hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / mm / memcontrol.c
blob4e705ed74b81aaf39bcb147697c5a3701c81f733
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
63 #include <asm/uaccess.h>
65 #include <trace/events/vmscan.h>
67 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68 EXPORT_SYMBOL(mem_cgroup_subsys);
70 #define MEM_CGROUP_RECLAIM_RETRIES 5
71 static struct mem_cgroup *root_mem_cgroup __read_mostly;
73 #ifdef CONFIG_MEMCG_SWAP
74 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75 int do_swap_account __read_mostly;
77 /* for remember boot option*/
78 #ifdef CONFIG_MEMCG_SWAP_ENABLED
79 static int really_do_swap_account __initdata = 1;
80 #else
81 static int really_do_swap_account __initdata = 0;
82 #endif
84 #else
85 #define do_swap_account 0
86 #endif
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "writeback",
95 "swap",
98 enum mem_cgroup_events_index {
99 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
100 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
101 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
102 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
103 MEM_CGROUP_EVENTS_NSTATS,
106 static const char * const mem_cgroup_events_names[] = {
107 "pgpgin",
108 "pgpgout",
109 "pgfault",
110 "pgmajfault",
113 static const char * const mem_cgroup_lru_names[] = {
114 "inactive_anon",
115 "active_anon",
116 "inactive_file",
117 "active_file",
118 "unevictable",
122 * Per memcg event counter is incremented at every pagein/pageout. With THP,
123 * it will be incremated by the number of pages. This counter is used for
124 * for trigger some periodic events. This is straightforward and better
125 * than using jiffies etc. to handle periodic memcg event.
127 enum mem_cgroup_events_target {
128 MEM_CGROUP_TARGET_THRESH,
129 MEM_CGROUP_TARGET_SOFTLIMIT,
130 MEM_CGROUP_TARGET_NUMAINFO,
131 MEM_CGROUP_NTARGETS,
133 #define THRESHOLDS_EVENTS_TARGET 128
134 #define SOFTLIMIT_EVENTS_TARGET 1024
135 #define NUMAINFO_EVENTS_TARGET 1024
137 struct mem_cgroup_stat_cpu {
138 long count[MEM_CGROUP_STAT_NSTATS];
139 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
140 unsigned long nr_page_events;
141 unsigned long targets[MEM_CGROUP_NTARGETS];
144 struct mem_cgroup_reclaim_iter {
146 * last scanned hierarchy member. Valid only if last_dead_count
147 * matches memcg->dead_count of the hierarchy root group.
149 struct mem_cgroup *last_visited;
150 unsigned long last_dead_count;
152 /* scan generation, increased every round-trip */
153 unsigned int generation;
157 * per-zone information in memory controller.
159 struct mem_cgroup_per_zone {
160 struct lruvec lruvec;
161 unsigned long lru_size[NR_LRU_LISTS];
163 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
165 struct rb_node tree_node; /* RB tree node */
166 unsigned long long usage_in_excess;/* Set to the value by which */
167 /* the soft limit is exceeded*/
168 bool on_tree;
169 struct mem_cgroup *memcg; /* Back pointer, we cannot */
170 /* use container_of */
173 struct mem_cgroup_per_node {
174 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
178 * Cgroups above their limits are maintained in a RB-Tree, independent of
179 * their hierarchy representation
182 struct mem_cgroup_tree_per_zone {
183 struct rb_root rb_root;
184 spinlock_t lock;
187 struct mem_cgroup_tree_per_node {
188 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 struct mem_cgroup_tree {
192 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197 struct mem_cgroup_threshold {
198 struct eventfd_ctx *eventfd;
199 u64 threshold;
202 /* For threshold */
203 struct mem_cgroup_threshold_ary {
204 /* An array index points to threshold just below or equal to usage. */
205 int current_threshold;
206 /* Size of entries[] */
207 unsigned int size;
208 /* Array of thresholds */
209 struct mem_cgroup_threshold entries[0];
212 struct mem_cgroup_thresholds {
213 /* Primary thresholds array */
214 struct mem_cgroup_threshold_ary *primary;
216 * Spare threshold array.
217 * This is needed to make mem_cgroup_unregister_event() "never fail".
218 * It must be able to store at least primary->size - 1 entries.
220 struct mem_cgroup_threshold_ary *spare;
223 /* for OOM */
224 struct mem_cgroup_eventfd_list {
225 struct list_head list;
226 struct eventfd_ctx *eventfd;
229 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
230 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
238 * TODO: Add a water mark for the memory controller. Reclaim will begin when
239 * we hit the water mark. May be even add a low water mark, such that
240 * no reclaim occurs from a cgroup at it's low water mark, this is
241 * a feature that will be implemented much later in the future.
243 struct mem_cgroup {
244 struct cgroup_subsys_state css;
246 * the counter to account for memory usage
248 struct res_counter res;
250 /* vmpressure notifications */
251 struct vmpressure vmpressure;
254 * the counter to account for mem+swap usage.
256 struct res_counter memsw;
259 * the counter to account for kernel memory usage.
261 struct res_counter kmem;
263 * Should the accounting and control be hierarchical, per subtree?
265 bool use_hierarchy;
266 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
268 bool oom_lock;
269 atomic_t under_oom;
270 atomic_t oom_wakeups;
272 int swappiness;
273 /* OOM-Killer disable */
274 int oom_kill_disable;
276 /* set when res.limit == memsw.limit */
277 bool memsw_is_minimum;
279 /* protect arrays of thresholds */
280 struct mutex thresholds_lock;
282 /* thresholds for memory usage. RCU-protected */
283 struct mem_cgroup_thresholds thresholds;
285 /* thresholds for mem+swap usage. RCU-protected */
286 struct mem_cgroup_thresholds memsw_thresholds;
288 /* For oom notifier event fd */
289 struct list_head oom_notify;
292 * Should we move charges of a task when a task is moved into this
293 * mem_cgroup ? And what type of charges should we move ?
295 unsigned long move_charge_at_immigrate;
297 * set > 0 if pages under this cgroup are moving to other cgroup.
299 atomic_t moving_account;
300 /* taken only while moving_account > 0 */
301 spinlock_t move_lock;
303 * percpu counter.
305 struct mem_cgroup_stat_cpu __percpu *stat;
307 * used when a cpu is offlined or other synchronizations
308 * See mem_cgroup_read_stat().
310 struct mem_cgroup_stat_cpu nocpu_base;
311 spinlock_t pcp_counter_lock;
313 atomic_t dead_count;
314 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
315 struct tcp_memcontrol tcp_mem;
316 #endif
317 #if defined(CONFIG_MEMCG_KMEM)
318 /* analogous to slab_common's slab_caches list. per-memcg */
319 struct list_head memcg_slab_caches;
320 /* Not a spinlock, we can take a lot of time walking the list */
321 struct mutex slab_caches_mutex;
322 /* Index in the kmem_cache->memcg_params->memcg_caches array */
323 int kmemcg_id;
324 #endif
326 int last_scanned_node;
327 #if MAX_NUMNODES > 1
328 nodemask_t scan_nodes;
329 atomic_t numainfo_events;
330 atomic_t numainfo_updating;
331 #endif
333 struct mem_cgroup_per_node *nodeinfo[0];
334 /* WARNING: nodeinfo must be the last member here */
337 static size_t memcg_size(void)
339 return sizeof(struct mem_cgroup) +
340 nr_node_ids * sizeof(struct mem_cgroup_per_node *);
343 /* internal only representation about the status of kmem accounting. */
344 enum {
345 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
346 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
347 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
350 /* We account when limit is on, but only after call sites are patched */
351 #define KMEM_ACCOUNTED_MASK \
352 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
354 #ifdef CONFIG_MEMCG_KMEM
355 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
357 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
360 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
362 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
365 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
367 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
370 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
372 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
375 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
378 * Our caller must use css_get() first, because memcg_uncharge_kmem()
379 * will call css_put() if it sees the memcg is dead.
381 smp_wmb();
382 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
383 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
386 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
388 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
389 &memcg->kmem_account_flags);
391 #endif
393 /* Stuffs for move charges at task migration. */
395 * Types of charges to be moved. "move_charge_at_immitgrate" and
396 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
398 enum move_type {
399 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
400 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
401 NR_MOVE_TYPE,
404 /* "mc" and its members are protected by cgroup_mutex */
405 static struct move_charge_struct {
406 spinlock_t lock; /* for from, to */
407 struct mem_cgroup *from;
408 struct mem_cgroup *to;
409 unsigned long immigrate_flags;
410 unsigned long precharge;
411 unsigned long moved_charge;
412 unsigned long moved_swap;
413 struct task_struct *moving_task; /* a task moving charges */
414 wait_queue_head_t waitq; /* a waitq for other context */
415 } mc = {
416 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
417 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
420 static bool move_anon(void)
422 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
425 static bool move_file(void)
427 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
431 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
432 * limit reclaim to prevent infinite loops, if they ever occur.
434 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
435 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
437 enum charge_type {
438 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
439 MEM_CGROUP_CHARGE_TYPE_ANON,
440 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
441 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
442 NR_CHARGE_TYPE,
445 /* for encoding cft->private value on file */
446 enum res_type {
447 _MEM,
448 _MEMSWAP,
449 _OOM_TYPE,
450 _KMEM,
453 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
454 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
455 #define MEMFILE_ATTR(val) ((val) & 0xffff)
456 /* Used for OOM nofiier */
457 #define OOM_CONTROL (0)
460 * Reclaim flags for mem_cgroup_hierarchical_reclaim
462 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
463 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
464 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
465 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
468 * The memcg_create_mutex will be held whenever a new cgroup is created.
469 * As a consequence, any change that needs to protect against new child cgroups
470 * appearing has to hold it as well.
472 static DEFINE_MUTEX(memcg_create_mutex);
474 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
476 return s ? container_of(s, struct mem_cgroup, css) : NULL;
479 /* Some nice accessors for the vmpressure. */
480 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
482 if (!memcg)
483 memcg = root_mem_cgroup;
484 return &memcg->vmpressure;
487 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
489 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
492 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
494 return &mem_cgroup_from_css(css)->vmpressure;
497 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
499 return (memcg == root_mem_cgroup);
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
505 void sock_update_memcg(struct sock *sk)
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
511 BUG_ON(!sk->sk_prot->proto_cgroup);
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
532 sk->sk_cgrp = cg_proto;
534 rcu_read_unlock();
537 EXPORT_SYMBOL(sock_update_memcg);
539 void sock_release_memcg(struct sock *sk)
541 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
542 struct mem_cgroup *memcg;
543 WARN_ON(!sk->sk_cgrp->memcg);
544 memcg = sk->sk_cgrp->memcg;
545 css_put(&sk->sk_cgrp->memcg->css);
549 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551 if (!memcg || mem_cgroup_is_root(memcg))
552 return NULL;
554 return &memcg->tcp_mem.cg_proto;
556 EXPORT_SYMBOL(tcp_proto_cgroup);
558 static void disarm_sock_keys(struct mem_cgroup *memcg)
560 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
561 return;
562 static_key_slow_dec(&memcg_socket_limit_enabled);
564 #else
565 static void disarm_sock_keys(struct mem_cgroup *memcg)
568 #endif
570 #ifdef CONFIG_MEMCG_KMEM
572 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
573 * There are two main reasons for not using the css_id for this:
574 * 1) this works better in sparse environments, where we have a lot of memcgs,
575 * but only a few kmem-limited. Or also, if we have, for instance, 200
576 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
577 * 200 entry array for that.
579 * 2) In order not to violate the cgroup API, we would like to do all memory
580 * allocation in ->create(). At that point, we haven't yet allocated the
581 * css_id. Having a separate index prevents us from messing with the cgroup
582 * core for this
584 * The current size of the caches array is stored in
585 * memcg_limited_groups_array_size. It will double each time we have to
586 * increase it.
588 static DEFINE_IDA(kmem_limited_groups);
589 int memcg_limited_groups_array_size;
592 * MIN_SIZE is different than 1, because we would like to avoid going through
593 * the alloc/free process all the time. In a small machine, 4 kmem-limited
594 * cgroups is a reasonable guess. In the future, it could be a parameter or
595 * tunable, but that is strictly not necessary.
597 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
598 * this constant directly from cgroup, but it is understandable that this is
599 * better kept as an internal representation in cgroup.c. In any case, the
600 * css_id space is not getting any smaller, and we don't have to necessarily
601 * increase ours as well if it increases.
603 #define MEMCG_CACHES_MIN_SIZE 4
604 #define MEMCG_CACHES_MAX_SIZE 65535
607 * A lot of the calls to the cache allocation functions are expected to be
608 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
609 * conditional to this static branch, we'll have to allow modules that does
610 * kmem_cache_alloc and the such to see this symbol as well
612 struct static_key memcg_kmem_enabled_key;
613 EXPORT_SYMBOL(memcg_kmem_enabled_key);
615 static void disarm_kmem_keys(struct mem_cgroup *memcg)
617 if (memcg_kmem_is_active(memcg)) {
618 static_key_slow_dec(&memcg_kmem_enabled_key);
619 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
622 * This check can't live in kmem destruction function,
623 * since the charges will outlive the cgroup
625 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
627 #else
628 static void disarm_kmem_keys(struct mem_cgroup *memcg)
631 #endif /* CONFIG_MEMCG_KMEM */
633 static void disarm_static_keys(struct mem_cgroup *memcg)
635 disarm_sock_keys(memcg);
636 disarm_kmem_keys(memcg);
639 static void drain_all_stock_async(struct mem_cgroup *memcg);
641 static struct mem_cgroup_per_zone *
642 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
644 VM_BUG_ON((unsigned)nid >= nr_node_ids);
645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
648 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
650 return &memcg->css;
653 static struct mem_cgroup_per_zone *
654 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
659 return mem_cgroup_zoneinfo(memcg, nid, zid);
662 static struct mem_cgroup_tree_per_zone *
663 soft_limit_tree_node_zone(int nid, int zid)
665 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
668 static struct mem_cgroup_tree_per_zone *
669 soft_limit_tree_from_page(struct page *page)
671 int nid = page_to_nid(page);
672 int zid = page_zonenum(page);
674 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
677 static void
678 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
679 struct mem_cgroup_per_zone *mz,
680 struct mem_cgroup_tree_per_zone *mctz,
681 unsigned long long new_usage_in_excess)
683 struct rb_node **p = &mctz->rb_root.rb_node;
684 struct rb_node *parent = NULL;
685 struct mem_cgroup_per_zone *mz_node;
687 if (mz->on_tree)
688 return;
690 mz->usage_in_excess = new_usage_in_excess;
691 if (!mz->usage_in_excess)
692 return;
693 while (*p) {
694 parent = *p;
695 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
696 tree_node);
697 if (mz->usage_in_excess < mz_node->usage_in_excess)
698 p = &(*p)->rb_left;
700 * We can't avoid mem cgroups that are over their soft
701 * limit by the same amount
703 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
704 p = &(*p)->rb_right;
706 rb_link_node(&mz->tree_node, parent, p);
707 rb_insert_color(&mz->tree_node, &mctz->rb_root);
708 mz->on_tree = true;
711 static void
712 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
713 struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz)
716 if (!mz->on_tree)
717 return;
718 rb_erase(&mz->tree_node, &mctz->rb_root);
719 mz->on_tree = false;
722 static void
723 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
724 struct mem_cgroup_per_zone *mz,
725 struct mem_cgroup_tree_per_zone *mctz)
727 spin_lock(&mctz->lock);
728 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
729 spin_unlock(&mctz->lock);
733 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
735 unsigned long long excess;
736 struct mem_cgroup_per_zone *mz;
737 struct mem_cgroup_tree_per_zone *mctz;
738 int nid = page_to_nid(page);
739 int zid = page_zonenum(page);
740 mctz = soft_limit_tree_from_page(page);
743 * Necessary to update all ancestors when hierarchy is used.
744 * because their event counter is not touched.
746 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
747 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
748 excess = res_counter_soft_limit_excess(&memcg->res);
750 * We have to update the tree if mz is on RB-tree or
751 * mem is over its softlimit.
753 if (excess || mz->on_tree) {
754 spin_lock(&mctz->lock);
755 /* if on-tree, remove it */
756 if (mz->on_tree)
757 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
759 * Insert again. mz->usage_in_excess will be updated.
760 * If excess is 0, no tree ops.
762 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
763 spin_unlock(&mctz->lock);
768 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
770 int node, zone;
771 struct mem_cgroup_per_zone *mz;
772 struct mem_cgroup_tree_per_zone *mctz;
774 for_each_node(node) {
775 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
776 mz = mem_cgroup_zoneinfo(memcg, node, zone);
777 mctz = soft_limit_tree_node_zone(node, zone);
778 mem_cgroup_remove_exceeded(memcg, mz, mctz);
783 static struct mem_cgroup_per_zone *
784 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
786 struct rb_node *rightmost = NULL;
787 struct mem_cgroup_per_zone *mz;
789 retry:
790 mz = NULL;
791 rightmost = rb_last(&mctz->rb_root);
792 if (!rightmost)
793 goto done; /* Nothing to reclaim from */
795 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
797 * Remove the node now but someone else can add it back,
798 * we will to add it back at the end of reclaim to its correct
799 * position in the tree.
801 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
802 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
803 !css_tryget(&mz->memcg->css))
804 goto retry;
805 done:
806 return mz;
809 static struct mem_cgroup_per_zone *
810 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
812 struct mem_cgroup_per_zone *mz;
814 spin_lock(&mctz->lock);
815 mz = __mem_cgroup_largest_soft_limit_node(mctz);
816 spin_unlock(&mctz->lock);
817 return mz;
821 * Implementation Note: reading percpu statistics for memcg.
823 * Both of vmstat[] and percpu_counter has threshold and do periodic
824 * synchronization to implement "quick" read. There are trade-off between
825 * reading cost and precision of value. Then, we may have a chance to implement
826 * a periodic synchronizion of counter in memcg's counter.
828 * But this _read() function is used for user interface now. The user accounts
829 * memory usage by memory cgroup and he _always_ requires exact value because
830 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
831 * have to visit all online cpus and make sum. So, for now, unnecessary
832 * synchronization is not implemented. (just implemented for cpu hotplug)
834 * If there are kernel internal actions which can make use of some not-exact
835 * value, and reading all cpu value can be performance bottleneck in some
836 * common workload, threashold and synchonization as vmstat[] should be
837 * implemented.
839 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
840 enum mem_cgroup_stat_index idx)
842 long val = 0;
843 int cpu;
845 get_online_cpus();
846 for_each_online_cpu(cpu)
847 val += per_cpu(memcg->stat->count[idx], cpu);
848 #ifdef CONFIG_HOTPLUG_CPU
849 spin_lock(&memcg->pcp_counter_lock);
850 val += memcg->nocpu_base.count[idx];
851 spin_unlock(&memcg->pcp_counter_lock);
852 #endif
853 put_online_cpus();
854 return val;
857 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
858 bool charge)
860 int val = (charge) ? 1 : -1;
861 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
864 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
865 enum mem_cgroup_events_index idx)
867 unsigned long val = 0;
868 int cpu;
870 get_online_cpus();
871 for_each_online_cpu(cpu)
872 val += per_cpu(memcg->stat->events[idx], cpu);
873 #ifdef CONFIG_HOTPLUG_CPU
874 spin_lock(&memcg->pcp_counter_lock);
875 val += memcg->nocpu_base.events[idx];
876 spin_unlock(&memcg->pcp_counter_lock);
877 #endif
878 put_online_cpus();
879 return val;
882 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
883 struct page *page,
884 bool anon, int nr_pages)
886 preempt_disable();
889 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
890 * counted as CACHE even if it's on ANON LRU.
892 if (anon)
893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
894 nr_pages);
895 else
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
897 nr_pages);
899 if (PageTransHuge(page))
900 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
901 nr_pages);
903 /* pagein of a big page is an event. So, ignore page size */
904 if (nr_pages > 0)
905 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
906 else {
907 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
908 nr_pages = -nr_pages; /* for event */
911 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
913 preempt_enable();
916 unsigned long
917 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
919 struct mem_cgroup_per_zone *mz;
921 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
922 return mz->lru_size[lru];
925 static unsigned long
926 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
927 unsigned int lru_mask)
929 struct mem_cgroup_per_zone *mz;
930 enum lru_list lru;
931 unsigned long ret = 0;
933 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
935 for_each_lru(lru) {
936 if (BIT(lru) & lru_mask)
937 ret += mz->lru_size[lru];
939 return ret;
942 static unsigned long
943 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
944 int nid, unsigned int lru_mask)
946 u64 total = 0;
947 int zid;
949 for (zid = 0; zid < MAX_NR_ZONES; zid++)
950 total += mem_cgroup_zone_nr_lru_pages(memcg,
951 nid, zid, lru_mask);
953 return total;
956 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
957 unsigned int lru_mask)
959 int nid;
960 u64 total = 0;
962 for_each_node_state(nid, N_MEMORY)
963 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
964 return total;
967 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
968 enum mem_cgroup_events_target target)
970 unsigned long val, next;
972 val = __this_cpu_read(memcg->stat->nr_page_events);
973 next = __this_cpu_read(memcg->stat->targets[target]);
974 /* from time_after() in jiffies.h */
975 if ((long)next - (long)val < 0) {
976 switch (target) {
977 case MEM_CGROUP_TARGET_THRESH:
978 next = val + THRESHOLDS_EVENTS_TARGET;
979 break;
980 case MEM_CGROUP_TARGET_SOFTLIMIT:
981 next = val + SOFTLIMIT_EVENTS_TARGET;
982 break;
983 case MEM_CGROUP_TARGET_NUMAINFO:
984 next = val + NUMAINFO_EVENTS_TARGET;
985 break;
986 default:
987 break;
989 __this_cpu_write(memcg->stat->targets[target], next);
990 return true;
992 return false;
996 * Check events in order.
999 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1001 preempt_disable();
1002 /* threshold event is triggered in finer grain than soft limit */
1003 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1004 MEM_CGROUP_TARGET_THRESH))) {
1005 bool do_softlimit;
1006 bool do_numainfo __maybe_unused;
1008 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_SOFTLIMIT);
1010 #if MAX_NUMNODES > 1
1011 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_NUMAINFO);
1013 #endif
1014 preempt_enable();
1016 mem_cgroup_threshold(memcg);
1017 if (unlikely(do_softlimit))
1018 mem_cgroup_update_tree(memcg, page);
1019 #if MAX_NUMNODES > 1
1020 if (unlikely(do_numainfo))
1021 atomic_inc(&memcg->numainfo_events);
1022 #endif
1023 } else
1024 preempt_enable();
1027 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1030 * mm_update_next_owner() may clear mm->owner to NULL
1031 * if it races with swapoff, page migration, etc.
1032 * So this can be called with p == NULL.
1034 if (unlikely(!p))
1035 return NULL;
1037 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1040 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1042 struct mem_cgroup *memcg = NULL;
1044 if (!mm)
1045 return NULL;
1047 * Because we have no locks, mm->owner's may be being moved to other
1048 * cgroup. We use css_tryget() here even if this looks
1049 * pessimistic (rather than adding locks here).
