes_state(struct rnd_state *state, void *buf, int bytes)
92 unsigned char *p = buf;
93 int i;
95 for (i = 0; i < round_down(bytes, sizeof(u32)); i += sizeof(u32)) {
96 u32 random = prandom_u32_state(state);
97 int j;
99 for (j = 0; j < sizeof(u32); j++) {
100 p[i + j] = random;
101 random >>= BITS_PER_BYTE;
104 if (i < bytes) {
105 u32 random = prandom_u32_state(state);
107 for (; i < bytes; i++) {
108 p[i] = random;
109 random >>= BITS_PER_BYTE;
113 EXPORT_SYMBOL(prandom_bytes_state);
116 * prandom_bytes - get the requested number of pseudo-random bytes
117 * @buf: where to copy the pseudo-random bytes to
118 * @bytes: the requested number of bytes
120 void prandom_bytes(void *buf, int bytes)
122 struct rnd_state *state = &get_cpu_var(net_rand_state);
124 prandom_bytes_state(state, buf, bytes);
125 put_cpu_var(state);
127 EXPORT_SYMBOL(prandom_bytes);
130 * prandom_seed - add entropy to pseudo random number generator
131 * @seed: seed value
133 * Add some additional seeding to the prandom pool.
135 void prandom_seed(u32 entropy)
137 int i;
139 * No locking on the CPUs, but then somewhat random results are, well,
140 * expected.
142 for_each_possible_cpu (i) {
143 struct rnd_state *state = &per_cpu(net_rand_state, i);
144 state->s1 = __seed(state->s1 ^ entropy, 2);
147 EXPORT_SYMBOL(prandom_seed);
150 * Generate some initially weak seeding values to allow
151 * to start the prandom_u32() engine.
153 static int __init prandom_init(void)
155 int i;
157 for_each_possible_cpu(i) {
158 struct rnd_state *state = &per_cpu(net_rand_state,i);
160 #define LCG(x) ((x) * 69069) /* super-duper LCG */
161 state->s1 = __seed(LCG(i + jiffies), 2);
162 state->s2 = __seed(LCG(state->s1), 8);
163 state->s3 = __seed(LCG(state->s2), 16);
165 /* "warm it up" */
166 prandom_u32_state(state);
167 prandom_u32_state(state);
168 prandom_u32_state(state);
169 prandom_u32_state(state);
170 prandom_u32_state(state);
171 prandom_u32_state(state);
173 return 0;
175 core_initcall(prandom_init);
178 * Generate better values after random number generator
179 * is fully initialized.
181 static int __init prandom_reseed(void)
183 int i;
185 for_each_possible_cpu(i) {
186 struct rnd_state *state = &per_cpu(net_rand_state,i);
187 u32 seeds[3];
189 get_random_bytes(&seeds, sizeof(seeds));
190 state->s1 = __seed(seeds[0], 2);
191 state->s2 = __seed(seeds[1], 8);
192 state->s3 = __seed(seeds[2], 16);
194 /* mix it in */
195 prandom_u32_state(state);
197 return 0;
199 late_initcall(prandom_reseed);