1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
61 #include <net/tcp_memcontrol.h>
63 #include <asm/uaccess.h>
65 #include <trace/events/vmscan.h>
67 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
68 EXPORT_SYMBOL(mem_cgroup_subsys
);
70 #define MEM_CGROUP_RECLAIM_RETRIES 5
71 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
73 #ifdef CONFIG_MEMCG_SWAP
74 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75 int do_swap_account __read_mostly
;
77 /* for remember boot option*/
78 #ifdef CONFIG_MEMCG_SWAP_ENABLED
79 static int really_do_swap_account __initdata
= 1;
81 static int really_do_swap_account __initdata
= 0;
85 #define do_swap_account 0
89 static const char * const mem_cgroup_stat_names
[] = {
98 enum mem_cgroup_events_index
{
99 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
100 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
101 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
102 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
103 MEM_CGROUP_EVENTS_NSTATS
,
106 static const char * const mem_cgroup_events_names
[] = {
113 static const char * const mem_cgroup_lru_names
[] = {
122 * Per memcg event counter is incremented at every pagein/pageout. With THP,
123 * it will be incremated by the number of pages. This counter is used for
124 * for trigger some periodic events. This is straightforward and better
125 * than using jiffies etc. to handle periodic memcg event.
127 enum mem_cgroup_events_target
{
128 MEM_CGROUP_TARGET_THRESH
,
129 MEM_CGROUP_TARGET_SOFTLIMIT
,
130 MEM_CGROUP_TARGET_NUMAINFO
,
133 #define THRESHOLDS_EVENTS_TARGET 128
134 #define SOFTLIMIT_EVENTS_TARGET 1024
135 #define NUMAINFO_EVENTS_TARGET 1024
137 struct mem_cgroup_stat_cpu
{
138 long count
[MEM_CGROUP_STAT_NSTATS
];
139 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
140 unsigned long nr_page_events
;
141 unsigned long targets
[MEM_CGROUP_NTARGETS
];
144 struct mem_cgroup_reclaim_iter
{
146 * last scanned hierarchy member. Valid only if last_dead_count
147 * matches memcg->dead_count of the hierarchy root group.
149 struct mem_cgroup
*last_visited
;
150 unsigned long last_dead_count
;
152 /* scan generation, increased every round-trip */
153 unsigned int generation
;
157 * per-zone information in memory controller.
159 struct mem_cgroup_per_zone
{
160 struct lruvec lruvec
;
161 unsigned long lru_size
[NR_LRU_LISTS
];
163 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
165 struct rb_node tree_node
; /* RB tree node */
166 unsigned long long usage_in_excess
;/* Set to the value by which */
167 /* the soft limit is exceeded*/
169 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
170 /* use container_of */
173 struct mem_cgroup_per_node
{
174 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
178 * Cgroups above their limits are maintained in a RB-Tree, independent of
179 * their hierarchy representation
182 struct mem_cgroup_tree_per_zone
{
183 struct rb_root rb_root
;
187 struct mem_cgroup_tree_per_node
{
188 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
191 struct mem_cgroup_tree
{
192 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
195 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
197 struct mem_cgroup_threshold
{
198 struct eventfd_ctx
*eventfd
;
203 struct mem_cgroup_threshold_ary
{
204 /* An array index points to threshold just below or equal to usage. */
205 int current_threshold
;
206 /* Size of entries[] */
208 /* Array of thresholds */
209 struct mem_cgroup_threshold entries
[0];
212 struct mem_cgroup_thresholds
{
213 /* Primary thresholds array */
214 struct mem_cgroup_threshold_ary
*primary
;
216 * Spare threshold array.
217 * This is needed to make mem_cgroup_unregister_event() "never fail".
218 * It must be able to store at least primary->size - 1 entries.
220 struct mem_cgroup_threshold_ary
*spare
;
224 struct mem_cgroup_eventfd_list
{
225 struct list_head list
;
226 struct eventfd_ctx
*eventfd
;
229 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
230 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
238 * TODO: Add a water mark for the memory controller. Reclaim will begin when
239 * we hit the water mark. May be even add a low water mark, such that
240 * no reclaim occurs from a cgroup at it's low water mark, this is
241 * a feature that will be implemented much later in the future.
244 struct cgroup_subsys_state css
;
246 * the counter to account for memory usage
248 struct res_counter res
;
250 /* vmpressure notifications */
251 struct vmpressure vmpressure
;
254 * the counter to account for mem+swap usage.
256 struct res_counter memsw
;
259 * the counter to account for kernel memory usage.
261 struct res_counter kmem
;
263 * Should the accounting and control be hierarchical, per subtree?
266 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
270 atomic_t oom_wakeups
;
273 /* OOM-Killer disable */
274 int oom_kill_disable
;
276 /* set when res.limit == memsw.limit */
277 bool memsw_is_minimum
;
279 /* protect arrays of thresholds */
280 struct mutex thresholds_lock
;
282 /* thresholds for memory usage. RCU-protected */
283 struct mem_cgroup_thresholds thresholds
;
285 /* thresholds for mem+swap usage. RCU-protected */
286 struct mem_cgroup_thresholds memsw_thresholds
;
288 /* For oom notifier event fd */
289 struct list_head oom_notify
;
292 * Should we move charges of a task when a task is moved into this
293 * mem_cgroup ? And what type of charges should we move ?
295 unsigned long move_charge_at_immigrate
;
297 * set > 0 if pages under this cgroup are moving to other cgroup.
299 atomic_t moving_account
;
300 /* taken only while moving_account > 0 */
301 spinlock_t move_lock
;
305 struct mem_cgroup_stat_cpu __percpu
*stat
;
307 * used when a cpu is offlined or other synchronizations
308 * See mem_cgroup_read_stat().
310 struct mem_cgroup_stat_cpu nocpu_base
;
311 spinlock_t pcp_counter_lock
;
314 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
315 struct tcp_memcontrol tcp_mem
;
317 #if defined(CONFIG_MEMCG_KMEM)
318 /* analogous to slab_common's slab_caches list. per-memcg */
319 struct list_head memcg_slab_caches
;
320 /* Not a spinlock, we can take a lot of time walking the list */
321 struct mutex slab_caches_mutex
;
322 /* Index in the kmem_cache->memcg_params->memcg_caches array */
326 int last_scanned_node
;
328 nodemask_t scan_nodes
;
329 atomic_t numainfo_events
;
330 atomic_t numainfo_updating
;
333 struct mem_cgroup_per_node
*nodeinfo
[0];
334 /* WARNING: nodeinfo must be the last member here */
337 static size_t memcg_size(void)
339 return sizeof(struct mem_cgroup
) +
340 nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
343 /* internal only representation about the status of kmem accounting. */
345 KMEM_ACCOUNTED_ACTIVE
= 0, /* accounted by this cgroup itself */
346 KMEM_ACCOUNTED_ACTIVATED
, /* static key enabled. */
347 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
350 /* We account when limit is on, but only after call sites are patched */
351 #define KMEM_ACCOUNTED_MASK \
352 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
354 #ifdef CONFIG_MEMCG_KMEM
355 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
357 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
360 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
362 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
365 static void memcg_kmem_set_activated(struct mem_cgroup
*memcg
)
367 set_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
370 static void memcg_kmem_clear_activated(struct mem_cgroup
*memcg
)
372 clear_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
375 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
378 * Our caller must use css_get() first, because memcg_uncharge_kmem()
379 * will call css_put() if it sees the memcg is dead.
382 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
383 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
386 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
388 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
389 &memcg
->kmem_account_flags
);
393 /* Stuffs for move charges at task migration. */
395 * Types of charges to be moved. "move_charge_at_immitgrate" and
396 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
399 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
400 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
404 /* "mc" and its members are protected by cgroup_mutex */
405 static struct move_charge_struct
{
406 spinlock_t lock
; /* for from, to */
407 struct mem_cgroup
*from
;
408 struct mem_cgroup
*to
;
409 unsigned long immigrate_flags
;
410 unsigned long precharge
;
411 unsigned long moved_charge
;
412 unsigned long moved_swap
;
413 struct task_struct
*moving_task
; /* a task moving charges */
414 wait_queue_head_t waitq
; /* a waitq for other context */
416 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
417 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
420 static bool move_anon(void)
422 return test_bit(MOVE_CHARGE_TYPE_ANON
, &mc
.immigrate_flags
);
425 static bool move_file(void)
427 return test_bit(MOVE_CHARGE_TYPE_FILE
, &mc
.immigrate_flags
);
431 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
432 * limit reclaim to prevent infinite loops, if they ever occur.
434 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
435 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
438 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
439 MEM_CGROUP_CHARGE_TYPE_ANON
,
440 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
441 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
445 /* for encoding cft->private value on file */
453 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
454 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
455 #define MEMFILE_ATTR(val) ((val) & 0xffff)
456 /* Used for OOM nofiier */
457 #define OOM_CONTROL (0)
460 * Reclaim flags for mem_cgroup_hierarchical_reclaim
462 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
463 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
464 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
465 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
468 * The memcg_create_mutex will be held whenever a new cgroup is created.
469 * As a consequence, any change that needs to protect against new child cgroups
470 * appearing has to hold it as well.
472 static DEFINE_MUTEX(memcg_create_mutex
);
474 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
476 return s
? container_of(s
, struct mem_cgroup
, css
) : NULL
;
479 /* Some nice accessors for the vmpressure. */
480 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
483 memcg
= root_mem_cgroup
;
484 return &memcg
->vmpressure
;
487 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
489 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
492 struct vmpressure
*css_to_vmpressure(struct cgroup_subsys_state
*css
)
494 return &mem_cgroup_from_css(css
)->vmpressure
;
497 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
499 return (memcg
== root_mem_cgroup
);
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
505 void sock_update_memcg(struct sock
*sk
)
507 if (mem_cgroup_sockets_enabled
) {
508 struct mem_cgroup
*memcg
;
509 struct cg_proto
*cg_proto
;
511 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
522 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
523 css_get(&sk
->sk_cgrp
->memcg
->css
);
528 memcg
= mem_cgroup_from_task(current
);
529 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
530 if (!mem_cgroup_is_root(memcg
) &&
531 memcg_proto_active(cg_proto
) && css_tryget(&memcg
->css
)) {
532 sk
->sk_cgrp
= cg_proto
;
537 EXPORT_SYMBOL(sock_update_memcg
);
539 void sock_release_memcg(struct sock
*sk
)
541 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
542 struct mem_cgroup
*memcg
;
543 WARN_ON(!sk
->sk_cgrp
->memcg
);
544 memcg
= sk
->sk_cgrp
->memcg
;
545 css_put(&sk
->sk_cgrp
->memcg
->css
);
549 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
551 if (!memcg
|| mem_cgroup_is_root(memcg
))
554 return &memcg
->tcp_mem
.cg_proto
;
556 EXPORT_SYMBOL(tcp_proto_cgroup
);
558 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
560 if (!memcg_proto_activated(&memcg
->tcp_mem
.cg_proto
))
562 static_key_slow_dec(&memcg_socket_limit_enabled
);
565 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
570 #ifdef CONFIG_MEMCG_KMEM
572 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
573 * There are two main reasons for not using the css_id for this:
574 * 1) this works better in sparse environments, where we have a lot of memcgs,
575 * but only a few kmem-limited. Or also, if we have, for instance, 200
576 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
577 * 200 entry array for that.
579 * 2) In order not to violate the cgroup API, we would like to do all memory
580 * allocation in ->create(). At that point, we haven't yet allocated the
581 * css_id. Having a separate index prevents us from messing with the cgroup
584 * The current size of the caches array is stored in
585 * memcg_limited_groups_array_size. It will double each time we have to
588 static DEFINE_IDA(kmem_limited_groups
);
589 int memcg_limited_groups_array_size
;
592 * MIN_SIZE is different than 1, because we would like to avoid going through
593 * the alloc/free process all the time. In a small machine, 4 kmem-limited
594 * cgroups is a reasonable guess. In the future, it could be a parameter or
595 * tunable, but that is strictly not necessary.
597 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
598 * this constant directly from cgroup, but it is understandable that this is
599 * better kept as an internal representation in cgroup.c. In any case, the
600 * css_id space is not getting any smaller, and we don't have to necessarily
601 * increase ours as well if it increases.