1051 rcu_read_lock();
1052 do {
1053 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1054 if (unlikely(!memcg))
1055 break;
1056 } while (!css_tryget(&memcg->css));
1057 rcu_read_unlock();
1058 return memcg;
1062 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1063 * ref. count) or NULL if the whole root's subtree has been visited.
1065 * helper function to be used by mem_cgroup_iter
1067 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1068 struct mem_cgroup *last_visited)
1070 struct cgroup_subsys_state *prev_css, *next_css;
1072 prev_css = last_visited ? &last_visited->css : NULL;
1073 skip_node:
1074 next_css = css_next_descendant_pre(prev_css, &root->css);
1077 * Even if we found a group we have to make sure it is
1078 * alive. css && !memcg means that the groups should be
1079 * skipped and we should continue the tree walk.
1080 * last_visited css is safe to use because it is
1081 * protected by css_get and the tree walk is rcu safe.
1083 * We do not take a reference on the root of the tree walk
1084 * because we might race with the root removal when it would
1085 * be the only node in the iterated hierarchy and mem_cgroup_iter
1086 * would end up in an endless loop because it expects that at
1087 * least one valid node will be returned. Root cannot disappear
1088 * because caller of the iterator should hold it already so
1089 * skipping css reference should be safe.
1091 if (next_css) {
1092 if ((next_css == &root->css) ||
1093 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1094 return mem_cgroup_from_css(next_css);
1096 prev_css = next_css;
1097 goto skip_node;
1100 return NULL;
1103 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1106 * When a group in the hierarchy below root is destroyed, the
1107 * hierarchy iterator can no longer be trusted since it might
1108 * have pointed to the destroyed group. Invalidate it.
1110 atomic_inc(&root->dead_count);
1113 static struct mem_cgroup *
1114 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1115 struct mem_cgroup *root,
1116 int *sequence)
1118 struct mem_cgroup *position = NULL;
1120 * A cgroup destruction happens in two stages: offlining and
1121 * release. They are separated by a RCU grace period.
1123 * If the iterator is valid, we may still race with an
1124 * offlining. The RCU lock ensures the object won't be
1125 * released, tryget will fail if we lost the race.
1127 *sequence = atomic_read(&root->dead_count);
1128 if (iter->last_dead_count == *sequence) {
1129 smp_rmb();
1130 position = iter->last_visited;
1133 * We cannot take a reference to root because we might race
1134 * with root removal and returning NULL would end up in
1135 * an endless loop on the iterator user level when root
1136 * would be returned all the time.
1138 if (position && position != root &&
1139 !css_tryget(&position->css))
1140 position = NULL;
1142 return position;
1145 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1146 struct mem_cgroup *last_visited,
1147 struct mem_cgroup *new_position,
1148 struct mem_cgroup *root,
1149 int sequence)
1151 /* root reference counting symmetric to mem_cgroup_iter_load */
1152 if (last_visited && last_visited != root)
1153 css_put(&last_visited->css);
1155 * We store the sequence count from the time @last_visited was
1156 * loaded successfully instead of rereading it here so that we
1157 * don't lose destruction events in between. We could have
1158 * raced with the destruction of @new_position after all.
1160 iter->last_visited = new_position;
1161 smp_wmb();
1162 iter->last_dead_count = sequence;
1166 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1167 * @root: hierarchy root
1168 * @prev: previously returned memcg, NULL on first invocation
1169 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1171 * Returns references to children of the hierarchy below @root, or
1172 * @root itself, or %NULL after a full round-trip.
1174 * Caller must pass the return value in @prev on subsequent
1175 * invocations for reference counting, or use mem_cgroup_iter_break()
1176 * to cancel a hierarchy walk before the round-trip is complete.
1178 * Reclaimers can specify a zone and a priority level in @reclaim to
1179 * divide up the memcgs in the hierarchy among all concurrent
1180 * reclaimers operating on the same zone and priority.
1182 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1183 struct mem_cgroup *prev,
1184 struct mem_cgroup_reclaim_cookie *reclaim)
1186 struct mem_cgroup *memcg = NULL;
1187 struct mem_cgroup *last_visited = NULL;
1189 if (mem_cgroup_disabled())
1190 return NULL;
1192 if (!root)
1193 root = root_mem_cgroup;
1195 if (prev && !reclaim)
1196 last_visited = prev;
1198 if (!root->use_hierarchy && root != root_mem_cgroup) {
1199 if (prev)
1200 goto out_css_put;
1201 return root;
1204 rcu_read_lock();
1205 while (!memcg) {
1206 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1207 int uninitialized_var(seq);
1209 if (reclaim) {
1210 int nid = zone_to_nid(reclaim->zone);
1211 int zid = zone_idx(reclaim->zone);
1212 struct mem_cgroup_per_zone *mz;
1214 mz = mem_cgroup_zoneinfo(root, nid, zid);
1215 iter = &mz->reclaim_iter[reclaim->priority];
1216 if (prev && reclaim->generation != iter->generation) {
1217 iter->last_visited = NULL;
1218 goto out_unlock;
1221 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1224 memcg = __mem_cgroup_iter_next(root, last_visited);
1226 if (reclaim) {
1227 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1228 seq);
1230 if (!memcg)
1231 iter->generation++;
1232 else if (!prev && memcg)
1233 reclaim->generation = iter->generation;
1236 if (prev && !memcg)
1237 goto out_unlock;
1239 out_unlock:
1240 rcu_read_unlock();
1241 out_css_put:
1242 if (prev && prev != root)
1243 css_put(&prev->css);
1245 return memcg;
1249 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1250 * @root: hierarchy root
1251 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1253 void mem_cgroup_iter_break(struct mem_cgroup *root,
1254 struct mem_cgroup *prev)
1256 if (!root)
1257 root = root_mem_cgroup;
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1263 * Iteration constructs for visiting all cgroups (under a tree). If
1264 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1265 * be used for reference counting.
1267 #define for_each_mem_cgroup_tree(iter, root) \
1268 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1269 iter != NULL; \
1270 iter = mem_cgroup_iter(root, iter, NULL))
1272 #define for_each_mem_cgroup(iter) \
1273 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1274 iter != NULL; \
1275 iter = mem_cgroup_iter(NULL, iter, NULL))
1277 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1279 struct mem_cgroup *memcg;
1281 rcu_read_lock();
1282 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1283 if (unlikely(!memcg))
1284 goto out;
1286 switch (idx) {
1287 case PGFAULT:
1288 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1289 break;
1290 case PGMAJFAULT:
1291 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1292 break;
1293 default:
1294 BUG();
1296 out:
1297 rcu_read_unlock();
1299 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1302 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1303 * @zone: zone of the wanted lruvec
1304 * @memcg: memcg of the wanted lruvec
1306 * Returns the lru list vector holding pages for the given @zone and
1307 * @mem. This can be the global zone lruvec, if the memory controller
1308 * is disabled.
1310 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1311 struct mem_cgroup *memcg)
1313 struct mem_cgroup_per_zone *mz;
1314 struct lruvec *lruvec;
1316 if (mem_cgroup_disabled()) {
1317 lruvec = &zone->lruvec;
1318 goto out;
1321 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1322 lruvec = &mz->lruvec;
1323 out:
1325 * Since a node can be onlined after the mem_cgroup was created,
1326 * we have to be prepared to initialize lruvec->zone here;
1327 * and if offlined then reonlined, we need to reinitialize it.
1329 if (unlikely(lruvec->zone != zone))
1330 lruvec->zone = zone;
1331 return lruvec;
1335 * Following LRU functions are allowed to be used without PCG_LOCK.
1336 * Operations are called by routine of global LRU independently from memcg.
1337 * What we have to take care of here is validness of pc->mem_cgroup.
1339 * Changes to pc->mem_cgroup happens when
1340 * 1. charge
1341 * 2. moving account
1342 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1343 * It is added to LRU before charge.
1344 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1345 * When moving account, the page is not on LRU. It's isolated.
1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1350 * @page: the page
1351 * @zone: zone of the page
1353 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1355 struct mem_cgroup_per_zone *mz;
1356 struct mem_cgroup *memcg;
1357 struct page_cgroup *pc;
1358 struct lruvec *lruvec;
1360 if (mem_cgroup_disabled()) {
1361 lruvec = &zone->lruvec;
1362 goto out;
1365 pc = lookup_page_cgroup(page);
1366 memcg = pc->mem_cgroup;
1369 * Surreptitiously switch any uncharged offlist page to root:
1370 * an uncharged page off lru does nothing to secure
1371 * its former mem_cgroup from sudden removal.
1373 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 * under page_cgroup lock: between them, they make all uses
1375 * of pc->mem_cgroup safe.
1377 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1378 pc->mem_cgroup = memcg = root_mem_cgroup;
1380 mz = page_cgroup_zoneinfo(memcg, page);
1381 lruvec = &mz->lruvec;
1382 out:
1384 * Since a node can be onlined after the mem_cgroup was created,
1385 * we have to be prepared to initialize lruvec->zone here;
1386 * and if offlined then reonlined, we need to reinitialize it.
1388 if (unlikely(lruvec->zone != zone))
1389 lruvec->zone = zone;
1390 return lruvec;
1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395 * @lruvec: mem_cgroup per zone lru vector
1396 * @lru: index of lru list the page is sitting on
1397 * @nr_pages: positive when adding or negative when removing
1399 * This function must be called when a page is added to or removed from an
1400 * lru list.
1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 int nr_pages)
1405 struct mem_cgroup_per_zone *mz;
1406 unsigned long *lru_size;
1408 if (mem_cgroup_disabled())
1409 return;
1411 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1412 lru_size = mz->lru_size + lru;
1413 *lru_size += nr_pages;
1414 VM_BUG_ON((long)(*lru_size) < 0);
1418 * Checks whether given mem is same or in the root_mem_cgroup's
1419 * hierarchy subtree
1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1422 struct mem_cgroup *memcg)
1424 if (root_memcg == memcg)
1425 return true;
1426 if (!root_memcg->use_hierarchy || !memcg)
1427 return false;
1428 return css_is_ancestor(&memcg->css, &root_memcg->css);
1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 struct mem_cgroup *memcg)
1434 bool ret;
1436 rcu_read_lock();
1437 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1438 rcu_read_unlock();
1439 return ret;
1442 bool task_in_mem_cgroup(struct task_struct *task,
1443 const struct mem_cgroup *memcg)
1445 struct mem_cgroup *curr = NULL;
1446 struct task_struct *p;
1447 bool ret;
1449 p = find_lock_task_mm(task);
1450 if (p) {
1451 curr = try_get_mem_cgroup_from_mm(p->mm);
1452 task_unlock(p);
1453 } else {
1455 * All threads may have already detached their mm's, but the oom
1456 * killer still needs to detect if they have already been oom
1457 * killed to prevent needlessly killing additional tasks.
1459 rcu_read_lock();
1460 curr = mem_cgroup_from_task(task);
1461 if (curr)
1462 css_get(&curr->css);
1463 rcu_read_unlock();
1465 if (!curr)
1466 return false;
1468 * We should check use_hierarchy of "memcg" not "curr". Because checking
1469 * use_hierarchy of "curr" here make this function true if hierarchy is
1470 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1471 * hierarchy(even if use_hierarchy is disabled in "memcg").
1473 ret = mem_cgroup_same_or_subtree(memcg, curr);
1474 css_put(&curr->css);
1475 return ret;
1478 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1480 unsigned long inactive_ratio;
1481 unsigned long inactive;
1482 unsigned long active;
1483 unsigned long gb;
1485 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1486 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1488 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1489 if (gb)
1490 inactive_ratio = int_sqrt(10 * gb);
1491 else
1492 inactive_ratio = 1;
1494 return inactive * inactive_ratio < active;
1497 #define mem_cgroup_from_res_counter(counter, member) \
1498 container_of(counter, struct mem_cgroup, member)
1501 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1502 * @memcg: the memory cgroup
1504 * Returns the maximum amount of memory @mem can be charged with, in
1505 * pages.
1507 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1509 unsigned long long margin;
1511 margin = res_counter_margin(&memcg->res);
1512 if (do_swap_account)
1513 margin = min(margin, res_counter_margin(&memcg->memsw));
1514 return margin >> PAGE_SHIFT;
1517 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1519 /* root ? */
1520 if (!css_parent(&memcg->css))
1521 return vm_swappiness;
1523 return memcg->swappiness;
1527 * memcg->moving_account is used for checking possibility that some thread is
1528 * calling move_account(). When a thread on CPU-A starts moving pages under
1529 * a memcg, other threads should check memcg->moving_account under
1530 * rcu_read_lock(), like this:
1532 * CPU-A CPU-B
1533 * rcu_read_lock()
1534 * memcg->moving_account+1 if (memcg->mocing_account)
1535 * take heavy locks.
1536 * synchronize_rcu() update something.
1537 * rcu_read_unlock()
1538 * start move here.
1541 /* for quick checking without looking up memcg */
1542 atomic_t memcg_moving __read_mostly;
1544 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1546 atomic_inc(&memcg_moving);
1547 atomic_inc(&memcg->moving_account);
1548 synchronize_rcu();
1551 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1554 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1555 * We check NULL in callee rather than caller.
1557 if (memcg) {
1558 atomic_dec(&memcg_moving);
1559 atomic_dec(&memcg->moving_account);
1564 * 2 routines for checking "mem" is under move_account() or not.
1566 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1567 * is used for avoiding races in accounting. If true,
1568 * pc->mem_cgroup may be overwritten.
1570 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1571 * under hierarchy of moving cgroups. This is for
1572 * waiting at hith-memory prressure caused by "move".
1575 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1577 VM_BUG_ON(!rcu_read_lock_held());
1578 return atomic_read(&memcg->moving_account) > 0;
1581 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1583 struct mem_cgroup *from;
1584 struct mem_cgroup *to;
1585 bool ret = false;
1587 * Unlike task_move routines, we access mc.to, mc.from not under
1588 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1590 spin_lock(&mc.lock);
1591 from = mc.from;
1592 to = mc.to;
1593 if (!from)
1594 goto unlock;
1596 ret = mem_cgroup_same_or_subtree(memcg, from)
1597 || mem_cgroup_same_or_subtree(memcg, to);
1598 unlock:
1599 spin_unlock(&mc.lock);
1600 return ret;
1603 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1605 if (mc.moving_task && current != mc.moving_task) {
1606 if (mem_cgroup_under_move(memcg)) {
1607 DEFINE_WAIT(wait);
1608 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1609 /* moving charge context might have finished. */
1610 if (mc.moving_task)
1611 schedule();
1612 finish_wait(&mc.waitq, &wait);
1613 return true;
1616 return false;
1620 * Take this lock when
1621 * - a code tries to modify page's memcg while it's USED.
1622 * - a code tries to modify page state accounting in a memcg.
1623 * see mem_cgroup_stolen(), too.
1625 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1626 unsigned long *flags)
1628 spin_lock_irqsave(&memcg->move_lock, *flags);
1631 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1632 unsigned long *flags)
1634 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637 #define K(x) ((x) << (PAGE_SHIFT-10))
1639 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1640 * @memcg: The memory cgroup that went over limit
1641 * @p: Task that is going to be killed
1643 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1644 * enabled
1646 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1648 struct cgroup *task_cgrp;
1649 struct cgroup *mem_cgrp;
1651 * Need a buffer in BSS, can't rely on allocations. The code relies
1652 * on the assumption that OOM is serialized for memory controller.
1653 * If this assumption is broken, revisit this code.
1655 static char memcg_name[PATH_MAX];
1656 int ret;
1657 struct mem_cgroup *iter;
1658 unsigned int i;
1660 if (!p)
1661 return;
1663 rcu_read_lock();
1665 mem_cgrp = memcg->css.cgroup;
1666 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1668 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1669 if (ret < 0) {
1671 * Unfortunately, we are unable to convert to a useful name
1672 * But we'll still print out the usage information
1674 rcu_read_unlock();
1675 goto done;
1677 rcu_read_unlock();
1679 pr_info("Task in %s killed", memcg_name);
1681 rcu_read_lock();
1682 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1683 if (ret < 0) {
1684 rcu_read_unlock();
1685 goto done;
1687 rcu_read_unlock();
1690 * Continues from above, so we don't need an KERN_ level
1692 pr_cont(" as a result of limit of %s\n", memcg_name);
1693 done:
1695 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1696 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1697 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1698 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1699 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1700 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1701 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1702 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1703 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1704 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1705 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1706 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1708 for_each_mem_cgroup_tree(iter, memcg) {
1709 pr_info("Memory cgroup stats");
1711 rcu_read_lock();
1712 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1713 if (!ret)
1714 pr_cont(" for %s", memcg_name);
1715 rcu_read_unlock();
1716 pr_cont(":");
1718 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1719 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1720 continue;
1721 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1722 K(mem_cgroup_read_stat(iter, i)));
1725 for (i = 0; i < NR_LRU_LISTS; i++)
1726 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1727 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1729 pr_cont("\n");
1734 * This function returns the number of memcg under hierarchy tree. Returns
1735 * 1(self count) if no children.
1737 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1739 int num = 0;
1740 struct mem_cgroup *iter;
1742 for_each_mem_cgroup_tree(iter, memcg)
1743 num++;
1744 return num;
1748 * Return the memory (and swap, if configured) limit for a memcg.
1750 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1752 u64 limit;
1754 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1757 * Do not consider swap space if we cannot swap due to swappiness
1759 if (mem_cgroup_swappiness(memcg)) {
1760 u64 memsw;
1762 limit += total_swap_pages << PAGE_SHIFT;
1763 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766 * If memsw is finite and limits the amount of swap space
1767 * available to this memcg, return that limit.
1769 limit = min(limit, memsw);
1772 return limit;
1775 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1776 int order)
1778 struct mem_cgroup *iter;
1779 unsigned long chosen_points = 0;
1780 unsigned long totalpages;
1781 unsigned int points = 0;
1782 struct task_struct *chosen = NULL;
1785 * If current has a pending SIGKILL or is exiting, then automatically
1786 * select it. The goal is to allow it to allocate so that it may
1787 * quickly exit and free its memory.
1789 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1790 set_thread_flag(TIF_MEMDIE);
1791 return;
1794 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1795 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1796 for_each_mem_cgroup_tree(iter, memcg) {
1797 struct css_task_iter it;
1798 struct task_struct *task;
1800 css_task_iter_start(&iter->css, &it);
1801 while ((task = css_task_iter_next(&it))) {
1802 switch (oom_scan_process_thread(task, totalpages, NULL,
1803 false)) {
1804 case OOM_SCAN_SELECT:
1805 if (chosen)
1806 put_task_struct(chosen);
1807 chosen = task;
1808 chosen_points = ULONG_MAX;
1809 get_task_struct(chosen);
1810 /* fall through */
1811 case OOM_SCAN_CONTINUE:
1812 continue;
1813 case OOM_SCAN_ABORT:
1814 css_task_iter_end(&it);
1815 mem_cgroup_iter_break(memcg, iter);
1816 if (chosen)
1817 put_task_struct(chosen);
1818 return;
1819 case OOM_SCAN_OK:
1820 break;
1822 points = oom_badness(task, memcg, NULL, totalpages);
1823 if (!points || points < chosen_points)
1824 continue;
1825 /* Prefer thread group leaders for display purposes */
1826 if (points == chosen_points &&
1827 thread_group_leader(chosen))
1828 continue;
1830 if (chosen)
1831 put_task_struct(chosen);
1832 chosen = task;
1833 chosen_points = points;
1834 get_task_struct(chosen);
1836 css_task_iter_end(&it);
1839 if (!chosen)
1840 return;
1841 points = chosen_points * 1000 / totalpages;
1842 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1843 NULL, "Memory cgroup out of memory");
1846 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1847 gfp_t gfp_mask,
1848 unsigned long flags)
1850 unsigned long total = 0;
1851 bool noswap = false;
1852 int loop;
1854 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1855 noswap = true;
1856 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1857 noswap = true;
1859 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1860 if (loop)
1861 drain_all_stock_async(memcg);
1862 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1864 * Allow limit shrinkers, which are triggered directly
1865 * by userspace, to catch signals and stop reclaim
1866 * after minimal progress, regardless of the margin.
1868 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1869 break;
1870 if (mem_cgroup_margin(memcg))
1871 break;
1873 * If nothing was reclaimed after two attempts, there
1874 * may be no reclaimable pages in this hierarchy.
1876 if (loop && !total)
1877 break;
1879 return total;
1883 * test_mem_cgroup_node_reclaimable
1884 * @memcg: the target memcg
1885 * @nid: the node ID to be checked.
1886 * @noswap : specify true here if the user wants flle only information.
1888 * This function returns whether the specified memcg contains any
1889 * reclaimable pages on a node. Returns true if there are any reclaimable
1890 * pages in the node.
1892 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1893 int nid, bool noswap)
1895 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1896 return true;
1897 if (noswap || !total_swap_pages)
1898 return false;
1899 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1900 return true;
1901 return false;
1904 #if MAX_NUMNODES > 1
1907 * Always updating the nodemask is not very good - even if we have an empty
1908 * list or the wrong list here, we can start from some node and traverse all
1909 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1912 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1914 int nid;
1916 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1917 * pagein/pageout changes since the last update.
1919 if (!atomic_read(&memcg->numainfo_events))
1920 return;
1921 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1922 return;
1924 /* make a nodemask where this memcg uses memory from */
1925 memcg->scan_nodes = node_states[N_MEMORY];
1927 for_each_node_mask(nid, node_states[N_MEMORY]) {
1929 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1930 node_clear(nid, memcg->scan_nodes);
1933 atomic_set(&memcg->numainfo_events, 0);
1934 atomic_set(&memcg->numainfo_updating, 0);
1938 * Selecting a node where we start reclaim from. Because what we need is just
1939 * reducing usage counter, start from anywhere is O,K. Considering
1940 * memory reclaim from current node, there are pros. and cons.
1942 * Freeing memory from current node means freeing memory from a node which
1943 * we'll use or we've used. So, it may make LRU bad. And if several threads
1944 * hit limits, it will see a contention on a node. But freeing from remote
1945 * node means more costs for memory reclaim because of memory latency.
1947 * Now, we use round-robin. Better algorithm is welcomed.
1949 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1951 int node;
1953 mem_cgroup_may_update_nodemask(memcg);
1954 node = memcg->last_scanned_node;
1956 node = next_node(node, memcg->scan_nodes);
1957 if (node == MAX_NUMNODES)
1958 node = first_node(memcg->scan_nodes);
1960 * We call this when we hit limit, not when pages are added to LRU.
1961 * No LRU may hold pages because all pages are UNEVICTABLE or
1962 * memcg is too small and all pages are not on LRU. In that case,
1963 * we use curret node.
