2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
27 #include <asm/pgtable.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
36 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
37 unsigned long hugepages_treat_as_movable
;
39 int hugetlb_max_hstate __read_mostly
;
40 unsigned int default_hstate_idx
;
41 struct hstate hstates
[HUGE_MAX_HSTATE
];
43 __initdata
LIST_HEAD(huge_boot_pages
);
45 /* for command line parsing */
46 static struct hstate
* __initdata parsed_hstate
;
47 static unsigned long __initdata default_hstate_max_huge_pages
;
48 static unsigned long __initdata default_hstate_size
;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock
);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
58 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
60 spin_unlock(&spool
->lock
);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
70 struct hugepage_subpool
*spool
;
72 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
76 spin_lock_init(&spool
->lock
);
78 spool
->max_hpages
= nr_blocks
;
79 spool
->used_hpages
= 0;
84 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
86 spin_lock(&spool
->lock
);
87 BUG_ON(!spool
->count
);
89 unlock_or_release_subpool(spool
);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
100 spin_lock(&spool
->lock
);
101 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
102 spool
->used_hpages
+= delta
;
106 spin_unlock(&spool
->lock
);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
117 spin_lock(&spool
->lock
);
118 spool
->used_hpages
-= delta
;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool
);
124 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
126 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
129 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
131 return subpool_inode(file_inode(vma
->vm_file
));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link
;
154 static long region_add(struct list_head
*head
, long f
, long t
)
156 struct file_region
*rg
, *nrg
, *trg
;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg
, head
, link
)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
170 if (&rg
->link
== head
)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head
*head
, long f
, long t
)
192 struct file_region
*rg
, *nrg
;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg
, head
, link
)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg
->link
== head
|| t
< rg
->from
) {
204 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
209 INIT_LIST_HEAD(&nrg
->link
);
210 list_add(&nrg
->link
, rg
->link
.prev
);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
222 if (&rg
->link
== head
)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg
-= rg
->to
- rg
->from
;
239 static long region_truncate(struct list_head
*head
, long end
)
241 struct file_region
*rg
, *trg
;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg
, head
, link
)
248 if (&rg
->link
== head
)
251 /* If we are in the middle of a region then adjust it. */
252 if (end
> rg
->from
) {
255 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
260 if (&rg
->link
== head
)
262 chg
+= rg
->to
- rg
->from
;
269 static long region_count(struct list_head
*head
, long f
, long t
)
271 struct file_region
*rg
;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg
, head
, link
) {
284 seg_from
= max(rg
->from
, f
);
285 seg_to
= min(rg
->to
, t
);
287 chg
+= seg_to
- seg_from
;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
298 struct vm_area_struct
*vma
, unsigned long address
)
300 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
301 (vma
->vm_pgoff
>> huge_page_order(h
));
304 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
305 unsigned long address
)
307 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
316 struct hstate
*hstate
;
318 if (!is_vm_hugetlb_page(vma
))
321 hstate
= hstate_vma(vma
);
323 return 1UL << huge_page_shift(hstate
);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
336 return vma_kernel_pagesize(vma
);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
370 return (unsigned long)vma
->vm_private_data
;
373 static void set_vma_private_data(struct vm_area_struct
*vma
,
376 vma
->vm_private_data
= (void *)value
;
381 struct list_head regions
;
384 static struct resv_map
*resv_map_alloc(void)
386 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
390 kref_init(&resv_map
->refs
);
391 INIT_LIST_HEAD(&resv_map
->regions
);
396 static void resv_map_release(struct kref
*ref
)
398 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map
->regions
, 0);
405 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
408 if (!(vma
->vm_flags
& VM_MAYSHARE
))
409 return (struct resv_map
*)(get_vma_private_data(vma
) &
414 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
417 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
419 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
420 HPAGE_RESV_MASK
) | (unsigned long)map
);
423 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
426 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
428 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
431 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
435 return (get_vma_private_data(vma
) & flag
) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
442 if (!(vma
->vm_flags
& VM_MAYSHARE
))
443 vma
->vm_private_data
= (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
449 if (vma
->vm_flags
& VM_NORESERVE
) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
465 /* Shared mappings always use reserves */
466 if (vma
->vm_flags
& VM_MAYSHARE
)
470 * Only the process that called mmap() has reserves for
473 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
479 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
482 struct hstate
*h
= page_hstate(src
);
483 struct page
*dst_base
= dst
;
484 struct page
*src_base
= src
;
486 for (i
= 0; i
< pages_per_huge_page(h
); ) {
488 copy_highpage(dst
, src
);
491 dst
= mem_map_next(dst
, dst_base
, i
);
492 src
= mem_map_next(src
, src_base
, i
);
496 void copy_huge_page(struct page
*dst
, struct page
*src
)
499 struct hstate
*h
= page_hstate(src
);
501 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
502 copy_gigantic_page(dst
, src
);
507 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
509 copy_highpage(dst
+ i
, src
+ i
);
513 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
515 int nid
= page_to_nid(page
);
516 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
517 h
->free_huge_pages
++;
518 h
->free_huge_pages_node
[nid
]++;
521 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
525 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
526 if (!is_migrate_isolate_page(page
))
529 * if 'non-isolated free hugepage' not found on the list,
530 * the allocation fails.
532 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
534 list_move(&page
->lru
, &h
->hugepage_activelist
);
535 set_page_refcounted(page
);
536 h
->free_huge_pages
--;
537 h
->free_huge_pages_node
[nid
]--;
541 /* Movability of hugepages depends on migration support. */
542 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
544 if (hugepages_treat_as_movable
|| hugepage_migration_support(h
))
545 return GFP_HIGHUSER_MOVABLE
;
550 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
551 struct vm_area_struct
*vma
,
552 unsigned long address
, int avoid_reserve
,
555 struct page
*page
= NULL
;
556 struct mempolicy
*mpol
;
557 nodemask_t
*nodemask
;
558 struct zonelist
*zonelist
;
561 unsigned int cpuset_mems_cookie
;
564 * A child process with MAP_PRIVATE mappings created by their parent
565 * have no page reserves. This check ensures that reservations are
566 * not "stolen". The child may still get SIGKILLed
568 if (!vma_has_reserves(vma
, chg
) &&
569 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
572 /* If reserves cannot be used, ensure enough pages are in the pool */
573 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
577 cpuset_mems_cookie
= get_mems_allowed();
578 zonelist
= huge_zonelist(vma
, address
,
579 htlb_alloc_mask(h
), &mpol
, &nodemask
);
581 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
582 MAX_NR_ZONES
- 1, nodemask
) {
583 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask(h
))) {
584 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
588 if (!vma_has_reserves(vma
, chg
))
591 SetPagePrivate(page
);
592 h
->resv_huge_pages
--;
599 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
607 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
611 VM_BUG_ON(h
->order
>= MAX_ORDER
);
614 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
615 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
616 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
617 1 << PG_referenced
| 1 << PG_dirty
|
618 1 << PG_active
| 1 << PG_reserved
|
619 1 << PG_private
| 1 << PG_writeback
);
621 VM_BUG_ON(hugetlb_cgroup_from_page(page
));
622 set_compound_page_dtor(page
, NULL
);
623 set_page_refcounted(page
);
624 arch_release_hugepage(page
);
625 __free_pages(page
, huge_page_order(h
));
628 struct hstate
*size_to_hstate(unsigned long size
)
633 if (huge_page_size(h
) == size
)
639 static void free_huge_page(struct page
*page
)
642 * Can't pass hstate in here because it is called from the
643 * compound page destructor.
645 struct hstate
*h
= page_hstate(page
);
646 int nid
= page_to_nid(page
);
647 struct hugepage_subpool
*spool
=
648 (struct hugepage_subpool
*)page_private(page
);
649 bool restore_reserve
;
651 set_page_private(page
, 0);
652 page
->mapping
= NULL
;
653 BUG_ON(page_count(page
));
654 BUG_ON(page_mapcount(page
));
655 restore_reserve
= PagePrivate(page
);
656 ClearPagePrivate(page
);
658 spin_lock(&hugetlb_lock
);
659 hugetlb_cgroup_uncharge_page(hstate_index(h
),
660 pages_per_huge_page(h
), page
);
662 h
->resv_huge_pages
++;
664 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
665 /* remove the page from active list */
666 list_del(&page
->lru
);
667 update_and_free_page(h
, page
);
668 h
->surplus_huge_pages
--;
669 h
->surplus_huge_pages_node
[nid
]--;
671 arch_clear_hugepage_flags(page
);
672 enqueue_huge_page(h
, page
);
674 spin_unlock(&hugetlb_lock
);
675 hugepage_subpool_put_pages(spool
, 1);
678 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
680 INIT_LIST_HEAD(&page
->lru
);
681 set_compound_page_dtor(page
, free_huge_page
);
682 spin_lock(&hugetlb_lock
);
683 set_hugetlb_cgroup(page
, NULL
);
685 h
->nr_huge_pages_node
[nid
]++;
686 spin_unlock(&hugetlb_lock
);
687 put_page(page
); /* free it into the hugepage allocator */
690 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
693 int nr_pages
= 1 << order
;
694 struct page
*p
= page
+ 1;
696 /* we rely on prep_new_huge_page to set the destructor */
697 set_compound_order(page
, order
);
699 __ClearPageReserved(page
);
700 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
703 * For gigantic hugepages allocated through bootmem at
704 * boot, it's safer to be consistent with the not-gigantic
705 * hugepages and clear the PG_reserved bit from all tail pages
706 * too. Otherwse drivers using get_user_pages() to access tail
707 * pages may get the reference counting wrong if they see
708 * PG_reserved set on a tail page (despite the head page not
709 * having PG_reserved set). Enforcing this consistency between
710 * head and tail pages allows drivers to optimize away a check
711 * on the head page when they need know if put_page() is needed
712 * after get_user_pages().