603 #define MEMCG_CACHES_MIN_SIZE 4
604 #define MEMCG_CACHES_MAX_SIZE 65535
607 * A lot of the calls to the cache allocation functions are expected to be
608 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
609 * conditional to this static branch, we'll have to allow modules that does
610 * kmem_cache_alloc and the such to see this symbol as well
612 struct static_key memcg_kmem_enabled_key
;
613 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
615 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
617 if (memcg_kmem_is_active(memcg
)) {
618 static_key_slow_dec(&memcg_kmem_enabled_key
);
619 ida_simple_remove(&kmem_limited_groups
, memcg
->kmemcg_id
);
622 * This check can't live in kmem destruction function,
623 * since the charges will outlive the cgroup
625 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
628 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
631 #endif /* CONFIG_MEMCG_KMEM */
633 static void disarm_static_keys(struct mem_cgroup
*memcg
)
635 disarm_sock_keys(memcg
);
636 disarm_kmem_keys(memcg
);
639 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
641 static struct mem_cgroup_per_zone
*
642 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
644 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
645 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
648 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
653 static struct mem_cgroup_per_zone
*
654 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
656 int nid
= page_to_nid(page
);
657 int zid
= page_zonenum(page
);
659 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
662 static struct mem_cgroup_tree_per_zone
*
663 soft_limit_tree_node_zone(int nid
, int zid
)
665 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
668 static struct mem_cgroup_tree_per_zone
*
669 soft_limit_tree_from_page(struct page
*page
)
671 int nid
= page_to_nid(page
);
672 int zid
= page_zonenum(page
);
674 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
678 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
679 struct mem_cgroup_per_zone
*mz
,
680 struct mem_cgroup_tree_per_zone
*mctz
,
681 unsigned long long new_usage_in_excess
)
683 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
684 struct rb_node
*parent
= NULL
;
685 struct mem_cgroup_per_zone
*mz_node
;
690 mz
->usage_in_excess
= new_usage_in_excess
;
691 if (!mz
->usage_in_excess
)
695 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
697 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
700 * We can't avoid mem cgroups that are over their soft
701 * limit by the same amount
703 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
706 rb_link_node(&mz
->tree_node
, parent
, p
);
707 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
712 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
713 struct mem_cgroup_per_zone
*mz
,
714 struct mem_cgroup_tree_per_zone
*mctz
)
718 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
723 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
724 struct mem_cgroup_per_zone
*mz
,
725 struct mem_cgroup_tree_per_zone
*mctz
)
727 spin_lock(&mctz
->lock
);
728 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
729 spin_unlock(&mctz
->lock
);
733 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
735 unsigned long long excess
;
736 struct mem_cgroup_per_zone
*mz
;
737 struct mem_cgroup_tree_per_zone
*mctz
;
738 int nid
= page_to_nid(page
);
739 int zid
= page_zonenum(page
);
740 mctz
= soft_limit_tree_from_page(page
);
743 * Necessary to update all ancestors when hierarchy is used.
744 * because their event counter is not touched.
746 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
747 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
748 excess
= res_counter_soft_limit_excess(&memcg
->res
);
750 * We have to update the tree if mz is on RB-tree or
751 * mem is over its softlimit.
753 if (excess
|| mz
->on_tree
) {
754 spin_lock(&mctz
->lock
);
755 /* if on-tree, remove it */
757 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
759 * Insert again. mz->usage_in_excess will be updated.
760 * If excess is 0, no tree ops.
762 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
763 spin_unlock(&mctz
->lock
);
768 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
771 struct mem_cgroup_per_zone
*mz
;
772 struct mem_cgroup_tree_per_zone
*mctz
;
774 for_each_node(node
) {
775 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
776 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
777 mctz
= soft_limit_tree_node_zone(node
, zone
);
778 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
783 static struct mem_cgroup_per_zone
*
784 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
786 struct rb_node
*rightmost
= NULL
;
787 struct mem_cgroup_per_zone
*mz
;
791 rightmost
= rb_last(&mctz
->rb_root
);
793 goto done
; /* Nothing to reclaim from */
795 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
797 * Remove the node now but someone else can add it back,
798 * we will to add it back at the end of reclaim to its correct
799 * position in the tree.
801 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
802 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
803 !css_tryget(&mz
->memcg
->css
))
809 static struct mem_cgroup_per_zone
*
810 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
812 struct mem_cgroup_per_zone
*mz
;
814 spin_lock(&mctz
->lock
);
815 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
816 spin_unlock(&mctz
->lock
);
821 * Implementation Note: reading percpu statistics for memcg.
823 * Both of vmstat[] and percpu_counter has threshold and do periodic
824 * synchronization to implement "quick" read. There are trade-off between
825 * reading cost and precision of value. Then, we may have a chance to implement
826 * a periodic synchronizion of counter in memcg's counter.
828 * But this _read() function is used for user interface now. The user accounts
829 * memory usage by memory cgroup and he _always_ requires exact value because
830 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
831 * have to visit all online cpus and make sum. So, for now, unnecessary
832 * synchronization is not implemented. (just implemented for cpu hotplug)
834 * If there are kernel internal actions which can make use of some not-exact
835 * value, and reading all cpu value can be performance bottleneck in some
836 * common workload, threashold and synchonization as vmstat[] should be
839 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
840 enum mem_cgroup_stat_index idx
)
846 for_each_online_cpu(cpu
)
847 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
848 #ifdef CONFIG_HOTPLUG_CPU
849 spin_lock(&memcg
->pcp_counter_lock
);
850 val
+= memcg
->nocpu_base
.count
[idx
];
851 spin_unlock(&memcg
->pcp_counter_lock
);
857 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
860 int val
= (charge
) ? 1 : -1;
861 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
864 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
865 enum mem_cgroup_events_index idx
)
867 unsigned long val
= 0;
871 for_each_online_cpu(cpu
)
872 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
873 #ifdef CONFIG_HOTPLUG_CPU
874 spin_lock(&memcg
->pcp_counter_lock
);
875 val
+= memcg
->nocpu_base
.events
[idx
];
876 spin_unlock(&memcg
->pcp_counter_lock
);
882 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
884 bool anon
, int nr_pages
)
889 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
890 * counted as CACHE even if it's on ANON LRU.
893 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
896 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
899 if (PageTransHuge(page
))
900 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
903 /* pagein of a big page is an event. So, ignore page size */
905 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
907 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
908 nr_pages
= -nr_pages
; /* for event */
911 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
917 mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
919 struct mem_cgroup_per_zone
*mz
;
921 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
922 return mz
->lru_size
[lru
];
926 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
927 unsigned int lru_mask
)
929 struct mem_cgroup_per_zone
*mz
;
931 unsigned long ret
= 0;
933 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
936 if (BIT(lru
) & lru_mask
)
937 ret
+= mz
->lru_size
[lru
];
943 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
944 int nid
, unsigned int lru_mask
)
949 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
950 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
956 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
957 unsigned int lru_mask
)
962 for_each_node_state(nid
, N_MEMORY
)
963 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
967 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
968 enum mem_cgroup_events_target target
)
970 unsigned long val
, next
;
972 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
973 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
974 /* from time_after() in jiffies.h */
975 if ((long)next
- (long)val
< 0) {
977 case MEM_CGROUP_TARGET_THRESH
:
978 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
980 case MEM_CGROUP_TARGET_SOFTLIMIT
:
981 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
983 case MEM_CGROUP_TARGET_NUMAINFO
:
984 next
= val
+ NUMAINFO_EVENTS_TARGET
;
989 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
996 * Check events in order.
999 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
1002 /* threshold event is triggered in finer grain than soft limit */
1003 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
1004 MEM_CGROUP_TARGET_THRESH
))) {
1006 bool do_numainfo __maybe_unused
;
1008 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
1009 MEM_CGROUP_TARGET_SOFTLIMIT
);
1010 #if MAX_NUMNODES > 1
1011 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
1012 MEM_CGROUP_TARGET_NUMAINFO
);
1016 mem_cgroup_threshold(memcg
);
1017 if (unlikely(do_softlimit
))
1018 mem_cgroup_update_tree(memcg
, page
);
1019 #if MAX_NUMNODES > 1
1020 if (unlikely(do_numainfo
))
1021 atomic_inc(&memcg
->numainfo_events
);
1027 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1030 * mm_update_next_owner() may clear mm->owner to NULL
1031 * if it races with swapoff, page migration, etc.
1032 * So this can be called with p == NULL.
1037 return mem_cgroup_from_css(task_css(p
, mem_cgroup_subsys_id
));
1040 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1042 struct mem_cgroup
*memcg
= NULL
;
1047 * Because we have no locks, mm->owner's may be being moved to other
1048 * cgroup. We use css_tryget() here even if this looks
1049 * pessimistic (rather than adding locks here).
1053 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1054 if (unlikely(!memcg
))
1056 } while (!css_tryget(&memcg
->css
));
1062 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1063 * ref. count) or NULL if the whole root's subtree has been visited.
1065 * helper function to be used by mem_cgroup_iter
1067 static struct mem_cgroup
*__mem_cgroup_iter_next(struct mem_cgroup
*root
,
1068 struct mem_cgroup
*last_visited
)
1070 struct cgroup_subsys_state
*prev_css
, *next_css
;
1072 prev_css
= last_visited
? &last_visited
->css
: NULL
;
1074 next_css
= css_next_descendant_pre(prev_css
, &root
->css
);
1077 * Even if we found a group we have to make sure it is
1078 * alive. css && !memcg means that the groups should be
1079 * skipped and we should continue the tree walk.
1080 * last_visited css is safe to use because it is
1081 * protected by css_get and the tree walk is rcu safe.
1083 * We do not take a reference on the root of the tree walk
1084 * because we might race with the root removal when it would
1085 * be the only node in the iterated hierarchy and mem_cgroup_iter
1086 * would end up in an endless loop because it expects that at
1087 * least one valid node will be returned. Root cannot disappear
1088 * because caller of the iterator should hold it already so
1089 * skipping css reference should be safe.
1092 if ((next_css
== &root
->css
) ||
1093 ((next_css
->flags
& CSS_ONLINE
) && css_tryget(next_css
)))
1094 return mem_cgroup_from_css(next_css
);
1096 prev_css
= next_css
;
1103 static void mem_cgroup_iter_invalidate(struct mem_cgroup
*root
)
1106 * When a group in the hierarchy below root is destroyed, the
1107 * hierarchy iterator can no longer be trusted since it might
1108 * have pointed to the destroyed group. Invalidate it.
1110 atomic_inc(&root
->dead_count
);
1113 static struct mem_cgroup
*
1114 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter
*iter
,
1115 struct mem_cgroup
*root
,
1118 struct mem_cgroup
*position
= NULL
;
1120 * A cgroup destruction happens in two stages: offlining and
1121 * release. They are separated by a RCU grace period.
1123 * If the iterator is valid, we may still race with an
1124 * offlining. The RCU lock ensures the object won't be
1125 * released, tryget will fail if we lost the race.
1127 *sequence
= atomic_read(&root
->dead_count
);
1128 if (iter
->last_dead_count
== *sequence
) {
1130 position
= iter
->last_visited
;
1133 * We cannot take a reference to root because we might race
1134 * with root removal and returning NULL would end up in
1135 * an endless loop on the iterator user level when root
1136 * would be returned all the time.
1138 if (position
&& position
!= root
&&
1139 !css_tryget(&position
->css
))
1145 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter
*iter
,
1146 struct mem_cgroup
*last_visited
,
1147 struct mem_cgroup
*new_position
,
1148 struct mem_cgroup
*root
,
1151 /* root reference counting symmetric to mem_cgroup_iter_load */
1152 if (last_visited
&& last_visited
!= root
)
1153 css_put(&last_visited
->css
);
1155 * We store the sequence count from the time @last_visited was
1156 * loaded successfully instead of rereading it here so that we
1157 * don't lose destruction events in between. We could have
1158 * raced with the destruction of @new_position after all.
1160 iter
->last_visited
= new_position
;
1162 iter
->last_dead_count
= sequence
;
1166 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1167 * @root: hierarchy root
1168 * @prev: previously returned memcg, NULL on first invocation
1169 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1171 * Returns references to children of the hierarchy below @root, or
1172 * @root itself, or %NULL after a full round-trip.
1174 * Caller must pass the return value in @prev on subsequent
1175 * invocations for reference counting, or use mem_cgroup_iter_break()
1176 * to cancel a hierarchy walk before the round-trip is complete.
1178 * Reclaimers can specify a zone and a priority level in @reclaim to
1179 * divide up the memcgs in the hierarchy among all concurrent
1180 * reclaimers operating on the same zone and priority.
1182 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1183 struct mem_cgroup
*prev
,
1184 struct mem_cgroup_reclaim_cookie
*reclaim
)
1186 struct mem_cgroup
*memcg
= NULL
;
1187 struct mem_cgroup
*last_visited
= NULL
;
1189 if (mem_cgroup_disabled())
1193 root
= root_mem_cgroup
;
1195 if (prev
&& !reclaim
)
1196 last_visited
= prev
;
1198 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1206 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1207 int uninitialized_var(seq
);
1210 int nid
= zone_to_nid(reclaim
->zone
);
1211 int zid
= zone_idx(reclaim
->zone
);
1212 struct mem_cgroup_per_zone
*mz
;
1214 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
1215 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1216 if (prev
&& reclaim
->generation
!= iter
->generation
) {
1217 iter
->last_visited
= NULL
;
1221 last_visited
= mem_cgroup_iter_load(iter
, root
, &seq
);
1224 memcg
= __mem_cgroup_iter_next(root
, last_visited
);
1227 mem_cgroup_iter_update(iter
, last_visited
, memcg
, root
,
1232 else if (!prev
&& memcg
)
1233 reclaim
->generation
= iter
->generation
;
1242 if (prev
&& prev
!= root
)
1243 css_put(&prev
->css
);
1249 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1250 * @root: hierarchy root
1251 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1253 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1254 struct mem_cgroup
*prev
)
1257 root
= root_mem_cgroup
;
1258 if (prev
&& prev
!= root
)
1259 css_put(&prev
->css
);
1263 * Iteration constructs for visiting all cgroups (under a tree). If
1264 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1265 * be used for reference counting.
1267 #define for_each_mem_cgroup_tree(iter, root) \
1268 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1270 iter = mem_cgroup_iter(root, iter, NULL))
1272 #define for_each_mem_cgroup(iter) \
1273 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1275 iter = mem_cgroup_iter(NULL, iter, NULL))
1277 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1279 struct mem_cgroup
*memcg
;
1282 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1283 if (unlikely(!memcg
))
1288 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1291 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1299 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1302 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1303 * @zone: zone of the wanted lruvec
1304 * @memcg: memcg of the wanted lruvec
1306 * Returns the lru list vector holding pages for the given @zone and
1307 * @mem. This can be the global zone lruvec, if the memory controller
1310 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1311 struct mem_cgroup
*memcg
)
1313 struct mem_cgroup_per_zone
*mz
;
1314 struct lruvec
*lruvec
;
1316 if (mem_cgroup_disabled()) {
1317 lruvec
= &zone
->lruvec
;
1321 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1322 lruvec
= &mz
->lruvec
;
1325 * Since a node can be onlined after the mem_cgroup was created,
1326 * we have to be prepared to initialize lruvec->zone here;
1327 * and if offlined then reonlined, we need to reinitialize it.