1965 if (unlikely(node == MAX_NUMNODES))
1966 node = numa_node_id();
1968 memcg->last_scanned_node = node;
1969 return node;
1973 * Check all nodes whether it contains reclaimable pages or not.
1974 * For quick scan, we make use of scan_nodes. This will allow us to skip
1975 * unused nodes. But scan_nodes is lazily updated and may not cotain
1976 * enough new information. We need to do double check.
1978 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1980 int nid;
1983 * quick check...making use of scan_node.
1984 * We can skip unused nodes.
1986 if (!nodes_empty(memcg->scan_nodes)) {
1987 for (nid = first_node(memcg->scan_nodes);
1988 nid < MAX_NUMNODES;
1989 nid = next_node(nid, memcg->scan_nodes)) {
1991 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1992 return true;
1996 * Check rest of nodes.
1998 for_each_node_state(nid, N_MEMORY) {
1999 if (node_isset(nid, memcg->scan_nodes))
2000 continue;
2001 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2002 return true;
2004 return false;
2007 #else
2008 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2010 return 0;
2013 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2015 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2017 #endif
2019 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2020 struct zone *zone,
2021 gfp_t gfp_mask,
2022 unsigned long *total_scanned)
2024 struct mem_cgroup *victim = NULL;
2025 int total = 0;
2026 int loop = 0;
2027 unsigned long excess;
2028 unsigned long nr_scanned;
2029 struct mem_cgroup_reclaim_cookie reclaim = {
2030 .zone = zone,
2031 .priority = 0,
2034 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2036 while (1) {
2037 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2038 if (!victim) {
2039 loop++;
2040 if (loop >= 2) {
2042 * If we have not been able to reclaim
2043 * anything, it might because there are
2044 * no reclaimable pages under this hierarchy
2046 if (!total)
2047 break;
2049 * We want to do more targeted reclaim.
2050 * excess >> 2 is not to excessive so as to
2051 * reclaim too much, nor too less that we keep
2052 * coming back to reclaim from this cgroup
2054 if (total >= (excess >> 2) ||
2055 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2056 break;
2058 continue;
2060 if (!mem_cgroup_reclaimable(victim, false))
2061 continue;
2062 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2063 zone, &nr_scanned);
2064 *total_scanned += nr_scanned;
2065 if (!res_counter_soft_limit_excess(&root_memcg->res))
2066 break;
2068 mem_cgroup_iter_break(root_memcg, victim);
2069 return total;
2072 #ifdef CONFIG_LOCKDEP
2073 static struct lockdep_map memcg_oom_lock_dep_map = {
2074 .name = "memcg_oom_lock",
2076 #endif
2078 static DEFINE_SPINLOCK(memcg_oom_lock);
2081 * Check OOM-Killer is already running under our hierarchy.
2082 * If someone is running, return false.
2084 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2086 struct mem_cgroup *iter, *failed = NULL;
2088 spin_lock(&memcg_oom_lock);
2090 for_each_mem_cgroup_tree(iter, memcg) {
2091 if (iter->oom_lock) {
2093 * this subtree of our hierarchy is already locked
2094 * so we cannot give a lock.
2096 failed = iter;
2097 mem_cgroup_iter_break(memcg, iter);
2098 break;
2099 } else
2100 iter->oom_lock = true;
2103 if (failed) {
2105 * OK, we failed to lock the whole subtree so we have
2106 * to clean up what we set up to the failing subtree
2108 for_each_mem_cgroup_tree(iter, memcg) {
2109 if (iter == failed) {
2110 mem_cgroup_iter_break(memcg, iter);
2111 break;
2113 iter->oom_lock = false;
2115 } else
2116 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2118 spin_unlock(&memcg_oom_lock);
2120 return !failed;
2123 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2125 struct mem_cgroup *iter;
2127 spin_lock(&memcg_oom_lock);
2128 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2129 for_each_mem_cgroup_tree(iter, memcg)
2130 iter->oom_lock = false;
2131 spin_unlock(&memcg_oom_lock);
2134 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2136 struct mem_cgroup *iter;
2138 for_each_mem_cgroup_tree(iter, memcg)
2139 atomic_inc(&iter->under_oom);
2142 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2144 struct mem_cgroup *iter;
2147 * When a new child is created while the hierarchy is under oom,
2148 * mem_cgroup_oom_lock() may not be called. We have to use
2149 * atomic_add_unless() here.
2151 for_each_mem_cgroup_tree(iter, memcg)
2152 atomic_add_unless(&iter->under_oom, -1, 0);
2155 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2157 struct oom_wait_info {
2158 struct mem_cgroup *memcg;
2159 wait_queue_t wait;
2162 static int memcg_oom_wake_function(wait_queue_t *wait,
2163 unsigned mode, int sync, void *arg)
2165 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2166 struct mem_cgroup *oom_wait_memcg;
2167 struct oom_wait_info *oom_wait_info;
2169 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2170 oom_wait_memcg = oom_wait_info->memcg;
2173 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2174 * Then we can use css_is_ancestor without taking care of RCU.
2176 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2177 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2178 return 0;
2179 return autoremove_wake_function(wait, mode, sync, arg);
2182 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2184 atomic_inc(&memcg->oom_wakeups);
2185 /* for filtering, pass "memcg" as argument. */
2186 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2189 static void memcg_oom_recover(struct mem_cgroup *memcg)
2191 if (memcg && atomic_read(&memcg->under_oom))
2192 memcg_wakeup_oom(memcg);
2195 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2197 if (!current->memcg_oom.may_oom)
2198 return;
2200 * We are in the middle of the charge context here, so we
2201 * don't want to block when potentially sitting on a callstack
2202 * that holds all kinds of filesystem and mm locks.
2204 * Also, the caller may handle a failed allocation gracefully
2205 * (like optional page cache readahead) and so an OOM killer
2206 * invocation might not even be necessary.
2208 * That's why we don't do anything here except remember the
2209 * OOM context and then deal with it at the end of the page
2210 * fault when the stack is unwound, the locks are released,
2211 * and when we know whether the fault was overall successful.
2213 css_get(&memcg->css);
2214 current->memcg_oom.memcg = memcg;
2215 current->memcg_oom.gfp_mask = mask;
2216 current->memcg_oom.order = order;
2220 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2221 * @handle: actually kill/wait or just clean up the OOM state
2223 * This has to be called at the end of a page fault if the memcg OOM
2224 * handler was enabled.
2226 * Memcg supports userspace OOM handling where failed allocations must
2227 * sleep on a waitqueue until the userspace task resolves the
2228 * situation. Sleeping directly in the charge context with all kinds
2229 * of locks held is not a good idea, instead we remember an OOM state
2230 * in the task and mem_cgroup_oom_synchronize() has to be called at
2231 * the end of the page fault to complete the OOM handling.
2233 * Returns %true if an ongoing memcg OOM situation was detected and
2234 * completed, %false otherwise.
2236 bool mem_cgroup_oom_synchronize(bool handle)
2238 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2239 struct oom_wait_info owait;
2240 bool locked;
2242 /* OOM is global, do not handle */
2243 if (!memcg)
2244 return false;
2246 if (!handle)
2247 goto cleanup;
2249 owait.memcg = memcg;
2250 owait.wait.flags = 0;
2251 owait.wait.func = memcg_oom_wake_function;
2252 owait.wait.private = current;
2253 INIT_LIST_HEAD(&owait.wait.task_list);
2255 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2256 mem_cgroup_mark_under_oom(memcg);
2258 locked = mem_cgroup_oom_trylock(memcg);
2260 if (locked)
2261 mem_cgroup_oom_notify(memcg);
2263 if (locked && !memcg->oom_kill_disable) {
2264 mem_cgroup_unmark_under_oom(memcg);
2265 finish_wait(&memcg_oom_waitq, &owait.wait);
2266 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2267 current->memcg_oom.order);
2268 } else {
2269 schedule();
2270 mem_cgroup_unmark_under_oom(memcg);
2271 finish_wait(&memcg_oom_waitq, &owait.wait);
2274 if (locked) {
2275 mem_cgroup_oom_unlock(memcg);
2277 * There is no guarantee that an OOM-lock contender
2278 * sees the wakeups triggered by the OOM kill
2279 * uncharges. Wake any sleepers explicitely.
2281 memcg_oom_recover(memcg);
2283 cleanup:
2284 current->memcg_oom.memcg = NULL;
2285 css_put(&memcg->css);
2286 return true;
2290 * Currently used to update mapped file statistics, but the routine can be
2291 * generalized to update other statistics as well.
2293 * Notes: Race condition
2295 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2296 * it tends to be costly. But considering some conditions, we doesn't need
2297 * to do so _always_.
2299 * Considering "charge", lock_page_cgroup() is not required because all
2300 * file-stat operations happen after a page is attached to radix-tree. There
2301 * are no race with "charge".
2303 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2304 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2305 * if there are race with "uncharge". Statistics itself is properly handled
2306 * by flags.
2308 * Considering "move", this is an only case we see a race. To make the race
2309 * small, we check mm->moving_account and detect there are possibility of race
2310 * If there is, we take a lock.
2313 void __mem_cgroup_begin_update_page_stat(struct page *page,
2314 bool *locked, unsigned long *flags)
2316 struct mem_cgroup *memcg;
2317 struct page_cgroup *pc;
2319 pc = lookup_page_cgroup(page);
2320 again:
2321 memcg = pc->mem_cgroup;
2322 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2323 return;
2325 * If this memory cgroup is not under account moving, we don't
2326 * need to take move_lock_mem_cgroup(). Because we already hold
2327 * rcu_read_lock(), any calls to move_account will be delayed until
2328 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2330 if (!mem_cgroup_stolen(memcg))
2331 return;
2333 move_lock_mem_cgroup(memcg, flags);
2334 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2335 move_unlock_mem_cgroup(memcg, flags);
2336 goto again;
2338 *locked = true;
2341 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2343 struct page_cgroup *pc = lookup_page_cgroup(page);
2346 * It's guaranteed that pc->mem_cgroup never changes while
2347 * lock is held because a routine modifies pc->mem_cgroup
2348 * should take move_lock_mem_cgroup().
2350 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2353 void mem_cgroup_update_page_stat(struct page *page,
2354 enum mem_cgroup_stat_index idx, int val)
2356 struct mem_cgroup *memcg;
2357 struct page_cgroup *pc = lookup_page_cgroup(page);
2358 unsigned long uninitialized_var(flags);
2360 if (mem_cgroup_disabled())
2361 return;
2363 VM_BUG_ON(!rcu_read_lock_held());
2364 memcg = pc->mem_cgroup;
2365 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2366 return;
2368 this_cpu_add(memcg->stat->count[idx], val);
2372 * size of first charge trial. "32" comes from vmscan.c's magic value.
2373 * TODO: maybe necessary to use big numbers in big irons.
2375 #define CHARGE_BATCH 32U
2376 struct memcg_stock_pcp {
2377 struct mem_cgroup *cached; /* this never be root cgroup */
2378 unsigned int nr_pages;
2379 struct work_struct work;
2380 unsigned long flags;
2381 #define FLUSHING_CACHED_CHARGE 0
2383 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2384 static DEFINE_MUTEX(percpu_charge_mutex);
2387 * consume_stock: Try to consume stocked charge on this cpu.
2388 * @memcg: memcg to consume from.
2389 * @nr_pages: how many pages to charge.
2391 * The charges will only happen if @memcg matches the current cpu's memcg
2392 * stock, and at least @nr_pages are available in that stock. Failure to
2393 * service an allocation will refill the stock.
2395 * returns true if successful, false otherwise.
2397 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2399 struct memcg_stock_pcp *stock;
2400 bool ret = true;
2402 if (nr_pages > CHARGE_BATCH)
2403 return false;
2405 stock = &get_cpu_var(memcg_stock);
2406 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2407 stock->nr_pages -= nr_pages;
2408 else /* need to call res_counter_charge */
2409 ret = false;
2410 put_cpu_var(memcg_stock);
2411 return ret;
2415 * Returns stocks cached in percpu to res_counter and reset cached information.
2417 static void drain_stock(struct memcg_stock_pcp *stock)
2419 struct mem_cgroup *old = stock->cached;
2421 if (stock->nr_pages) {
2422 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2424 res_counter_uncharge(&old->res, bytes);
2425 if (do_swap_account)
2426 res_counter_uncharge(&old->memsw, bytes);
2427 stock->nr_pages = 0;
2429 stock->cached = NULL;
2433 * This must be called under preempt disabled or must be called by
2434 * a thread which is pinned to local cpu.
2436 static void drain_local_stock(struct work_struct *dummy)
2438 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2439 drain_stock(stock);
2440 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2443 static void __init memcg_stock_init(void)
2445 int cpu;
2447 for_each_possible_cpu(cpu) {
2448 struct memcg_stock_pcp *stock =
2449 &per_cpu(memcg_stock, cpu);
2450 INIT_WORK(&stock->work, drain_local_stock);
2455 * Cache charges(val) which is from res_counter, to local per_cpu area.
2456 * This will be consumed by consume_stock() function, later.
2458 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2460 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2462 if (stock->cached != memcg) { /* reset if necessary */
2463 drain_stock(stock);
2464 stock->cached = memcg;
2466 stock->nr_pages += nr_pages;
2467 put_cpu_var(memcg_stock);
2471 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2472 * of the hierarchy under it. sync flag says whether we should block
2473 * until the work is done.
2475 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2477 int cpu, curcpu;
2479 /* Notify other cpus that system-wide "drain" is running */
2480 get_online_cpus();
2481 curcpu = get_cpu();
2482 for_each_online_cpu(cpu) {
2483 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2484 struct mem_cgroup *memcg;
2486 memcg = stock->cached;
2487 if (!memcg || !stock->nr_pages)
2488 continue;
2489 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2490 continue;
2491 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2492 if (cpu == curcpu)
2493 drain_local_stock(&stock->work);
2494 else
2495 schedule_work_on(cpu, &stock->work);
2498 put_cpu();
2500 if (!sync)
2501 goto out;
2503 for_each_online_cpu(cpu) {
2504 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2505 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2506 flush_work(&stock->work);
2508 out:
2509 put_online_cpus();
2513 * Tries to drain stocked charges in other cpus. This function is asynchronous
2514 * and just put a work per cpu for draining localy on each cpu. Caller can
2515 * expects some charges will be back to res_counter later but cannot wait for
2516 * it.
2518 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2521 * If someone calls draining, avoid adding more kworker runs.
2523 if (!mutex_trylock(&percpu_charge_mutex))
2524 return;
2525 drain_all_stock(root_memcg, false);
2526 mutex_unlock(&percpu_charge_mutex);
2529 /* This is a synchronous drain interface. */
2530 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2532 /* called when force_empty is called */
2533 mutex_lock(&percpu_charge_mutex);
2534 drain_all_stock(root_memcg, true);
2535 mutex_unlock(&percpu_charge_mutex);
2539 * This function drains percpu counter value from DEAD cpu and
2540 * move it to local cpu. Note that this function can be preempted.
2542 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2544 int i;
2546 spin_lock(&memcg->pcp_counter_lock);
2547 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2548 long x = per_cpu(memcg->stat->count[i], cpu);
2550 per_cpu(memcg->stat->count[i], cpu) = 0;
2551 memcg->nocpu_base.count[i] += x;
2553 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2554 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2556 per_cpu(memcg->stat->events[i], cpu) = 0;
2557 memcg->nocpu_base.events[i] += x;
2559 spin_unlock(&memcg->pcp_counter_lock);
2562 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2563 unsigned long action,
2564 void *hcpu)
2566 int cpu = (unsigned long)hcpu;
2567 struct memcg_stock_pcp *stock;
2568 struct mem_cgroup *iter;
2570 if (action == CPU_ONLINE)
2571 return NOTIFY_OK;
2573 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2574 return NOTIFY_OK;
2576 for_each_mem_cgroup(iter)
2577 mem_cgroup_drain_pcp_counter(iter, cpu);
2579 stock = &per_cpu(memcg_stock, cpu);
2580 drain_stock(stock);
2581 return NOTIFY_OK;
2585 /* See __mem_cgroup_try_charge() for details */
2586 enum {
2587 CHARGE_OK, /* success */
2588 CHARGE_RETRY, /* need to retry but retry is not bad */
2589 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2590 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2593 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2594 unsigned int nr_pages, unsigned int min_pages,
2595 bool invoke_oom)
2597 unsigned long csize = nr_pages * PAGE_SIZE;
2598 struct mem_cgroup *mem_over_limit;
2599 struct res_counter *fail_res;
2600 unsigned long flags = 0;
2601 int ret;
2603 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2605 if (likely(!ret)) {
2606 if (!do_swap_account)
2607 return CHARGE_OK;
2608 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2609 if (likely(!ret))
2610 return CHARGE_OK;
2612 res_counter_uncharge(&memcg->res, csize);
2613 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2614 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2615 } else
2616 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2618 * Never reclaim on behalf of optional batching, retry with a
2619 * single page instead.
2621 if (nr_pages > min_pages)
2622 return CHARGE_RETRY;
2624 if (!(gfp_mask & __GFP_WAIT))
2625 return CHARGE_WOULDBLOCK;
2627 if (gfp_mask & __GFP_NORETRY)
2628 return CHARGE_NOMEM;
2630 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2631 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2632 return CHARGE_RETRY;
2634 * Even though the limit is exceeded at this point, reclaim
2635 * may have been able to free some pages. Retry the charge
2636 * before killing the task.
2638 * Only for regular pages, though: huge pages are rather
2639 * unlikely to succeed so close to the limit, and we fall back
2640 * to regular pages anyway in case of failure.
2642 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2643 return CHARGE_RETRY;
2646 * At task move, charge accounts can be doubly counted. So, it's
2647 * better to wait until the end of task_move if something is going on.
2649 if (mem_cgroup_wait_acct_move(mem_over_limit))
2650 return CHARGE_RETRY;
2652 if (invoke_oom)
2653 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2655 return CHARGE_NOMEM;
2659 * __mem_cgroup_try_charge() does
2660 * 1. detect memcg to be charged against from passed *mm and *ptr,
2661 * 2. update res_counter
2662 * 3. call memory reclaim if necessary.
2664 * In some special case, if the task is fatal, fatal_signal_pending() or
2665 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2666 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2667 * as possible without any hazards. 2: all pages should have a valid
2668 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2669 * pointer, that is treated as a charge to root_mem_cgroup.
2671 * So __mem_cgroup_try_charge() will return
2672 * 0 ... on success, filling *ptr with a valid memcg pointer.
2673 * -ENOMEM ... charge failure because of resource limits.
2674 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2676 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2677 * the oom-killer can be invoked.
2679 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2680 gfp_t gfp_mask,
2681 unsigned int nr_pages,
2682 struct mem_cgroup **ptr,
2683 bool oom)
2685 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2686 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2687 struct mem_cgroup *memcg = NULL;
2688 int ret;
2691 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2692 * in system level. So, allow to go ahead dying process in addition to
2693 * MEMDIE process.
2695 if (unlikely(test_thread_flag(TIF_MEMDIE)
2696 || fatal_signal_pending(current)))
2697 goto bypass;
2699 if (unlikely(task_in_memcg_oom(current)))
2700 goto nomem;
2702 if (gfp_mask & __GFP_NOFAIL)
2703 oom = false;
2706 * We always charge the cgroup the mm_struct belongs to.
2707 * The mm_struct's mem_cgroup changes on task migration if the
2708 * thread group leader migrates. It's possible that mm is not
2709 * set, if so charge the root memcg (happens for pagecache usage).
2711 if (!*ptr && !mm)
2712 *ptr = root_mem_cgroup;
2713 again:
2714 if (*ptr) { /* css should be a valid one */
2715 memcg = *ptr;
2716 if (mem_cgroup_is_root(memcg))
2717 goto done;
2718 if (consume_stock(memcg, nr_pages))
2719 goto done;
2720 css_get(&memcg->css);
2721 } else {
2722 struct task_struct *p;
2724 rcu_read_lock();
2725 p = rcu_dereference(mm->owner);
2727 * Because we don't have task_lock(), "p" can exit.
2728 * In that case, "memcg" can point to root or p can be NULL with
2729 * race with swapoff. Then, we have small risk of mis-accouning.
2730 * But such kind of mis-account by race always happens because
2731 * we don't have cgroup_mutex(). It's overkill and we allo that
2732 * small race, here.
2733 * (*) swapoff at el will charge against mm-struct not against
2734 * task-struct. So, mm->owner can be NULL.
2736 memcg = mem_cgroup_from_task(p);
2737 if (!memcg)
2738 memcg = root_mem_cgroup;
2739 if (mem_cgroup_is_root(memcg)) {
2740 rcu_read_unlock();
2741 goto done;
2743 if (consume_stock(memcg, nr_pages)) {
2745 * It seems dagerous to access memcg without css_get().
2746 * But considering how consume_stok works, it's not
2747 * necessary. If consume_stock success, some charges
2748 * from this memcg are cached on this cpu. So, we
2749 * don't need to call css_get()/css_tryget() before
2750 * calling consume_stock().
2752 rcu_read_unlock();
2753 goto done;
2755 /* after here, we may be blocked. we need to get refcnt */
2756 if (!css_tryget(&memcg->css)) {
2757 rcu_read_unlock();
2758 goto again;
2760 rcu_read_unlock();
2763 do {
2764 bool invoke_oom = oom && !nr_oom_retries;
2766 /* If killed, bypass charge */
2767 if (fatal_signal_pending(current)) {
2768 css_put(&memcg->css);
2769 goto bypass;
2772 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2773 nr_pages, invoke_oom);
2774 switch (ret) {
2775 case CHARGE_OK:
2776 break;
2777 case CHARGE_RETRY: /* not in OOM situation but retry */
2778 batch = nr_pages;
2779 css_put(&memcg->css);
2780 memcg = NULL;
2781 goto again;
2782 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2783 css_put(&memcg->css);
2784 goto nomem;
2785 case CHARGE_NOMEM: /* OOM routine works */
2786 if (!oom || invoke_oom) {
2787 css_put(&memcg->css);
2788 goto nomem;
2790 nr_oom_retries--;
2791 break;
2793 } while (ret != CHARGE_OK);
2795 if (batch > nr_pages)
2796 refill_stock(memcg, batch - nr_pages);
2797 css_put(&memcg->css);
2798 done:
2799 *ptr = memcg;
2800 return 0;
2801 nomem:
2802 if (!(gfp_mask & __GFP_NOFAIL)) {
2803 *ptr = NULL;
2804 return -ENOMEM;
2806 bypass:
2807 *ptr = root_mem_cgroup;
2808 return -EINTR;
2812 * Somemtimes we have to undo a charge we got by try_charge().
2813 * This function is for that and do uncharge, put css's refcnt.
2814 * gotten by try_charge().
2816 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2817 unsigned int nr_pages)
2819 if (!mem_cgroup_is_root(memcg)) {
2820 unsigned long bytes = nr_pages * PAGE_SIZE;
2822 res_counter_uncharge(&memcg->res, bytes);
2823 if (do_swap_account)
2824 res_counter_uncharge(&memcg->memsw, bytes);
2829 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2830 * This is useful when moving usage to parent cgroup.