714 __ClearPageReserved(p
);
715 set_page_count(p
, 0);
716 p
->first_page
= page
;
721 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
722 * transparent huge pages. See the PageTransHuge() documentation for more
725 int PageHuge(struct page
*page
)
727 compound_page_dtor
*dtor
;
729 if (!PageCompound(page
))
732 page
= compound_head(page
);
733 dtor
= get_compound_page_dtor(page
);
735 return dtor
== free_huge_page
;
737 EXPORT_SYMBOL_GPL(PageHuge
);
740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741 * normal or transparent huge pages.
743 int PageHeadHuge(struct page
*page_head
)
745 compound_page_dtor
*dtor
;
747 if (!PageHead(page_head
))
750 dtor
= get_compound_page_dtor(page_head
);
752 return dtor
== free_huge_page
;
754 EXPORT_SYMBOL_GPL(PageHeadHuge
);
756 pgoff_t
__basepage_index(struct page
*page
)
758 struct page
*page_head
= compound_head(page
);
759 pgoff_t index
= page_index(page_head
);
760 unsigned long compound_idx
;
762 if (!PageHuge(page_head
))
763 return page_index(page
);
765 if (compound_order(page_head
) >= MAX_ORDER
)
766 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
768 compound_idx
= page
- page_head
;
770 return (index
<< compound_order(page_head
)) + compound_idx
;
773 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
777 if (h
->order
>= MAX_ORDER
)
780 page
= alloc_pages_exact_node(nid
,
781 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
782 __GFP_REPEAT
|__GFP_NOWARN
,
785 if (arch_prepare_hugepage(page
)) {
786 __free_pages(page
, huge_page_order(h
));
789 prep_new_huge_page(h
, page
, nid
);
796 * common helper functions for hstate_next_node_to_{alloc|free}.
797 * We may have allocated or freed a huge page based on a different
798 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
799 * be outside of *nodes_allowed. Ensure that we use an allowed
800 * node for alloc or free.
802 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
804 nid
= next_node(nid
, *nodes_allowed
);
805 if (nid
== MAX_NUMNODES
)
806 nid
= first_node(*nodes_allowed
);
807 VM_BUG_ON(nid
>= MAX_NUMNODES
);
812 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
814 if (!node_isset(nid
, *nodes_allowed
))
815 nid
= next_node_allowed(nid
, nodes_allowed
);
820 * returns the previously saved node ["this node"] from which to
821 * allocate a persistent huge page for the pool and advance the
822 * next node from which to allocate, handling wrap at end of node
825 static int hstate_next_node_to_alloc(struct hstate
*h
,
826 nodemask_t
*nodes_allowed
)
830 VM_BUG_ON(!nodes_allowed
);
832 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
833 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
839 * helper for free_pool_huge_page() - return the previously saved
840 * node ["this node"] from which to free a huge page. Advance the
841 * next node id whether or not we find a free huge page to free so
842 * that the next attempt to free addresses the next node.
844 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
848 VM_BUG_ON(!nodes_allowed
);
850 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
851 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
856 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
857 for (nr_nodes = nodes_weight(*mask); \
859 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
862 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
863 for (nr_nodes = nodes_weight(*mask); \
865 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
868 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
874 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
875 page
= alloc_fresh_huge_page_node(h
, node
);
883 count_vm_event(HTLB_BUDDY_PGALLOC
);
885 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
891 * Free huge page from pool from next node to free.
892 * Attempt to keep persistent huge pages more or less
893 * balanced over allowed nodes.
894 * Called with hugetlb_lock locked.
896 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
902 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
904 * If we're returning unused surplus pages, only examine
905 * nodes with surplus pages.
907 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
908 !list_empty(&h
->hugepage_freelists
[node
])) {
910 list_entry(h
->hugepage_freelists
[node
].next
,
912 list_del(&page
->lru
);
913 h
->free_huge_pages
--;
914 h
->free_huge_pages_node
[node
]--;
916 h
->surplus_huge_pages
--;
917 h
->surplus_huge_pages_node
[node
]--;
919 update_and_free_page(h
, page
);
929 * Dissolve a given free hugepage into free buddy pages. This function does
930 * nothing for in-use (including surplus) hugepages.
932 static void dissolve_free_huge_page(struct page
*page
)
934 spin_lock(&hugetlb_lock
);
935 if (PageHuge(page
) && !page_count(page
)) {
936 struct hstate
*h
= page_hstate(page
);
937 int nid
= page_to_nid(page
);
938 list_del(&page
->lru
);
939 h
->free_huge_pages
--;
940 h
->free_huge_pages_node
[nid
]--;
941 update_and_free_page(h
, page
);
943 spin_unlock(&hugetlb_lock
);
947 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
948 * make specified memory blocks removable from the system.
949 * Note that start_pfn should aligned with (minimum) hugepage size.
951 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
953 unsigned int order
= 8 * sizeof(void *);
957 /* Set scan step to minimum hugepage size */
959 if (order
> huge_page_order(h
))
960 order
= huge_page_order(h
);
961 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << order
));
962 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
)
963 dissolve_free_huge_page(pfn_to_page(pfn
));
966 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
971 if (h
->order
>= MAX_ORDER
)
975 * Assume we will successfully allocate the surplus page to
976 * prevent racing processes from causing the surplus to exceed
979 * This however introduces a different race, where a process B
980 * tries to grow the static hugepage pool while alloc_pages() is
981 * called by process A. B will only examine the per-node
982 * counters in determining if surplus huge pages can be
983 * converted to normal huge pages in adjust_pool_surplus(). A
984 * won't be able to increment the per-node counter, until the
985 * lock is dropped by B, but B doesn't drop hugetlb_lock until
986 * no more huge pages can be converted from surplus to normal
987 * state (and doesn't try to convert again). Thus, we have a
988 * case where a surplus huge page exists, the pool is grown, and
989 * the surplus huge page still exists after, even though it
990 * should just have been converted to a normal huge page. This
991 * does not leak memory, though, as the hugepage will be freed
992 * once it is out of use. It also does not allow the counters to
993 * go out of whack in adjust_pool_surplus() as we don't modify
994 * the node values until we've gotten the hugepage and only the
995 * per-node value is checked there.
997 spin_lock(&hugetlb_lock
);
998 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
999 spin_unlock(&hugetlb_lock
);
1003 h
->surplus_huge_pages
++;
1005 spin_unlock(&hugetlb_lock
);
1007 if (nid
== NUMA_NO_NODE
)
1008 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
1009 __GFP_REPEAT
|__GFP_NOWARN
,
1010 huge_page_order(h
));
1012 page
= alloc_pages_exact_node(nid
,
1013 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1014 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
1016 if (page
&& arch_prepare_hugepage(page
)) {
1017 __free_pages(page
, huge_page_order(h
));
1021 spin_lock(&hugetlb_lock
);
1023 INIT_LIST_HEAD(&page
->lru
);
1024 r_nid
= page_to_nid(page
);
1025 set_compound_page_dtor(page
, free_huge_page
);
1026 set_hugetlb_cgroup(page
, NULL
);
1028 * We incremented the global counters already
1030 h
->nr_huge_pages_node
[r_nid
]++;
1031 h
->surplus_huge_pages_node
[r_nid
]++;
1032 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1035 h
->surplus_huge_pages
--;
1036 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1038 spin_unlock(&hugetlb_lock
);
1044 * This allocation function is useful in the context where vma is irrelevant.
1045 * E.g. soft-offlining uses this function because it only cares physical
1046 * address of error page.
1048 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1050 struct page
*page
= NULL
;
1052 spin_lock(&hugetlb_lock
);
1053 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1054 page
= dequeue_huge_page_node(h
, nid
);
1055 spin_unlock(&hugetlb_lock
);
1058 page
= alloc_buddy_huge_page(h
, nid
);
1064 * Increase the hugetlb pool such that it can accommodate a reservation
1067 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1069 struct list_head surplus_list
;
1070 struct page
*page
, *tmp
;
1072 int needed
, allocated
;
1073 bool alloc_ok
= true;
1075 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1077 h
->resv_huge_pages
+= delta
;
1082 INIT_LIST_HEAD(&surplus_list
);
1086 spin_unlock(&hugetlb_lock
);
1087 for (i
= 0; i
< needed
; i
++) {
1088 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1093 list_add(&page
->lru
, &surplus_list
);
1098 * After retaking hugetlb_lock, we need to recalculate 'needed'
1099 * because either resv_huge_pages or free_huge_pages may have changed.
1101 spin_lock(&hugetlb_lock
);
1102 needed
= (h
->resv_huge_pages
+ delta
) -
1103 (h
->free_huge_pages
+ allocated
);
1108 * We were not able to allocate enough pages to
1109 * satisfy the entire reservation so we free what
1110 * we've allocated so far.