1329 if (unlikely(lruvec
->zone
!= zone
))
1330 lruvec
->zone
= zone
;
1335 * Following LRU functions are allowed to be used without PCG_LOCK.
1336 * Operations are called by routine of global LRU independently from memcg.
1337 * What we have to take care of here is validness of pc->mem_cgroup.
1339 * Changes to pc->mem_cgroup happens when
1342 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1343 * It is added to LRU before charge.
1344 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1345 * When moving account, the page is not on LRU. It's isolated.
1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1351 * @zone: zone of the page
1353 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1355 struct mem_cgroup_per_zone
*mz
;
1356 struct mem_cgroup
*memcg
;
1357 struct page_cgroup
*pc
;
1358 struct lruvec
*lruvec
;
1360 if (mem_cgroup_disabled()) {
1361 lruvec
= &zone
->lruvec
;
1365 pc
= lookup_page_cgroup(page
);
1366 memcg
= pc
->mem_cgroup
;
1369 * Surreptitiously switch any uncharged offlist page to root:
1370 * an uncharged page off lru does nothing to secure
1371 * its former mem_cgroup from sudden removal.
1373 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 * under page_cgroup lock: between them, they make all uses
1375 * of pc->mem_cgroup safe.
1377 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1378 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1380 mz
= page_cgroup_zoneinfo(memcg
, page
);
1381 lruvec
= &mz
->lruvec
;
1384 * Since a node can be onlined after the mem_cgroup was created,
1385 * we have to be prepared to initialize lruvec->zone here;
1386 * and if offlined then reonlined, we need to reinitialize it.
1388 if (unlikely(lruvec
->zone
!= zone
))
1389 lruvec
->zone
= zone
;
1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395 * @lruvec: mem_cgroup per zone lru vector
1396 * @lru: index of lru list the page is sitting on
1397 * @nr_pages: positive when adding or negative when removing
1399 * This function must be called when a page is added to or removed from an
1402 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1405 struct mem_cgroup_per_zone
*mz
;
1406 unsigned long *lru_size
;
1408 if (mem_cgroup_disabled())
1411 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1412 lru_size
= mz
->lru_size
+ lru
;
1413 *lru_size
+= nr_pages
;
1414 VM_BUG_ON((long)(*lru_size
) < 0);
1418 * Checks whether given mem is same or in the root_mem_cgroup's
1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1422 struct mem_cgroup
*memcg
)
1424 if (root_memcg
== memcg
)
1426 if (!root_memcg
->use_hierarchy
|| !memcg
)
1428 return css_is_ancestor(&memcg
->css
, &root_memcg
->css
);
1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1432 struct mem_cgroup
*memcg
)
1437 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1442 bool task_in_mem_cgroup(struct task_struct
*task
,
1443 const struct mem_cgroup
*memcg
)
1445 struct mem_cgroup
*curr
= NULL
;
1446 struct task_struct
*p
;
1449 p
= find_lock_task_mm(task
);
1451 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1455 * All threads may have already detached their mm's, but the oom
1456 * killer still needs to detect if they have already been oom
1457 * killed to prevent needlessly killing additional tasks.
1460 curr
= mem_cgroup_from_task(task
);
1462 css_get(&curr
->css
);
1468 * We should check use_hierarchy of "memcg" not "curr". Because checking
1469 * use_hierarchy of "curr" here make this function true if hierarchy is
1470 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1471 * hierarchy(even if use_hierarchy is disabled in "memcg").
1473 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1474 css_put(&curr
->css
);
1478 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1480 unsigned long inactive_ratio
;
1481 unsigned long inactive
;
1482 unsigned long active
;
1485 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1486 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1488 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1490 inactive_ratio
= int_sqrt(10 * gb
);
1494 return inactive
* inactive_ratio
< active
;
1497 #define mem_cgroup_from_res_counter(counter, member) \
1498 container_of(counter, struct mem_cgroup, member)
1501 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1502 * @memcg: the memory cgroup
1504 * Returns the maximum amount of memory @mem can be charged with, in
1507 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1509 unsigned long long margin
;
1511 margin
= res_counter_margin(&memcg
->res
);
1512 if (do_swap_account
)
1513 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1514 return margin
>> PAGE_SHIFT
;
1517 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1520 if (!css_parent(&memcg
->css
))
1521 return vm_swappiness
;
1523 return memcg
->swappiness
;
1527 * memcg->moving_account is used for checking possibility that some thread is
1528 * calling move_account(). When a thread on CPU-A starts moving pages under
1529 * a memcg, other threads should check memcg->moving_account under
1530 * rcu_read_lock(), like this:
1534 * memcg->moving_account+1 if (memcg->mocing_account)
1536 * synchronize_rcu() update something.
1541 /* for quick checking without looking up memcg */
1542 atomic_t memcg_moving __read_mostly
;
1544 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1546 atomic_inc(&memcg_moving
);
1547 atomic_inc(&memcg
->moving_account
);
1551 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1554 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1555 * We check NULL in callee rather than caller.
1558 atomic_dec(&memcg_moving
);
1559 atomic_dec(&memcg
->moving_account
);
1564 * 2 routines for checking "mem" is under move_account() or not.
1566 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1567 * is used for avoiding races in accounting. If true,
1568 * pc->mem_cgroup may be overwritten.
1570 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1571 * under hierarchy of moving cgroups. This is for
1572 * waiting at hith-memory prressure caused by "move".
1575 static bool mem_cgroup_stolen(struct mem_cgroup
*memcg
)
1577 VM_BUG_ON(!rcu_read_lock_held());
1578 return atomic_read(&memcg
->moving_account
) > 0;
1581 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1583 struct mem_cgroup
*from
;
1584 struct mem_cgroup
*to
;
1587 * Unlike task_move routines, we access mc.to, mc.from not under
1588 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1590 spin_lock(&mc
.lock
);
1596 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1597 || mem_cgroup_same_or_subtree(memcg
, to
);
1599 spin_unlock(&mc
.lock
);
1603 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1605 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1606 if (mem_cgroup_under_move(memcg
)) {
1608 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1609 /* moving charge context might have finished. */
1612 finish_wait(&mc
.waitq
, &wait
);
1620 * Take this lock when
1621 * - a code tries to modify page's memcg while it's USED.
1622 * - a code tries to modify page state accounting in a memcg.
1623 * see mem_cgroup_stolen(), too.
1625 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1626 unsigned long *flags
)
1628 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1631 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1632 unsigned long *flags
)
1634 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1637 #define K(x) ((x) << (PAGE_SHIFT-10))
1639 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1640 * @memcg: The memory cgroup that went over limit
1641 * @p: Task that is going to be killed
1643 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1648 struct cgroup
*task_cgrp
;
1649 struct cgroup
*mem_cgrp
;
1651 * Need a buffer in BSS, can't rely on allocations. The code relies
1652 * on the assumption that OOM is serialized for memory controller.
1653 * If this assumption is broken, revisit this code.
1655 static char memcg_name
[PATH_MAX
];
1657 struct mem_cgroup
*iter
;
1665 mem_cgrp
= memcg
->css
.cgroup
;
1666 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1668 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1671 * Unfortunately, we are unable to convert to a useful name
1672 * But we'll still print out the usage information
1679 pr_info("Task in %s killed", memcg_name
);
1682 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1690 * Continues from above, so we don't need an KERN_ level
1692 pr_cont(" as a result of limit of %s\n", memcg_name
);
1695 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1696 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1697 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1698 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1699 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1700 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1701 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1702 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1703 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1704 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1705 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1706 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1708 for_each_mem_cgroup_tree(iter
, memcg
) {
1709 pr_info("Memory cgroup stats");
1712 ret
= cgroup_path(iter
->css
.cgroup
, memcg_name
, PATH_MAX
);
1714 pr_cont(" for %s", memcg_name
);
1718 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1719 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1721 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1722 K(mem_cgroup_read_stat(iter
, i
)));
1725 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1726 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1727 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1734 * This function returns the number of memcg under hierarchy tree. Returns
1735 * 1(self count) if no children.
1737 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1740 struct mem_cgroup
*iter
;
1742 for_each_mem_cgroup_tree(iter
, memcg
)
1748 * Return the memory (and swap, if configured) limit for a memcg.
1750 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1754 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1757 * Do not consider swap space if we cannot swap due to swappiness
1759 if (mem_cgroup_swappiness(memcg
)) {
1762 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1763 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1766 * If memsw is finite and limits the amount of swap space
1767 * available to this memcg, return that limit.
1769 limit
= min(limit
, memsw
);
1775 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1778 struct mem_cgroup
*iter
;
1779 unsigned long chosen_points
= 0;
1780 unsigned long totalpages
;
1781 unsigned int points
= 0;
1782 struct task_struct
*chosen
= NULL
;
1785 * If current has a pending SIGKILL or is exiting, then automatically
1786 * select it. The goal is to allow it to allocate so that it may
1787 * quickly exit and free its memory.
1789 if (fatal_signal_pending(current
) || current
->flags
& PF_EXITING
) {
1790 set_thread_flag(TIF_MEMDIE
);
1794 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1795 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1796 for_each_mem_cgroup_tree(iter
, memcg
) {
1797 struct css_task_iter it
;
1798 struct task_struct
*task
;
1800 css_task_iter_start(&iter
->css
, &it
);
1801 while ((task
= css_task_iter_next(&it
))) {
1802 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1804 case OOM_SCAN_SELECT
:
1806 put_task_struct(chosen
);
1808 chosen_points
= ULONG_MAX
;
1809 get_task_struct(chosen
);
1811 case OOM_SCAN_CONTINUE
:
1813 case OOM_SCAN_ABORT
:
1814 css_task_iter_end(&it
);
1815 mem_cgroup_iter_break(memcg
, iter
);
1817 put_task_struct(chosen
);
1822 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1823 if (!points
|| points
< chosen_points
)
1825 /* Prefer thread group leaders for display purposes */
1826 if (points
== chosen_points
&&
1827 thread_group_leader(chosen
))
1831 put_task_struct(chosen
);
1833 chosen_points
= points
;
1834 get_task_struct(chosen
);
1836 css_task_iter_end(&it
);
1841 points
= chosen_points
* 1000 / totalpages
;
1842 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1843 NULL
, "Memory cgroup out of memory");
1846 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1848 unsigned long flags
)
1850 unsigned long total
= 0;
1851 bool noswap
= false;
1854 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1856 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1859 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1861 drain_all_stock_async(memcg
);
1862 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1864 * Allow limit shrinkers, which are triggered directly
1865 * by userspace, to catch signals and stop reclaim
1866 * after minimal progress, regardless of the margin.
1868 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1870 if (mem_cgroup_margin(memcg
))
1873 * If nothing was reclaimed after two attempts, there
1874 * may be no reclaimable pages in this hierarchy.
1883 * test_mem_cgroup_node_reclaimable
1884 * @memcg: the target memcg
1885 * @nid: the node ID to be checked.
1886 * @noswap : specify true here if the user wants flle only information.
1888 * This function returns whether the specified memcg contains any
1889 * reclaimable pages on a node. Returns true if there are any reclaimable
1890 * pages in the node.
1892 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1893 int nid
, bool noswap
)
1895 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1897 if (noswap
|| !total_swap_pages
)
1899 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1904 #if MAX_NUMNODES > 1
1907 * Always updating the nodemask is not very good - even if we have an empty
1908 * list or the wrong list here, we can start from some node and traverse all
1909 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1912 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1916 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1917 * pagein/pageout changes since the last update.
1919 if (!atomic_read(&memcg
->numainfo_events
))
1921 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1924 /* make a nodemask where this memcg uses memory from */
1925 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1927 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1929 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1930 node_clear(nid
, memcg
->scan_nodes
);
1933 atomic_set(&memcg
->numainfo_events
, 0);
1934 atomic_set(&memcg
->numainfo_updating
, 0);
1938 * Selecting a node where we start reclaim from. Because what we need is just
1939 * reducing usage counter, start from anywhere is O,K. Considering
1940 * memory reclaim from current node, there are pros. and cons.
1942 * Freeing memory from current node means freeing memory from a node which
1943 * we'll use or we've used. So, it may make LRU bad. And if several threads
1944 * hit limits, it will see a contention on a node. But freeing from remote
1945 * node means more costs for memory reclaim because of memory latency.
1947 * Now, we use round-robin. Better algorithm is welcomed.
1949 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1953 mem_cgroup_may_update_nodemask(memcg
);
1954 node
= memcg
->last_scanned_node
;
1956 node
= next_node(node
, memcg
->scan_nodes
);
1957 if (node
== MAX_NUMNODES
)
1958 node
= first_node(memcg
->scan_nodes
);
1960 * We call this when we hit limit, not when pages are added to LRU.
1961 * No LRU may hold pages because all pages are UNEVICTABLE or
1962 * memcg is too small and all pages are not on LRU. In that case,
1963 * we use curret node.
1965 if (unlikely(node
== MAX_NUMNODES
))
1966 node
= numa_node_id();
1968 memcg
->last_scanned_node
= node
;
1973 * Check all nodes whether it contains reclaimable pages or not.
1974 * For quick scan, we make use of scan_nodes. This will allow us to skip
1975 * unused nodes. But scan_nodes is lazily updated and may not cotain
1976 * enough new information. We need to do double check.
1978 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1983 * quick check...making use of scan_node.
1984 * We can skip unused nodes.