2832 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2833 unsigned int nr_pages)
2835 unsigned long bytes = nr_pages * PAGE_SIZE;
2837 if (mem_cgroup_is_root(memcg))
2838 return;
2840 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2841 if (do_swap_account)
2842 res_counter_uncharge_until(&memcg->memsw,
2843 memcg->memsw.parent, bytes);
2847 * A helper function to get mem_cgroup from ID. must be called under
2848 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2849 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2850 * called against removed memcg.)
2852 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2854 struct cgroup_subsys_state *css;
2856 /* ID 0 is unused ID */
2857 if (!id)
2858 return NULL;
2859 css = css_lookup(&mem_cgroup_subsys, id);
2860 if (!css)
2861 return NULL;
2862 return mem_cgroup_from_css(css);
2865 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2867 struct mem_cgroup *memcg = NULL;
2868 struct page_cgroup *pc;
2869 unsigned short id;
2870 swp_entry_t ent;
2872 VM_BUG_ON(!PageLocked(page));
2874 pc = lookup_page_cgroup(page);
2875 lock_page_cgroup(pc);
2876 if (PageCgroupUsed(pc)) {
2877 memcg = pc->mem_cgroup;
2878 if (memcg && !css_tryget(&memcg->css))
2879 memcg = NULL;
2880 } else if (PageSwapCache(page)) {
2881 ent.val = page_private(page);
2882 id = lookup_swap_cgroup_id(ent);
2883 rcu_read_lock();
2884 memcg = mem_cgroup_lookup(id);
2885 if (memcg && !css_tryget(&memcg->css))
2886 memcg = NULL;
2887 rcu_read_unlock();
2889 unlock_page_cgroup(pc);
2890 return memcg;
2893 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2894 struct page *page,
2895 unsigned int nr_pages,
2896 enum charge_type ctype,
2897 bool lrucare)
2899 struct page_cgroup *pc = lookup_page_cgroup(page);
2900 struct zone *uninitialized_var(zone);
2901 struct lruvec *lruvec;
2902 bool was_on_lru = false;
2903 bool anon;
2905 lock_page_cgroup(pc);
2906 VM_BUG_ON(PageCgroupUsed(pc));
2908 * we don't need page_cgroup_lock about tail pages, becase they are not
2909 * accessed by any other context at this point.
2913 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2914 * may already be on some other mem_cgroup's LRU. Take care of it.
2916 if (lrucare) {
2917 zone = page_zone(page);
2918 spin_lock_irq(&zone->lru_lock);
2919 if (PageLRU(page)) {
2920 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2921 ClearPageLRU(page);
2922 del_page_from_lru_list(page, lruvec, page_lru(page));
2923 was_on_lru = true;
2927 pc->mem_cgroup = memcg;
2929 * We access a page_cgroup asynchronously without lock_page_cgroup().
2930 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2931 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2932 * before USED bit, we need memory barrier here.
2933 * See mem_cgroup_add_lru_list(), etc.
2935 smp_wmb();
2936 SetPageCgroupUsed(pc);
2938 if (lrucare) {
2939 if (was_on_lru) {
2940 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2941 VM_BUG_ON(PageLRU(page));
2942 SetPageLRU(page);
2943 add_page_to_lru_list(page, lruvec, page_lru(page));
2945 spin_unlock_irq(&zone->lru_lock);
2948 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2949 anon = true;
2950 else
2951 anon = false;
2953 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2954 unlock_page_cgroup(pc);
2957 * "charge_statistics" updated event counter. Then, check it.
2958 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2959 * if they exceeds softlimit.
2961 memcg_check_events(memcg, page);
2964 static DEFINE_MUTEX(set_limit_mutex);
2966 #ifdef CONFIG_MEMCG_KMEM
2967 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2969 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2970 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2974 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2975 * in the memcg_cache_params struct.
2977 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2979 struct kmem_cache *cachep;
2981 VM_BUG_ON(p->is_root_cache);
2982 cachep = p->root_cache;
2983 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2986 #ifdef CONFIG_SLABINFO
2987 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2988 struct cftype *cft, struct seq_file *m)
2990 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2991 struct memcg_cache_params *params;
2993 if (!memcg_can_account_kmem(memcg))
2994 return -EIO;
2996 print_slabinfo_header(m);
2998 mutex_lock(&memcg->slab_caches_mutex);
2999 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3000 cache_show(memcg_params_to_cache(params), m);
3001 mutex_unlock(&memcg->slab_caches_mutex);
3003 return 0;
3005 #endif
3007 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3009 struct res_counter *fail_res;
3010 struct mem_cgroup *_memcg;
3011 int ret = 0;
3012 bool may_oom;
3014 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3015 if (ret)
3016 return ret;
3019 * Conditions under which we can wait for the oom_killer. Those are
3020 * the same conditions tested by the core page allocator
3022 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3024 _memcg = memcg;
3025 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3026 &_memcg, may_oom);
3028 if (ret == -EINTR) {
3030 * __mem_cgroup_try_charge() chosed to bypass to root due to
3031 * OOM kill or fatal signal. Since our only options are to
3032 * either fail the allocation or charge it to this cgroup, do
3033 * it as a temporary condition. But we can't fail. From a
3034 * kmem/slab perspective, the cache has already been selected,
3035 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3036 * our minds.
3038 * This condition will only trigger if the task entered
3039 * memcg_charge_kmem in a sane state, but was OOM-killed during
3040 * __mem_cgroup_try_charge() above. Tasks that were already
3041 * dying when the allocation triggers should have been already
3042 * directed to the root cgroup in memcontrol.h
3044 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3045 if (do_swap_account)
3046 res_counter_charge_nofail(&memcg->memsw, size,
3047 &fail_res);
3048 ret = 0;
3049 } else if (ret)
3050 res_counter_uncharge(&memcg->kmem, size);
3052 return ret;
3055 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3057 res_counter_uncharge(&memcg->res, size);
3058 if (do_swap_account)
3059 res_counter_uncharge(&memcg->memsw, size);
3061 /* Not down to 0 */
3062 if (res_counter_uncharge(&memcg->kmem, size))
3063 return;
3066 * Releases a reference taken in kmem_cgroup_css_offline in case
3067 * this last uncharge is racing with the offlining code or it is
3068 * outliving the memcg existence.
3070 * The memory barrier imposed by test&clear is paired with the
3071 * explicit one in memcg_kmem_mark_dead().
3073 if (memcg_kmem_test_and_clear_dead(memcg))
3074 css_put(&memcg->css);
3077 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3079 if (!memcg)
3080 return;
3082 mutex_lock(&memcg->slab_caches_mutex);
3083 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3084 mutex_unlock(&memcg->slab_caches_mutex);
3088 * helper for acessing a memcg's index. It will be used as an index in the
3089 * child cache array in kmem_cache, and also to derive its name. This function
3090 * will return -1 when this is not a kmem-limited memcg.
3092 int memcg_cache_id(struct mem_cgroup *memcg)
3094 return memcg ? memcg->kmemcg_id : -1;
3098 * This ends up being protected by the set_limit mutex, during normal
3099 * operation, because that is its main call site.
3101 * But when we create a new cache, we can call this as well if its parent
3102 * is kmem-limited. That will have to hold set_limit_mutex as well.
3104 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3106 int num, ret;
3108 num = ida_simple_get(&kmem_limited_groups,
3109 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3110 if (num < 0)
3111 return num;
3113 * After this point, kmem_accounted (that we test atomically in
3114 * the beginning of this conditional), is no longer 0. This
3115 * guarantees only one process will set the following boolean
3116 * to true. We don't need test_and_set because we're protected
3117 * by the set_limit_mutex anyway.
3119 memcg_kmem_set_activated(memcg);
3121 ret = memcg_update_all_caches(num+1);
3122 if (ret) {
3123 ida_simple_remove(&kmem_limited_groups, num);
3124 memcg_kmem_clear_activated(memcg);
3125 return ret;
3128 memcg->kmemcg_id = num;
3129 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3130 mutex_init(&memcg->slab_caches_mutex);
3131 return 0;
3134 static size_t memcg_caches_array_size(int num_groups)
3136 ssize_t size;
3137 if (num_groups <= 0)
3138 return 0;
3140 size = 2 * num_groups;
3141 if (size < MEMCG_CACHES_MIN_SIZE)
3142 size = MEMCG_CACHES_MIN_SIZE;
3143 else if (size > MEMCG_CACHES_MAX_SIZE)
3144 size = MEMCG_CACHES_MAX_SIZE;
3146 return size;
3150 * We should update the current array size iff all caches updates succeed. This
3151 * can only be done from the slab side. The slab mutex needs to be held when
3152 * calling this.
3154 void memcg_update_array_size(int num)
3156 if (num > memcg_limited_groups_array_size)
3157 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3160 static void kmem_cache_destroy_work_func(struct work_struct *w);
3162 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3164 struct memcg_cache_params *cur_params = s->memcg_params;
3166 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3168 if (num_groups > memcg_limited_groups_array_size) {
3169 int i;
3170 ssize_t size = memcg_caches_array_size(num_groups);
3172 size *= sizeof(void *);
3173 size += offsetof(struct memcg_cache_params, memcg_caches);
3175 s->memcg_params = kzalloc(size, GFP_KERNEL);
3176 if (!s->memcg_params) {
3177 s->memcg_params = cur_params;
3178 return -ENOMEM;
3181 s->memcg_params->is_root_cache = true;
3184 * There is the chance it will be bigger than
3185 * memcg_limited_groups_array_size, if we failed an allocation
3186 * in a cache, in which case all caches updated before it, will
3187 * have a bigger array.
3189 * But if that is the case, the data after
3190 * memcg_limited_groups_array_size is certainly unused
3192 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3193 if (!cur_params->memcg_caches[i])
3194 continue;
3195 s->memcg_params->memcg_caches[i] =
3196 cur_params->memcg_caches[i];
3200 * Ideally, we would wait until all caches succeed, and only
3201 * then free the old one. But this is not worth the extra
3202 * pointer per-cache we'd have to have for this.
3204 * It is not a big deal if some caches are left with a size
3205 * bigger than the others. And all updates will reset this
3206 * anyway.
3208 kfree(cur_params);
3210 return 0;
3213 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3214 struct kmem_cache *root_cache)
3216 size_t size;
3218 if (!memcg_kmem_enabled())
3219 return 0;
3221 if (!memcg) {
3222 size = offsetof(struct memcg_cache_params, memcg_caches);
3223 size += memcg_limited_groups_array_size * sizeof(void *);
3224 } else
3225 size = sizeof(struct memcg_cache_params);
3227 s->memcg_params = kzalloc(size, GFP_KERNEL);
3228 if (!s->memcg_params)
3229 return -ENOMEM;
3231 if (memcg) {
3232 s->memcg_params->memcg = memcg;
3233 s->memcg_params->root_cache = root_cache;
3234 INIT_WORK(&s->memcg_params->destroy,
3235 kmem_cache_destroy_work_func);
3236 } else
3237 s->memcg_params->is_root_cache = true;
3239 return 0;
3242 void memcg_release_cache(struct kmem_cache *s)
3244 struct kmem_cache *root;
3245 struct mem_cgroup *memcg;
3246 int id;
3249 * This happens, for instance, when a root cache goes away before we
3250 * add any memcg.
3252 if (!s->memcg_params)
3253 return;
3255 if (s->memcg_params->is_root_cache)
3256 goto out;
3258 memcg = s->memcg_params->memcg;
3259 id = memcg_cache_id(memcg);
3261 root = s->memcg_params->root_cache;
3262 root->memcg_params->memcg_caches[id] = NULL;
3264 mutex_lock(&memcg->slab_caches_mutex);
3265 list_del(&s->memcg_params->list);
3266 mutex_unlock(&memcg->slab_caches_mutex);
3268 css_put(&memcg->css);
3269 out:
3270 kfree(s->memcg_params);
3274 * During the creation a new cache, we need to disable our accounting mechanism
3275 * altogether. This is true even if we are not creating, but rather just
3276 * enqueing new caches to be created.
3278 * This is because that process will trigger allocations; some visible, like
3279 * explicit kmallocs to auxiliary data structures, name strings and internal
3280 * cache structures; some well concealed, like INIT_WORK() that can allocate
3281 * objects during debug.
3283 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3284 * to it. This may not be a bounded recursion: since the first cache creation
3285 * failed to complete (waiting on the allocation), we'll just try to create the
3286 * cache again, failing at the same point.
3288 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3289 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3290 * inside the following two functions.
3292 static inline void memcg_stop_kmem_account(void)
3294 VM_BUG_ON(!current->mm);
3295 current->memcg_kmem_skip_account++;
3298 static inline void memcg_resume_kmem_account(void)
3300 VM_BUG_ON(!current->mm);
3301 current->memcg_kmem_skip_account--;
3304 static void kmem_cache_destroy_work_func(struct work_struct *w)
3306 struct kmem_cache *cachep;
3307 struct memcg_cache_params *p;
3309 p = container_of(w, struct memcg_cache_params, destroy);
3311 cachep = memcg_params_to_cache(p);
3314 * If we get down to 0 after shrink, we could delete right away.
3315 * However, memcg_release_pages() already puts us back in the workqueue
3316 * in that case. If we proceed deleting, we'll get a dangling
3317 * reference, and removing the object from the workqueue in that case
3318 * is unnecessary complication. We are not a fast path.
3320 * Note that this case is fundamentally different from racing with
3321 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3322 * kmem_cache_shrink, not only we would be reinserting a dead cache
3323 * into the queue, but doing so from inside the worker racing to
3324 * destroy it.
3326 * So if we aren't down to zero, we'll just schedule a worker and try
3327 * again
3329 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3330 kmem_cache_shrink(cachep);
3331 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3332 return;
3333 } else
3334 kmem_cache_destroy(cachep);
3337 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3339 if (!cachep->memcg_params->dead)
3340 return;
3343 * There are many ways in which we can get here.
3345 * We can get to a memory-pressure situation while the delayed work is
3346 * still pending to run. The vmscan shrinkers can then release all
3347 * cache memory and get us to destruction. If this is the case, we'll
3348 * be executed twice, which is a bug (the second time will execute over
3349 * bogus data). In this case, cancelling the work should be fine.
3351 * But we can also get here from the worker itself, if
3352 * kmem_cache_shrink is enough to shake all the remaining objects and
3353 * get the page count to 0. In this case, we'll deadlock if we try to
3354 * cancel the work (the worker runs with an internal lock held, which
3355 * is the same lock we would hold for cancel_work_sync().)
3357 * Since we can't possibly know who got us here, just refrain from
3358 * running if there is already work pending
3360 if (work_pending(&cachep->memcg_params->destroy))
3361 return;
3363 * We have to defer the actual destroying to a workqueue, because
3364 * we might currently be in a context that cannot sleep.
3366 schedule_work(&cachep->memcg_params->destroy);
3370 * This lock protects updaters, not readers. We want readers to be as fast as
3371 * they can, and they will either see NULL or a valid cache value. Our model
3372 * allow them to see NULL, in which case the root memcg will be selected.
3374 * We need this lock because multiple allocations to the same cache from a non
3375 * will span more than one worker. Only one of them can create the cache.
3377 static DEFINE_MUTEX(memcg_cache_mutex);
3380 * Called with memcg_cache_mutex held
3382 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3383 struct kmem_cache *s)
3385 struct kmem_cache *new;
3386 static char *tmp_name = NULL;
3388 lockdep_assert_held(&memcg_cache_mutex);
3391 * kmem_cache_create_memcg duplicates the given name and
3392 * cgroup_name for this name requires RCU context.
3393 * This static temporary buffer is used to prevent from
3394 * pointless shortliving allocation.
3396 if (!tmp_name) {
3397 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3398 if (!tmp_name)
3399 return NULL;
3402 rcu_read_lock();
3403 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3404 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3405 rcu_read_unlock();
3407 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3408 (s->flags & ~SLAB_PANIC), s->ctor, s);
3410 if (new)
3411 new->allocflags |= __GFP_KMEMCG;
3413 return new;
3416 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3417 struct kmem_cache *cachep)
3419 struct kmem_cache *new_cachep;
3420 int idx;
3422 BUG_ON(!memcg_can_account_kmem(memcg));
3424 idx = memcg_cache_id(memcg);
3426 mutex_lock(&memcg_cache_mutex);
3427 new_cachep = cachep->memcg_params->memcg_caches[idx];
3428 if (new_cachep) {
3429 css_put(&memcg->css);
3430 goto out;
3433 new_cachep = kmem_cache_dup(memcg, cachep);
3434 if (new_cachep == NULL) {
3435 new_cachep = cachep;
3436 css_put(&memcg->css);
3437 goto out;
3440 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3442 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3444 * the readers won't lock, make sure everybody sees the updated value,
3445 * so they won't put stuff in the queue again for no reason
3447 wmb();
3448 out:
3449 mutex_unlock(&memcg_cache_mutex);
3450 return new_cachep;
3453 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3455 struct kmem_cache *c;
3456 int i;
3458 if (!s->memcg_params)
3459 return;
3460 if (!s->memcg_params->is_root_cache)
3461 return;
3464 * If the cache is being destroyed, we trust that there is no one else
3465 * requesting objects from it. Even if there are, the sanity checks in
3466 * kmem_cache_destroy should caught this ill-case.
3468 * Still, we don't want anyone else freeing memcg_caches under our
3469 * noses, which can happen if a new memcg comes to life. As usual,
3470 * we'll take the set_limit_mutex to protect ourselves against this.
3472 mutex_lock(&set_limit_mutex);
3473 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3474 c = s->memcg_params->memcg_caches[i];
3475 if (!c)
3476 continue;
3479 * We will now manually delete the caches, so to avoid races
3480 * we need to cancel all pending destruction workers and
3481 * proceed with destruction ourselves.
3483 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3484 * and that could spawn the workers again: it is likely that
3485 * the cache still have active pages until this very moment.
3486 * This would lead us back to mem_cgroup_destroy_cache.
3488 * But that will not execute at all if the "dead" flag is not
3489 * set, so flip it down to guarantee we are in control.
3491 c->memcg_params->dead = false;
3492 cancel_work_sync(&c->memcg_params->destroy);
3493 kmem_cache_destroy(c);
3495 mutex_unlock(&set_limit_mutex);
3498 struct create_work {
3499 struct mem_cgroup *memcg;
3500 struct kmem_cache *cachep;
3501 struct work_struct work;
3504 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3506 struct kmem_cache *cachep;
3507 struct memcg_cache_params *params;
3509 if (!memcg_kmem_is_active(memcg))
3510 return;
3512 mutex_lock(&memcg->slab_caches_mutex);
3513 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3514 cachep = memcg_params_to_cache(params);
3515 cachep->memcg_params->dead = true;
3516 schedule_work(&cachep->memcg_params->destroy);
3518 mutex_unlock(&memcg->slab_caches_mutex);
3521 static void memcg_create_cache_work_func(struct work_struct *w)
3523 struct create_work *cw;
3525 cw = container_of(w, struct create_work, work);
3526 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3527 kfree(cw);
3531 * Enqueue the creation of a per-memcg kmem_cache.
3533 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3534 struct kmem_cache *cachep)
3536 struct create_work *cw;
3538 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3539 if (cw == NULL) {
3540 css_put(&memcg->css);
3541 return;
3544 cw->memcg = memcg;
3545 cw->cachep = cachep;
3547 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3548 schedule_work(&cw->work);
3551 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3552 struct kmem_cache *cachep)
3555 * We need to stop accounting when we kmalloc, because if the
3556 * corresponding kmalloc cache is not yet created, the first allocation
3557 * in __memcg_create_cache_enqueue will recurse.
3559 * However, it is better to enclose the whole function. Depending on
3560 * the debugging options enabled, INIT_WORK(), for instance, can
3561 * trigger an allocation. This too, will make us recurse. Because at
3562 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3563 * the safest choice is to do it like this, wrapping the whole function.
3565 memcg_stop_kmem_account();
3566 __memcg_create_cache_enqueue(memcg, cachep);
3567 memcg_resume_kmem_account();
3570 * Return the kmem_cache we're supposed to use for a slab allocation.
3571 * We try to use the current memcg's version of the cache.
3573 * If the cache does not exist yet, if we are the first user of it,
3574 * we either create it immediately, if possible, or create it asynchronously
3575 * in a workqueue.
3576 * In the latter case, we will let the current allocation go through with
3577 * the original cache.
3579 * Can't be called in interrupt context or from kernel threads.
3580 * This function needs to be called with rcu_read_lock() held.
3582 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3583 gfp_t gfp)
3585 struct mem_cgroup *memcg;
3586 int idx;
3588 VM_BUG_ON(!cachep->memcg_params);
3589 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3591 if (!current->mm || current->memcg_kmem_skip_account)
3592 return cachep;
3594 rcu_read_lock();
3595 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3597 if (!memcg_can_account_kmem(memcg))
3598 goto out;
3600 idx = memcg_cache_id(memcg);
3603 * barrier to mare sure we're always seeing the up to date value. The
3604 * code updating memcg_caches will issue a write barrier to match this.
3606 read_barrier_depends();
3607 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3608 cachep = cachep->memcg_params->memcg_caches[idx];
3609 goto out;
3612 /* The corresponding put will be done in the workqueue. */
3613 if (!css_tryget(&memcg->css))
3614 goto out;
3615 rcu_read_unlock();
3618 * If we are in a safe context (can wait, and not in interrupt
3619 * context), we could be be predictable and return right away.
3620 * This would guarantee that the allocation being performed
3621 * already belongs in the new cache.
3623 * However, there are some clashes that can arrive from locking.
3624 * For instance, because we acquire the slab_mutex while doing
3625 * kmem_cache_dup, this means no further allocation could happen
3626 * with the slab_mutex held.
3628 * Also, because cache creation issue get_online_cpus(), this
3629 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3630 * that ends up reversed during cpu hotplug. (cpuset allocates
3631 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3632 * better to defer everything.
3634 memcg_create_cache_enqueue(memcg, cachep);
3635 return cachep;
3636 out:
3637 rcu_read_unlock();
3638 return cachep;
3640 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3643 * We need to verify if the allocation against current->mm->owner's memcg is
3644 * possible for the given order. But the page is not allocated yet, so we'll
3645 * need a further commit step to do the final arrangements.
3647 * It is possible for the task to switch cgroups in this mean time, so at
3648 * commit time, we can't rely on task conversion any longer. We'll then use
3649 * the handle argument to return to the caller which cgroup we should commit
3650 * against. We could also return the memcg directly and avoid the pointer
3651 * passing, but a boolean return value gives better semantics considering
3652 * the compiled-out case as well.
3654 * Returning true means the allocation is possible.