1115 * The surplus_list now contains _at_least_ the number of extra pages
1116 * needed to accommodate the reservation. Add the appropriate number
1117 * of pages to the hugetlb pool and free the extras back to the buddy
1118 * allocator. Commit the entire reservation here to prevent another
1119 * process from stealing the pages as they are added to the pool but
1120 * before they are reserved.
1122 needed
+= allocated
;
1123 h
->resv_huge_pages
+= delta
;
1126 /* Free the needed pages to the hugetlb pool */
1127 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1131 * This page is now managed by the hugetlb allocator and has
1132 * no users -- drop the buddy allocator's reference.
1134 put_page_testzero(page
);
1135 VM_BUG_ON(page_count(page
));
1136 enqueue_huge_page(h
, page
);
1139 spin_unlock(&hugetlb_lock
);
1141 /* Free unnecessary surplus pages to the buddy allocator */
1142 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1144 spin_lock(&hugetlb_lock
);
1150 * When releasing a hugetlb pool reservation, any surplus pages that were
1151 * allocated to satisfy the reservation must be explicitly freed if they were
1153 * Called with hugetlb_lock held.
1155 static void return_unused_surplus_pages(struct hstate
*h
,
1156 unsigned long unused_resv_pages
)
1158 unsigned long nr_pages
;
1160 /* Uncommit the reservation */
1161 h
->resv_huge_pages
-= unused_resv_pages
;
1163 /* Cannot return gigantic pages currently */
1164 if (h
->order
>= MAX_ORDER
)
1167 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1170 * We want to release as many surplus pages as possible, spread
1171 * evenly across all nodes with memory. Iterate across these nodes
1172 * until we can no longer free unreserved surplus pages. This occurs
1173 * when the nodes with surplus pages have no free pages.
1174 * free_pool_huge_page() will balance the the freed pages across the
1175 * on-line nodes with memory and will handle the hstate accounting.
1177 while (nr_pages
--) {
1178 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1180 cond_resched_lock(&hugetlb_lock
);
1185 * Determine if the huge page at addr within the vma has an associated
1186 * reservation. Where it does not we will need to logically increase
1187 * reservation and actually increase subpool usage before an allocation
1188 * can occur. Where any new reservation would be required the
1189 * reservation change is prepared, but not committed. Once the page
1190 * has been allocated from the subpool and instantiated the change should
1191 * be committed via vma_commit_reservation. No action is required on
1194 static long vma_needs_reservation(struct hstate
*h
,
1195 struct vm_area_struct
*vma
, unsigned long addr
)
1197 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1198 struct inode
*inode
= mapping
->host
;
1200 if (vma
->vm_flags
& VM_MAYSHARE
) {
1201 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1202 return region_chg(&inode
->i_mapping
->private_list
,
1205 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1210 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1211 struct resv_map
*resv
= vma_resv_map(vma
);
1213 err
= region_chg(&resv
->regions
, idx
, idx
+ 1);
1219 static void vma_commit_reservation(struct hstate
*h
,
1220 struct vm_area_struct
*vma
, unsigned long addr
)
1222 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1223 struct inode
*inode
= mapping
->host
;
1225 if (vma
->vm_flags
& VM_MAYSHARE
) {
1226 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1227 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1229 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1230 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1231 struct resv_map
*resv
= vma_resv_map(vma
);
1233 /* Mark this page used in the map. */
1234 region_add(&resv
->regions
, idx
, idx
+ 1);
1238 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1239 unsigned long addr
, int avoid_reserve
)
1241 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1242 struct hstate
*h
= hstate_vma(vma
);
1246 struct hugetlb_cgroup
*h_cg
;
1248 idx
= hstate_index(h
);
1250 * Processes that did not create the mapping will have no
1251 * reserves and will not have accounted against subpool
1252 * limit. Check that the subpool limit can be made before
1253 * satisfying the allocation MAP_NORESERVE mappings may also
1254 * need pages and subpool limit allocated allocated if no reserve
1257 chg
= vma_needs_reservation(h
, vma
, addr
);
1259 return ERR_PTR(-ENOMEM
);
1260 if (chg
|| avoid_reserve
)
1261 if (hugepage_subpool_get_pages(spool
, 1))
1262 return ERR_PTR(-ENOSPC
);
1264 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1266 if (chg
|| avoid_reserve
)
1267 hugepage_subpool_put_pages(spool
, 1);
1268 return ERR_PTR(-ENOSPC
);
1270 spin_lock(&hugetlb_lock
);
1271 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1273 spin_unlock(&hugetlb_lock
);
1274 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1276 hugetlb_cgroup_uncharge_cgroup(idx
,
1277 pages_per_huge_page(h
),
1279 if (chg
|| avoid_reserve
)
1280 hugepage_subpool_put_pages(spool
, 1);
1281 return ERR_PTR(-ENOSPC
);
1283 spin_lock(&hugetlb_lock
);
1284 list_move(&page
->lru
, &h
->hugepage_activelist
);
1287 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1288 spin_unlock(&hugetlb_lock
);
1290 set_page_private(page
, (unsigned long)spool
);
1292 vma_commit_reservation(h
, vma
, addr
);
1297 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1298 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1299 * where no ERR_VALUE is expected to be returned.
1301 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1302 unsigned long addr
, int avoid_reserve
)
1304 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1310 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1312 struct huge_bootmem_page
*m
;
1315 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1318 addr
= __alloc_bootmem_node_nopanic(NODE_DATA(node
),
1319 huge_page_size(h
), huge_page_size(h
), 0);
1323 * Use the beginning of the huge page to store the
1324 * huge_bootmem_page struct (until gather_bootmem
1325 * puts them into the mem_map).
1334 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1335 /* Put them into a private list first because mem_map is not up yet */
1336 list_add(&m
->list
, &huge_boot_pages
);
1341 static void prep_compound_huge_page(struct page
*page
, int order
)
1343 if (unlikely(order
> (MAX_ORDER
- 1)))
1344 prep_compound_gigantic_page(page
, order
);
1346 prep_compound_page(page
, order
);
1349 /* Put bootmem huge pages into the standard lists after mem_map is up */
1350 static void __init
gather_bootmem_prealloc(void)
1352 struct huge_bootmem_page
*m
;
1354 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1355 struct hstate
*h
= m
->hstate
;
1358 #ifdef CONFIG_HIGHMEM
1359 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1360 free_bootmem_late((unsigned long)m
,
1361 sizeof(struct huge_bootmem_page
));
1363 page
= virt_to_page(m
);
1365 WARN_ON(page_count(page
) != 1);
1366 prep_compound_huge_page(page
, h
->order
);
1367 WARN_ON(PageReserved(page
));
1368 prep_new_huge_page(h
, page
, page_to_nid(page
));
1370 * If we had gigantic hugepages allocated at boot time, we need
1371 * to restore the 'stolen' pages to totalram_pages in order to
1372 * fix confusing memory reports from free(1) and another
1373 * side-effects, like CommitLimit going negative.
1375 if (h
->order
> (MAX_ORDER
- 1))
1376 adjust_managed_page_count(page
, 1 << h
->order
);
1380 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1384 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1385 if (h
->order
>= MAX_ORDER
) {
1386 if (!alloc_bootmem_huge_page(h
))
1388 } else if (!alloc_fresh_huge_page(h
,
1389 &node_states
[N_MEMORY
]))
1392 h
->max_huge_pages
= i
;
1395 static void __init
hugetlb_init_hstates(void)
1399 for_each_hstate(h
) {
1400 /* oversize hugepages were init'ed in early boot */
1401 if (h
->order
< MAX_ORDER
)
1402 hugetlb_hstate_alloc_pages(h
);
1406 static char * __init
memfmt(char *buf
, unsigned long n
)
1408 if (n
>= (1UL << 30))
1409 sprintf(buf
, "%lu GB", n
>> 30);
1410 else if (n
>= (1UL << 20))
1411 sprintf(buf
, "%lu MB", n
>> 20);
1413 sprintf(buf
, "%lu KB", n
>> 10);
1417 static void __init
report_hugepages(void)
1421 for_each_hstate(h
) {
1423 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1424 memfmt(buf
, huge_page_size(h
)),
1425 h
->free_huge_pages
);
1429 #ifdef CONFIG_HIGHMEM
1430 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1431 nodemask_t
*nodes_allowed
)
1435 if (h
->order
>= MAX_ORDER
)
1438 for_each_node_mask(i
, *nodes_allowed
) {
1439 struct page
*page
, *next
;
1440 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1441 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1442 if (count
>= h
->nr_huge_pages
)
1444 if (PageHighMem(page
))
1446 list_del(&page
->lru
);
1447 update_and_free_page(h
, page
);
1448 h
->free_huge_pages
--;
1449 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1454 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1455 nodemask_t
*nodes_allowed
)
1461 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1462 * balanced by operating on them in a round-robin fashion.
1463 * Returns 1 if an adjustment was made.
1465 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1470 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1473 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1474 if (h
->surplus_huge_pages_node
[node
])
1478 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1479 if (h
->surplus_huge_pages_node
[node
] <
1480 h
->nr_huge_pages_node
[node
])
1487 h
->surplus_huge_pages
+= delta
;
1488 h
->surplus_huge_pages_node
[node
] += delta
;
1492 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1493 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1494 nodemask_t
*nodes_allowed
)
1496 unsigned long min_count
, ret
;
1498 if (h
->order
>= MAX_ORDER
)
1499 return h
->max_huge_pages
;
1502 * Increase the pool size
1503 * First take pages out of surplus state. Then make up the
1504 * remaining difference by allocating fresh huge pages.