1986 if (!nodes_empty(memcg
->scan_nodes
)) {
1987 for (nid
= first_node(memcg
->scan_nodes
);
1989 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1991 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1996 * Check rest of nodes.
1998 for_each_node_state(nid
, N_MEMORY
) {
1999 if (node_isset(nid
, memcg
->scan_nodes
))
2001 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
2008 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
2013 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
2015 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
2019 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
2022 unsigned long *total_scanned
)
2024 struct mem_cgroup
*victim
= NULL
;
2027 unsigned long excess
;
2028 unsigned long nr_scanned
;
2029 struct mem_cgroup_reclaim_cookie reclaim
= {
2034 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
2037 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
2042 * If we have not been able to reclaim
2043 * anything, it might because there are
2044 * no reclaimable pages under this hierarchy
2049 * We want to do more targeted reclaim.
2050 * excess >> 2 is not to excessive so as to
2051 * reclaim too much, nor too less that we keep
2052 * coming back to reclaim from this cgroup
2054 if (total
>= (excess
>> 2) ||
2055 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
2060 if (!mem_cgroup_reclaimable(victim
, false))
2062 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
2064 *total_scanned
+= nr_scanned
;
2065 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
2068 mem_cgroup_iter_break(root_memcg
, victim
);
2072 #ifdef CONFIG_LOCKDEP
2073 static struct lockdep_map memcg_oom_lock_dep_map
= {
2074 .name
= "memcg_oom_lock",
2078 static DEFINE_SPINLOCK(memcg_oom_lock
);
2081 * Check OOM-Killer is already running under our hierarchy.
2082 * If someone is running, return false.
2084 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
2086 struct mem_cgroup
*iter
, *failed
= NULL
;
2088 spin_lock(&memcg_oom_lock
);
2090 for_each_mem_cgroup_tree(iter
, memcg
) {
2091 if (iter
->oom_lock
) {
2093 * this subtree of our hierarchy is already locked
2094 * so we cannot give a lock.
2097 mem_cgroup_iter_break(memcg
, iter
);
2100 iter
->oom_lock
= true;
2105 * OK, we failed to lock the whole subtree so we have
2106 * to clean up what we set up to the failing subtree
2108 for_each_mem_cgroup_tree(iter
, memcg
) {
2109 if (iter
== failed
) {
2110 mem_cgroup_iter_break(memcg
, iter
);
2113 iter
->oom_lock
= false;
2116 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
2118 spin_unlock(&memcg_oom_lock
);
2123 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
2125 struct mem_cgroup
*iter
;
2127 spin_lock(&memcg_oom_lock
);
2128 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
2129 for_each_mem_cgroup_tree(iter
, memcg
)
2130 iter
->oom_lock
= false;
2131 spin_unlock(&memcg_oom_lock
);
2134 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
2136 struct mem_cgroup
*iter
;
2138 for_each_mem_cgroup_tree(iter
, memcg
)
2139 atomic_inc(&iter
->under_oom
);
2142 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
2144 struct mem_cgroup
*iter
;
2147 * When a new child is created while the hierarchy is under oom,
2148 * mem_cgroup_oom_lock() may not be called. We have to use
2149 * atomic_add_unless() here.
2151 for_each_mem_cgroup_tree(iter
, memcg
)
2152 atomic_add_unless(&iter
->under_oom
, -1, 0);
2155 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2157 struct oom_wait_info
{
2158 struct mem_cgroup
*memcg
;
2162 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2163 unsigned mode
, int sync
, void *arg
)
2165 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2166 struct mem_cgroup
*oom_wait_memcg
;
2167 struct oom_wait_info
*oom_wait_info
;
2169 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2170 oom_wait_memcg
= oom_wait_info
->memcg
;
2173 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2174 * Then we can use css_is_ancestor without taking care of RCU.
2176 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2177 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2179 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2182 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2184 atomic_inc(&memcg
->oom_wakeups
);
2185 /* for filtering, pass "memcg" as argument. */
2186 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2189 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2191 if (memcg
&& atomic_read(&memcg
->under_oom
))
2192 memcg_wakeup_oom(memcg
);
2195 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
2197 if (!current
->memcg_oom
.may_oom
)
2200 * We are in the middle of the charge context here, so we
2201 * don't want to block when potentially sitting on a callstack
2202 * that holds all kinds of filesystem and mm locks.
2204 * Also, the caller may handle a failed allocation gracefully
2205 * (like optional page cache readahead) and so an OOM killer
2206 * invocation might not even be necessary.
2208 * That's why we don't do anything here except remember the
2209 * OOM context and then deal with it at the end of the page
2210 * fault when the stack is unwound, the locks are released,
2211 * and when we know whether the fault was overall successful.
2213 css_get(&memcg
->css
);
2214 current
->memcg_oom
.memcg
= memcg
;
2215 current
->memcg_oom
.gfp_mask
= mask
;
2216 current
->memcg_oom
.order
= order
;
2220 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2221 * @handle: actually kill/wait or just clean up the OOM state
2223 * This has to be called at the end of a page fault if the memcg OOM
2224 * handler was enabled.
2226 * Memcg supports userspace OOM handling where failed allocations must
2227 * sleep on a waitqueue until the userspace task resolves the
2228 * situation. Sleeping directly in the charge context with all kinds
2229 * of locks held is not a good idea, instead we remember an OOM state
2230 * in the task and mem_cgroup_oom_synchronize() has to be called at
2231 * the end of the page fault to complete the OOM handling.
2233 * Returns %true if an ongoing memcg OOM situation was detected and
2234 * completed, %false otherwise.
2236 bool mem_cgroup_oom_synchronize(bool handle
)
2238 struct mem_cgroup
*memcg
= current
->memcg_oom
.memcg
;
2239 struct oom_wait_info owait
;
2242 /* OOM is global, do not handle */
2249 owait
.memcg
= memcg
;
2250 owait
.wait
.flags
= 0;
2251 owait
.wait
.func
= memcg_oom_wake_function
;
2252 owait
.wait
.private = current
;
2253 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2255 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2256 mem_cgroup_mark_under_oom(memcg
);
2258 locked
= mem_cgroup_oom_trylock(memcg
);
2261 mem_cgroup_oom_notify(memcg
);
2263 if (locked
&& !memcg
->oom_kill_disable
) {
2264 mem_cgroup_unmark_under_oom(memcg
);
2265 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2266 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom
.gfp_mask
,
2267 current
->memcg_oom
.order
);
2270 mem_cgroup_unmark_under_oom(memcg
);
2271 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2275 mem_cgroup_oom_unlock(memcg
);
2277 * There is no guarantee that an OOM-lock contender
2278 * sees the wakeups triggered by the OOM kill
2279 * uncharges. Wake any sleepers explicitely.
2281 memcg_oom_recover(memcg
);
2284 current
->memcg_oom
.memcg
= NULL
;
2285 css_put(&memcg
->css
);
2290 * Currently used to update mapped file statistics, but the routine can be
2291 * generalized to update other statistics as well.
2293 * Notes: Race condition
2295 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2296 * it tends to be costly. But considering some conditions, we doesn't need
2297 * to do so _always_.
2299 * Considering "charge", lock_page_cgroup() is not required because all
2300 * file-stat operations happen after a page is attached to radix-tree. There
2301 * are no race with "charge".
2303 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2304 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2305 * if there are race with "uncharge". Statistics itself is properly handled
2308 * Considering "move", this is an only case we see a race. To make the race
2309 * small, we check mm->moving_account and detect there are possibility of race
2310 * If there is, we take a lock.
2313 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
2314 bool *locked
, unsigned long *flags
)
2316 struct mem_cgroup
*memcg
;
2317 struct page_cgroup
*pc
;
2319 pc
= lookup_page_cgroup(page
);
2321 memcg
= pc
->mem_cgroup
;
2322 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2325 * If this memory cgroup is not under account moving, we don't
2326 * need to take move_lock_mem_cgroup(). Because we already hold
2327 * rcu_read_lock(), any calls to move_account will be delayed until
2328 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2330 if (!mem_cgroup_stolen(memcg
))
2333 move_lock_mem_cgroup(memcg
, flags
);
2334 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2335 move_unlock_mem_cgroup(memcg
, flags
);
2341 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
2343 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2346 * It's guaranteed that pc->mem_cgroup never changes while
2347 * lock is held because a routine modifies pc->mem_cgroup
2348 * should take move_lock_mem_cgroup().
2350 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
2353 void mem_cgroup_update_page_stat(struct page
*page
,
2354 enum mem_cgroup_stat_index idx
, int val
)
2356 struct mem_cgroup
*memcg
;
2357 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2358 unsigned long uninitialized_var(flags
);
2360 if (mem_cgroup_disabled())
2363 VM_BUG_ON(!rcu_read_lock_held());
2364 memcg
= pc
->mem_cgroup
;
2365 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2368 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2372 * size of first charge trial. "32" comes from vmscan.c's magic value.
2373 * TODO: maybe necessary to use big numbers in big irons.
2375 #define CHARGE_BATCH 32U
2376 struct memcg_stock_pcp
{
2377 struct mem_cgroup
*cached
; /* this never be root cgroup */
2378 unsigned int nr_pages
;
2379 struct work_struct work
;
2380 unsigned long flags
;
2381 #define FLUSHING_CACHED_CHARGE 0
2383 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2384 static DEFINE_MUTEX(percpu_charge_mutex
);
2387 * consume_stock: Try to consume stocked charge on this cpu.
2388 * @memcg: memcg to consume from.
2389 * @nr_pages: how many pages to charge.
2391 * The charges will only happen if @memcg matches the current cpu's memcg
2392 * stock, and at least @nr_pages are available in that stock. Failure to
2393 * service an allocation will refill the stock.
2395 * returns true if successful, false otherwise.
2397 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2399 struct memcg_stock_pcp
*stock
;
2402 if (nr_pages
> CHARGE_BATCH
)
2405 stock
= &get_cpu_var(memcg_stock
);
2406 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2407 stock
->nr_pages
-= nr_pages
;
2408 else /* need to call res_counter_charge */
2410 put_cpu_var(memcg_stock
);
2415 * Returns stocks cached in percpu to res_counter and reset cached information.
2417 static void drain_stock(struct memcg_stock_pcp
*stock
)
2419 struct mem_cgroup
*old
= stock
->cached
;
2421 if (stock
->nr_pages
) {
2422 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2424 res_counter_uncharge(&old
->res
, bytes
);
2425 if (do_swap_account
)
2426 res_counter_uncharge(&old
->memsw
, bytes
);
2427 stock
->nr_pages
= 0;
2429 stock
->cached
= NULL
;
2433 * This must be called under preempt disabled or must be called by
2434 * a thread which is pinned to local cpu.
2436 static void drain_local_stock(struct work_struct
*dummy
)
2438 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2440 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2443 static void __init
memcg_stock_init(void)
2447 for_each_possible_cpu(cpu
) {
2448 struct memcg_stock_pcp
*stock
=
2449 &per_cpu(memcg_stock
, cpu
);
2450 INIT_WORK(&stock
->work
, drain_local_stock
);
2455 * Cache charges(val) which is from res_counter, to local per_cpu area.
2456 * This will be consumed by consume_stock() function, later.
2458 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2460 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2462 if (stock
->cached
!= memcg
) { /* reset if necessary */
2464 stock
->cached
= memcg
;
2466 stock
->nr_pages
+= nr_pages
;
2467 put_cpu_var(memcg_stock
);
2471 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2472 * of the hierarchy under it. sync flag says whether we should block
2473 * until the work is done.
2475 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2479 /* Notify other cpus that system-wide "drain" is running */
2482 for_each_online_cpu(cpu
) {
2483 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2484 struct mem_cgroup
*memcg
;
2486 memcg
= stock
->cached
;
2487 if (!memcg
|| !stock
->nr_pages
)
2489 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2491 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2493 drain_local_stock(&stock
->work
);
2495 schedule_work_on(cpu
, &stock
->work
);
2503 for_each_online_cpu(cpu
) {
2504 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2505 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2506 flush_work(&stock
->work
);
2513 * Tries to drain stocked charges in other cpus. This function is asynchronous
2514 * and just put a work per cpu for draining localy on each cpu. Caller can
2515 * expects some charges will be back to res_counter later but cannot wait for
2518 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2521 * If someone calls draining, avoid adding more kworker runs.
2523 if (!mutex_trylock(&percpu_charge_mutex
))
2525 drain_all_stock(root_memcg
, false);
2526 mutex_unlock(&percpu_charge_mutex
);
2529 /* This is a synchronous drain interface. */
2530 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2532 /* called when force_empty is called */
2533 mutex_lock(&percpu_charge_mutex
);
2534 drain_all_stock(root_memcg
, true);
2535 mutex_unlock(&percpu_charge_mutex
);
2539 * This function drains percpu counter value from DEAD cpu and
2540 * move it to local cpu. Note that this function can be preempted.
2542 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2546 spin_lock(&memcg
->pcp_counter_lock
);
2547 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2548 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2550 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2551 memcg
->nocpu_base
.count
[i
] += x
;
2553 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2554 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2556 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2557 memcg
->nocpu_base
.events
[i
] += x
;
2559 spin_unlock(&memcg
->pcp_counter_lock
);
2562 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2563 unsigned long action
,
2566 int cpu
= (unsigned long)hcpu
;
2567 struct memcg_stock_pcp
*stock
;
2568 struct mem_cgroup
*iter
;
2570 if (action
== CPU_ONLINE
)
2573 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2576 for_each_mem_cgroup(iter
)
2577 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2579 stock
= &per_cpu(memcg_stock
, cpu
);
2585 /* See __mem_cgroup_try_charge() for details */
2587 CHARGE_OK
, /* success */
2588 CHARGE_RETRY
, /* need to retry but retry is not bad */
2589 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2590 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2593 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2594 unsigned int nr_pages
, unsigned int min_pages
,
2597 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2598 struct mem_cgroup
*mem_over_limit
;
2599 struct res_counter
*fail_res
;
2600 unsigned long flags
= 0;
2603 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2606 if (!do_swap_account
)
2608 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2612 res_counter_uncharge(&memcg
->res
, csize
);
2613 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2614 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2616 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2618 * Never reclaim on behalf of optional batching, retry with a
2619 * single page instead.