3656 bool
3657 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3659 struct mem_cgroup *memcg;
3660 int ret;
3662 *_memcg = NULL;
3665 * Disabling accounting is only relevant for some specific memcg
3666 * internal allocations. Therefore we would initially not have such
3667 * check here, since direct calls to the page allocator that are marked
3668 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3669 * concerned with cache allocations, and by having this test at
3670 * memcg_kmem_get_cache, we are already able to relay the allocation to
3671 * the root cache and bypass the memcg cache altogether.
3673 * There is one exception, though: the SLUB allocator does not create
3674 * large order caches, but rather service large kmallocs directly from
3675 * the page allocator. Therefore, the following sequence when backed by
3676 * the SLUB allocator:
3678 * memcg_stop_kmem_account();
3679 * kmalloc(<large_number>)
3680 * memcg_resume_kmem_account();
3682 * would effectively ignore the fact that we should skip accounting,
3683 * since it will drive us directly to this function without passing
3684 * through the cache selector memcg_kmem_get_cache. Such large
3685 * allocations are extremely rare but can happen, for instance, for the
3686 * cache arrays. We bring this test here.
3688 if (!current->mm || current->memcg_kmem_skip_account)
3689 return true;
3691 memcg = try_get_mem_cgroup_from_mm(current->mm);
3694 * very rare case described in mem_cgroup_from_task. Unfortunately there
3695 * isn't much we can do without complicating this too much, and it would
3696 * be gfp-dependent anyway. Just let it go
3698 if (unlikely(!memcg))
3699 return true;
3701 if (!memcg_can_account_kmem(memcg)) {
3702 css_put(&memcg->css);
3703 return true;
3706 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3707 if (!ret)
3708 *_memcg = memcg;
3710 css_put(&memcg->css);
3711 return (ret == 0);
3714 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3715 int order)
3717 struct page_cgroup *pc;
3719 VM_BUG_ON(mem_cgroup_is_root(memcg));
3721 /* The page allocation failed. Revert */
3722 if (!page) {
3723 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3724 return;
3727 pc = lookup_page_cgroup(page);
3728 lock_page_cgroup(pc);
3729 pc->mem_cgroup = memcg;
3730 SetPageCgroupUsed(pc);
3731 unlock_page_cgroup(pc);
3734 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3736 struct mem_cgroup *memcg = NULL;
3737 struct page_cgroup *pc;
3740 pc = lookup_page_cgroup(page);
3742 * Fast unlocked return. Theoretically might have changed, have to
3743 * check again after locking.
3745 if (!PageCgroupUsed(pc))
3746 return;
3748 lock_page_cgroup(pc);
3749 if (PageCgroupUsed(pc)) {
3750 memcg = pc->mem_cgroup;
3751 ClearPageCgroupUsed(pc);
3753 unlock_page_cgroup(pc);
3756 * We trust that only if there is a memcg associated with the page, it
3757 * is a valid allocation
3759 if (!memcg)
3760 return;
3762 VM_BUG_ON(mem_cgroup_is_root(memcg));
3763 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3765 #else
3766 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3769 #endif /* CONFIG_MEMCG_KMEM */
3771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3773 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3775 * Because tail pages are not marked as "used", set it. We're under
3776 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3777 * charge/uncharge will be never happen and move_account() is done under
3778 * compound_lock(), so we don't have to take care of races.
3780 void mem_cgroup_split_huge_fixup(struct page *head)
3782 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3783 struct page_cgroup *pc;
3784 struct mem_cgroup *memcg;
3785 int i;
3787 if (mem_cgroup_disabled())
3788 return;
3790 memcg = head_pc->mem_cgroup;
3791 for (i = 1; i < HPAGE_PMD_NR; i++) {
3792 pc = head_pc + i;
3793 pc->mem_cgroup = memcg;
3794 smp_wmb();/* see __commit_charge() */
3795 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3797 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3798 HPAGE_PMD_NR);
3800 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3802 static inline
3803 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3804 struct mem_cgroup *to,
3805 unsigned int nr_pages,
3806 enum mem_cgroup_stat_index idx)
3808 /* Update stat data for mem_cgroup */
3809 preempt_disable();
3810 __this_cpu_sub(from->stat->count[idx], nr_pages);
3811 __this_cpu_add(to->stat->count[idx], nr_pages);
3812 preempt_enable();
3816 * mem_cgroup_move_account - move account of the page
3817 * @page: the page
3818 * @nr_pages: number of regular pages (>1 for huge pages)
3819 * @pc: page_cgroup of the page.
3820 * @from: mem_cgroup which the page is moved from.
3821 * @to: mem_cgroup which the page is moved to. @from != @to.
3823 * The caller must confirm following.
3824 * - page is not on LRU (isolate_page() is useful.)
3825 * - compound_lock is held when nr_pages > 1
3827 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3828 * from old cgroup.
3830 static int mem_cgroup_move_account(struct page *page,
3831 unsigned int nr_pages,
3832 struct page_cgroup *pc,
3833 struct mem_cgroup *from,
3834 struct mem_cgroup *to)
3836 unsigned long flags;
3837 int ret;
3838 bool anon = PageAnon(page);
3840 VM_BUG_ON(from == to);
3841 VM_BUG_ON(PageLRU(page));
3843 * The page is isolated from LRU. So, collapse function
3844 * will not handle this page. But page splitting can happen.
3845 * Do this check under compound_page_lock(). The caller should
3846 * hold it.
3848 ret = -EBUSY;
3849 if (nr_pages > 1 && !PageTransHuge(page))
3850 goto out;
3852 lock_page_cgroup(pc);
3854 ret = -EINVAL;
3855 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3856 goto unlock;
3858 move_lock_mem_cgroup(from, &flags);
3860 if (!anon && page_mapped(page))
3861 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3862 MEM_CGROUP_STAT_FILE_MAPPED);
3864 if (PageWriteback(page))
3865 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3866 MEM_CGROUP_STAT_WRITEBACK);
3868 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3870 /* caller should have done css_get */
3871 pc->mem_cgroup = to;
3872 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3873 move_unlock_mem_cgroup(from, &flags);
3874 ret = 0;
3875 unlock:
3876 unlock_page_cgroup(pc);
3878 * check events
3880 memcg_check_events(to, page);
3881 memcg_check_events(from, page);
3882 out:
3883 return ret;
3887 * mem_cgroup_move_parent - moves page to the parent group
3888 * @page: the page to move
3889 * @pc: page_cgroup of the page
3890 * @child: page's cgroup
3892 * move charges to its parent or the root cgroup if the group has no
3893 * parent (aka use_hierarchy==0).
3894 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3895 * mem_cgroup_move_account fails) the failure is always temporary and
3896 * it signals a race with a page removal/uncharge or migration. In the
3897 * first case the page is on the way out and it will vanish from the LRU
3898 * on the next attempt and the call should be retried later.
3899 * Isolation from the LRU fails only if page has been isolated from
3900 * the LRU since we looked at it and that usually means either global
3901 * reclaim or migration going on. The page will either get back to the
3902 * LRU or vanish.
3903 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3904 * (!PageCgroupUsed) or moved to a different group. The page will
3905 * disappear in the next attempt.
3907 static int mem_cgroup_move_parent(struct page *page,
3908 struct page_cgroup *pc,
3909 struct mem_cgroup *child)
3911 struct mem_cgroup *parent;
3912 unsigned int nr_pages;
3913 unsigned long uninitialized_var(flags);
3914 int ret;
3916 VM_BUG_ON(mem_cgroup_is_root(child));
3918 ret = -EBUSY;
3919 if (!get_page_unless_zero(page))
3920 goto out;
3921 if (isolate_lru_page(page))
3922 goto put;
3924 nr_pages = hpage_nr_pages(page);
3926 parent = parent_mem_cgroup(child);
3928 * If no parent, move charges to root cgroup.
3930 if (!parent)
3931 parent = root_mem_cgroup;
3933 if (nr_pages > 1) {
3934 VM_BUG_ON(!PageTransHuge(page));
3935 flags = compound_lock_irqsave(page);
3938 ret = mem_cgroup_move_account(page, nr_pages,
3939 pc, child, parent);
3940 if (!ret)
3941 __mem_cgroup_cancel_local_charge(child, nr_pages);
3943 if (nr_pages > 1)
3944 compound_unlock_irqrestore(page, flags);
3945 putback_lru_page(page);
3946 put:
3947 put_page(page);
3948 out:
3949 return ret;
3953 * Charge the memory controller for page usage.
3954 * Return
3955 * 0 if the charge was successful
3956 * < 0 if the cgroup is over its limit
3958 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3959 gfp_t gfp_mask, enum charge_type ctype)
3961 struct mem_cgroup *memcg = NULL;
3962 unsigned int nr_pages = 1;
3963 bool oom = true;
3964 int ret;
3966 if (PageTransHuge(page)) {
3967 nr_pages <<= compound_order(page);
3968 VM_BUG_ON(!PageTransHuge(page));
3970 * Never OOM-kill a process for a huge page. The
3971 * fault handler will fall back to regular pages.
3973 oom = false;
3976 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3977 if (ret == -ENOMEM)
3978 return ret;
3979 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3980 return 0;
3983 int mem_cgroup_newpage_charge(struct page *page,
3984 struct mm_struct *mm, gfp_t gfp_mask)
3986 if (mem_cgroup_disabled())
3987 return 0;
3988 VM_BUG_ON(page_mapped(page));
3989 VM_BUG_ON(page->mapping && !PageAnon(page));
3990 VM_BUG_ON(!mm);
3991 return mem_cgroup_charge_common(page, mm, gfp_mask,
3992 MEM_CGROUP_CHARGE_TYPE_ANON);
3996 * While swap-in, try_charge -> commit or cancel, the page is locked.
3997 * And when try_charge() successfully returns, one refcnt to memcg without
3998 * struct page_cgroup is acquired. This refcnt will be consumed by
3999 * "commit()" or removed by "cancel()"
4001 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4002 struct page *page,
4003 gfp_t mask,
4004 struct mem_cgroup **memcgp)
4006 struct mem_cgroup *memcg;
4007 struct page_cgroup *pc;
4008 int ret;
4010 pc = lookup_page_cgroup(page);
4012 * Every swap fault against a single page tries to charge the
4013 * page, bail as early as possible. shmem_unuse() encounters
4014 * already charged pages, too. The USED bit is protected by
4015 * the page lock, which serializes swap cache removal, which
4016 * in turn serializes uncharging.
4018 if (PageCgroupUsed(pc))
4019 return 0;
4020 if (!do_swap_account)
4021 goto charge_cur_mm;
4022 memcg = try_get_mem_cgroup_from_page(page);
4023 if (!memcg)
4024 goto charge_cur_mm;
4025 *memcgp = memcg;
4026 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4027 css_put(&memcg->css);
4028 if (ret == -EINTR)
4029 ret = 0;
4030 return ret;
4031 charge_cur_mm:
4032 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4033 if (ret == -EINTR)
4034 ret = 0;
4035 return ret;
4038 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4039 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4041 *memcgp = NULL;
4042 if (mem_cgroup_disabled())
4043 return 0;
4045 * A racing thread's fault, or swapoff, may have already
4046 * updated the pte, and even removed page from swap cache: in
4047 * those cases unuse_pte()'s pte_same() test will fail; but
4048 * there's also a KSM case which does need to charge the page.
4050 if (!PageSwapCache(page)) {
4051 int ret;
4053 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4054 if (ret == -EINTR)
4055 ret = 0;
4056 return ret;
4058 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4061 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4063 if (mem_cgroup_disabled())
4064 return;
4065 if (!memcg)
4066 return;
4067 __mem_cgroup_cancel_charge(memcg, 1);
4070 static void
4071 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4072 enum charge_type ctype)
4074 if (mem_cgroup_disabled())
4075 return;
4076 if (!memcg)
4077 return;
4079 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4081 * Now swap is on-memory. This means this page may be
4082 * counted both as mem and swap....double count.
4083 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4084 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4085 * may call delete_from_swap_cache() before reach here.
4087 if (do_swap_account && PageSwapCache(page)) {
4088 swp_entry_t ent = {.val = page_private(page)};
4089 mem_cgroup_uncharge_swap(ent);
4093 void mem_cgroup_commit_charge_swapin(struct page *page,
4094 struct mem_cgroup *memcg)
4096 __mem_cgroup_commit_charge_swapin(page, memcg,
4097 MEM_CGROUP_CHARGE_TYPE_ANON);
4100 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4101 gfp_t gfp_mask)
4103 struct mem_cgroup *memcg = NULL;
4104 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4105 int ret;
4107 if (mem_cgroup_disabled())
4108 return 0;
4109 if (PageCompound(page))
4110 return 0;
4112 if (!PageSwapCache(page))
4113 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4114 else { /* page is swapcache/shmem */
4115 ret = __mem_cgroup_try_charge_swapin(mm, page,
4116 gfp_mask, &memcg);
4117 if (!ret)
4118 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4120 return ret;
4123 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4124 unsigned int nr_pages,
4125 const enum charge_type ctype)
4127 struct memcg_batch_info *batch = NULL;
4128 bool uncharge_memsw = true;
4130 /* If swapout, usage of swap doesn't decrease */
4131 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4132 uncharge_memsw = false;
4134 batch = &current->memcg_batch;
4136 * In usual, we do css_get() when we remember memcg pointer.
4137 * But in this case, we keep res->usage until end of a series of
4138 * uncharges. Then, it's ok to ignore memcg's refcnt.
4140 if (!batch->memcg)
4141 batch->memcg = memcg;
4143 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4144 * In those cases, all pages freed continuously can be expected to be in
4145 * the same cgroup and we have chance to coalesce uncharges.
4146 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4147 * because we want to do uncharge as soon as possible.
4150 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4151 goto direct_uncharge;
4153 if (nr_pages > 1)
4154 goto direct_uncharge;
4157 * In typical case, batch->memcg == mem. This means we can
4158 * merge a series of uncharges to an uncharge of res_counter.
4159 * If not, we uncharge res_counter ony by one.
4161 if (batch->memcg != memcg)
4162 goto direct_uncharge;
4163 /* remember freed charge and uncharge it later */
4164 batch->nr_pages++;
4165 if (uncharge_memsw)
4166 batch->memsw_nr_pages++;
4167 return;
4168 direct_uncharge:
4169 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4170 if (uncharge_memsw)
4171 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4172 if (unlikely(batch->memcg != memcg))
4173 memcg_oom_recover(memcg);
4177 * uncharge if !page_mapped(page)
4179 static struct mem_cgroup *
4180 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4181 bool end_migration)
4183 struct mem_cgroup *memcg = NULL;
4184 unsigned int nr_pages = 1;
4185 struct page_cgroup *pc;
4186 bool anon;
4188 if (mem_cgroup_disabled())
4189 return NULL;
4191 if (PageTransHuge(page)) {
4192 nr_pages <<= compound_order(page);
4193 VM_BUG_ON(!PageTransHuge(page));
4196 * Check if our page_cgroup is valid
4198 pc = lookup_page_cgroup(page);
4199 if (unlikely(!PageCgroupUsed(pc)))
4200 return NULL;
4202 lock_page_cgroup(pc);
4204 memcg = pc->mem_cgroup;
4206 if (!PageCgroupUsed(pc))
4207 goto unlock_out;
4209 anon = PageAnon(page);
4211 switch (ctype) {
4212 case MEM_CGROUP_CHARGE_TYPE_ANON:
4214 * Generally PageAnon tells if it's the anon statistics to be
4215 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4216 * used before page reached the stage of being marked PageAnon.
4218 anon = true;
4219 /* fallthrough */
4220 case MEM_CGROUP_CHARGE_TYPE_DROP:
4221 /* See mem_cgroup_prepare_migration() */
4222 if (page_mapped(page))
4223 goto unlock_out;
4225 * Pages under migration may not be uncharged. But
4226 * end_migration() /must/ be the one uncharging the
4227 * unused post-migration page and so it has to call
4228 * here with the migration bit still set. See the
4229 * res_counter handling below.
4231 if (!end_migration && PageCgroupMigration(pc))
4232 goto unlock_out;
4233 break;
4234 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4235 if (!PageAnon(page)) { /* Shared memory */
4236 if (page->mapping && !page_is_file_cache(page))
4237 goto unlock_out;
4238 } else if (page_mapped(page)) /* Anon */
4239 goto unlock_out;
4240 break;
4241 default:
4242 break;
4245 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4247 ClearPageCgroupUsed(pc);
4249 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4250 * freed from LRU. This is safe because uncharged page is expected not
4251 * to be reused (freed soon). Exception is SwapCache, it's handled by
4252 * special functions.
4255 unlock_page_cgroup(pc);
4257 * even after unlock, we have memcg->res.usage here and this memcg
4258 * will never be freed, so it's safe to call css_get().
4260 memcg_check_events(memcg, page);
4261 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4262 mem_cgroup_swap_statistics(memcg, true);
4263 css_get(&memcg->css);
4266 * Migration does not charge the res_counter for the
4267 * replacement page, so leave it alone when phasing out the
4268 * page that is unused after the migration.
4270 if (!end_migration && !mem_cgroup_is_root(memcg))
4271 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4273 return memcg;
4275 unlock_out:
4276 unlock_page_cgroup(pc);
4277 return NULL;
4280 void mem_cgroup_uncharge_page(struct page *page)
4282 /* early check. */
4283 if (page_mapped(page))
4284 return;
4285 VM_BUG_ON(page->mapping && !PageAnon(page));
4287 * If the page is in swap cache, uncharge should be deferred
4288 * to the swap path, which also properly accounts swap usage
4289 * and handles memcg lifetime.
4291 * Note that this check is not stable and reclaim may add the
4292 * page to swap cache at any time after this. However, if the
4293 * page is not in swap cache by the time page->mapcount hits
4294 * 0, there won't be any page table references to the swap
4295 * slot, and reclaim will free it and not actually write the
4296 * page to disk.
4298 if (PageSwapCache(page))
4299 return;
4300 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4303 void mem_cgroup_uncharge_cache_page(struct page *page)
4305 VM_BUG_ON(page_mapped(page));
4306 VM_BUG_ON(page->mapping);
4307 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4311 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4312 * In that cases, pages are freed continuously and we can expect pages
4313 * are in the same memcg. All these calls itself limits the number of
4314 * pages freed at once, then uncharge_start/end() is called properly.
4315 * This may be called prural(2) times in a context,
4318 void mem_cgroup_uncharge_start(void)
4320 current->memcg_batch.do_batch++;
4321 /* We can do nest. */
4322 if (current->memcg_batch.do_batch == 1) {
4323 current->memcg_batch.memcg = NULL;
4324 current->memcg_batch.nr_pages = 0;
4325 current->memcg_batch.memsw_nr_pages = 0;
4329 void mem_cgroup_uncharge_end(void)
4331 struct memcg_batch_info *batch = &current->memcg_batch;
4333 if (!batch->do_batch)
4334 return;
4336 batch->do_batch--;
4337 if (batch->do_batch) /* If stacked, do nothing. */
4338 return;
4340 if (!batch->memcg)
4341 return;
4343 * This "batch->memcg" is valid without any css_get/put etc...
4344 * bacause we hide charges behind us.
4346 if (batch->nr_pages)
4347 res_counter_uncharge(&batch->memcg->res,
4348 batch->nr_pages * PAGE_SIZE);
4349 if (batch->memsw_nr_pages)
4350 res_counter_uncharge(&batch->memcg->memsw,
4351 batch->memsw_nr_pages * PAGE_SIZE);
4352 memcg_oom_recover(batch->memcg);
4353 /* forget this pointer (for sanity check) */
4354 batch->memcg = NULL;
4357 #ifdef CONFIG_SWAP
4359 * called after __delete_from_swap_cache() and drop "page" account.
4360 * memcg information is recorded to swap_cgroup of "ent"
4362 void
4363 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4365 struct mem_cgroup *memcg;
4366 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4368 if (!swapout) /* this was a swap cache but the swap is unused ! */
4369 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4371 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4374 * record memcg information, if swapout && memcg != NULL,
4375 * css_get() was called in uncharge().
4377 if (do_swap_account && swapout && memcg)
4378 swap_cgroup_record(ent, css_id(&memcg->css));
4380 #endif
4382 #ifdef CONFIG_MEMCG_SWAP
4384 * called from swap_entry_free(). remove record in swap_cgroup and
4385 * uncharge "memsw" account.
4387 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4389 struct mem_cgroup *memcg;
4390 unsigned short id;
4392 if (!do_swap_account)
4393 return;
4395 id = swap_cgroup_record(ent, 0);
4396 rcu_read_lock();
4397 memcg = mem_cgroup_lookup(id);
4398 if (memcg) {
4400 * We uncharge this because swap is freed.
4401 * This memcg can be obsolete one. We avoid calling css_tryget
4403 if (!mem_cgroup_is_root(memcg))
4404 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4405 mem_cgroup_swap_statistics(memcg, false);
4406 css_put(&memcg->css);
4408 rcu_read_unlock();
4412 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4413 * @entry: swap entry to be moved
4414 * @from: mem_cgroup which the entry is moved from
4415 * @to: mem_cgroup which the entry is moved to
4417 * It succeeds only when the swap_cgroup's record for this entry is the same
4418 * as the mem_cgroup's id of @from.
4420 * Returns 0 on success, -EINVAL on failure.
4422 * The caller must have charged to @to, IOW, called res_counter_charge() about
4423 * both res and memsw, and called css_get().
4425 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4426 struct mem_cgroup *from, struct mem_cgroup *to)
4428 unsigned short old_id, new_id;
4430 old_id = css_id(&from->css);
4431 new_id = css_id(&to->css);
4433 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4434 mem_cgroup_swap_statistics(from, false);
4435 mem_cgroup_swap_statistics(to, true);
4437 * This function is only called from task migration context now.
4438 * It postpones res_counter and refcount handling till the end
4439 * of task migration(mem_cgroup_clear_mc()) for performance
4440 * improvement. But we cannot postpone css_get(to) because if
4441 * the process that has been moved to @to does swap-in, the
4442 * refcount of @to might be decreased to 0.
4444 * We are in attach() phase, so the cgroup is guaranteed to be
4445 * alive, so we can just call css_get().
4447 css_get(&to->css);
4448 return 0;
4450 return -EINVAL;
4452 #else
4453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4454 struct mem_cgroup *from, struct mem_cgroup *to)
4456 return -EINVAL;
4458 #endif
4461 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4462 * page belongs to.
4464 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4465 struct mem_cgroup **memcgp)
4467 struct mem_cgroup *memcg = NULL;
4468 unsigned int nr_pages = 1;
4469 struct page_cgroup *pc;
4470 enum charge_type ctype;
4472 *memcgp = NULL;
4474 if (mem_cgroup_disabled())
4475 return;
4477 if (PageTransHuge(page))
4478 nr_pages <<= compound_order(page);
4480 pc = lookup_page_cgroup(page);
4481 lock_page_cgroup(pc);
4482 if (PageCgroupUsed(pc)) {
4483 memcg = pc->mem_cgroup;
4484 css_get(&memcg->css);
4486 * At migrating an anonymous page, its mapcount goes down
4487 * to 0 and uncharge() will be called. But, even if it's fully
4488 * unmapped, migration may fail and this page has to be
4489 * charged again. We set MIGRATION flag here and delay uncharge
4490 * until end_migration() is called
4492 * Corner Case Thinking
4493 * A)
4494 * When the old page was mapped as Anon and it's unmap-and-freed
4495 * while migration was ongoing.