1506 * We might race with alloc_buddy_huge_page() here and be unable
1507 * to convert a surplus huge page to a normal huge page. That is
1508 * not critical, though, it just means the overall size of the
1509 * pool might be one hugepage larger than it needs to be, but
1510 * within all the constraints specified by the sysctls.
1512 spin_lock(&hugetlb_lock
);
1513 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1514 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1518 while (count
> persistent_huge_pages(h
)) {
1520 * If this allocation races such that we no longer need the
1521 * page, free_huge_page will handle it by freeing the page
1522 * and reducing the surplus.
1524 spin_unlock(&hugetlb_lock
);
1525 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1526 spin_lock(&hugetlb_lock
);
1530 /* Bail for signals. Probably ctrl-c from user */
1531 if (signal_pending(current
))
1536 * Decrease the pool size
1537 * First return free pages to the buddy allocator (being careful
1538 * to keep enough around to satisfy reservations). Then place
1539 * pages into surplus state as needed so the pool will shrink
1540 * to the desired size as pages become free.
1542 * By placing pages into the surplus state independent of the
1543 * overcommit value, we are allowing the surplus pool size to
1544 * exceed overcommit. There are few sane options here. Since
1545 * alloc_buddy_huge_page() is checking the global counter,
1546 * though, we'll note that we're not allowed to exceed surplus
1547 * and won't grow the pool anywhere else. Not until one of the
1548 * sysctls are changed, or the surplus pages go out of use.
1550 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1551 min_count
= max(count
, min_count
);
1552 try_to_free_low(h
, min_count
, nodes_allowed
);
1553 while (min_count
< persistent_huge_pages(h
)) {
1554 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1556 cond_resched_lock(&hugetlb_lock
);
1558 while (count
< persistent_huge_pages(h
)) {
1559 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1563 ret
= persistent_huge_pages(h
);
1564 spin_unlock(&hugetlb_lock
);
1568 #define HSTATE_ATTR_RO(_name) \
1569 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1571 #define HSTATE_ATTR(_name) \
1572 static struct kobj_attribute _name##_attr = \
1573 __ATTR(_name, 0644, _name##_show, _name##_store)
1575 static struct kobject
*hugepages_kobj
;
1576 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1578 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1580 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1584 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1585 if (hstate_kobjs
[i
] == kobj
) {
1587 *nidp
= NUMA_NO_NODE
;
1591 return kobj_to_node_hstate(kobj
, nidp
);
1594 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1595 struct kobj_attribute
*attr
, char *buf
)
1598 unsigned long nr_huge_pages
;
1601 h
= kobj_to_hstate(kobj
, &nid
);
1602 if (nid
== NUMA_NO_NODE
)
1603 nr_huge_pages
= h
->nr_huge_pages
;
1605 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1607 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1610 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1611 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1612 const char *buf
, size_t len
)
1616 unsigned long count
;
1618 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1620 err
= kstrtoul(buf
, 10, &count
);
1624 h
= kobj_to_hstate(kobj
, &nid
);
1625 if (h
->order
>= MAX_ORDER
) {
1630 if (nid
== NUMA_NO_NODE
) {
1632 * global hstate attribute
1634 if (!(obey_mempolicy
&&
1635 init_nodemask_of_mempolicy(nodes_allowed
))) {
1636 NODEMASK_FREE(nodes_allowed
);
1637 nodes_allowed
= &node_states
[N_MEMORY
];
1639 } else if (nodes_allowed
) {
1641 * per node hstate attribute: adjust count to global,
1642 * but restrict alloc/free to the specified node.
1644 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1645 init_nodemask_of_node(nodes_allowed
, nid
);
1647 nodes_allowed
= &node_states
[N_MEMORY
];
1649 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1651 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1652 NODEMASK_FREE(nodes_allowed
);
1656 NODEMASK_FREE(nodes_allowed
);
1660 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1661 struct kobj_attribute
*attr
, char *buf
)
1663 return nr_hugepages_show_common(kobj
, attr
, buf
);
1666 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1667 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1669 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1671 HSTATE_ATTR(nr_hugepages
);
1676 * hstate attribute for optionally mempolicy-based constraint on persistent
1677 * huge page alloc/free.
1679 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1680 struct kobj_attribute
*attr
, char *buf
)
1682 return nr_hugepages_show_common(kobj
, attr
, buf
);
1685 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1686 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1688 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1690 HSTATE_ATTR(nr_hugepages_mempolicy
);
1694 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1695 struct kobj_attribute
*attr
, char *buf
)
1697 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1698 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1701 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1702 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1705 unsigned long input
;
1706 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1708 if (h
->order
>= MAX_ORDER
)
1711 err
= kstrtoul(buf
, 10, &input
);
1715 spin_lock(&hugetlb_lock
);
1716 h
->nr_overcommit_huge_pages
= input
;
1717 spin_unlock(&hugetlb_lock
);
1721 HSTATE_ATTR(nr_overcommit_hugepages
);
1723 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1724 struct kobj_attribute
*attr
, char *buf
)
1727 unsigned long free_huge_pages
;
1730 h
= kobj_to_hstate(kobj
, &nid
);
1731 if (nid
== NUMA_NO_NODE
)
1732 free_huge_pages
= h
->free_huge_pages
;
1734 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1736 return sprintf(buf
, "%lu\n", free_huge_pages
);
1738 HSTATE_ATTR_RO(free_hugepages
);
1740 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1741 struct kobj_attribute
*attr
, char *buf
)
1743 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1744 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1746 HSTATE_ATTR_RO(resv_hugepages
);
1748 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1749 struct kobj_attribute
*attr
, char *buf
)
1752 unsigned long surplus_huge_pages
;
1755 h
= kobj_to_hstate(kobj
, &nid
);
1756 if (nid
== NUMA_NO_NODE
)
1757 surplus_huge_pages
= h
->surplus_huge_pages
;
1759 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1761 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1763 HSTATE_ATTR_RO(surplus_hugepages
);
1765 static struct attribute
*hstate_attrs
[] = {
1766 &nr_hugepages_attr
.attr
,
1767 &nr_overcommit_hugepages_attr
.attr
,
1768 &free_hugepages_attr
.attr
,
1769 &resv_hugepages_attr
.attr
,
1770 &surplus_hugepages_attr
.attr
,
1772 &nr_hugepages_mempolicy_attr
.attr
,
1777 static struct attribute_group hstate_attr_group
= {
1778 .attrs
= hstate_attrs
,
1781 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1782 struct kobject
**hstate_kobjs
,
1783 struct attribute_group
*hstate_attr_group
)
1786 int hi
= hstate_index(h
);
1788 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1789 if (!hstate_kobjs
[hi
])
1792 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1794 kobject_put(hstate_kobjs
[hi
]);
1799 static void __init
hugetlb_sysfs_init(void)
1804 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1805 if (!hugepages_kobj
)
1808 for_each_hstate(h
) {
1809 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1810 hstate_kobjs
, &hstate_attr_group
);
1812 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
1819 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1820 * with node devices in node_devices[] using a parallel array. The array
1821 * index of a node device or _hstate == node id.
1822 * This is here to avoid any static dependency of the node device driver, in
1823 * the base kernel, on the hugetlb module.
1825 struct node_hstate
{
1826 struct kobject
*hugepages_kobj
;
1827 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1829 struct node_hstate node_hstates
[MAX_NUMNODES
];
1832 * A subset of global hstate attributes for node devices
1834 static struct attribute
*per_node_hstate_attrs
[] = {
1835 &nr_hugepages_attr
.attr
,
1836 &free_hugepages_attr
.attr
,
1837 &surplus_hugepages_attr
.attr
,
1841 static struct attribute_group per_node_hstate_attr_group
= {
1842 .attrs
= per_node_hstate_attrs
,
1846 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1847 * Returns node id via non-NULL nidp.
1849 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1853 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1854 struct node_hstate
*nhs
= &node_hstates
[nid
];
1856 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1857 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1869 * Unregister hstate attributes from a single node device.
1870 * No-op if no hstate attributes attached.
1872 static void hugetlb_unregister_node(struct node
*node
)
1875 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1877 if (!nhs
->hugepages_kobj
)
1878 return; /* no hstate attributes */
1880 for_each_hstate(h
) {
1881 int idx
= hstate_index(h
);
1882 if (nhs
->hstate_kobjs
[idx
]) {
1883 kobject_put(nhs
->hstate_kobjs
[idx
]);
1884 nhs
->hstate_kobjs
[idx
] = NULL
;
1888 kobject_put(nhs
->hugepages_kobj
);
1889 nhs
->hugepages_kobj
= NULL
;
1893 * hugetlb module exit: unregister hstate attributes from node devices
1896 static void hugetlb_unregister_all_nodes(void)
1901 * disable node device registrations.
1903 register_hugetlbfs_with_node(NULL
, NULL
);
1906 * remove hstate attributes from any nodes that have them.
1908 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1909 hugetlb_unregister_node(node_devices
[nid
]);
1913 * Register hstate attributes for a single node device.
1914 * No-op if attributes already registered.