2621 if (nr_pages
> min_pages
)
2622 return CHARGE_RETRY
;
2624 if (!(gfp_mask
& __GFP_WAIT
))
2625 return CHARGE_WOULDBLOCK
;
2627 if (gfp_mask
& __GFP_NORETRY
)
2628 return CHARGE_NOMEM
;
2630 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2631 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2632 return CHARGE_RETRY
;
2634 * Even though the limit is exceeded at this point, reclaim
2635 * may have been able to free some pages. Retry the charge
2636 * before killing the task.
2638 * Only for regular pages, though: huge pages are rather
2639 * unlikely to succeed so close to the limit, and we fall back
2640 * to regular pages anyway in case of failure.
2642 if (nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
) && ret
)
2643 return CHARGE_RETRY
;
2646 * At task move, charge accounts can be doubly counted. So, it's
2647 * better to wait until the end of task_move if something is going on.
2649 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2650 return CHARGE_RETRY
;
2653 mem_cgroup_oom(mem_over_limit
, gfp_mask
, get_order(csize
));
2655 return CHARGE_NOMEM
;
2659 * __mem_cgroup_try_charge() does
2660 * 1. detect memcg to be charged against from passed *mm and *ptr,
2661 * 2. update res_counter
2662 * 3. call memory reclaim if necessary.
2664 * In some special case, if the task is fatal, fatal_signal_pending() or
2665 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2666 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2667 * as possible without any hazards. 2: all pages should have a valid
2668 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2669 * pointer, that is treated as a charge to root_mem_cgroup.
2671 * So __mem_cgroup_try_charge() will return
2672 * 0 ... on success, filling *ptr with a valid memcg pointer.
2673 * -ENOMEM ... charge failure because of resource limits.
2674 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2676 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2677 * the oom-killer can be invoked.
2679 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2681 unsigned int nr_pages
,
2682 struct mem_cgroup
**ptr
,
2685 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2686 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2687 struct mem_cgroup
*memcg
= NULL
;
2691 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2692 * in system level. So, allow to go ahead dying process in addition to
2695 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2696 || fatal_signal_pending(current
)))
2699 if (unlikely(task_in_memcg_oom(current
)))
2702 if (gfp_mask
& __GFP_NOFAIL
)
2706 * We always charge the cgroup the mm_struct belongs to.
2707 * The mm_struct's mem_cgroup changes on task migration if the
2708 * thread group leader migrates. It's possible that mm is not
2709 * set, if so charge the root memcg (happens for pagecache usage).
2712 *ptr
= root_mem_cgroup
;
2714 if (*ptr
) { /* css should be a valid one */
2716 if (mem_cgroup_is_root(memcg
))
2718 if (consume_stock(memcg
, nr_pages
))
2720 css_get(&memcg
->css
);
2722 struct task_struct
*p
;
2725 p
= rcu_dereference(mm
->owner
);
2727 * Because we don't have task_lock(), "p" can exit.
2728 * In that case, "memcg" can point to root or p can be NULL with
2729 * race with swapoff. Then, we have small risk of mis-accouning.
2730 * But such kind of mis-account by race always happens because
2731 * we don't have cgroup_mutex(). It's overkill and we allo that
2733 * (*) swapoff at el will charge against mm-struct not against
2734 * task-struct. So, mm->owner can be NULL.
2736 memcg
= mem_cgroup_from_task(p
);
2738 memcg
= root_mem_cgroup
;
2739 if (mem_cgroup_is_root(memcg
)) {
2743 if (consume_stock(memcg
, nr_pages
)) {
2745 * It seems dagerous to access memcg without css_get().
2746 * But considering how consume_stok works, it's not
2747 * necessary. If consume_stock success, some charges
2748 * from this memcg are cached on this cpu. So, we
2749 * don't need to call css_get()/css_tryget() before
2750 * calling consume_stock().
2755 /* after here, we may be blocked. we need to get refcnt */
2756 if (!css_tryget(&memcg
->css
)) {
2764 bool invoke_oom
= oom
&& !nr_oom_retries
;
2766 /* If killed, bypass charge */
2767 if (fatal_signal_pending(current
)) {
2768 css_put(&memcg
->css
);
2772 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
,
2773 nr_pages
, invoke_oom
);
2777 case CHARGE_RETRY
: /* not in OOM situation but retry */
2779 css_put(&memcg
->css
);
2782 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2783 css_put(&memcg
->css
);
2785 case CHARGE_NOMEM
: /* OOM routine works */
2786 if (!oom
|| invoke_oom
) {
2787 css_put(&memcg
->css
);
2793 } while (ret
!= CHARGE_OK
);
2795 if (batch
> nr_pages
)
2796 refill_stock(memcg
, batch
- nr_pages
);
2797 css_put(&memcg
->css
);
2802 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2807 *ptr
= root_mem_cgroup
;
2812 * Somemtimes we have to undo a charge we got by try_charge().
2813 * This function is for that and do uncharge, put css's refcnt.
2814 * gotten by try_charge().
2816 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2817 unsigned int nr_pages
)
2819 if (!mem_cgroup_is_root(memcg
)) {
2820 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2822 res_counter_uncharge(&memcg
->res
, bytes
);
2823 if (do_swap_account
)
2824 res_counter_uncharge(&memcg
->memsw
, bytes
);
2829 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2830 * This is useful when moving usage to parent cgroup.
2832 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2833 unsigned int nr_pages
)
2835 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2837 if (mem_cgroup_is_root(memcg
))
2840 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2841 if (do_swap_account
)
2842 res_counter_uncharge_until(&memcg
->memsw
,
2843 memcg
->memsw
.parent
, bytes
);
2847 * A helper function to get mem_cgroup from ID. must be called under
2848 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2849 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2850 * called against removed memcg.)
2852 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2854 struct cgroup_subsys_state
*css
;
2856 /* ID 0 is unused ID */
2859 css
= css_lookup(&mem_cgroup_subsys
, id
);
2862 return mem_cgroup_from_css(css
);
2865 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2867 struct mem_cgroup
*memcg
= NULL
;
2868 struct page_cgroup
*pc
;
2872 VM_BUG_ON(!PageLocked(page
));
2874 pc
= lookup_page_cgroup(page
);
2875 lock_page_cgroup(pc
);
2876 if (PageCgroupUsed(pc
)) {
2877 memcg
= pc
->mem_cgroup
;
2878 if (memcg
&& !css_tryget(&memcg
->css
))
2880 } else if (PageSwapCache(page
)) {
2881 ent
.val
= page_private(page
);
2882 id
= lookup_swap_cgroup_id(ent
);
2884 memcg
= mem_cgroup_lookup(id
);
2885 if (memcg
&& !css_tryget(&memcg
->css
))
2889 unlock_page_cgroup(pc
);
2893 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2895 unsigned int nr_pages
,
2896 enum charge_type ctype
,
2899 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2900 struct zone
*uninitialized_var(zone
);
2901 struct lruvec
*lruvec
;
2902 bool was_on_lru
= false;
2905 lock_page_cgroup(pc
);
2906 VM_BUG_ON(PageCgroupUsed(pc
));
2908 * we don't need page_cgroup_lock about tail pages, becase they are not
2909 * accessed by any other context at this point.
2913 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2914 * may already be on some other mem_cgroup's LRU. Take care of it.
2917 zone
= page_zone(page
);
2918 spin_lock_irq(&zone
->lru_lock
);
2919 if (PageLRU(page
)) {
2920 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2922 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2927 pc
->mem_cgroup
= memcg
;
2929 * We access a page_cgroup asynchronously without lock_page_cgroup().
2930 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2931 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2932 * before USED bit, we need memory barrier here.
2933 * See mem_cgroup_add_lru_list(), etc.
2936 SetPageCgroupUsed(pc
);
2940 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2941 VM_BUG_ON(PageLRU(page
));
2943 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2945 spin_unlock_irq(&zone
->lru_lock
);
2948 if (ctype
== MEM_CGROUP_CHARGE_TYPE_ANON
)
2953 mem_cgroup_charge_statistics(memcg
, page
, anon
, nr_pages
);
2954 unlock_page_cgroup(pc
);
2957 * "charge_statistics" updated event counter. Then, check it.
2958 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2959 * if they exceeds softlimit.
2961 memcg_check_events(memcg
, page
);
2964 static DEFINE_MUTEX(set_limit_mutex
);
2966 #ifdef CONFIG_MEMCG_KMEM
2967 static inline bool memcg_can_account_kmem(struct mem_cgroup
*memcg
)
2969 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
) &&
2970 (memcg
->kmem_account_flags
& KMEM_ACCOUNTED_MASK
);
2974 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2975 * in the memcg_cache_params struct.
2977 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
2979 struct kmem_cache
*cachep
;
2981 VM_BUG_ON(p
->is_root_cache
);
2982 cachep
= p
->root_cache
;
2983 return cachep
->memcg_params
->memcg_caches
[memcg_cache_id(p
->memcg
)];
2986 #ifdef CONFIG_SLABINFO
2987 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state
*css
,
2988 struct cftype
*cft
, struct seq_file
*m
)
2990 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2991 struct memcg_cache_params
*params
;
2993 if (!memcg_can_account_kmem(memcg
))
2996 print_slabinfo_header(m
);
2998 mutex_lock(&memcg
->slab_caches_mutex
);
2999 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
3000 cache_show(memcg_params_to_cache(params
), m
);
3001 mutex_unlock(&memcg
->slab_caches_mutex
);
3007 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
3009 struct res_counter
*fail_res
;
3010 struct mem_cgroup
*_memcg
;
3014 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
3019 * Conditions under which we can wait for the oom_killer. Those are
3020 * the same conditions tested by the core page allocator
3022 may_oom
= (gfp
& __GFP_FS
) && !(gfp
& __GFP_NORETRY
);
3025 ret
= __mem_cgroup_try_charge(NULL
, gfp
, size
>> PAGE_SHIFT
,
3028 if (ret
== -EINTR
) {
3030 * __mem_cgroup_try_charge() chosed to bypass to root due to
3031 * OOM kill or fatal signal. Since our only options are to
3032 * either fail the allocation or charge it to this cgroup, do
3033 * it as a temporary condition. But we can't fail. From a
3034 * kmem/slab perspective, the cache has already been selected,
3035 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3038 * This condition will only trigger if the task entered
3039 * memcg_charge_kmem in a sane state, but was OOM-killed during
3040 * __mem_cgroup_try_charge() above. Tasks that were already
3041 * dying when the allocation triggers should have been already
3042 * directed to the root cgroup in memcontrol.h
3044 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
3045 if (do_swap_account
)
3046 res_counter_charge_nofail(&memcg
->memsw
, size
,
3050 res_counter_uncharge(&memcg
->kmem
, size
);
3055 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
3057 res_counter_uncharge(&memcg
->res
, size
);
3058 if (do_swap_account
)
3059 res_counter_uncharge(&memcg
->memsw
, size
);
3062 if (res_counter_uncharge(&memcg
->kmem
, size
))
3066 * Releases a reference taken in kmem_cgroup_css_offline in case
3067 * this last uncharge is racing with the offlining code or it is
3068 * outliving the memcg existence.
3070 * The memory barrier imposed by test&clear is paired with the
3071 * explicit one in memcg_kmem_mark_dead().
3073 if (memcg_kmem_test_and_clear_dead(memcg
))
3074 css_put(&memcg
->css
);
3077 void memcg_cache_list_add(struct mem_cgroup
*memcg
, struct kmem_cache
*cachep
)
3082 mutex_lock(&memcg
->slab_caches_mutex
);
3083 list_add(&cachep
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
3084 mutex_unlock(&memcg
->slab_caches_mutex
);
3088 * helper for acessing a memcg's index. It will be used as an index in the
3089 * child cache array in kmem_cache, and also to derive its name. This function
3090 * will return -1 when this is not a kmem-limited memcg.
3092 int memcg_cache_id(struct mem_cgroup
*memcg
)
3094 return memcg
? memcg
->kmemcg_id
: -1;
3098 * This ends up being protected by the set_limit mutex, during normal
3099 * operation, because that is its main call site.
3101 * But when we create a new cache, we can call this as well if its parent
3102 * is kmem-limited. That will have to hold set_limit_mutex as well.
3104 int memcg_update_cache_sizes(struct mem_cgroup
*memcg
)
3108 num
= ida_simple_get(&kmem_limited_groups
,
3109 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
3113 * After this point, kmem_accounted (that we test atomically in
3114 * the beginning of this conditional), is no longer 0. This
3115 * guarantees only one process will set the following boolean
3116 * to true. We don't need test_and_set because we're protected
3117 * by the set_limit_mutex anyway.