4496 * If unmap finds the old page, uncharge() of it will be delayed
4497 * until end_migration(). If unmap finds a new page, it's
4498 * uncharged when it make mapcount to be 1->0. If unmap code
4499 * finds swap_migration_entry, the new page will not be mapped
4500 * and end_migration() will find it(mapcount==0).
4502 * B)
4503 * When the old page was mapped but migraion fails, the kernel
4504 * remaps it. A charge for it is kept by MIGRATION flag even
4505 * if mapcount goes down to 0. We can do remap successfully
4506 * without charging it again.
4508 * C)
4509 * The "old" page is under lock_page() until the end of
4510 * migration, so, the old page itself will not be swapped-out.
4511 * If the new page is swapped out before end_migraton, our
4512 * hook to usual swap-out path will catch the event.
4514 if (PageAnon(page))
4515 SetPageCgroupMigration(pc);
4517 unlock_page_cgroup(pc);
4519 * If the page is not charged at this point,
4520 * we return here.
4522 if (!memcg)
4523 return;
4525 *memcgp = memcg;
4527 * We charge new page before it's used/mapped. So, even if unlock_page()
4528 * is called before end_migration, we can catch all events on this new
4529 * page. In the case new page is migrated but not remapped, new page's
4530 * mapcount will be finally 0 and we call uncharge in end_migration().
4532 if (PageAnon(page))
4533 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4534 else
4535 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4537 * The page is committed to the memcg, but it's not actually
4538 * charged to the res_counter since we plan on replacing the
4539 * old one and only one page is going to be left afterwards.
4541 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4544 /* remove redundant charge if migration failed*/
4545 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4546 struct page *oldpage, struct page *newpage, bool migration_ok)
4548 struct page *used, *unused;
4549 struct page_cgroup *pc;
4550 bool anon;
4552 if (!memcg)
4553 return;
4555 if (!migration_ok) {
4556 used = oldpage;
4557 unused = newpage;
4558 } else {
4559 used = newpage;
4560 unused = oldpage;
4562 anon = PageAnon(used);
4563 __mem_cgroup_uncharge_common(unused,
4564 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4565 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4566 true);
4567 css_put(&memcg->css);
4569 * We disallowed uncharge of pages under migration because mapcount
4570 * of the page goes down to zero, temporarly.
4571 * Clear the flag and check the page should be charged.
4573 pc = lookup_page_cgroup(oldpage);
4574 lock_page_cgroup(pc);
4575 ClearPageCgroupMigration(pc);
4576 unlock_page_cgroup(pc);
4579 * If a page is a file cache, radix-tree replacement is very atomic
4580 * and we can skip this check. When it was an Anon page, its mapcount
4581 * goes down to 0. But because we added MIGRATION flage, it's not
4582 * uncharged yet. There are several case but page->mapcount check
4583 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4584 * check. (see prepare_charge() also)
4586 if (anon)
4587 mem_cgroup_uncharge_page(used);
4591 * At replace page cache, newpage is not under any memcg but it's on
4592 * LRU. So, this function doesn't touch res_counter but handles LRU
4593 * in correct way. Both pages are locked so we cannot race with uncharge.
4595 void mem_cgroup_replace_page_cache(struct page *oldpage,
4596 struct page *newpage)
4598 struct mem_cgroup *memcg = NULL;
4599 struct page_cgroup *pc;
4600 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4602 if (mem_cgroup_disabled())
4603 return;
4605 pc = lookup_page_cgroup(oldpage);
4606 /* fix accounting on old pages */
4607 lock_page_cgroup(pc);
4608 if (PageCgroupUsed(pc)) {
4609 memcg = pc->mem_cgroup;
4610 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4611 ClearPageCgroupUsed(pc);
4613 unlock_page_cgroup(pc);
4616 * When called from shmem_replace_page(), in some cases the
4617 * oldpage has already been charged, and in some cases not.
4619 if (!memcg)
4620 return;
4622 * Even if newpage->mapping was NULL before starting replacement,
4623 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4624 * LRU while we overwrite pc->mem_cgroup.
4626 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4629 #ifdef CONFIG_DEBUG_VM
4630 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4632 struct page_cgroup *pc;
4634 pc = lookup_page_cgroup(page);
4636 * Can be NULL while feeding pages into the page allocator for
4637 * the first time, i.e. during boot or memory hotplug;
4638 * or when mem_cgroup_disabled().
4640 if (likely(pc) && PageCgroupUsed(pc))
4641 return pc;
4642 return NULL;
4645 bool mem_cgroup_bad_page_check(struct page *page)
4647 if (mem_cgroup_disabled())
4648 return false;
4650 return lookup_page_cgroup_used(page) != NULL;
4653 void mem_cgroup_print_bad_page(struct page *page)
4655 struct page_cgroup *pc;
4657 pc = lookup_page_cgroup_used(page);
4658 if (pc) {
4659 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4660 pc, pc->flags, pc->mem_cgroup);
4663 #endif
4665 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4666 unsigned long long val)
4668 int retry_count;
4669 u64 memswlimit, memlimit;
4670 int ret = 0;
4671 int children = mem_cgroup_count_children(memcg);
4672 u64 curusage, oldusage;
4673 int enlarge;
4676 * For keeping hierarchical_reclaim simple, how long we should retry
4677 * is depends on callers. We set our retry-count to be function
4678 * of # of children which we should visit in this loop.
4680 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4682 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4684 enlarge = 0;
4685 while (retry_count) {
4686 if (signal_pending(current)) {
4687 ret = -EINTR;
4688 break;
4691 * Rather than hide all in some function, I do this in
4692 * open coded manner. You see what this really does.
4693 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4695 mutex_lock(&set_limit_mutex);
4696 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4697 if (memswlimit < val) {
4698 ret = -EINVAL;
4699 mutex_unlock(&set_limit_mutex);
4700 break;
4703 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4704 if (memlimit < val)
4705 enlarge = 1;
4707 ret = res_counter_set_limit(&memcg->res, val);
4708 if (!ret) {
4709 if (memswlimit == val)
4710 memcg->memsw_is_minimum = true;
4711 else
4712 memcg->memsw_is_minimum = false;
4714 mutex_unlock(&set_limit_mutex);
4716 if (!ret)
4717 break;
4719 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4720 MEM_CGROUP_RECLAIM_SHRINK);
4721 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4722 /* Usage is reduced ? */
4723 if (curusage >= oldusage)
4724 retry_count--;
4725 else
4726 oldusage = curusage;
4728 if (!ret && enlarge)
4729 memcg_oom_recover(memcg);
4731 return ret;
4734 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4735 unsigned long long val)
4737 int retry_count;
4738 u64 memlimit, memswlimit, oldusage, curusage;
4739 int children = mem_cgroup_count_children(memcg);
4740 int ret = -EBUSY;
4741 int enlarge = 0;
4743 /* see mem_cgroup_resize_res_limit */
4744 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4745 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4746 while (retry_count) {
4747 if (signal_pending(current)) {
4748 ret = -EINTR;
4749 break;
4752 * Rather than hide all in some function, I do this in
4753 * open coded manner. You see what this really does.
4754 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4756 mutex_lock(&set_limit_mutex);
4757 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4758 if (memlimit > val) {
4759 ret = -EINVAL;
4760 mutex_unlock(&set_limit_mutex);
4761 break;
4763 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4764 if (memswlimit < val)
4765 enlarge = 1;
4766 ret = res_counter_set_limit(&memcg->memsw, val);
4767 if (!ret) {
4768 if (memlimit == val)
4769 memcg->memsw_is_minimum = true;
4770 else
4771 memcg->memsw_is_minimum = false;
4773 mutex_unlock(&set_limit_mutex);
4775 if (!ret)
4776 break;
4778 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4779 MEM_CGROUP_RECLAIM_NOSWAP |
4780 MEM_CGROUP_RECLAIM_SHRINK);
4781 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4782 /* Usage is reduced ? */
4783 if (curusage >= oldusage)
4784 retry_count--;
4785 else
4786 oldusage = curusage;
4788 if (!ret && enlarge)
4789 memcg_oom_recover(memcg);
4790 return ret;
4793 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4794 gfp_t gfp_mask,
4795 unsigned long *total_scanned)
4797 unsigned long nr_reclaimed = 0;
4798 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4799 unsigned long reclaimed;
4800 int loop = 0;
4801 struct mem_cgroup_tree_per_zone *mctz;
4802 unsigned long long excess;
4803 unsigned long nr_scanned;
4805 if (order > 0)
4806 return 0;
4808 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4810 * This loop can run a while, specially if mem_cgroup's continuously
4811 * keep exceeding their soft limit and putting the system under
4812 * pressure
4814 do {
4815 if (next_mz)
4816 mz = next_mz;
4817 else
4818 mz = mem_cgroup_largest_soft_limit_node(mctz);
4819 if (!mz)
4820 break;
4822 nr_scanned = 0;
4823 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4824 gfp_mask, &nr_scanned);
4825 nr_reclaimed += reclaimed;
4826 *total_scanned += nr_scanned;
4827 spin_lock(&mctz->lock);
4830 * If we failed to reclaim anything from this memory cgroup
4831 * it is time to move on to the next cgroup
4833 next_mz = NULL;
4834 if (!reclaimed) {
4835 do {
4837 * Loop until we find yet another one.
4839 * By the time we get the soft_limit lock
4840 * again, someone might have aded the
4841 * group back on the RB tree. Iterate to
4842 * make sure we get a different mem.
4843 * mem_cgroup_largest_soft_limit_node returns
4844 * NULL if no other cgroup is present on
4845 * the tree
4847 next_mz =
4848 __mem_cgroup_largest_soft_limit_node(mctz);
4849 if (next_mz == mz)
4850 css_put(&next_mz->memcg->css);
4851 else /* next_mz == NULL or other memcg */
4852 break;
4853 } while (1);
4855 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4856 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4858 * One school of thought says that we should not add
4859 * back the node to the tree if reclaim returns 0.
4860 * But our reclaim could return 0, simply because due
4861 * to priority we are exposing a smaller subset of
4862 * memory to reclaim from. Consider this as a longer
4863 * term TODO.
4865 /* If excess == 0, no tree ops */
4866 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4867 spin_unlock(&mctz->lock);
4868 css_put(&mz->memcg->css);
4869 loop++;
4871 * Could not reclaim anything and there are no more
4872 * mem cgroups to try or we seem to be looping without
4873 * reclaiming anything.
4875 if (!nr_reclaimed &&
4876 (next_mz == NULL ||
4877 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4878 break;
4879 } while (!nr_reclaimed);
4880 if (next_mz)
4881 css_put(&next_mz->memcg->css);
4882 return nr_reclaimed;
4886 * mem_cgroup_force_empty_list - clears LRU of a group
4887 * @memcg: group to clear
4888 * @node: NUMA node
4889 * @zid: zone id
4890 * @lru: lru to to clear
4892 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4893 * reclaim the pages page themselves - pages are moved to the parent (or root)
4894 * group.
4896 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4897 int node, int zid, enum lru_list lru)
4899 struct lruvec *lruvec;
4900 unsigned long flags;
4901 struct list_head *list;
4902 struct page *busy;
4903 struct zone *zone;
4905 zone = &NODE_DATA(node)->node_zones[zid];
4906 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4907 list = &lruvec->lists[lru];
4909 busy = NULL;
4910 do {
4911 struct page_cgroup *pc;
4912 struct page *page;
4914 spin_lock_irqsave(&zone->lru_lock, flags);
4915 if (list_empty(list)) {
4916 spin_unlock_irqrestore(&zone->lru_lock, flags);
4917 break;
4919 page = list_entry(list->prev, struct page, lru);
4920 if (busy == page) {
4921 list_move(&page->lru, list);
4922 busy = NULL;
4923 spin_unlock_irqrestore(&zone->lru_lock, flags);
4924 continue;
4926 spin_unlock_irqrestore(&zone->lru_lock, flags);
4928 pc = lookup_page_cgroup(page);
4930 if (mem_cgroup_move_parent(page, pc, memcg)) {
4931 /* found lock contention or "pc" is obsolete. */
4932 busy = page;
4933 cond_resched();
4934 } else
4935 busy = NULL;
4936 } while (!list_empty(list));
4940 * make mem_cgroup's charge to be 0 if there is no task by moving
4941 * all the charges and pages to the parent.
4942 * This enables deleting this mem_cgroup.
4944 * Caller is responsible for holding css reference on the memcg.
4946 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4948 int node, zid;
4949 u64 usage;
4951 do {
4952 /* This is for making all *used* pages to be on LRU. */
4953 lru_add_drain_all();
4954 drain_all_stock_sync(memcg);
4955 mem_cgroup_start_move(memcg);
4956 for_each_node_state(node, N_MEMORY) {
4957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4958 enum lru_list lru;
4959 for_each_lru(lru) {
4960 mem_cgroup_force_empty_list(memcg,
4961 node, zid, lru);
4965 mem_cgroup_end_move(memcg);
4966 memcg_oom_recover(memcg);
4967 cond_resched();
4970 * Kernel memory may not necessarily be trackable to a specific
4971 * process. So they are not migrated, and therefore we can't
4972 * expect their value to drop to 0 here.
4973 * Having res filled up with kmem only is enough.
4975 * This is a safety check because mem_cgroup_force_empty_list
4976 * could have raced with mem_cgroup_replace_page_cache callers
4977 * so the lru seemed empty but the page could have been added
4978 * right after the check. RES_USAGE should be safe as we always
4979 * charge before adding to the LRU.
4981 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4982 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4983 } while (usage > 0);
4986 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4988 lockdep_assert_held(&memcg_create_mutex);
4990 * The lock does not prevent addition or deletion to the list
4991 * of children, but it prevents a new child from being
4992 * initialized based on this parent in css_online(), so it's
4993 * enough to decide whether hierarchically inherited
4994 * attributes can still be changed or not.
4996 return memcg->use_hierarchy &&
4997 !list_empty(&memcg->css.cgroup->children);
5001 * Reclaims as many pages from the given memcg as possible and moves
5002 * the rest to the parent.
5004 * Caller is responsible for holding css reference for memcg.
5006 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5008 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5009 struct cgroup *cgrp = memcg->css.cgroup;
5011 /* returns EBUSY if there is a task or if we come here twice. */
5012 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5013 return -EBUSY;
5015 /* we call try-to-free pages for make this cgroup empty */
5016 lru_add_drain_all();
5017 /* try to free all pages in this cgroup */
5018 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5019 int progress;
5021 if (signal_pending(current))
5022 return -EINTR;
5024 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5025 false);
5026 if (!progress) {
5027 nr_retries--;
5028 /* maybe some writeback is necessary */
5029 congestion_wait(BLK_RW_ASYNC, HZ/10);
5033 lru_add_drain();
5034 mem_cgroup_reparent_charges(memcg);
5036 return 0;
5039 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5040 unsigned int event)
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5044 if (mem_cgroup_is_root(memcg))
5045 return -EINVAL;
5046 return mem_cgroup_force_empty(memcg);
5049 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5050 struct cftype *cft)
5052 return mem_cgroup_from_css(css)->use_hierarchy;
5055 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5056 struct cftype *cft, u64 val)
5058 int retval = 0;
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5062 mutex_lock(&memcg_create_mutex);
5064 if (memcg->use_hierarchy == val)
5065 goto out;
5068 * If parent's use_hierarchy is set, we can't make any modifications
5069 * in the child subtrees. If it is unset, then the change can
5070 * occur, provided the current cgroup has no children.
5072 * For the root cgroup, parent_mem is NULL, we allow value to be
5073 * set if there are no children.
5075 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5076 (val == 1 || val == 0)) {
5077 if (list_empty(&memcg->css.cgroup->children))
5078 memcg->use_hierarchy = val;
5079 else
5080 retval = -EBUSY;
5081 } else
5082 retval = -EINVAL;
5084 out:
5085 mutex_unlock(&memcg_create_mutex);
5087 return retval;
5091 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5092 enum mem_cgroup_stat_index idx)
5094 struct mem_cgroup *iter;
5095 long val = 0;
5097 /* Per-cpu values can be negative, use a signed accumulator */
5098 for_each_mem_cgroup_tree(iter, memcg)
5099 val += mem_cgroup_read_stat(iter, idx);
5101 if (val < 0) /* race ? */
5102 val = 0;
5103 return val;
5106 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5108 u64 val;
5110 if (!mem_cgroup_is_root(memcg)) {
5111 if (!swap)
5112 return res_counter_read_u64(&memcg->res, RES_USAGE);
5113 else
5114 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5118 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5119 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5121 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5122 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5124 if (swap)
5125 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5127 return val << PAGE_SHIFT;
5130 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5131 struct cftype *cft, struct file *file,
5132 char __user *buf, size_t nbytes, loff_t *ppos)
5134 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5135 char str[64];
5136 u64 val;
5137 int name, len;
5138 enum res_type type;
5140 type = MEMFILE_TYPE(cft->private);
5141 name = MEMFILE_ATTR(cft->private);
5143 switch (type) {
5144 case _MEM:
5145 if (name == RES_USAGE)
5146 val = mem_cgroup_usage(memcg, false);
5147 else
5148 val = res_counter_read_u64(&memcg->res, name);
5149 break;
5150 case _MEMSWAP:
5151 if (name == RES_USAGE)
5152 val = mem_cgroup_usage(memcg, true);
5153 else
5154 val = res_counter_read_u64(&memcg->memsw, name);
5155 break;
5156 case _KMEM:
5157 val = res_counter_read_u64(&memcg->kmem, name);
5158 break;
5159 default:
5160 BUG();
5163 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5164 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5167 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5169 int ret = -EINVAL;
5170 #ifdef CONFIG_MEMCG_KMEM
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5173 * For simplicity, we won't allow this to be disabled. It also can't
5174 * be changed if the cgroup has children already, or if tasks had
5175 * already joined.
5177 * If tasks join before we set the limit, a person looking at
5178 * kmem.usage_in_bytes will have no way to determine when it took
5179 * place, which makes the value quite meaningless.
5181 * After it first became limited, changes in the value of the limit are
5182 * of course permitted.
5184 mutex_lock(&memcg_create_mutex);
5185 mutex_lock(&set_limit_mutex);
5186 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5187 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5188 ret = -EBUSY;
5189 goto out;
5191 ret = res_counter_set_limit(&memcg->kmem, val);
5192 VM_BUG_ON(ret);
5194 ret = memcg_update_cache_sizes(memcg);
5195 if (ret) {
5196 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5197 goto out;
5199 static_key_slow_inc(&memcg_kmem_enabled_key);
5201 * setting the active bit after the inc will guarantee no one
5202 * starts accounting before all call sites are patched
5204 memcg_kmem_set_active(memcg);
5205 } else
5206 ret = res_counter_set_limit(&memcg->kmem, val);
5207 out:
5208 mutex_unlock(&set_limit_mutex);
5209 mutex_unlock(&memcg_create_mutex);
5210 #endif
5211 return ret;
5214 #ifdef CONFIG_MEMCG_KMEM
5215 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5217 int ret = 0;
5218 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5219 if (!parent)
5220 goto out;
5222 memcg->kmem_account_flags = parent->kmem_account_flags;
5224 * When that happen, we need to disable the static branch only on those
5225 * memcgs that enabled it. To achieve this, we would be forced to
5226 * complicate the code by keeping track of which memcgs were the ones
5227 * that actually enabled limits, and which ones got it from its
5228 * parents.
5230 * It is a lot simpler just to do static_key_slow_inc() on every child
5231 * that is accounted.
5233 if (!memcg_kmem_is_active(memcg))
5234 goto out;
5237 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5238 * memcg is active already. If the later initialization fails then the
5239 * cgroup core triggers the cleanup so we do not have to do it here.
5241 static_key_slow_inc(&memcg_kmem_enabled_key);
5243 mutex_lock(&set_limit_mutex);
5244 memcg_stop_kmem_account();
5245 ret = memcg_update_cache_sizes(memcg);
5246 memcg_resume_kmem_account();
5247 mutex_unlock(&set_limit_mutex);
5248 out:
5249 return ret;
5251 #endif /* CONFIG_MEMCG_KMEM */
5254 * The user of this function is...
5255 * RES_LIMIT.
5257 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5258 const char *buffer)
5260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5261 enum res_type type;
5262 int name;
5263 unsigned long long val;
5264 int ret;
5266 type = MEMFILE_TYPE(cft->private);
5267 name = MEMFILE_ATTR(cft->private);
5269 switch (name) {
5270 case RES_LIMIT:
5271 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5272 ret = -EINVAL;
5273 break;
5275 /* This function does all necessary parse...reuse it */
5276 ret = res_counter_memparse_write_strategy(buffer, &val);
5277 if (ret)
5278 break;
5279 if (type == _MEM)
5280 ret = mem_cgroup_resize_limit(memcg, val);
5281 else if (type == _MEMSWAP)
5282 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5283 else if (type == _KMEM)
5284 ret = memcg_update_kmem_limit(css, val);
5285 else
5286 return -EINVAL;
5287 break;
5288 case RES_SOFT_LIMIT:
5289 ret = res_counter_memparse_write_strategy(buffer, &val);
5290 if (ret)
5291 break;
5293 * For memsw, soft limits are hard to implement in terms
5294 * of semantics, for now, we support soft limits for
5295 * control without swap
5297 if (type == _MEM)
5298 ret = res_counter_set_soft_limit(&memcg->res, val);
5299 else
5300 ret = -EINVAL;
5301 break;
5302 default:
5303 ret = -EINVAL; /* should be BUG() ? */
5304 break;
5306 return ret;
5309 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5310 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5312 unsigned long long min_limit, min_memsw_limit, tmp;
5314 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5315 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5316 if (!memcg->use_hierarchy)
5317 goto out;
5319 while (css_parent(&memcg->css)) {
5320 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5321 if (!memcg->use_hierarchy)
5322 break;
5323 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5324 min_limit = min(min_limit, tmp);
5325 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5326 min_memsw_limit = min(min_memsw_limit, tmp);
5328 out:
5329 *mem_limit = min_limit;
5330 *memsw_limit = min_memsw_limit;
5333 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5335 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5336 int name;
5337 enum res_type type;
5339 type = MEMFILE_TYPE(event);
5340 name = MEMFILE_ATTR(event);
5342 switch (name) {
5343 case RES_MAX_USAGE:
5344 if (type == _MEM)
5345 res_counter_reset_max(&memcg->res);
5346 else if (type == _MEMSWAP)
5347 res_counter_reset_max(&memcg->memsw);
5348 else if (type == _KMEM)
5349 res_counter_reset_max(&memcg->kmem);
5350 else
5351 return -EINVAL;
5352 break;
5353 case RES_FAILCNT:
5354 if (type == _MEM)
5355 res_counter_reset_failcnt(&memcg->res);
5356 else if (type == _MEMSWAP)
5357 res_counter_reset_failcnt(&memcg->memsw);
5358 else if (type == _KMEM)
5359 res_counter_reset_failcnt(&memcg->kmem);
5360 else
5361 return -EINVAL;
5362 break;
5365 return 0;
5368 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5369 struct cftype *cft)
5371 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5374 #ifdef CONFIG_MMU
5375 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5376 struct cftype *cft, u64 val)
5378 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5380 if (val >= (1 << NR_MOVE_TYPE))
5381 return -EINVAL;
5384 * No kind of locking is needed in here, because ->can_attach() will
5385 * check this value once in the beginning of the process, and then carry
5386 * on with stale data. This means that changes to this value will only
5387 * affect task migrations starting after the change.