1916 static void hugetlb_register_node(struct node
*node
)
1919 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1922 if (nhs
->hugepages_kobj
)
1923 return; /* already allocated */
1925 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1927 if (!nhs
->hugepages_kobj
)
1930 for_each_hstate(h
) {
1931 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1933 &per_node_hstate_attr_group
);
1935 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1936 h
->name
, node
->dev
.id
);
1937 hugetlb_unregister_node(node
);
1944 * hugetlb init time: register hstate attributes for all registered node
1945 * devices of nodes that have memory. All on-line nodes should have
1946 * registered their associated device by this time.
1948 static void hugetlb_register_all_nodes(void)
1952 for_each_node_state(nid
, N_MEMORY
) {
1953 struct node
*node
= node_devices
[nid
];
1954 if (node
->dev
.id
== nid
)
1955 hugetlb_register_node(node
);
1959 * Let the node device driver know we're here so it can
1960 * [un]register hstate attributes on node hotplug.
1962 register_hugetlbfs_with_node(hugetlb_register_node
,
1963 hugetlb_unregister_node
);
1965 #else /* !CONFIG_NUMA */
1967 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1975 static void hugetlb_unregister_all_nodes(void) { }
1977 static void hugetlb_register_all_nodes(void) { }
1981 static void __exit
hugetlb_exit(void)
1985 hugetlb_unregister_all_nodes();
1987 for_each_hstate(h
) {
1988 kobject_put(hstate_kobjs
[hstate_index(h
)]);
1991 kobject_put(hugepages_kobj
);
1993 module_exit(hugetlb_exit
);
1995 static int __init
hugetlb_init(void)
1997 /* Some platform decide whether they support huge pages at boot
1998 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1999 * there is no such support
2001 if (HPAGE_SHIFT
== 0)
2004 if (!size_to_hstate(default_hstate_size
)) {
2005 default_hstate_size
= HPAGE_SIZE
;
2006 if (!size_to_hstate(default_hstate_size
))
2007 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2009 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2010 if (default_hstate_max_huge_pages
)
2011 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2013 hugetlb_init_hstates();
2014 gather_bootmem_prealloc();
2017 hugetlb_sysfs_init();
2018 hugetlb_register_all_nodes();
2019 hugetlb_cgroup_file_init();
2023 module_init(hugetlb_init
);
2025 /* Should be called on processing a hugepagesz=... option */
2026 void __init
hugetlb_add_hstate(unsigned order
)
2031 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2032 pr_warning("hugepagesz= specified twice, ignoring\n");
2035 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2037 h
= &hstates
[hugetlb_max_hstate
++];
2039 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2040 h
->nr_huge_pages
= 0;
2041 h
->free_huge_pages
= 0;
2042 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2043 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2044 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2045 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2046 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2047 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2048 huge_page_size(h
)/1024);
2053 static int __init
hugetlb_nrpages_setup(char *s
)
2056 static unsigned long *last_mhp
;
2059 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2060 * so this hugepages= parameter goes to the "default hstate".
2062 if (!hugetlb_max_hstate
)
2063 mhp
= &default_hstate_max_huge_pages
;
2065 mhp
= &parsed_hstate
->max_huge_pages
;
2067 if (mhp
== last_mhp
) {
2068 pr_warning("hugepages= specified twice without "
2069 "interleaving hugepagesz=, ignoring\n");
2073 if (sscanf(s
, "%lu", mhp
) <= 0)
2077 * Global state is always initialized later in hugetlb_init.
2078 * But we need to allocate >= MAX_ORDER hstates here early to still
2079 * use the bootmem allocator.
2081 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2082 hugetlb_hstate_alloc_pages(parsed_hstate
);
2088 __setup("hugepages=", hugetlb_nrpages_setup
);
2090 static int __init
hugetlb_default_setup(char *s
)
2092 default_hstate_size
= memparse(s
, &s
);
2095 __setup("default_hugepagesz=", hugetlb_default_setup
);
2097 static unsigned int cpuset_mems_nr(unsigned int *array
)
2100 unsigned int nr
= 0;
2102 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2108 #ifdef CONFIG_SYSCTL
2109 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2110 struct ctl_table
*table
, int write
,
2111 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2113 struct hstate
*h
= &default_hstate
;
2117 tmp
= h
->max_huge_pages
;
2119 if (write
&& h
->order
>= MAX_ORDER
)
2123 table
->maxlen
= sizeof(unsigned long);
2124 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2129 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
2130 GFP_KERNEL
| __GFP_NORETRY
);
2131 if (!(obey_mempolicy
&&
2132 init_nodemask_of_mempolicy(nodes_allowed
))) {
2133 NODEMASK_FREE(nodes_allowed
);
2134 nodes_allowed
= &node_states
[N_MEMORY
];
2136 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
2138 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2139 NODEMASK_FREE(nodes_allowed
);
2145 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2146 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2149 return hugetlb_sysctl_handler_common(false, table
, write
,
2150 buffer
, length
, ppos
);
2154 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2155 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2157 return hugetlb_sysctl_handler_common(true, table
, write
,
2158 buffer
, length
, ppos
);
2160 #endif /* CONFIG_NUMA */
2162 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2163 void __user
*buffer
,
2164 size_t *length
, loff_t
*ppos
)
2166 struct hstate
*h
= &default_hstate
;
2170 tmp
= h
->nr_overcommit_huge_pages
;
2172 if (write
&& h
->order
>= MAX_ORDER
)
2176 table
->maxlen
= sizeof(unsigned long);
2177 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2182 spin_lock(&hugetlb_lock
);
2183 h
->nr_overcommit_huge_pages
= tmp
;
2184 spin_unlock(&hugetlb_lock
);
2190 #endif /* CONFIG_SYSCTL */
2192 void hugetlb_report_meminfo(struct seq_file
*m
)
2194 struct hstate
*h
= &default_hstate
;
2196 "HugePages_Total: %5lu\n"
2197 "HugePages_Free: %5lu\n"
2198 "HugePages_Rsvd: %5lu\n"
2199 "HugePages_Surp: %5lu\n"
2200 "Hugepagesize: %8lu kB\n",
2204 h
->surplus_huge_pages
,
2205 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2208 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2210 struct hstate
*h
= &default_hstate
;
2212 "Node %d HugePages_Total: %5u\n"
2213 "Node %d HugePages_Free: %5u\n"
2214 "Node %d HugePages_Surp: %5u\n",
2215 nid
, h
->nr_huge_pages_node
[nid
],
2216 nid
, h
->free_huge_pages_node
[nid
],
2217 nid
, h
->surplus_huge_pages_node
[nid
]);
2220 void hugetlb_show_meminfo(void)
2225 for_each_node_state(nid
, N_MEMORY
)
2227 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2229 h
->nr_huge_pages_node
[nid
],
2230 h
->free_huge_pages_node
[nid
],
2231 h
->surplus_huge_pages_node
[nid
],
2232 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2235 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2236 unsigned long hugetlb_total_pages(void)
2239 unsigned long nr_total_pages
= 0;
2242 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2243 return nr_total_pages
;
2246 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2250 spin_lock(&hugetlb_lock
);
2252 * When cpuset is configured, it breaks the strict hugetlb page
2253 * reservation as the accounting is done on a global variable. Such
2254 * reservation is completely rubbish in the presence of cpuset because
2255 * the reservation is not checked against page availability for the
2256 * current cpuset. Application can still potentially OOM'ed by kernel
2257 * with lack of free htlb page in cpuset that the task is in.
2258 * Attempt to enforce strict accounting with cpuset is almost
2259 * impossible (or too ugly) because cpuset is too fluid that
2260 * task or memory node can be dynamically moved between cpusets.
2262 * The change of semantics for shared hugetlb mapping with cpuset is
2263 * undesirable. However, in order to preserve some of the semantics,
2264 * we fall back to check against current free page availability as
2265 * a best attempt and hopefully to minimize the impact of changing
2266 * semantics that cpuset has.
2269 if (gather_surplus_pages(h
, delta
) < 0)
2272 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2273 return_unused_surplus_pages(h
, delta
);
2280 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2283 spin_unlock(&hugetlb_lock
);
2287 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2289 struct resv_map
*resv
= vma_resv_map(vma
);
2292 * This new VMA should share its siblings reservation map if present.
2293 * The VMA will only ever have a valid reservation map pointer where
2294 * it is being copied for another still existing VMA. As that VMA
2295 * has a reference to the reservation map it cannot disappear until
2296 * after this open call completes. It is therefore safe to take a
2297 * new reference here without additional locking.