3119 memcg_kmem_set_activated(memcg
);
3121 ret
= memcg_update_all_caches(num
+1);
3123 ida_simple_remove(&kmem_limited_groups
, num
);
3124 memcg_kmem_clear_activated(memcg
);
3128 memcg
->kmemcg_id
= num
;
3129 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
3130 mutex_init(&memcg
->slab_caches_mutex
);
3134 static size_t memcg_caches_array_size(int num_groups
)
3137 if (num_groups
<= 0)
3140 size
= 2 * num_groups
;
3141 if (size
< MEMCG_CACHES_MIN_SIZE
)
3142 size
= MEMCG_CACHES_MIN_SIZE
;
3143 else if (size
> MEMCG_CACHES_MAX_SIZE
)
3144 size
= MEMCG_CACHES_MAX_SIZE
;
3150 * We should update the current array size iff all caches updates succeed. This
3151 * can only be done from the slab side. The slab mutex needs to be held when
3154 void memcg_update_array_size(int num
)
3156 if (num
> memcg_limited_groups_array_size
)
3157 memcg_limited_groups_array_size
= memcg_caches_array_size(num
);
3160 static void kmem_cache_destroy_work_func(struct work_struct
*w
);
3162 int memcg_update_cache_size(struct kmem_cache
*s
, int num_groups
)
3164 struct memcg_cache_params
*cur_params
= s
->memcg_params
;
3166 VM_BUG_ON(s
->memcg_params
&& !s
->memcg_params
->is_root_cache
);
3168 if (num_groups
> memcg_limited_groups_array_size
) {
3170 ssize_t size
= memcg_caches_array_size(num_groups
);
3172 size
*= sizeof(void *);
3173 size
+= offsetof(struct memcg_cache_params
, memcg_caches
);
3175 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3176 if (!s
->memcg_params
) {
3177 s
->memcg_params
= cur_params
;
3181 s
->memcg_params
->is_root_cache
= true;
3184 * There is the chance it will be bigger than
3185 * memcg_limited_groups_array_size, if we failed an allocation
3186 * in a cache, in which case all caches updated before it, will
3187 * have a bigger array.
3189 * But if that is the case, the data after
3190 * memcg_limited_groups_array_size is certainly unused
3192 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3193 if (!cur_params
->memcg_caches
[i
])
3195 s
->memcg_params
->memcg_caches
[i
] =
3196 cur_params
->memcg_caches
[i
];
3200 * Ideally, we would wait until all caches succeed, and only
3201 * then free the old one. But this is not worth the extra
3202 * pointer per-cache we'd have to have for this.
3204 * It is not a big deal if some caches are left with a size
3205 * bigger than the others. And all updates will reset this
3213 int memcg_register_cache(struct mem_cgroup
*memcg
, struct kmem_cache
*s
,
3214 struct kmem_cache
*root_cache
)
3218 if (!memcg_kmem_enabled())
3222 size
= offsetof(struct memcg_cache_params
, memcg_caches
);
3223 size
+= memcg_limited_groups_array_size
* sizeof(void *);
3225 size
= sizeof(struct memcg_cache_params
);
3227 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3228 if (!s
->memcg_params
)
3232 s
->memcg_params
->memcg
= memcg
;
3233 s
->memcg_params
->root_cache
= root_cache
;
3234 INIT_WORK(&s
->memcg_params
->destroy
,
3235 kmem_cache_destroy_work_func
);
3237 s
->memcg_params
->is_root_cache
= true;
3242 void memcg_release_cache(struct kmem_cache
*s
)
3244 struct kmem_cache
*root
;
3245 struct mem_cgroup
*memcg
;
3249 * This happens, for instance, when a root cache goes away before we
3252 if (!s
->memcg_params
)
3255 if (s
->memcg_params
->is_root_cache
)
3258 memcg
= s
->memcg_params
->memcg
;
3259 id
= memcg_cache_id(memcg
);
3261 root
= s
->memcg_params
->root_cache
;
3262 root
->memcg_params
->memcg_caches
[id
] = NULL
;
3264 mutex_lock(&memcg
->slab_caches_mutex
);
3265 list_del(&s
->memcg_params
->list
);
3266 mutex_unlock(&memcg
->slab_caches_mutex
);
3268 css_put(&memcg
->css
);
3270 kfree(s
->memcg_params
);
3274 * During the creation a new cache, we need to disable our accounting mechanism
3275 * altogether. This is true even if we are not creating, but rather just
3276 * enqueing new caches to be created.
3278 * This is because that process will trigger allocations; some visible, like
3279 * explicit kmallocs to auxiliary data structures, name strings and internal
3280 * cache structures; some well concealed, like INIT_WORK() that can allocate
3281 * objects during debug.
3283 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3284 * to it. This may not be a bounded recursion: since the first cache creation
3285 * failed to complete (waiting on the allocation), we'll just try to create the
3286 * cache again, failing at the same point.
3288 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3289 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3290 * inside the following two functions.
3292 static inline void memcg_stop_kmem_account(void)
3294 VM_BUG_ON(!current
->mm
);
3295 current
->memcg_kmem_skip_account
++;
3298 static inline void memcg_resume_kmem_account(void)
3300 VM_BUG_ON(!current
->mm
);
3301 current
->memcg_kmem_skip_account
--;
3304 static void kmem_cache_destroy_work_func(struct work_struct
*w
)
3306 struct kmem_cache
*cachep
;
3307 struct memcg_cache_params
*p
;
3309 p
= container_of(w
, struct memcg_cache_params
, destroy
);
3311 cachep
= memcg_params_to_cache(p
);
3314 * If we get down to 0 after shrink, we could delete right away.
3315 * However, memcg_release_pages() already puts us back in the workqueue
3316 * in that case. If we proceed deleting, we'll get a dangling
3317 * reference, and removing the object from the workqueue in that case
3318 * is unnecessary complication. We are not a fast path.
3320 * Note that this case is fundamentally different from racing with
3321 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3322 * kmem_cache_shrink, not only we would be reinserting a dead cache
3323 * into the queue, but doing so from inside the worker racing to
3326 * So if we aren't down to zero, we'll just schedule a worker and try
3329 if (atomic_read(&cachep
->memcg_params
->nr_pages
) != 0) {
3330 kmem_cache_shrink(cachep
);
3331 if (atomic_read(&cachep
->memcg_params
->nr_pages
) == 0)
3334 kmem_cache_destroy(cachep
);
3337 void mem_cgroup_destroy_cache(struct kmem_cache
*cachep
)
3339 if (!cachep
->memcg_params
->dead
)
3343 * There are many ways in which we can get here.
3345 * We can get to a memory-pressure situation while the delayed work is
3346 * still pending to run. The vmscan shrinkers can then release all
3347 * cache memory and get us to destruction. If this is the case, we'll
3348 * be executed twice, which is a bug (the second time will execute over
3349 * bogus data). In this case, cancelling the work should be fine.
3351 * But we can also get here from the worker itself, if
3352 * kmem_cache_shrink is enough to shake all the remaining objects and
3353 * get the page count to 0. In this case, we'll deadlock if we try to
3354 * cancel the work (the worker runs with an internal lock held, which
3355 * is the same lock we would hold for cancel_work_sync().)
3357 * Since we can't possibly know who got us here, just refrain from
3358 * running if there is already work pending
3360 if (work_pending(&cachep
->memcg_params
->destroy
))
3363 * We have to defer the actual destroying to a workqueue, because
3364 * we might currently be in a context that cannot sleep.
3366 schedule_work(&cachep
->memcg_params
->destroy
);
3370 * This lock protects updaters, not readers. We want readers to be as fast as
3371 * they can, and they will either see NULL or a valid cache value. Our model
3372 * allow them to see NULL, in which case the root memcg will be selected.
3374 * We need this lock because multiple allocations to the same cache from a non
3375 * will span more than one worker. Only one of them can create the cache.
3377 static DEFINE_MUTEX(memcg_cache_mutex
);
3380 * Called with memcg_cache_mutex held
3382 static struct kmem_cache
*kmem_cache_dup(struct mem_cgroup
*memcg
,
3383 struct kmem_cache
*s
)
3385 struct kmem_cache
*new;
3386 static char *tmp_name
= NULL
;
3388 lockdep_assert_held(&memcg_cache_mutex
);
3391 * kmem_cache_create_memcg duplicates the given name and
3392 * cgroup_name for this name requires RCU context.
3393 * This static temporary buffer is used to prevent from
3394 * pointless shortliving allocation.
3397 tmp_name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3403 snprintf(tmp_name
, PATH_MAX
, "%s(%d:%s)", s
->name
,
3404 memcg_cache_id(memcg
), cgroup_name(memcg
->css
.cgroup
));
3407 new = kmem_cache_create_memcg(memcg
, tmp_name
, s
->object_size
, s
->align
,
3408 (s
->flags
& ~SLAB_PANIC
), s
->ctor
, s
);
3411 new->allocflags
|= __GFP_KMEMCG
;
3416 static struct kmem_cache
*memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
3417 struct kmem_cache
*cachep
)
3419 struct kmem_cache
*new_cachep
;
3422 BUG_ON(!memcg_can_account_kmem(memcg
));
3424 idx
= memcg_cache_id(memcg
);
3426 mutex_lock(&memcg_cache_mutex
);
3427 new_cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3429 css_put(&memcg
->css
);
3433 new_cachep
= kmem_cache_dup(memcg
, cachep
);
3434 if (new_cachep
== NULL
) {
3435 new_cachep
= cachep
;
3436 css_put(&memcg
->css
);
3440 atomic_set(&new_cachep
->memcg_params
->nr_pages
, 0);
3442 cachep
->memcg_params
->memcg_caches
[idx
] = new_cachep
;
3444 * the readers won't lock, make sure everybody sees the updated value,
3445 * so they won't put stuff in the queue again for no reason
3449 mutex_unlock(&memcg_cache_mutex
);
3453 void kmem_cache_destroy_memcg_children(struct kmem_cache
*s
)
3455 struct kmem_cache
*c
;
3458 if (!s
->memcg_params
)
3460 if (!s
->memcg_params
->is_root_cache
)
3464 * If the cache is being destroyed, we trust that there is no one else
3465 * requesting objects from it. Even if there are, the sanity checks in
3466 * kmem_cache_destroy should caught this ill-case.
3468 * Still, we don't want anyone else freeing memcg_caches under our
3469 * noses, which can happen if a new memcg comes to life. As usual,
3470 * we'll take the set_limit_mutex to protect ourselves against this.
3472 mutex_lock(&set_limit_mutex
);
3473 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3474 c
= s
->memcg_params
->memcg_caches
[i
];
3479 * We will now manually delete the caches, so to avoid races
3480 * we need to cancel all pending destruction workers and
3481 * proceed with destruction ourselves.
3483 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3484 * and that could spawn the workers again: it is likely that
3485 * the cache still have active pages until this very moment.
3486 * This would lead us back to mem_cgroup_destroy_cache.
3488 * But that will not execute at all if the "dead" flag is not
3489 * set, so flip it down to guarantee we are in control.
3491 c
->memcg_params
->dead
= false;
3492 cancel_work_sync(&c
->memcg_params
->destroy
);
3493 kmem_cache_destroy(c
);
3495 mutex_unlock(&set_limit_mutex
);
3498 struct create_work
{
3499 struct mem_cgroup
*memcg
;
3500 struct kmem_cache
*cachep
;
3501 struct work_struct work
;
3504 static void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3506 struct kmem_cache
*cachep
;
3507 struct memcg_cache_params
*params
;
3509 if (!memcg_kmem_is_active(memcg
))
3512 mutex_lock(&memcg
->slab_caches_mutex
);
3513 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
) {
3514 cachep
= memcg_params_to_cache(params
);
3515 cachep
->memcg_params
->dead
= true;
3516 schedule_work(&cachep
->memcg_params
->destroy
);
3518 mutex_unlock(&memcg
->slab_caches_mutex
);
3521 static void memcg_create_cache_work_func(struct work_struct
*w
)
3523 struct create_work
*cw
;
3525 cw
= container_of(w
, struct create_work
, work
);
3526 memcg_create_kmem_cache(cw
->memcg
, cw
->cachep
);
3531 * Enqueue the creation of a per-memcg kmem_cache.
3533 static void __memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3534 struct kmem_cache
*cachep
)
3536 struct create_work
*cw
;
3538 cw
= kmalloc(sizeof(struct create_work
), GFP_NOWAIT
);
3540 css_put(&memcg
->css
);
3545 cw
->cachep
= cachep
;
3547 INIT_WORK(&cw
->work
, memcg_create_cache_work_func
);
3548 schedule_work(&cw
->work
);
3551 static void memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3552 struct kmem_cache
*cachep
)
3555 * We need to stop accounting when we kmalloc, because if the
3556 * corresponding kmalloc cache is not yet created, the first allocation
3557 * in __memcg_create_cache_enqueue will recurse.
3559 * However, it is better to enclose the whole function. Depending on
3560 * the debugging options enabled, INIT_WORK(), for instance, can
3561 * trigger an allocation. This too, will make us recurse. Because at
3562 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3563 * the safest choice is to do it like this, wrapping the whole function.
3565 memcg_stop_kmem_account();
3566 __memcg_create_cache_enqueue(memcg
, cachep
);
3567 memcg_resume_kmem_account();
3570 * Return the kmem_cache we're supposed to use for a slab allocation.
3571 * We try to use the current memcg's version of the cache.
3573 * If the cache does not exist yet, if we are the first user of it,
3574 * we either create it immediately, if possible, or create it asynchronously
3576 * In the latter case, we will let the current allocation go through with
3577 * the original cache.
3579 * Can't be called in interrupt context or from kernel threads.
3580 * This function needs to be called with rcu_read_lock() held.
3582 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3585 struct mem_cgroup
*memcg
;
3588 VM_BUG_ON(!cachep
->memcg_params
);
3589 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3591 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3595 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3597 if (!memcg_can_account_kmem(memcg
))
3600 idx
= memcg_cache_id(memcg
);
3603 * barrier to mare sure we're always seeing the up to date value. The
3604 * code updating memcg_caches will issue a write barrier to match this.