5389 memcg->move_charge_at_immigrate = val;
5390 return 0;
5392 #else
5393 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5394 struct cftype *cft, u64 val)
5396 return -ENOSYS;
5398 #endif
5400 #ifdef CONFIG_NUMA
5401 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5402 struct cftype *cft, struct seq_file *m)
5404 int nid;
5405 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5406 unsigned long node_nr;
5407 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5409 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5410 seq_printf(m, "total=%lu", total_nr);
5411 for_each_node_state(nid, N_MEMORY) {
5412 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5413 seq_printf(m, " N%d=%lu", nid, node_nr);
5415 seq_putc(m, '\n');
5417 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5418 seq_printf(m, "file=%lu", file_nr);
5419 for_each_node_state(nid, N_MEMORY) {
5420 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5421 LRU_ALL_FILE);
5422 seq_printf(m, " N%d=%lu", nid, node_nr);
5424 seq_putc(m, '\n');
5426 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5427 seq_printf(m, "anon=%lu", anon_nr);
5428 for_each_node_state(nid, N_MEMORY) {
5429 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5430 LRU_ALL_ANON);
5431 seq_printf(m, " N%d=%lu", nid, node_nr);
5433 seq_putc(m, '\n');
5435 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5436 seq_printf(m, "unevictable=%lu", unevictable_nr);
5437 for_each_node_state(nid, N_MEMORY) {
5438 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5439 BIT(LRU_UNEVICTABLE));
5440 seq_printf(m, " N%d=%lu", nid, node_nr);
5442 seq_putc(m, '\n');
5443 return 0;
5445 #endif /* CONFIG_NUMA */
5447 static inline void mem_cgroup_lru_names_not_uptodate(void)
5449 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5452 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5453 struct seq_file *m)
5455 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5456 struct mem_cgroup *mi;
5457 unsigned int i;
5459 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5460 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5461 continue;
5462 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5463 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5466 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5467 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5468 mem_cgroup_read_events(memcg, i));
5470 for (i = 0; i < NR_LRU_LISTS; i++)
5471 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5472 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5474 /* Hierarchical information */
5476 unsigned long long limit, memsw_limit;
5477 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5478 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5479 if (do_swap_account)
5480 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5481 memsw_limit);
5484 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5485 long long val = 0;
5487 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5488 continue;
5489 for_each_mem_cgroup_tree(mi, memcg)
5490 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5491 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5495 unsigned long long val = 0;
5497 for_each_mem_cgroup_tree(mi, memcg)
5498 val += mem_cgroup_read_events(mi, i);
5499 seq_printf(m, "total_%s %llu\n",
5500 mem_cgroup_events_names[i], val);
5503 for (i = 0; i < NR_LRU_LISTS; i++) {
5504 unsigned long long val = 0;
5506 for_each_mem_cgroup_tree(mi, memcg)
5507 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5508 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5511 #ifdef CONFIG_DEBUG_VM
5513 int nid, zid;
5514 struct mem_cgroup_per_zone *mz;
5515 struct zone_reclaim_stat *rstat;
5516 unsigned long recent_rotated[2] = {0, 0};
5517 unsigned long recent_scanned[2] = {0, 0};
5519 for_each_online_node(nid)
5520 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5521 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5522 rstat = &mz->lruvec.reclaim_stat;
5524 recent_rotated[0] += rstat->recent_rotated[0];
5525 recent_rotated[1] += rstat->recent_rotated[1];
5526 recent_scanned[0] += rstat->recent_scanned[0];
5527 recent_scanned[1] += rstat->recent_scanned[1];
5529 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5530 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5531 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5532 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5534 #endif
5536 return 0;
5539 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5540 struct cftype *cft)
5542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5544 return mem_cgroup_swappiness(memcg);
5547 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5548 struct cftype *cft, u64 val)
5550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5551 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5553 if (val > 100 || !parent)
5554 return -EINVAL;
5556 mutex_lock(&memcg_create_mutex);
5558 /* If under hierarchy, only empty-root can set this value */
5559 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5560 mutex_unlock(&memcg_create_mutex);
5561 return -EINVAL;
5564 memcg->swappiness = val;
5566 mutex_unlock(&memcg_create_mutex);
5568 return 0;
5571 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5573 struct mem_cgroup_threshold_ary *t;
5574 u64 usage;
5575 int i;
5577 rcu_read_lock();
5578 if (!swap)
5579 t = rcu_dereference(memcg->thresholds.primary);
5580 else
5581 t = rcu_dereference(memcg->memsw_thresholds.primary);
5583 if (!t)
5584 goto unlock;
5586 usage = mem_cgroup_usage(memcg, swap);
5589 * current_threshold points to threshold just below or equal to usage.
5590 * If it's not true, a threshold was crossed after last
5591 * call of __mem_cgroup_threshold().
5593 i = t->current_threshold;
5596 * Iterate backward over array of thresholds starting from
5597 * current_threshold and check if a threshold is crossed.
5598 * If none of thresholds below usage is crossed, we read
5599 * only one element of the array here.
5601 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5602 eventfd_signal(t->entries[i].eventfd, 1);
5604 /* i = current_threshold + 1 */
5605 i++;
5608 * Iterate forward over array of thresholds starting from
5609 * current_threshold+1 and check if a threshold is crossed.
5610 * If none of thresholds above usage is crossed, we read
5611 * only one element of the array here.
5613 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5614 eventfd_signal(t->entries[i].eventfd, 1);
5616 /* Update current_threshold */
5617 t->current_threshold = i - 1;
5618 unlock:
5619 rcu_read_unlock();
5622 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5624 while (memcg) {
5625 __mem_cgroup_threshold(memcg, false);
5626 if (do_swap_account)
5627 __mem_cgroup_threshold(memcg, true);
5629 memcg = parent_mem_cgroup(memcg);
5633 static int compare_thresholds(const void *a, const void *b)
5635 const struct mem_cgroup_threshold *_a = a;
5636 const struct mem_cgroup_threshold *_b = b;
5638 if (_a->threshold > _b->threshold)
5639 return 1;
5641 if (_a->threshold < _b->threshold)
5642 return -1;
5644 return 0;
5647 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5649 struct mem_cgroup_eventfd_list *ev;
5651 spin_lock(&memcg_oom_lock);
5653 list_for_each_entry(ev, &memcg->oom_notify, list)
5654 eventfd_signal(ev->eventfd, 1);
5656 spin_unlock(&memcg_oom_lock);
5657 return 0;
5660 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5662 struct mem_cgroup *iter;
5664 for_each_mem_cgroup_tree(iter, memcg)
5665 mem_cgroup_oom_notify_cb(iter);
5668 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5669 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5671 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5672 struct mem_cgroup_thresholds *thresholds;
5673 struct mem_cgroup_threshold_ary *new;
5674 enum res_type type = MEMFILE_TYPE(cft->private);
5675 u64 threshold, usage;
5676 int i, size, ret;
5678 ret = res_counter_memparse_write_strategy(args, &threshold);
5679 if (ret)
5680 return ret;
5682 mutex_lock(&memcg->thresholds_lock);
5684 if (type == _MEM)
5685 thresholds = &memcg->thresholds;
5686 else if (type == _MEMSWAP)
5687 thresholds = &memcg->memsw_thresholds;
5688 else
5689 BUG();
5691 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5693 /* Check if a threshold crossed before adding a new one */
5694 if (thresholds->primary)
5695 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5697 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5699 /* Allocate memory for new array of thresholds */
5700 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5701 GFP_KERNEL);
5702 if (!new) {
5703 ret = -ENOMEM;
5704 goto unlock;
5706 new->size = size;
5708 /* Copy thresholds (if any) to new array */
5709 if (thresholds->primary) {
5710 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5711 sizeof(struct mem_cgroup_threshold));
5714 /* Add new threshold */
5715 new->entries[size - 1].eventfd = eventfd;
5716 new->entries[size - 1].threshold = threshold;
5718 /* Sort thresholds. Registering of new threshold isn't time-critical */
5719 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5720 compare_thresholds, NULL);
5722 /* Find current threshold */
5723 new->current_threshold = -1;
5724 for (i = 0; i < size; i++) {
5725 if (new->entries[i].threshold <= usage) {
5727 * new->current_threshold will not be used until
5728 * rcu_assign_pointer(), so it's safe to increment
5729 * it here.
5731 ++new->current_threshold;
5732 } else
5733 break;
5736 /* Free old spare buffer and save old primary buffer as spare */
5737 kfree(thresholds->spare);
5738 thresholds->spare = thresholds->primary;
5740 rcu_assign_pointer(thresholds->primary, new);
5742 /* To be sure that nobody uses thresholds */
5743 synchronize_rcu();
5745 unlock:
5746 mutex_unlock(&memcg->thresholds_lock);
5748 return ret;
5751 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5752 struct cftype *cft, struct eventfd_ctx *eventfd)
5754 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5755 struct mem_cgroup_thresholds *thresholds;
5756 struct mem_cgroup_threshold_ary *new;
5757 enum res_type type = MEMFILE_TYPE(cft->private);
5758 u64 usage;
5759 int i, j, size;
5761 mutex_lock(&memcg->thresholds_lock);
5762 if (type == _MEM)
5763 thresholds = &memcg->thresholds;
5764 else if (type == _MEMSWAP)
5765 thresholds = &memcg->memsw_thresholds;
5766 else
5767 BUG();
5769 if (!thresholds->primary)
5770 goto unlock;
5772 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5774 /* Check if a threshold crossed before removing */
5775 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5777 /* Calculate new number of threshold */
5778 size = 0;
5779 for (i = 0; i < thresholds->primary->size; i++) {
5780 if (thresholds->primary->entries[i].eventfd != eventfd)
5781 size++;
5784 new = thresholds->spare;
5786 /* Set thresholds array to NULL if we don't have thresholds */
5787 if (!size) {
5788 kfree(new);
5789 new = NULL;
5790 goto swap_buffers;
5793 new->size = size;
5795 /* Copy thresholds and find current threshold */
5796 new->current_threshold = -1;
5797 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5798 if (thresholds->primary->entries[i].eventfd == eventfd)
5799 continue;
5801 new->entries[j] = thresholds->primary->entries[i];
5802 if (new->entries[j].threshold <= usage) {
5804 * new->current_threshold will not be used
5805 * until rcu_assign_pointer(), so it's safe to increment
5806 * it here.
5808 ++new->current_threshold;
5810 j++;
5813 swap_buffers:
5814 /* Swap primary and spare array */
5815 thresholds->spare = thresholds->primary;
5816 /* If all events are unregistered, free the spare array */
5817 if (!new) {
5818 kfree(thresholds->spare);
5819 thresholds->spare = NULL;
5822 rcu_assign_pointer(thresholds->primary, new);
5824 /* To be sure that nobody uses thresholds */
5825 synchronize_rcu();
5826 unlock:
5827 mutex_unlock(&memcg->thresholds_lock);
5830 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5831 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5833 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5834 struct mem_cgroup_eventfd_list *event;
5835 enum res_type type = MEMFILE_TYPE(cft->private);
5837 BUG_ON(type != _OOM_TYPE);
5838 event = kmalloc(sizeof(*event), GFP_KERNEL);
5839 if (!event)
5840 return -ENOMEM;
5842 spin_lock(&memcg_oom_lock);
5844 event->eventfd = eventfd;
5845 list_add(&event->list, &memcg->oom_notify);
5847 /* already in OOM ? */
5848 if (atomic_read(&memcg->under_oom))
5849 eventfd_signal(eventfd, 1);
5850 spin_unlock(&memcg_oom_lock);
5852 return 0;
5855 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5856 struct cftype *cft, struct eventfd_ctx *eventfd)
5858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5859 struct mem_cgroup_eventfd_list *ev, *tmp;
5860 enum res_type type = MEMFILE_TYPE(cft->private);
5862 BUG_ON(type != _OOM_TYPE);
5864 spin_lock(&memcg_oom_lock);
5866 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5867 if (ev->eventfd == eventfd) {
5868 list_del(&ev->list);
5869 kfree(ev);
5873 spin_unlock(&memcg_oom_lock);
5876 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5877 struct cftype *cft, struct cgroup_map_cb *cb)
5879 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5881 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5883 if (atomic_read(&memcg->under_oom))
5884 cb->fill(cb, "under_oom", 1);
5885 else
5886 cb->fill(cb, "under_oom", 0);
5887 return 0;
5890 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5891 struct cftype *cft, u64 val)
5893 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5894 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5896 /* cannot set to root cgroup and only 0 and 1 are allowed */
5897 if (!parent || !((val == 0) || (val == 1)))
5898 return -EINVAL;
5900 mutex_lock(&memcg_create_mutex);
5901 /* oom-kill-disable is a flag for subhierarchy. */
5902 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5903 mutex_unlock(&memcg_create_mutex);
5904 return -EINVAL;
5906 memcg->oom_kill_disable = val;
5907 if (!val)
5908 memcg_oom_recover(memcg);
5909 mutex_unlock(&memcg_create_mutex);
5910 return 0;
5913 #ifdef CONFIG_MEMCG_KMEM
5914 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5916 int ret;
5918 memcg->kmemcg_id = -1;
5919 ret = memcg_propagate_kmem(memcg);
5920 if (ret)
5921 return ret;
5923 return mem_cgroup_sockets_init(memcg, ss);
5926 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5928 mem_cgroup_sockets_destroy(memcg);
5931 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5933 if (!memcg_kmem_is_active(memcg))
5934 return;
5937 * kmem charges can outlive the cgroup. In the case of slab
5938 * pages, for instance, a page contain objects from various
5939 * processes. As we prevent from taking a reference for every
5940 * such allocation we have to be careful when doing uncharge
5941 * (see memcg_uncharge_kmem) and here during offlining.
5943 * The idea is that that only the _last_ uncharge which sees
5944 * the dead memcg will drop the last reference. An additional
5945 * reference is taken here before the group is marked dead
5946 * which is then paired with css_put during uncharge resp. here.
5948 * Although this might sound strange as this path is called from
5949 * css_offline() when the referencemight have dropped down to 0
5950 * and shouldn't be incremented anymore (css_tryget would fail)
5951 * we do not have other options because of the kmem allocations
5952 * lifetime.
5954 css_get(&memcg->css);
5956 memcg_kmem_mark_dead(memcg);
5958 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5959 return;
5961 if (memcg_kmem_test_and_clear_dead(memcg))
5962 css_put(&memcg->css);
5964 #else
5965 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5967 return 0;
5970 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5974 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5977 #endif
5979 static struct cftype mem_cgroup_files[] = {
5981 .name = "usage_in_bytes",
5982 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5983 .read = mem_cgroup_read,
5984 .register_event = mem_cgroup_usage_register_event,
5985 .unregister_event = mem_cgroup_usage_unregister_event,
5988 .name = "max_usage_in_bytes",
5989 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5990 .trigger = mem_cgroup_reset,
5991 .read = mem_cgroup_read,
5994 .name = "limit_in_bytes",
5995 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5996 .write_string = mem_cgroup_write,
5997 .read = mem_cgroup_read,
6000 .name = "soft_limit_in_bytes",
6001 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6002 .write_string = mem_cgroup_write,
6003 .read = mem_cgroup_read,
6006 .name = "failcnt",
6007 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6008 .trigger = mem_cgroup_reset,
6009 .read = mem_cgroup_read,
6012 .name = "stat",
6013 .read_seq_string = memcg_stat_show,
6016 .name = "force_empty",
6017 .trigger = mem_cgroup_force_empty_write,
6020 .name = "use_hierarchy",
6021 .flags = CFTYPE_INSANE,
6022 .write_u64 = mem_cgroup_hierarchy_write,
6023 .read_u64 = mem_cgroup_hierarchy_read,
6026 .name = "swappiness",
6027 .read_u64 = mem_cgroup_swappiness_read,
6028 .write_u64 = mem_cgroup_swappiness_write,
6031 .name = "move_charge_at_immigrate",
6032 .read_u64 = mem_cgroup_move_charge_read,
6033 .write_u64 = mem_cgroup_move_charge_write,
6036 .name = "oom_control",
6037 .read_map = mem_cgroup_oom_control_read,
6038 .write_u64 = mem_cgroup_oom_control_write,
6039 .register_event = mem_cgroup_oom_register_event,
6040 .unregister_event = mem_cgroup_oom_unregister_event,
6041 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6044 .name = "pressure_level",
6045 .register_event = vmpressure_register_event,
6046 .unregister_event = vmpressure_unregister_event,
6048 #ifdef CONFIG_NUMA
6050 .name = "numa_stat",
6051 .read_seq_string = memcg_numa_stat_show,
6053 #endif
6054 #ifdef CONFIG_MEMCG_KMEM
6056 .name = "kmem.limit_in_bytes",
6057 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6058 .write_string = mem_cgroup_write,
6059 .read = mem_cgroup_read,
6062 .name = "kmem.usage_in_bytes",
6063 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6064 .read = mem_cgroup_read,
6067 .name = "kmem.failcnt",
6068 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6069 .trigger = mem_cgroup_reset,
6070 .read = mem_cgroup_read,
6073 .name = "kmem.max_usage_in_bytes",
6074 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6075 .trigger = mem_cgroup_reset,
6076 .read = mem_cgroup_read,
6078 #ifdef CONFIG_SLABINFO
6080 .name = "kmem.slabinfo",
6081 .read_seq_string = mem_cgroup_slabinfo_read,
6083 #endif
6084 #endif
6085 { }, /* terminate */
6088 #ifdef CONFIG_MEMCG_SWAP
6089 static struct cftype memsw_cgroup_files[] = {
6091 .name = "memsw.usage_in_bytes",
6092 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6093 .read = mem_cgroup_read,
6094 .register_event = mem_cgroup_usage_register_event,
6095 .unregister_event = mem_cgroup_usage_unregister_event,
6098 .name = "memsw.max_usage_in_bytes",
6099 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6100 .trigger = mem_cgroup_reset,
6101 .read = mem_cgroup_read,
6104 .name = "memsw.limit_in_bytes",
6105 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6106 .write_string = mem_cgroup_write,
6107 .read = mem_cgroup_read,
6110 .name = "memsw.failcnt",
6111 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6112 .trigger = mem_cgroup_reset,
6113 .read = mem_cgroup_read,
6115 { }, /* terminate */
6117 #endif
6118 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6120 struct mem_cgroup_per_node *pn;
6121 struct mem_cgroup_per_zone *mz;
6122 int zone, tmp = node;
6124 * This routine is called against possible nodes.
6125 * But it's BUG to call kmalloc() against offline node.
6127 * TODO: this routine can waste much memory for nodes which will
6128 * never be onlined. It's better to use memory hotplug callback
6129 * function.
6131 if (!node_state(node, N_NORMAL_MEMORY))
6132 tmp = -1;
6133 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6134 if (!pn)
6135 return 1;
6137 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6138 mz = &pn->zoneinfo[zone];
6139 lruvec_init(&mz->lruvec);
6140 mz->usage_in_excess = 0;
6141 mz->on_tree = false;
6142 mz->memcg = memcg;
6144 memcg->nodeinfo[node] = pn;
6145 return 0;
6148 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6150 kfree(memcg->nodeinfo[node]);
6153 static struct mem_cgroup *mem_cgroup_alloc(void)
6155 struct mem_cgroup *memcg;
6156 size_t size = memcg_size();
6158 /* Can be very big if nr_node_ids is very big */
6159 if (size < PAGE_SIZE)
6160 memcg = kzalloc(size, GFP_KERNEL);
6161 else
6162 memcg = vzalloc(size);
6164 if (!memcg)
6165 return NULL;
6167 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6168 if (!memcg->stat)
6169 goto out_free;
6170 spin_lock_init(&memcg->pcp_counter_lock);
6171 return memcg;
6173 out_free:
6174 if (size < PAGE_SIZE)
6175 kfree(memcg);
6176 else
6177 vfree(memcg);
6178 return NULL;
6182 * At destroying mem_cgroup, references from swap_cgroup can remain.
6183 * (scanning all at force_empty is too costly...)
6185 * Instead of clearing all references at force_empty, we remember
6186 * the number of reference from swap_cgroup and free mem_cgroup when
6187 * it goes down to 0.
6189 * Removal of cgroup itself succeeds regardless of refs from swap.
6192 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6194 int node;
6195 size_t size = memcg_size();
6197 mem_cgroup_remove_from_trees(memcg);
6198 free_css_id(&mem_cgroup_subsys, &memcg->css);
6200 for_each_node(node)
6201 free_mem_cgroup_per_zone_info(memcg, node);
6203 free_percpu(memcg->stat);
6206 * We need to make sure that (at least for now), the jump label
6207 * destruction code runs outside of the cgroup lock. This is because
6208 * get_online_cpus(), which is called from the static_branch update,
6209 * can't be called inside the cgroup_lock. cpusets are the ones
6210 * enforcing this dependency, so if they ever change, we might as well.
6212 * schedule_work() will guarantee this happens. Be careful if you need
6213 * to move this code around, and make sure it is outside
6214 * the cgroup_lock.