2300 kref_get(&resv
->refs
);
2303 static void resv_map_put(struct vm_area_struct
*vma
)
2305 struct resv_map
*resv
= vma_resv_map(vma
);
2309 kref_put(&resv
->refs
, resv_map_release
);
2312 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2314 struct hstate
*h
= hstate_vma(vma
);
2315 struct resv_map
*resv
= vma_resv_map(vma
);
2316 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2317 unsigned long reserve
;
2318 unsigned long start
;
2322 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2323 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2325 reserve
= (end
- start
) -
2326 region_count(&resv
->regions
, start
, end
);
2331 hugetlb_acct_memory(h
, -reserve
);
2332 hugepage_subpool_put_pages(spool
, reserve
);
2338 * We cannot handle pagefaults against hugetlb pages at all. They cause
2339 * handle_mm_fault() to try to instantiate regular-sized pages in the
2340 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2343 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2349 const struct vm_operations_struct hugetlb_vm_ops
= {
2350 .fault
= hugetlb_vm_op_fault
,
2351 .open
= hugetlb_vm_op_open
,
2352 .close
= hugetlb_vm_op_close
,
2355 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2361 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2362 vma
->vm_page_prot
)));
2364 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2365 vma
->vm_page_prot
));
2367 entry
= pte_mkyoung(entry
);
2368 entry
= pte_mkhuge(entry
);
2369 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2374 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2375 unsigned long address
, pte_t
*ptep
)
2379 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2380 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2381 update_mmu_cache(vma
, address
, ptep
);
2384 static int is_hugetlb_entry_migration(pte_t pte
)
2388 if (huge_pte_none(pte
) || pte_present(pte
))
2390 swp
= pte_to_swp_entry(pte
);
2391 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2397 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2401 if (huge_pte_none(pte
) || pte_present(pte
))
2403 swp
= pte_to_swp_entry(pte
);
2404 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2410 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2411 struct vm_area_struct
*vma
)
2413 pte_t
*src_pte
, *dst_pte
, entry
;
2414 struct page
*ptepage
;
2417 struct hstate
*h
= hstate_vma(vma
);
2418 unsigned long sz
= huge_page_size(h
);
2420 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2422 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2423 src_pte
= huge_pte_offset(src
, addr
);
2426 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2430 /* If the pagetables are shared don't copy or take references */
2431 if (dst_pte
== src_pte
)
2434 spin_lock(&dst
->page_table_lock
);
2435 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2436 entry
= huge_ptep_get(src_pte
);
2437 if (huge_pte_none(entry
)) { /* skip none entry */
2439 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
2440 is_hugetlb_entry_hwpoisoned(entry
))) {
2441 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
2443 if (is_write_migration_entry(swp_entry
) && cow
) {
2445 * COW mappings require pages in both
2446 * parent and child to be set to read.
2448 make_migration_entry_read(&swp_entry
);
2449 entry
= swp_entry_to_pte(swp_entry
);
2450 set_huge_pte_at(src
, addr
, src_pte
, entry
);
2452 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2455 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2456 entry
= huge_ptep_get(src_pte
);
2457 ptepage
= pte_page(entry
);
2459 page_dup_rmap(ptepage
);
2460 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2462 spin_unlock(&src
->page_table_lock
);
2463 spin_unlock(&dst
->page_table_lock
);
2471 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2472 unsigned long start
, unsigned long end
,
2473 struct page
*ref_page
)
2475 int force_flush
= 0;
2476 struct mm_struct
*mm
= vma
->vm_mm
;
2477 unsigned long address
;
2481 struct hstate
*h
= hstate_vma(vma
);
2482 unsigned long sz
= huge_page_size(h
);
2483 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2484 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2486 WARN_ON(!is_vm_hugetlb_page(vma
));
2487 BUG_ON(start
& ~huge_page_mask(h
));
2488 BUG_ON(end
& ~huge_page_mask(h
));
2490 tlb_start_vma(tlb
, vma
);
2491 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2493 spin_lock(&mm
->page_table_lock
);
2494 for (address
= start
; address
< end
; address
+= sz
) {
2495 ptep
= huge_pte_offset(mm
, address
);
2499 if (huge_pmd_unshare(mm
, &address
, ptep
))
2502 pte
= huge_ptep_get(ptep
);
2503 if (huge_pte_none(pte
))
2507 * HWPoisoned hugepage is already unmapped and dropped reference
2509 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
2510 huge_pte_clear(mm
, address
, ptep
);
2514 page
= pte_page(pte
);
2516 * If a reference page is supplied, it is because a specific
2517 * page is being unmapped, not a range. Ensure the page we
2518 * are about to unmap is the actual page of interest.
2521 if (page
!= ref_page
)
2525 * Mark the VMA as having unmapped its page so that
2526 * future faults in this VMA will fail rather than
2527 * looking like data was lost
2529 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2532 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2533 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2534 if (huge_pte_dirty(pte
))
2535 set_page_dirty(page
);
2537 page_remove_rmap(page
);
2538 force_flush
= !__tlb_remove_page(tlb
, page
);
2541 /* Bail out after unmapping reference page if supplied */
2545 spin_unlock(&mm
->page_table_lock
);
2547 * mmu_gather ran out of room to batch pages, we break out of
2548 * the PTE lock to avoid doing the potential expensive TLB invalidate
2549 * and page-free while holding it.
2554 if (address
< end
&& !ref_page
)
2557 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2558 tlb_end_vma(tlb
, vma
);
2561 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2562 struct vm_area_struct
*vma
, unsigned long start
,
2563 unsigned long end
, struct page
*ref_page
)
2565 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2568 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2569 * test will fail on a vma being torn down, and not grab a page table
2570 * on its way out. We're lucky that the flag has such an appropriate
2571 * name, and can in fact be safely cleared here. We could clear it
2572 * before the __unmap_hugepage_range above, but all that's necessary
2573 * is to clear it before releasing the i_mmap_mutex. This works
2574 * because in the context this is called, the VMA is about to be
2575 * destroyed and the i_mmap_mutex is held.
2577 vma
->vm_flags
&= ~VM_MAYSHARE
;
2580 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2581 unsigned long end
, struct page
*ref_page
)
2583 struct mm_struct
*mm
;
2584 struct mmu_gather tlb
;
2588 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2589 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2590 tlb_finish_mmu(&tlb
, start
, end
);
2594 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2595 * mappping it owns the reserve page for. The intention is to unmap the page
2596 * from other VMAs and let the children be SIGKILLed if they are faulting the
2599 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2600 struct page
*page
, unsigned long address
)
2602 struct hstate
*h
= hstate_vma(vma
);
2603 struct vm_area_struct
*iter_vma
;
2604 struct address_space
*mapping
;
2608 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2609 * from page cache lookup which is in HPAGE_SIZE units.
2611 address
= address
& huge_page_mask(h
);
2612 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2614 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2617 * Take the mapping lock for the duration of the table walk. As
2618 * this mapping should be shared between all the VMAs,
2619 * __unmap_hugepage_range() is called as the lock is already held
2621 mutex_lock(&mapping
->i_mmap_mutex
);
2622 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2623 /* Do not unmap the current VMA */
2624 if (iter_vma
== vma
)
2628 * Unmap the page from other VMAs without their own reserves.
2629 * They get marked to be SIGKILLed if they fault in these
2630 * areas. This is because a future no-page fault on this VMA
2631 * could insert a zeroed page instead of the data existing
2632 * from the time of fork. This would look like data corruption
2634 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2635 unmap_hugepage_range(iter_vma
, address
,
2636 address
+ huge_page_size(h
), page
);
2638 mutex_unlock(&mapping
->i_mmap_mutex
);
2644 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2645 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2646 * cannot race with other handlers or page migration.
2647 * Keep the pte_same checks anyway to make transition from the mutex easier.
2649 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2650 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2651 struct page
*pagecache_page
)
2653 struct hstate
*h
= hstate_vma(vma
);
2654 struct page
*old_page
, *new_page
;
2655 int outside_reserve
= 0;
2656 unsigned long mmun_start
; /* For mmu_notifiers */
2657 unsigned long mmun_end
; /* For mmu_notifiers */
2659 old_page
= pte_page(pte
);
2662 /* If no-one else is actually using this page, avoid the copy
2663 * and just make the page writable */
2664 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2665 page_move_anon_rmap(old_page
, vma
, address
);
2666 set_huge_ptep_writable(vma
, address
, ptep
);
2671 * If the process that created a MAP_PRIVATE mapping is about to
2672 * perform a COW due to a shared page count, attempt to satisfy
2673 * the allocation without using the existing reserves. The pagecache
2674 * page is used to determine if the reserve at this address was
2675 * consumed or not. If reserves were used, a partial faulted mapping
2676 * at the time of fork() could consume its reserves on COW instead
2677 * of the full address range.
2679 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2680 old_page
!= pagecache_page
)
2681 outside_reserve
= 1;
2683 page_cache_get(old_page
);
2685 /* Drop page_table_lock as buddy allocator may be called */
2686 spin_unlock(&mm
->page_table_lock
);
2687 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2689 if (IS_ERR(new_page
)) {
2690 long err
= PTR_ERR(new_page
);
2691 page_cache_release(old_page
);
2694 * If a process owning a MAP_PRIVATE mapping fails to COW,
2695 * it is due to references held by a child and an insufficient
2696 * huge page pool. To guarantee the original mappers
2697 * reliability, unmap the page from child processes. The child
2698 * may get SIGKILLed if it later faults.
2700 if (outside_reserve
) {
2701 BUG_ON(huge_pte_none(pte
));
2702 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2703 BUG_ON(huge_pte_none(pte
));
2704 spin_lock(&mm
->page_table_lock
);
2705 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2706 if (likely(pte_same(huge_ptep_get(ptep
), pte
)))
2707 goto retry_avoidcopy
;
2709 * race occurs while re-acquiring page_table_lock, and
2717 /* Caller expects lock to be held */
2718 spin_lock(&mm
->page_table_lock
);
2720 return VM_FAULT_OOM
;
2722 return VM_FAULT_SIGBUS
;
2726 * When the original hugepage is shared one, it does not have
2727 * anon_vma prepared.