3606 read_barrier_depends();
3607 if (likely(cachep
->memcg_params
->memcg_caches
[idx
])) {
3608 cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3612 /* The corresponding put will be done in the workqueue. */
3613 if (!css_tryget(&memcg
->css
))
3618 * If we are in a safe context (can wait, and not in interrupt
3619 * context), we could be be predictable and return right away.
3620 * This would guarantee that the allocation being performed
3621 * already belongs in the new cache.
3623 * However, there are some clashes that can arrive from locking.
3624 * For instance, because we acquire the slab_mutex while doing
3625 * kmem_cache_dup, this means no further allocation could happen
3626 * with the slab_mutex held.
3628 * Also, because cache creation issue get_online_cpus(), this
3629 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3630 * that ends up reversed during cpu hotplug. (cpuset allocates
3631 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3632 * better to defer everything.
3634 memcg_create_cache_enqueue(memcg
, cachep
);
3640 EXPORT_SYMBOL(__memcg_kmem_get_cache
);
3643 * We need to verify if the allocation against current->mm->owner's memcg is
3644 * possible for the given order. But the page is not allocated yet, so we'll
3645 * need a further commit step to do the final arrangements.
3647 * It is possible for the task to switch cgroups in this mean time, so at
3648 * commit time, we can't rely on task conversion any longer. We'll then use
3649 * the handle argument to return to the caller which cgroup we should commit
3650 * against. We could also return the memcg directly and avoid the pointer
3651 * passing, but a boolean return value gives better semantics considering
3652 * the compiled-out case as well.
3654 * Returning true means the allocation is possible.
3657 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3659 struct mem_cgroup
*memcg
;
3665 * Disabling accounting is only relevant for some specific memcg
3666 * internal allocations. Therefore we would initially not have such
3667 * check here, since direct calls to the page allocator that are marked
3668 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3669 * concerned with cache allocations, and by having this test at
3670 * memcg_kmem_get_cache, we are already able to relay the allocation to
3671 * the root cache and bypass the memcg cache altogether.
3673 * There is one exception, though: the SLUB allocator does not create
3674 * large order caches, but rather service large kmallocs directly from
3675 * the page allocator. Therefore, the following sequence when backed by
3676 * the SLUB allocator:
3678 * memcg_stop_kmem_account();
3679 * kmalloc(<large_number>)
3680 * memcg_resume_kmem_account();
3682 * would effectively ignore the fact that we should skip accounting,
3683 * since it will drive us directly to this function without passing
3684 * through the cache selector memcg_kmem_get_cache. Such large
3685 * allocations are extremely rare but can happen, for instance, for the
3686 * cache arrays. We bring this test here.
3688 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3691 memcg
= try_get_mem_cgroup_from_mm(current
->mm
);
3694 * very rare case described in mem_cgroup_from_task. Unfortunately there
3695 * isn't much we can do without complicating this too much, and it would
3696 * be gfp-dependent anyway. Just let it go
3698 if (unlikely(!memcg
))
3701 if (!memcg_can_account_kmem(memcg
)) {
3702 css_put(&memcg
->css
);
3706 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3710 css_put(&memcg
->css
);
3714 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3717 struct page_cgroup
*pc
;
3719 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3721 /* The page allocation failed. Revert */
3723 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3727 pc
= lookup_page_cgroup(page
);
3728 lock_page_cgroup(pc
);
3729 pc
->mem_cgroup
= memcg
;
3730 SetPageCgroupUsed(pc
);
3731 unlock_page_cgroup(pc
);
3734 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3736 struct mem_cgroup
*memcg
= NULL
;
3737 struct page_cgroup
*pc
;
3740 pc
= lookup_page_cgroup(page
);
3742 * Fast unlocked return. Theoretically might have changed, have to
3743 * check again after locking.
3745 if (!PageCgroupUsed(pc
))
3748 lock_page_cgroup(pc
);
3749 if (PageCgroupUsed(pc
)) {
3750 memcg
= pc
->mem_cgroup
;
3751 ClearPageCgroupUsed(pc
);
3753 unlock_page_cgroup(pc
);
3756 * We trust that only if there is a memcg associated with the page, it
3757 * is a valid allocation
3762 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3763 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3766 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3769 #endif /* CONFIG_MEMCG_KMEM */
3771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3773 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3775 * Because tail pages are not marked as "used", set it. We're under
3776 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3777 * charge/uncharge will be never happen and move_account() is done under
3778 * compound_lock(), so we don't have to take care of races.
3780 void mem_cgroup_split_huge_fixup(struct page
*head
)
3782 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3783 struct page_cgroup
*pc
;
3784 struct mem_cgroup
*memcg
;
3787 if (mem_cgroup_disabled())
3790 memcg
= head_pc
->mem_cgroup
;
3791 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3793 pc
->mem_cgroup
= memcg
;
3794 smp_wmb();/* see __commit_charge() */
3795 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
3797 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
3800 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3803 void mem_cgroup_move_account_page_stat(struct mem_cgroup
*from
,
3804 struct mem_cgroup
*to
,
3805 unsigned int nr_pages
,
3806 enum mem_cgroup_stat_index idx
)
3808 /* Update stat data for mem_cgroup */
3810 __this_cpu_sub(from
->stat
->count
[idx
], nr_pages
);
3811 __this_cpu_add(to
->stat
->count
[idx
], nr_pages
);
3816 * mem_cgroup_move_account - move account of the page
3818 * @nr_pages: number of regular pages (>1 for huge pages)
3819 * @pc: page_cgroup of the page.
3820 * @from: mem_cgroup which the page is moved from.
3821 * @to: mem_cgroup which the page is moved to. @from != @to.
3823 * The caller must confirm following.
3824 * - page is not on LRU (isolate_page() is useful.)
3825 * - compound_lock is held when nr_pages > 1
3827 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3830 static int mem_cgroup_move_account(struct page
*page
,
3831 unsigned int nr_pages
,
3832 struct page_cgroup
*pc
,
3833 struct mem_cgroup
*from
,
3834 struct mem_cgroup
*to
)
3836 unsigned long flags
;
3838 bool anon
= PageAnon(page
);
3840 VM_BUG_ON(from
== to
);
3841 VM_BUG_ON(PageLRU(page
));
3843 * The page is isolated from LRU. So, collapse function
3844 * will not handle this page. But page splitting can happen.
3845 * Do this check under compound_page_lock(). The caller should
3849 if (nr_pages
> 1 && !PageTransHuge(page
))
3852 lock_page_cgroup(pc
);
3855 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3858 move_lock_mem_cgroup(from
, &flags
);
3860 if (!anon
&& page_mapped(page
))
3861 mem_cgroup_move_account_page_stat(from
, to
, nr_pages
,
3862 MEM_CGROUP_STAT_FILE_MAPPED
);
3864 if (PageWriteback(page
))
3865 mem_cgroup_move_account_page_stat(from
, to
, nr_pages
,
3866 MEM_CGROUP_STAT_WRITEBACK
);
3868 mem_cgroup_charge_statistics(from
, page
, anon
, -nr_pages
);
3870 /* caller should have done css_get */
3871 pc
->mem_cgroup
= to
;
3872 mem_cgroup_charge_statistics(to
, page
, anon
, nr_pages
);
3873 move_unlock_mem_cgroup(from
, &flags
);
3876 unlock_page_cgroup(pc
);
3880 memcg_check_events(to
, page
);
3881 memcg_check_events(from
, page
);
3887 * mem_cgroup_move_parent - moves page to the parent group
3888 * @page: the page to move
3889 * @pc: page_cgroup of the page
3890 * @child: page's cgroup
3892 * move charges to its parent or the root cgroup if the group has no
3893 * parent (aka use_hierarchy==0).
3894 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3895 * mem_cgroup_move_account fails) the failure is always temporary and
3896 * it signals a race with a page removal/uncharge or migration. In the
3897 * first case the page is on the way out and it will vanish from the LRU
3898 * on the next attempt and the call should be retried later.
3899 * Isolation from the LRU fails only if page has been isolated from
3900 * the LRU since we looked at it and that usually means either global
3901 * reclaim or migration going on. The page will either get back to the
3903 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3904 * (!PageCgroupUsed) or moved to a different group. The page will
3905 * disappear in the next attempt.
3907 static int mem_cgroup_move_parent(struct page
*page
,
3908 struct page_cgroup
*pc
,
3909 struct mem_cgroup
*child
)
3911 struct mem_cgroup
*parent
;
3912 unsigned int nr_pages
;
3913 unsigned long uninitialized_var(flags
);
3916 VM_BUG_ON(mem_cgroup_is_root(child
));
3919 if (!get_page_unless_zero(page
))
3921 if (isolate_lru_page(page
))
3924 nr_pages
= hpage_nr_pages(page
);
3926 parent
= parent_mem_cgroup(child
);
3928 * If no parent, move charges to root cgroup.
3931 parent
= root_mem_cgroup
;
3934 VM_BUG_ON(!PageTransHuge(page
));
3935 flags
= compound_lock_irqsave(page
);
3938 ret
= mem_cgroup_move_account(page
, nr_pages
,
3941 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3944 compound_unlock_irqrestore(page
, flags
);
3945 putback_lru_page(page
);
3953 * Charge the memory controller for page usage.
3955 * 0 if the charge was successful
3956 * < 0 if the cgroup is over its limit
3958 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
3959 gfp_t gfp_mask
, enum charge_type ctype
)
3961 struct mem_cgroup
*memcg
= NULL
;
3962 unsigned int nr_pages
= 1;
3966 if (PageTransHuge(page
)) {
3967 nr_pages
<<= compound_order(page
);
3968 VM_BUG_ON(!PageTransHuge(page
));
3970 * Never OOM-kill a process for a huge page. The
3971 * fault handler will fall back to regular pages.
3976 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
3979 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, ctype
, false);
3983 int mem_cgroup_newpage_charge(struct page
*page
,
3984 struct mm_struct
*mm
, gfp_t gfp_mask
)
3986 if (mem_cgroup_disabled())
3988 VM_BUG_ON(page_mapped(page
));
3989 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
3991 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
3992 MEM_CGROUP_CHARGE_TYPE_ANON
);
3996 * While swap-in, try_charge -> commit or cancel, the page is locked.
3997 * And when try_charge() successfully returns, one refcnt to memcg without
3998 * struct page_cgroup is acquired. This refcnt will be consumed by
3999 * "commit()" or removed by "cancel()"
4001 static int __mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
4004 struct mem_cgroup
**memcgp
)
4006 struct mem_cgroup
*memcg
;
4007 struct page_cgroup
*pc
;
4010 pc
= lookup_page_cgroup(page
);
4012 * Every swap fault against a single page tries to charge the
4013 * page, bail as early as possible. shmem_unuse() encounters
4014 * already charged pages, too. The USED bit is protected by
4015 * the page lock, which serializes swap cache removal, which
4016 * in turn serializes uncharging.
4018 if (PageCgroupUsed(pc
))
4020 if (!do_swap_account
)
4022 memcg
= try_get_mem_cgroup_from_page(page
);
4026 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
4027 css_put(&memcg
->css
);
4032 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
4038 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
, struct page
*page
,
4039 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
4042 if (mem_cgroup_disabled())
4045 * A racing thread's fault, or swapoff, may have already
4046 * updated the pte, and even removed page from swap cache: in
4047 * those cases unuse_pte()'s pte_same() test will fail; but
4048 * there's also a KSM case which does need to charge the page.
4050 if (!PageSwapCache(page
)) {
4053 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, memcgp
, true);
4058 return __mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, memcgp
);
4061 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
4063 if (mem_cgroup_disabled())
4067 __mem_cgroup_cancel_charge(memcg
, 1);
4071 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
4072 enum charge_type ctype
)
4074 if (mem_cgroup_disabled())
4079 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
4081 * Now swap is on-memory. This means this page may be
4082 * counted both as mem and swap....double count.
4083 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4084 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4085 * may call delete_from_swap_cache() before reach here.
4087 if (do_swap_account
&& PageSwapCache(page
)) {
4088 swp_entry_t ent
= {.val
= page_private(page
)};
4089 mem_cgroup_uncharge_swap(ent
);
4093 void mem_cgroup_commit_charge_swapin(struct page
*page
,
4094 struct mem_cgroup
*memcg
)
4096 __mem_cgroup_commit_charge_swapin(page
, memcg
,
4097 MEM_CGROUP_CHARGE_TYPE_ANON
);
4100 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
4103 struct mem_cgroup
*memcg
= NULL
;
4104 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4107 if (mem_cgroup_disabled())
4109 if (PageCompound(page
))
4112 if (!PageSwapCache(page
))
4113 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
4114 else { /* page is swapcache/shmem */
4115 ret
= __mem_cgroup_try_charge_swapin(mm
, page
,
4118 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
4123 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
4124 unsigned int nr_pages
,
4125 const enum charge_type ctype
)
4127 struct memcg_batch_info
*batch
= NULL
;
4128 bool uncharge_memsw
= true;
4130 /* If swapout, usage of swap doesn't decrease */
4131 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
4132 uncharge_memsw
= false;
4134 batch
= ¤t
->memcg_batch
;
4136 * In usual, we do css_get() when we remember memcg pointer.
4137 * But in this case, we keep res->usage until end of a series of
4138 * uncharges. Then, it's ok to ignore memcg's refcnt.
4141 batch
->memcg
= memcg
;
4143 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4144 * In those cases, all pages freed continuously can be expected to be in
4145 * the same cgroup and we have chance to coalesce uncharges.
4146 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4147 * because we want to do uncharge as soon as possible.