6216 disarm_static_keys(memcg);
6217 if (size < PAGE_SIZE)
6218 kfree(memcg);
6219 else
6220 vfree(memcg);
6224 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6226 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6228 if (!memcg->res.parent)
6229 return NULL;
6230 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6232 EXPORT_SYMBOL(parent_mem_cgroup);
6234 static void __init mem_cgroup_soft_limit_tree_init(void)
6236 struct mem_cgroup_tree_per_node *rtpn;
6237 struct mem_cgroup_tree_per_zone *rtpz;
6238 int tmp, node, zone;
6240 for_each_node(node) {
6241 tmp = node;
6242 if (!node_state(node, N_NORMAL_MEMORY))
6243 tmp = -1;
6244 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6245 BUG_ON(!rtpn);
6247 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6249 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6250 rtpz = &rtpn->rb_tree_per_zone[zone];
6251 rtpz->rb_root = RB_ROOT;
6252 spin_lock_init(&rtpz->lock);
6257 static struct cgroup_subsys_state * __ref
6258 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6260 struct mem_cgroup *memcg;
6261 long error = -ENOMEM;
6262 int node;
6264 memcg = mem_cgroup_alloc();
6265 if (!memcg)
6266 return ERR_PTR(error);
6268 for_each_node(node)
6269 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6270 goto free_out;
6272 /* root ? */
6273 if (parent_css == NULL) {
6274 root_mem_cgroup = memcg;
6275 res_counter_init(&memcg->res, NULL);
6276 res_counter_init(&memcg->memsw, NULL);
6277 res_counter_init(&memcg->kmem, NULL);
6280 memcg->last_scanned_node = MAX_NUMNODES;
6281 INIT_LIST_HEAD(&memcg->oom_notify);
6282 memcg->move_charge_at_immigrate = 0;
6283 mutex_init(&memcg->thresholds_lock);
6284 spin_lock_init(&memcg->move_lock);
6285 vmpressure_init(&memcg->vmpressure);
6287 return &memcg->css;
6289 free_out:
6290 __mem_cgroup_free(memcg);
6291 return ERR_PTR(error);
6294 static int
6295 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6297 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6298 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6299 int error = 0;
6301 if (!parent)
6302 return 0;
6304 mutex_lock(&memcg_create_mutex);
6306 memcg->use_hierarchy = parent->use_hierarchy;
6307 memcg->oom_kill_disable = parent->oom_kill_disable;
6308 memcg->swappiness = mem_cgroup_swappiness(parent);
6310 if (parent->use_hierarchy) {
6311 res_counter_init(&memcg->res, &parent->res);
6312 res_counter_init(&memcg->memsw, &parent->memsw);
6313 res_counter_init(&memcg->kmem, &parent->kmem);
6316 * No need to take a reference to the parent because cgroup
6317 * core guarantees its existence.
6319 } else {
6320 res_counter_init(&memcg->res, NULL);
6321 res_counter_init(&memcg->memsw, NULL);
6322 res_counter_init(&memcg->kmem, NULL);
6324 * Deeper hierachy with use_hierarchy == false doesn't make
6325 * much sense so let cgroup subsystem know about this
6326 * unfortunate state in our controller.
6328 if (parent != root_mem_cgroup)
6329 mem_cgroup_subsys.broken_hierarchy = true;
6332 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6333 mutex_unlock(&memcg_create_mutex);
6334 return error;
6338 * Announce all parents that a group from their hierarchy is gone.
6340 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6342 struct mem_cgroup *parent = memcg;
6344 while ((parent = parent_mem_cgroup(parent)))
6345 mem_cgroup_iter_invalidate(parent);
6348 * if the root memcg is not hierarchical we have to check it
6349 * explicitely.
6351 if (!root_mem_cgroup->use_hierarchy)
6352 mem_cgroup_iter_invalidate(root_mem_cgroup);
6355 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6357 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6358 struct cgroup_subsys_state *iter;
6360 kmem_cgroup_css_offline(memcg);
6362 mem_cgroup_invalidate_reclaim_iterators(memcg);
6365 * This requires that offlining is serialized. Right now that is
6366 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6368 rcu_read_lock();
6369 css_for_each_descendant_post(iter, css) {
6370 rcu_read_unlock();
6371 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6372 rcu_read_lock();
6374 rcu_read_unlock();
6376 mem_cgroup_destroy_all_caches(memcg);
6377 vmpressure_cleanup(&memcg->vmpressure);
6380 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6384 * XXX: css_offline() would be where we should reparent all
6385 * memory to prepare the cgroup for destruction. However,
6386 * memcg does not do css_tryget() and res_counter charging
6387 * under the same RCU lock region, which means that charging
6388 * could race with offlining. Offlining only happens to
6389 * cgroups with no tasks in them but charges can show up
6390 * without any tasks from the swapin path when the target
6391 * memcg is looked up from the swapout record and not from the
6392 * current task as it usually is. A race like this can leak
6393 * charges and put pages with stale cgroup pointers into
6394 * circulation:
6396 * #0 #1
6397 * lookup_swap_cgroup_id()
6398 * rcu_read_lock()
6399 * mem_cgroup_lookup()
6400 * css_tryget()
6401 * rcu_read_unlock()
6402 * disable css_tryget()
6403 * call_rcu()
6404 * offline_css()
6405 * reparent_charges()
6406 * res_counter_charge()
6407 * css_put()
6408 * css_free()
6409 * pc->mem_cgroup = dead memcg
6410 * add page to lru
6412 * The bulk of the charges are still moved in offline_css() to
6413 * avoid pinning a lot of pages in case a long-term reference
6414 * like a swapout record is deferring the css_free() to long
6415 * after offlining. But this makes sure we catch any charges
6416 * made after offlining:
6418 mem_cgroup_reparent_charges(memcg);
6420 memcg_destroy_kmem(memcg);
6421 __mem_cgroup_free(memcg);
6424 #ifdef CONFIG_MMU
6425 /* Handlers for move charge at task migration. */
6426 #define PRECHARGE_COUNT_AT_ONCE 256
6427 static int mem_cgroup_do_precharge(unsigned long count)
6429 int ret = 0;
6430 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6431 struct mem_cgroup *memcg = mc.to;
6433 if (mem_cgroup_is_root(memcg)) {
6434 mc.precharge += count;
6435 /* we don't need css_get for root */
6436 return ret;
6438 /* try to charge at once */
6439 if (count > 1) {
6440 struct res_counter *dummy;
6442 * "memcg" cannot be under rmdir() because we've already checked
6443 * by cgroup_lock_live_cgroup() that it is not removed and we
6444 * are still under the same cgroup_mutex. So we can postpone
6445 * css_get().
6447 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6448 goto one_by_one;
6449 if (do_swap_account && res_counter_charge(&memcg->memsw,
6450 PAGE_SIZE * count, &dummy)) {
6451 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6452 goto one_by_one;
6454 mc.precharge += count;
6455 return ret;
6457 one_by_one:
6458 /* fall back to one by one charge */
6459 while (count--) {
6460 if (signal_pending(current)) {
6461 ret = -EINTR;
6462 break;
6464 if (!batch_count--) {
6465 batch_count = PRECHARGE_COUNT_AT_ONCE;
6466 cond_resched();
6468 ret = __mem_cgroup_try_charge(NULL,
6469 GFP_KERNEL, 1, &memcg, false);
6470 if (ret)
6471 /* mem_cgroup_clear_mc() will do uncharge later */
6472 return ret;
6473 mc.precharge++;
6475 return ret;
6479 * get_mctgt_type - get target type of moving charge
6480 * @vma: the vma the pte to be checked belongs
6481 * @addr: the address corresponding to the pte to be checked
6482 * @ptent: the pte to be checked
6483 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6485 * Returns
6486 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6487 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6488 * move charge. if @target is not NULL, the page is stored in target->page
6489 * with extra refcnt got(Callers should handle it).
6490 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6491 * target for charge migration. if @target is not NULL, the entry is stored
6492 * in target->ent.
6494 * Called with pte lock held.
6496 union mc_target {
6497 struct page *page;
6498 swp_entry_t ent;
6501 enum mc_target_type {
6502 MC_TARGET_NONE = 0,
6503 MC_TARGET_PAGE,
6504 MC_TARGET_SWAP,
6507 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6508 unsigned long addr, pte_t ptent)
6510 struct page *page = vm_normal_page(vma, addr, ptent);
6512 if (!page || !page_mapped(page))
6513 return NULL;
6514 if (PageAnon(page)) {
6515 /* we don't move shared anon */
6516 if (!move_anon())
6517 return NULL;
6518 } else if (!move_file())
6519 /* we ignore mapcount for file pages */
6520 return NULL;
6521 if (!get_page_unless_zero(page))
6522 return NULL;
6524 return page;
6527 #ifdef CONFIG_SWAP
6528 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6529 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6531 struct page *page = NULL;
6532 swp_entry_t ent = pte_to_swp_entry(ptent);
6534 if (!move_anon() || non_swap_entry(ent))
6535 return NULL;
6537 * Because lookup_swap_cache() updates some statistics counter,
6538 * we call find_get_page() with swapper_space directly.
6540 page = find_get_page(swap_address_space(ent), ent.val);
6541 if (do_swap_account)
6542 entry->val = ent.val;
6544 return page;
6546 #else
6547 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6548 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6550 return NULL;
6552 #endif
6554 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6555 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6557 struct page *page = NULL;
6558 struct address_space *mapping;
6559 pgoff_t pgoff;
6561 if (!vma->vm_file) /* anonymous vma */
6562 return NULL;
6563 if (!move_file())
6564 return NULL;
6566 mapping = vma->vm_file->f_mapping;
6567 if (pte_none(ptent))
6568 pgoff = linear_page_index(vma, addr);
6569 else /* pte_file(ptent) is true */
6570 pgoff = pte_to_pgoff(ptent);
6572 /* page is moved even if it's not RSS of this task(page-faulted). */
6573 page = find_get_page(mapping, pgoff);
6575 #ifdef CONFIG_SWAP
6576 /* shmem/tmpfs may report page out on swap: account for that too. */
6577 if (radix_tree_exceptional_entry(page)) {
6578 swp_entry_t swap = radix_to_swp_entry(page);
6579 if (do_swap_account)
6580 *entry = swap;
6581 page = find_get_page(swap_address_space(swap), swap.val);
6583 #endif
6584 return page;
6587 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6588 unsigned long addr, pte_t ptent, union mc_target *target)
6590 struct page *page = NULL;
6591 struct page_cgroup *pc;
6592 enum mc_target_type ret = MC_TARGET_NONE;
6593 swp_entry_t ent = { .val = 0 };
6595 if (pte_present(ptent))
6596 page = mc_handle_present_pte(vma, addr, ptent);
6597 else if (is_swap_pte(ptent))
6598 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6599 else if (pte_none(ptent) || pte_file(ptent))
6600 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6602 if (!page && !ent.val)
6603 return ret;
6604 if (page) {
6605 pc = lookup_page_cgroup(page);
6607 * Do only loose check w/o page_cgroup lock.
6608 * mem_cgroup_move_account() checks the pc is valid or not under
6609 * the lock.
6611 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6612 ret = MC_TARGET_PAGE;
6613 if (target)
6614 target->page = page;
6616 if (!ret || !target)
6617 put_page(page);
6619 /* There is a swap entry and a page doesn't exist or isn't charged */
6620 if (ent.val && !ret &&
6621 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6622 ret = MC_TARGET_SWAP;
6623 if (target)
6624 target->ent = ent;
6626 return ret;
6629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6631 * We don't consider swapping or file mapped pages because THP does not
6632 * support them for now.
6633 * Caller should make sure that pmd_trans_huge(pmd) is true.
6635 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6636 unsigned long addr, pmd_t pmd, union mc_target *target)
6638 struct page *page = NULL;
6639 struct page_cgroup *pc;
6640 enum mc_target_type ret = MC_TARGET_NONE;
6642 page = pmd_page(pmd);
6643 VM_BUG_ON(!page || !PageHead(page));
6644 if (!move_anon())
6645 return ret;
6646 pc = lookup_page_cgroup(page);
6647 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6648 ret = MC_TARGET_PAGE;
6649 if (target) {
6650 get_page(page);
6651 target->page = page;
6654 return ret;
6656 #else
6657 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6658 unsigned long addr, pmd_t pmd, union mc_target *target)
6660 return MC_TARGET_NONE;
6662 #endif
6664 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6665 unsigned long addr, unsigned long end,
6666 struct mm_walk *walk)
6668 struct vm_area_struct *vma = walk->private;
6669 pte_t *pte;
6670 spinlock_t *ptl;
6672 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6673 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6674 mc.precharge += HPAGE_PMD_NR;
6675 spin_unlock(&vma->vm_mm->page_table_lock);
6676 return 0;
6679 if (pmd_trans_unstable(pmd))
6680 return 0;
6681 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6682 for (; addr != end; pte++, addr += PAGE_SIZE)
6683 if (get_mctgt_type(vma, addr, *pte, NULL))
6684 mc.precharge++; /* increment precharge temporarily */
6685 pte_unmap_unlock(pte - 1, ptl);
6686 cond_resched();
6688 return 0;
6691 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6693 unsigned long precharge;
6694 struct vm_area_struct *vma;
6696 down_read(&mm->mmap_sem);
6697 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6698 struct mm_walk mem_cgroup_count_precharge_walk = {
6699 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6700 .mm = mm,
6701 .private = vma,
6703 if (is_vm_hugetlb_page(vma))
6704 continue;
6705 walk_page_range(vma->vm_start, vma->vm_end,
6706 &mem_cgroup_count_precharge_walk);
6708 up_read(&mm->mmap_sem);
6710 precharge = mc.precharge;
6711 mc.precharge = 0;
6713 return precharge;
6716 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6718 unsigned long precharge = mem_cgroup_count_precharge(mm);
6720 VM_BUG_ON(mc.moving_task);
6721 mc.moving_task = current;
6722 return mem_cgroup_do_precharge(precharge);
6725 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6726 static void __mem_cgroup_clear_mc(void)
6728 struct mem_cgroup *from = mc.from;
6729 struct mem_cgroup *to = mc.to;
6730 int i;
6732 /* we must uncharge all the leftover precharges from mc.to */
6733 if (mc.precharge) {
6734 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6735 mc.precharge = 0;
6738 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6739 * we must uncharge here.
6741 if (mc.moved_charge) {
6742 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6743 mc.moved_charge = 0;
6745 /* we must fixup refcnts and charges */
6746 if (mc.moved_swap) {
6747 /* uncharge swap account from the old cgroup */
6748 if (!mem_cgroup_is_root(mc.from))
6749 res_counter_uncharge(&mc.from->memsw,
6750 PAGE_SIZE * mc.moved_swap);
6752 for (i = 0; i < mc.moved_swap; i++)
6753 css_put(&mc.from->css);
6755 if (!mem_cgroup_is_root(mc.to)) {
6757 * we charged both to->res and to->memsw, so we should
6758 * uncharge to->res.
6760 res_counter_uncharge(&mc.to->res,
6761 PAGE_SIZE * mc.moved_swap);
6763 /* we've already done css_get(mc.to) */
6764 mc.moved_swap = 0;
6766 memcg_oom_recover(from);
6767 memcg_oom_recover(to);
6768 wake_up_all(&mc.waitq);
6771 static void mem_cgroup_clear_mc(void)
6773 struct mem_cgroup *from = mc.from;
6776 * we must clear moving_task before waking up waiters at the end of
6777 * task migration.
6779 mc.moving_task = NULL;
6780 __mem_cgroup_clear_mc();
6781 spin_lock(&mc.lock);
6782 mc.from = NULL;
6783 mc.to = NULL;
6784 spin_unlock(&mc.lock);
6785 mem_cgroup_end_move(from);
6788 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6789 struct cgroup_taskset *tset)
6791 struct task_struct *p = cgroup_taskset_first(tset);
6792 int ret = 0;
6793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6794 unsigned long move_charge_at_immigrate;
6797 * We are now commited to this value whatever it is. Changes in this
6798 * tunable will only affect upcoming migrations, not the current one.
6799 * So we need to save it, and keep it going.
6801 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6802 if (move_charge_at_immigrate) {
6803 struct mm_struct *mm;
6804 struct mem_cgroup *from = mem_cgroup_from_task(p);
6806 VM_BUG_ON(from == memcg);
6808 mm = get_task_mm(p);
6809 if (!mm)
6810 return 0;
6811 /* We move charges only when we move a owner of the mm */
6812 if (mm->owner == p) {
6813 VM_BUG_ON(mc.from);
6814 VM_BUG_ON(mc.to);
6815 VM_BUG_ON(mc.precharge);
6816 VM_BUG_ON(mc.moved_charge);
6817 VM_BUG_ON(mc.moved_swap);
6818 mem_cgroup_start_move(from);
6819 spin_lock(&mc.lock);
6820 mc.from = from;
6821 mc.to = memcg;
6822 mc.immigrate_flags = move_charge_at_immigrate;
6823 spin_unlock(&mc.lock);
6824 /* We set mc.moving_task later */
6826 ret = mem_cgroup_precharge_mc(mm);
6827 if (ret)
6828 mem_cgroup_clear_mc();
6830 mmput(mm);
6832 return ret;
6835 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6836 struct cgroup_taskset *tset)
6838 mem_cgroup_clear_mc();
6841 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6842 unsigned long addr, unsigned long end,
6843 struct mm_walk *walk)
6845 int ret = 0;
6846 struct vm_area_struct *vma = walk->private;
6847 pte_t *pte;
6848 spinlock_t *ptl;
6849 enum mc_target_type target_type;
6850 union mc_target target;
6851 struct page *page;
6852 struct page_cgroup *pc;
6855 * We don't take compound_lock() here but no race with splitting thp
6856 * happens because:
6857 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6858 * under splitting, which means there's no concurrent thp split,
6859 * - if another thread runs into split_huge_page() just after we
6860 * entered this if-block, the thread must wait for page table lock
6861 * to be unlocked in __split_huge_page_splitting(), where the main
6862 * part of thp split is not executed yet.
6864 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6865 if (mc.precharge < HPAGE_PMD_NR) {
6866 spin_unlock(&vma->vm_mm->page_table_lock);
6867 return 0;
6869 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6870 if (target_type == MC_TARGET_PAGE) {
6871 page = target.page;
6872 if (!isolate_lru_page(page)) {
6873 pc = lookup_page_cgroup(page);
6874 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6875 pc, mc.from, mc.to)) {
6876 mc.precharge -= HPAGE_PMD_NR;
6877 mc.moved_charge += HPAGE_PMD_NR;
6879 putback_lru_page(page);
6881 put_page(page);
6883 spin_unlock(&vma->vm_mm->page_table_lock);
6884 return 0;
6887 if (pmd_trans_unstable(pmd))
6888 return 0;
6889 retry:
6890 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6891 for (; addr != end; addr += PAGE_SIZE) {
6892 pte_t ptent = *(pte++);
6893 swp_entry_t ent;
6895 if (!mc.precharge)
6896 break;
6898 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6899 case MC_TARGET_PAGE:
6900 page = target.page;
6901 if (isolate_lru_page(page))
6902 goto put;
6903 pc = lookup_page_cgroup(page);
6904 if (!mem_cgroup_move_account(page, 1, pc,
6905 mc.from, mc.to)) {
6906 mc.precharge--;
6907 /* we uncharge from mc.from later. */
6908 mc.moved_charge++;
6910 putback_lru_page(page);
6911 put: /* get_mctgt_type() gets the page */
6912 put_page(page);
6913 break;
6914 case MC_TARGET_SWAP:
6915 ent = target.ent;
6916 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6917 mc.precharge--;
6918 /* we fixup refcnts and charges later. */
6919 mc.moved_swap++;
6921 break;
6922 default:
6923 break;
6926 pte_unmap_unlock(pte - 1, ptl);
6927 cond_resched();
6929 if (addr != end) {
6931 * We have consumed all precharges we got in can_attach().
6932 * We try charge one by one, but don't do any additional
6933 * charges to mc.to if we have failed in charge once in attach()
6934 * phase.
6936 ret = mem_cgroup_do_precharge(1);
6937 if (!ret)
6938 goto retry;
6941 return ret;
6944 static void mem_cgroup_move_charge(struct mm_struct *mm)
6946 struct vm_area_struct *vma;
6948 lru_add_drain_all();
6949 retry:
6950 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6952 * Someone who are holding the mmap_sem might be waiting in
6953 * waitq. So we cancel all extra charges, wake up all waiters,
6954 * and retry. Because we cancel precharges, we might not be able
6955 * to move enough charges, but moving charge is a best-effort
6956 * feature anyway, so it wouldn't be a big problem.
6958 __mem_cgroup_clear_mc();
6959 cond_resched();
6960 goto retry;
6962 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6963 int ret;
6964 struct mm_walk mem_cgroup_move_charge_walk = {
6965 .pmd_entry = mem_cgroup_move_charge_pte_range,
6966 .mm = mm,
6967 .private = vma,
6969 if (is_vm_hugetlb_page(vma))
6970 continue;
6971 ret = walk_page_range(vma->vm_start, vma->vm_end,
6972 &mem_cgroup_move_charge_walk);
6973 if (ret)
6975 * means we have consumed all precharges and failed in
6976 * doing additional charge. Just abandon here.
6978 break;
6980 up_read(&mm->mmap_sem);
6983 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6984 struct cgroup_taskset *tset)
6986 struct task_struct *p = cgroup_taskset_first(tset);
6987 struct mm_struct *mm = get_task_mm(p);
6989 if (mm) {
6990 if (mc.to)
6991 mem_cgroup_move_charge(mm);
6992 mmput(mm);
6994 if (mc.to)
6995 mem_cgroup_clear_mc();
6997 #else /* !CONFIG_MMU */
6998 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6999 struct cgroup_taskset *tset)
7001 return 0;
7003 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7004 struct cgroup_taskset *tset)
7007 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7008 struct cgroup_taskset *tset)
7011 #endif
7014 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7015 * to verify sane_behavior flag on each mount attempt.
7017 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7020 * use_hierarchy is forced with sane_behavior. cgroup core
7021 * guarantees that @root doesn't have any children, so turning it
7022 * on for the root memcg is enough.
7024 if (cgroup_sane_behavior(root_css->cgroup))
7025 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7028 struct cgroup_subsys mem_cgroup_subsys = {
7029 .name = "memory",
7030 .subsys_id = mem_cgroup_subsys_id,
7031 .css_alloc = mem_cgroup_css_alloc,
7032 .css_online = mem_cgroup_css_online,
7033 .css_offline = mem_cgroup_css_offline,
7034 .css_free = mem_cgroup_css_free,
7035 .can_attach = mem_cgroup_can_attach,
7036 .cancel_attach = mem_cgroup_cancel_attach,
7037 .attach = mem_cgroup_move_task,
7038 .bind = mem_cgroup_bind,
7039 .base_cftypes = mem_cgroup_files,
7040 .early_init = 0,
7041 .use_id = 1,
7044 #ifdef CONFIG_MEMCG_SWAP
7045 static int __init enable_swap_account(char *s)
7047 if (!strcmp(s, "1"))
7048 really_do_swap_account = 1;
7049 else if (!strcmp(s, "0"))
7050 really_do_swap_account = 0;
7051 return 1;
7053 __setup("swapaccount=", enable_swap_account);
7055 static void __init memsw_file_init(void)
7057 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7060 static void __init enable_swap_cgroup(void)
7062 if (!mem_cgroup_disabled() && really_do_swap_account) {
7063 do_swap_account = 1;
7064 memsw_file_init();
7068 #else
7069 static void __init enable_swap_cgroup(void)
7072 #endif
7075 * subsys_initcall() for memory controller.
7077 * Some parts like hotcpu_notifier() have to be initialized from this context
7078 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7079 * everything that doesn't depend on a specific mem_cgroup structure should
7080 * be initialized from here.
7082 static int __init mem_cgroup_init(void)
7084 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7085 enable_swap_cgroup();
7086 mem_cgroup_soft_limit_tree_init();
7087 memcg_stock_init();
7088 return 0;
7090 subsys_initcall(mem_cgroup_init);