2729 if (unlikely(anon_vma_prepare(vma
))) {
2730 page_cache_release(new_page
);
2731 page_cache_release(old_page
);
2732 /* Caller expects lock to be held */
2733 spin_lock(&mm
->page_table_lock
);
2734 return VM_FAULT_OOM
;
2737 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2738 pages_per_huge_page(h
));
2739 __SetPageUptodate(new_page
);
2741 mmun_start
= address
& huge_page_mask(h
);
2742 mmun_end
= mmun_start
+ huge_page_size(h
);
2743 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2745 * Retake the page_table_lock to check for racing updates
2746 * before the page tables are altered
2748 spin_lock(&mm
->page_table_lock
);
2749 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2750 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2751 ClearPagePrivate(new_page
);
2754 huge_ptep_clear_flush(vma
, address
, ptep
);
2755 set_huge_pte_at(mm
, address
, ptep
,
2756 make_huge_pte(vma
, new_page
, 1));
2757 page_remove_rmap(old_page
);
2758 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2759 /* Make the old page be freed below */
2760 new_page
= old_page
;
2762 spin_unlock(&mm
->page_table_lock
);
2763 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2764 page_cache_release(new_page
);
2765 page_cache_release(old_page
);
2767 /* Caller expects lock to be held */
2768 spin_lock(&mm
->page_table_lock
);
2772 /* Return the pagecache page at a given address within a VMA */
2773 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2774 struct vm_area_struct
*vma
, unsigned long address
)
2776 struct address_space
*mapping
;
2779 mapping
= vma
->vm_file
->f_mapping
;
2780 idx
= vma_hugecache_offset(h
, vma
, address
);
2782 return find_lock_page(mapping
, idx
);
2786 * Return whether there is a pagecache page to back given address within VMA.
2787 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2789 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2790 struct vm_area_struct
*vma
, unsigned long address
)
2792 struct address_space
*mapping
;
2796 mapping
= vma
->vm_file
->f_mapping
;
2797 idx
= vma_hugecache_offset(h
, vma
, address
);
2799 page
= find_get_page(mapping
, idx
);
2802 return page
!= NULL
;
2805 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2806 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2808 struct hstate
*h
= hstate_vma(vma
);
2809 int ret
= VM_FAULT_SIGBUS
;
2814 struct address_space
*mapping
;
2818 * Currently, we are forced to kill the process in the event the
2819 * original mapper has unmapped pages from the child due to a failed
2820 * COW. Warn that such a situation has occurred as it may not be obvious
2822 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2823 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2828 mapping
= vma
->vm_file
->f_mapping
;
2829 idx
= vma_hugecache_offset(h
, vma
, address
);
2832 * Use page lock to guard against racing truncation
2833 * before we get page_table_lock.
2836 page
= find_lock_page(mapping
, idx
);
2838 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2841 page
= alloc_huge_page(vma
, address
, 0);
2843 ret
= PTR_ERR(page
);
2847 ret
= VM_FAULT_SIGBUS
;
2850 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2851 __SetPageUptodate(page
);
2853 if (vma
->vm_flags
& VM_MAYSHARE
) {
2855 struct inode
*inode
= mapping
->host
;
2857 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2864 ClearPagePrivate(page
);
2866 spin_lock(&inode
->i_lock
);
2867 inode
->i_blocks
+= blocks_per_huge_page(h
);
2868 spin_unlock(&inode
->i_lock
);
2871 if (unlikely(anon_vma_prepare(vma
))) {
2873 goto backout_unlocked
;
2879 * If memory error occurs between mmap() and fault, some process
2880 * don't have hwpoisoned swap entry for errored virtual address.
2881 * So we need to block hugepage fault by PG_hwpoison bit check.
2883 if (unlikely(PageHWPoison(page
))) {
2884 ret
= VM_FAULT_HWPOISON
|
2885 VM_FAULT_SET_HINDEX(hstate_index(h
));
2886 goto backout_unlocked
;
2891 * If we are going to COW a private mapping later, we examine the
2892 * pending reservations for this page now. This will ensure that
2893 * any allocations necessary to record that reservation occur outside
2896 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2897 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2899 goto backout_unlocked
;
2902 spin_lock(&mm
->page_table_lock
);
2903 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2908 if (!huge_pte_none(huge_ptep_get(ptep
)))
2912 ClearPagePrivate(page
);
2913 hugepage_add_new_anon_rmap(page
, vma
, address
);
2916 page_dup_rmap(page
);
2917 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2918 && (vma
->vm_flags
& VM_SHARED
)));
2919 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2921 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2922 /* Optimization, do the COW without a second fault */
2923 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2926 spin_unlock(&mm
->page_table_lock
);
2932 spin_unlock(&mm
->page_table_lock
);
2939 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2940 unsigned long address
, unsigned int flags
)
2945 struct page
*page
= NULL
;
2946 struct page
*pagecache_page
= NULL
;
2947 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2948 struct hstate
*h
= hstate_vma(vma
);
2950 address
&= huge_page_mask(h
);
2952 ptep
= huge_pte_offset(mm
, address
);
2954 entry
= huge_ptep_get(ptep
);
2955 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2956 migration_entry_wait_huge(mm
, ptep
);
2958 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2959 return VM_FAULT_HWPOISON_LARGE
|
2960 VM_FAULT_SET_HINDEX(hstate_index(h
));
2963 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2965 return VM_FAULT_OOM
;
2968 * Serialize hugepage allocation and instantiation, so that we don't
2969 * get spurious allocation failures if two CPUs race to instantiate
2970 * the same page in the page cache.
2972 mutex_lock(&hugetlb_instantiation_mutex
);
2973 entry
= huge_ptep_get(ptep
);
2974 if (huge_pte_none(entry
)) {
2975 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2982 * If we are going to COW the mapping later, we examine the pending
2983 * reservations for this page now. This will ensure that any
2984 * allocations necessary to record that reservation occur outside the
2985 * spinlock. For private mappings, we also lookup the pagecache
2986 * page now as it is used to determine if a reservation has been
2989 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
2990 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2995 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2996 pagecache_page
= hugetlbfs_pagecache_page(h
,
3001 * hugetlb_cow() requires page locks of pte_page(entry) and
3002 * pagecache_page, so here we need take the former one
3003 * when page != pagecache_page or !pagecache_page.
3004 * Note that locking order is always pagecache_page -> page,
3005 * so no worry about deadlock.
3007 page
= pte_page(entry
);
3009 if (page
!= pagecache_page
)
3012 spin_lock(&mm
->page_table_lock
);
3013 /* Check for a racing update before calling hugetlb_cow */
3014 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3015 goto out_page_table_lock
;
3018 if (flags
& FAULT_FLAG_WRITE
) {
3019 if (!huge_pte_write(entry
)) {
3020 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3022 goto out_page_table_lock
;
3024 entry
= huge_pte_mkdirty(entry
);
3026 entry
= pte_mkyoung(entry
);
3027 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3028 flags
& FAULT_FLAG_WRITE
))
3029 update_mmu_cache(vma
, address
, ptep
);
3031 out_page_table_lock
:
3032 spin_unlock(&mm
->page_table_lock
);
3034 if (pagecache_page
) {
3035 unlock_page(pagecache_page
);
3036 put_page(pagecache_page
);
3038 if (page
!= pagecache_page
)
3043 mutex_unlock(&hugetlb_instantiation_mutex
);
3048 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3049 struct page
**pages
, struct vm_area_struct
**vmas
,
3050 unsigned long *position
, unsigned long *nr_pages
,
3051 long i
, unsigned int flags
)
3053 unsigned long pfn_offset
;
3054 unsigned long vaddr
= *position
;
3055 unsigned long remainder
= *nr_pages
;
3056 struct hstate
*h
= hstate_vma(vma
);
3058 spin_lock(&mm
->page_table_lock
);
3059 while (vaddr
< vma
->vm_end
&& remainder
) {
3065 * Some archs (sparc64, sh*) have multiple pte_ts to
3066 * each hugepage. We have to make sure we get the
3067 * first, for the page indexing below to work.
3069 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3070 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3073 * When coredumping, it suits get_dump_page if we just return
3074 * an error where there's an empty slot with no huge pagecache
3075 * to back it. This way, we avoid allocating a hugepage, and
3076 * the sparse dumpfile avoids allocating disk blocks, but its
3077 * huge holes still show up with zeroes where they need to be.
3079 if (absent
&& (flags
& FOLL_DUMP
) &&
3080 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3086 * We need call hugetlb_fault for both hugepages under migration
3087 * (in which case hugetlb_fault waits for the migration,) and
3088 * hwpoisoned hugepages (in which case we need to prevent the
3089 * caller from accessing to them.) In order to do this, we use
3090 * here is_swap_pte instead of is_hugetlb_entry_migration and
3091 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3092 * both cases, and because we can't follow correct pages
3093 * directly from any kind of swap entries.
3095 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3096 ((flags
& FOLL_WRITE
) &&
3097 !huge_pte_write(huge_ptep_get(pte
)))) {
3100 spin_unlock(&mm
->page_table_lock
);
3101 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3102 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3103 spin_lock(&mm
->page_table_lock
);
3104 if (!(ret
& VM_FAULT_ERROR
))
3111 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3112 page
= pte_page(huge_ptep_get(pte
));
3115 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3126 if (vaddr
< vma
->vm_end
&& remainder
&&
3127 pfn_offset
< pages_per_huge_page(h
)) {
3129 * We use pfn_offset to avoid touching the pageframes
3130 * of this compound page.
3135 spin_unlock(&mm
->page_table_lock
);
3136 *nr_pages
= remainder
;
3139 return i
? i
: -EFAULT
;
3142 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3143 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3145 struct mm_struct
*mm
= vma
->vm_mm
;
3146 unsigned long start
= address
;
3149 struct hstate
*h
= hstate_vma(vma
);
3150 unsigned long pages
= 0;
3152 BUG_ON(address
>= end
);
3153 flush_cache_range(vma
, address
, end
);
3155 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3156 spin_lock(&mm
->page_table_lock
);
3157 for (; address
< end
; address
+= huge_page_size(h
)) {
3158 ptep
= huge_pte_offset(mm
, address
);
3161 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3165 if (!huge_pte_none(huge_ptep_get(ptep
))) {
3166 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3167 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3168 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3169 set_huge_pte_at(mm
, address
, ptep
, pte
);
3173 spin_unlock(&mm
->page_table_lock
);
3175 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3176 * may have cleared our pud entry and done put_page on the page table:
3177 * once we release i_mmap_mutex, another task can do the final put_page
3178 * and that page table be reused and filled with junk.
3180 flush_tlb_range(vma
, start
, end
);
3181 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3183 return pages
<< h
->order
;
3186 int hugetlb_reserve_pages(struct inode
*inode
,
3188 struct vm_area_struct
*vma
,
3189 vm_flags_t vm_flags
)
3192 struct hstate
*h
= hstate_inode(inode
);
3193 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3196 * Only apply hugepage reservation if asked. At fault time, an
3197 * attempt will be made for VM_NORESERVE to allocate a page
3198 * without using reserves
3200 if (vm_flags
& VM_NORESERVE
)
3204 * Shared mappings base their reservation on the number of pages that
3205 * are already allocated on behalf of the file. Private mappings need
3206 * to reserve the full area even if read-only as mprotect() may be
3207 * called to make the mapping read-write. Assume !vma is a shm mapping
3209 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3210 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
3212 struct resv_map
*resv_map
= resv_map_alloc();
3218 set_vma_resv_map(vma
, resv_map
);
3219 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3227 /* There must be enough pages in the subpool for the mapping */
3228 if (hugepage_subpool_get_pages(spool
, chg
)) {
3234 * Check enough hugepages are available for the reservation.
3235 * Hand the pages back to the subpool if there are not
3237 ret
= hugetlb_acct_memory(h
, chg
);
3239 hugepage_subpool_put_pages(spool
, chg
);
3244 * Account for the reservations made. Shared mappings record regions
3245 * that have reservations as they are shared by multiple VMAs.
3246 * When the last VMA disappears, the region map says how much
3247 * the reservation was and the page cache tells how much of
3248 * the reservation was consumed. Private mappings are per-VMA and
3249 * only the consumed reservations are tracked. When the VMA
3250 * disappears, the original reservation is the VMA size and the
3251 * consumed reservations are stored in the map. Hence, nothing
3252 * else has to be done for private mappings here
3254 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3255 region_add(&inode
->i_mapping
->private_list
, from
, to
);
3263 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3265 struct hstate
*h
= hstate_inode(inode
);
3266 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
3267 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3269 spin_lock(&inode
->i_lock
);
3270 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3271 spin_unlock(&inode
->i_lock
);
3273 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3274 hugetlb_acct_memory(h
, -(chg
- freed
));
3277 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3278 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3279 struct vm_area_struct
*vma
,
3280 unsigned long addr
, pgoff_t idx
)
3282 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3284 unsigned long sbase
= saddr
& PUD_MASK
;
3285 unsigned long s_end
= sbase
+ PUD_SIZE
;
3287 /* Allow segments to share if only one is marked locked */
3288 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3289 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3292 * match the virtual addresses, permission and the alignment of the
3295 if (pmd_index(addr
) != pmd_index(saddr
) ||
3296 vm_flags
!= svm_flags
||
3297 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3303 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3305 unsigned long base
= addr
& PUD_MASK
;
3306 unsigned long end
= base
+ PUD_SIZE
;
3309 * check on proper vm_flags and page table alignment
3311 if (vma
->vm_flags
& VM_MAYSHARE
&&
3312 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3318 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3319 * and returns the corresponding pte. While this is not necessary for the
3320 * !shared pmd case because we can allocate the pmd later as well, it makes the
3321 * code much cleaner. pmd allocation is essential for the shared case because
3322 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3323 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3324 * bad pmd for sharing.
3326 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3328 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3329 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3330 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3332 struct vm_area_struct
*svma
;
3333 unsigned long saddr
;
3337 if (!vma_shareable(vma
, addr
))
3338 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3340 mutex_lock(&mapping
->i_mmap_mutex
);
3341 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3345 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3347 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3349 get_page(virt_to_page(spte
));
3358 spin_lock(&mm
->page_table_lock
);
3360 pud_populate(mm
, pud
,
3361 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3363 put_page(virt_to_page(spte
));
3364 spin_unlock(&mm
->page_table_lock
);
3366 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3367 mutex_unlock(&mapping
->i_mmap_mutex
);
3372 * unmap huge page backed by shared pte.
3374 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3375 * indicated by page_count > 1, unmap is achieved by clearing pud and
3376 * decrementing the ref count. If count == 1, the pte page is not shared.
3378 * called with vma->vm_mm->page_table_lock held.
3380 * returns: 1 successfully unmapped a shared pte page
3381 * 0 the underlying pte page is not shared, or it is the last user
3383 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3385 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3386 pud_t
*pud
= pud_offset(pgd
, *addr
);
3388 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3389 if (page_count(virt_to_page(ptep
)) == 1)
3393 put_page(virt_to_page(ptep
));
3394 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3397 #define want_pmd_share() (1)
3398 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3399 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3403 #define want_pmd_share() (0)
3404 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3406 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3407 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3408 unsigned long addr
, unsigned long sz
)
3414 pgd
= pgd_offset(mm
, addr
);
3415 pud
= pud_alloc(mm
, pgd
, addr
);
3417 if (sz
== PUD_SIZE
) {
3420 BUG_ON(sz
!= PMD_SIZE
);
3421 if (want_pmd_share() && pud_none(*pud
))
3422 pte
= huge_pmd_share(mm
, addr
, pud
);
3424 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3427 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3432 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3438 pgd
= pgd_offset(mm
, addr
);
3439 if (pgd_present(*pgd
)) {
3440 pud
= pud_offset(pgd
, addr
);
3441 if (pud_present(*pud
)) {
3443 return (pte_t
*)pud
;
3444 pmd
= pmd_offset(pud
, addr
);
3447 return (pte_t
*) pmd
;
3451 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3452 pmd_t
*pmd
, int write
)
3456 page
= pte_page(*(pte_t
*)pmd
);
3458 page
+= ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3463 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3464 pud_t
*pud
, int write
)
3468 page
= pte_page(*(pte_t
*)pud
);
3470 page
+= ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3474 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3476 /* Can be overriden by architectures */
3477 __attribute__((weak
)) struct page
*
3478 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3479 pud_t
*pud
, int write
)
3485 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3487 #ifdef CONFIG_MEMORY_FAILURE
3489 /* Should be called in hugetlb_lock */
3490 static int is_hugepage_on_freelist(struct page
*hpage
)
3494 struct hstate
*h
= page_hstate(hpage
);
3495 int nid
= page_to_nid(hpage
);
3497 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3504 * This function is called from memory failure code.
3505 * Assume the caller holds page lock of the head page.
3507 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3509 struct hstate
*h
= page_hstate(hpage
);
3510 int nid
= page_to_nid(hpage
);
3513 spin_lock(&hugetlb_lock
);
3514 if (is_hugepage_on_freelist(hpage
)) {
3516 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3517 * but dangling hpage->lru can trigger list-debug warnings
3518 * (this happens when we call unpoison_memory() on it),
3519 * so let it point to itself with list_del_init().
3521 list_del_init(&hpage
->lru
);
3522 set_page_refcounted(hpage
);
3523 h
->free_huge_pages
--;
3524 h
->free_huge_pages_node
[nid
]--;
3527 spin_unlock(&hugetlb_lock
);
3532 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3534 VM_BUG_ON(!PageHead(page
));
3535 if (!get_page_unless_zero(page
))
3537 spin_lock(&hugetlb_lock
);
3538 list_move_tail(&page
->lru
, list
);
3539 spin_unlock(&hugetlb_lock
);
3543 void putback_active_hugepage(struct page
*page
)
3545 VM_BUG_ON(!PageHead(page
));
3546 spin_lock(&hugetlb_lock
);
3547 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3548 spin_unlock(&hugetlb_lock
);
3552 bool is_hugepage_active(struct page
*page
)
3554 VM_BUG_ON(!PageHuge(page
));
3556 * This function can be called for a tail page because the caller,
3557 * scan_movable_pages, scans through a given pfn-range which typically
3558 * covers one memory block. In systems using gigantic hugepage (1GB
3559 * for x86_64,) a hugepage is larger than a memory block, and we don't
3560 * support migrating such large hugepages for now, so return false
3561 * when called for tail pages.
3566 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3567 * so we should return false for them.
3569 if (unlikely(PageHWPoison(page
)))
3571 return page_count(page
) > 0;