4150 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
4151 goto direct_uncharge
;
4154 goto direct_uncharge
;
4157 * In typical case, batch->memcg == mem. This means we can
4158 * merge a series of uncharges to an uncharge of res_counter.
4159 * If not, we uncharge res_counter ony by one.
4161 if (batch
->memcg
!= memcg
)
4162 goto direct_uncharge
;
4163 /* remember freed charge and uncharge it later */
4166 batch
->memsw_nr_pages
++;
4169 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
4171 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
4172 if (unlikely(batch
->memcg
!= memcg
))
4173 memcg_oom_recover(memcg
);
4177 * uncharge if !page_mapped(page)
4179 static struct mem_cgroup
*
4180 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
,
4183 struct mem_cgroup
*memcg
= NULL
;
4184 unsigned int nr_pages
= 1;
4185 struct page_cgroup
*pc
;
4188 if (mem_cgroup_disabled())
4191 if (PageTransHuge(page
)) {
4192 nr_pages
<<= compound_order(page
);
4193 VM_BUG_ON(!PageTransHuge(page
));
4196 * Check if our page_cgroup is valid
4198 pc
= lookup_page_cgroup(page
);
4199 if (unlikely(!PageCgroupUsed(pc
)))
4202 lock_page_cgroup(pc
);
4204 memcg
= pc
->mem_cgroup
;
4206 if (!PageCgroupUsed(pc
))
4209 anon
= PageAnon(page
);
4212 case MEM_CGROUP_CHARGE_TYPE_ANON
:
4214 * Generally PageAnon tells if it's the anon statistics to be
4215 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4216 * used before page reached the stage of being marked PageAnon.
4220 case MEM_CGROUP_CHARGE_TYPE_DROP
:
4221 /* See mem_cgroup_prepare_migration() */
4222 if (page_mapped(page
))
4225 * Pages under migration may not be uncharged. But
4226 * end_migration() /must/ be the one uncharging the
4227 * unused post-migration page and so it has to call
4228 * here with the migration bit still set. See the
4229 * res_counter handling below.
4231 if (!end_migration
&& PageCgroupMigration(pc
))
4234 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
4235 if (!PageAnon(page
)) { /* Shared memory */
4236 if (page
->mapping
&& !page_is_file_cache(page
))
4238 } else if (page_mapped(page
)) /* Anon */
4245 mem_cgroup_charge_statistics(memcg
, page
, anon
, -nr_pages
);
4247 ClearPageCgroupUsed(pc
);
4249 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4250 * freed from LRU. This is safe because uncharged page is expected not
4251 * to be reused (freed soon). Exception is SwapCache, it's handled by
4252 * special functions.
4255 unlock_page_cgroup(pc
);
4257 * even after unlock, we have memcg->res.usage here and this memcg
4258 * will never be freed, so it's safe to call css_get().
4260 memcg_check_events(memcg
, page
);
4261 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
4262 mem_cgroup_swap_statistics(memcg
, true);
4263 css_get(&memcg
->css
);
4266 * Migration does not charge the res_counter for the
4267 * replacement page, so leave it alone when phasing out the
4268 * page that is unused after the migration.
4270 if (!end_migration
&& !mem_cgroup_is_root(memcg
))
4271 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
4276 unlock_page_cgroup(pc
);
4280 void mem_cgroup_uncharge_page(struct page
*page
)
4283 if (page_mapped(page
))
4285 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
4287 * If the page is in swap cache, uncharge should be deferred
4288 * to the swap path, which also properly accounts swap usage
4289 * and handles memcg lifetime.
4291 * Note that this check is not stable and reclaim may add the
4292 * page to swap cache at any time after this. However, if the
4293 * page is not in swap cache by the time page->mapcount hits
4294 * 0, there won't be any page table references to the swap
4295 * slot, and reclaim will free it and not actually write the
4298 if (PageSwapCache(page
))
4300 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_ANON
, false);
4303 void mem_cgroup_uncharge_cache_page(struct page
*page
)
4305 VM_BUG_ON(page_mapped(page
));
4306 VM_BUG_ON(page
->mapping
);
4307 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
, false);
4311 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4312 * In that cases, pages are freed continuously and we can expect pages
4313 * are in the same memcg. All these calls itself limits the number of
4314 * pages freed at once, then uncharge_start/end() is called properly.
4315 * This may be called prural(2) times in a context,
4318 void mem_cgroup_uncharge_start(void)
4320 current
->memcg_batch
.do_batch
++;
4321 /* We can do nest. */
4322 if (current
->memcg_batch
.do_batch
== 1) {
4323 current
->memcg_batch
.memcg
= NULL
;
4324 current
->memcg_batch
.nr_pages
= 0;
4325 current
->memcg_batch
.memsw_nr_pages
= 0;
4329 void mem_cgroup_uncharge_end(void)
4331 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
4333 if (!batch
->do_batch
)
4337 if (batch
->do_batch
) /* If stacked, do nothing. */
4343 * This "batch->memcg" is valid without any css_get/put etc...
4344 * bacause we hide charges behind us.
4346 if (batch
->nr_pages
)
4347 res_counter_uncharge(&batch
->memcg
->res
,
4348 batch
->nr_pages
* PAGE_SIZE
);
4349 if (batch
->memsw_nr_pages
)
4350 res_counter_uncharge(&batch
->memcg
->memsw
,
4351 batch
->memsw_nr_pages
* PAGE_SIZE
);
4352 memcg_oom_recover(batch
->memcg
);
4353 /* forget this pointer (for sanity check) */
4354 batch
->memcg
= NULL
;
4359 * called after __delete_from_swap_cache() and drop "page" account.
4360 * memcg information is recorded to swap_cgroup of "ent"
4363 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
4365 struct mem_cgroup
*memcg
;
4366 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
4368 if (!swapout
) /* this was a swap cache but the swap is unused ! */
4369 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
4371 memcg
= __mem_cgroup_uncharge_common(page
, ctype
, false);
4374 * record memcg information, if swapout && memcg != NULL,
4375 * css_get() was called in uncharge().
4377 if (do_swap_account
&& swapout
&& memcg
)
4378 swap_cgroup_record(ent
, css_id(&memcg
->css
));
4382 #ifdef CONFIG_MEMCG_SWAP
4384 * called from swap_entry_free(). remove record in swap_cgroup and
4385 * uncharge "memsw" account.
4387 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
4389 struct mem_cgroup
*memcg
;
4392 if (!do_swap_account
)
4395 id
= swap_cgroup_record(ent
, 0);
4397 memcg
= mem_cgroup_lookup(id
);
4400 * We uncharge this because swap is freed.
4401 * This memcg can be obsolete one. We avoid calling css_tryget
4403 if (!mem_cgroup_is_root(memcg
))
4404 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
4405 mem_cgroup_swap_statistics(memcg
, false);
4406 css_put(&memcg
->css
);
4412 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4413 * @entry: swap entry to be moved
4414 * @from: mem_cgroup which the entry is moved from
4415 * @to: mem_cgroup which the entry is moved to
4417 * It succeeds only when the swap_cgroup's record for this entry is the same
4418 * as the mem_cgroup's id of @from.
4420 * Returns 0 on success, -EINVAL on failure.
4422 * The caller must have charged to @to, IOW, called res_counter_charge() about
4423 * both res and memsw, and called css_get().
4425 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
4426 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4428 unsigned short old_id
, new_id
;
4430 old_id
= css_id(&from
->css
);
4431 new_id
= css_id(&to
->css
);
4433 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
4434 mem_cgroup_swap_statistics(from
, false);
4435 mem_cgroup_swap_statistics(to
, true);
4437 * This function is only called from task migration context now.
4438 * It postpones res_counter and refcount handling till the end
4439 * of task migration(mem_cgroup_clear_mc()) for performance
4440 * improvement. But we cannot postpone css_get(to) because if
4441 * the process that has been moved to @to does swap-in, the
4442 * refcount of @to might be decreased to 0.
4444 * We are in attach() phase, so the cgroup is guaranteed to be
4445 * alive, so we can just call css_get().
4453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
4454 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4461 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4464 void mem_cgroup_prepare_migration(struct page
*page
, struct page
*newpage
,
4465 struct mem_cgroup
**memcgp
)
4467 struct mem_cgroup
*memcg
= NULL
;
4468 unsigned int nr_pages
= 1;
4469 struct page_cgroup
*pc
;
4470 enum charge_type ctype
;
4474 if (mem_cgroup_disabled())
4477 if (PageTransHuge(page
))
4478 nr_pages
<<= compound_order(page
);
4480 pc
= lookup_page_cgroup(page
);
4481 lock_page_cgroup(pc
);
4482 if (PageCgroupUsed(pc
)) {
4483 memcg
= pc
->mem_cgroup
;
4484 css_get(&memcg
->css
);
4486 * At migrating an anonymous page, its mapcount goes down
4487 * to 0 and uncharge() will be called. But, even if it's fully
4488 * unmapped, migration may fail and this page has to be
4489 * charged again. We set MIGRATION flag here and delay uncharge
4490 * until end_migration() is called
4492 * Corner Case Thinking
4494 * When the old page was mapped as Anon and it's unmap-and-freed
4495 * while migration was ongoing.
4496 * If unmap finds the old page, uncharge() of it will be delayed
4497 * until end_migration(). If unmap finds a new page, it's
4498 * uncharged when it make mapcount to be 1->0. If unmap code
4499 * finds swap_migration_entry, the new page will not be mapped
4500 * and end_migration() will find it(mapcount==0).
4503 * When the old page was mapped but migraion fails, the kernel
4504 * remaps it. A charge for it is kept by MIGRATION flag even
4505 * if mapcount goes down to 0. We can do remap successfully
4506 * without charging it again.
4509 * The "old" page is under lock_page() until the end of
4510 * migration, so, the old page itself will not be swapped-out.
4511 * If the new page is swapped out before end_migraton, our
4512 * hook to usual swap-out path will catch the event.
4515 SetPageCgroupMigration(pc
);
4517 unlock_page_cgroup(pc
);
4519 * If the page is not charged at this point,
4527 * We charge new page before it's used/mapped. So, even if unlock_page()
4528 * is called before end_migration, we can catch all events on this new
4529 * page. In the case new page is migrated but not remapped, new page's
4530 * mapcount will be finally 0 and we call uncharge in end_migration().
4533 ctype
= MEM_CGROUP_CHARGE_TYPE_ANON
;
4535 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4537 * The page is committed to the memcg, but it's not actually
4538 * charged to the res_counter since we plan on replacing the
4539 * old one and only one page is going to be left afterwards.
4541 __mem_cgroup_commit_charge(memcg
, newpage
, nr_pages
, ctype
, false);
4544 /* remove redundant charge if migration failed*/
4545 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
4546 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
4548 struct page
*used
, *unused
;
4549 struct page_cgroup
*pc
;
4555 if (!migration_ok
) {
4562 anon
= PageAnon(used
);
4563 __mem_cgroup_uncharge_common(unused
,
4564 anon
? MEM_CGROUP_CHARGE_TYPE_ANON
4565 : MEM_CGROUP_CHARGE_TYPE_CACHE
,
4567 css_put(&memcg
->css
);
4569 * We disallowed uncharge of pages under migration because mapcount
4570 * of the page goes down to zero, temporarly.
4571 * Clear the flag and check the page should be charged.
4573 pc
= lookup_page_cgroup(oldpage
);
4574 lock_page_cgroup(pc
);
4575 ClearPageCgroupMigration(pc
);
4576 unlock_page_cgroup(pc
);
4579 * If a page is a file cache, radix-tree replacement is very atomic
4580 * and we can skip this check. When it was an Anon page, its mapcount
4581 * goes down to 0. But because we added MIGRATION flage, it's not
4582 * uncharged yet. There are several case but page->mapcount check
4583 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4584 * check. (see prepare_charge() also)
4587 mem_cgroup_uncharge_page(used
);
4591 * At replace page cache, newpage is not under any memcg but it's on
4592 * LRU. So, this function doesn't touch res_counter but handles LRU
4593 * in correct way. Both pages are locked so we cannot race with uncharge.
4595 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
4596 struct page
*newpage
)
4598 struct mem_cgroup
*memcg
= NULL
;
4599 struct page_cgroup
*pc
;
4600 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4602 if (mem_cgroup_disabled())
4605 pc
= lookup_page_cgroup(oldpage
);
4606 /* fix accounting on old pages */
4607 lock_page_cgroup(pc
);
4608 if (PageCgroupUsed(pc
)) {
4609 memcg
= pc
->mem_cgroup
;
4610 mem_cgroup_charge_statistics(memcg
, oldpage
, false, -1);
4611 ClearPageCgroupUsed(pc
);
4613 unlock_page_cgroup(pc
);
4616 * When called from shmem_replace_page(), in some cases the
4617 * oldpage has already been charged, and in some cases not.
4622 * Even if newpage->mapping was NULL before starting replacement,
4623 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4624 * LRU while we overwrite pc->mem_cgroup.
4626 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
4629 #ifdef CONFIG_DEBUG_VM
4630 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
4632 struct page_cgroup
*pc
;
4634 pc
= lookup_page_cgroup(page
);
4636 * Can be NULL while feeding pages into the page allocator for
4637 * the first time, i.e. during boot or memory hotplug;
4638 * or when mem_cgroup_disabled().
4640 if (likely(pc
) && PageCgroupUsed(pc
))
4645 bool mem_cgroup_bad_page_check(struct page
*page
)
4647 if (mem_cgroup_disabled())
4650 return lookup_page_cgroup_used(page
) != NULL
;
4653 void mem_cgroup_print_bad_page(struct page
*page
)
4655 struct page_cgroup
*pc
;
4657 pc
= lookup_page_cgroup_used(page
);
4659 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4660 pc
, pc
->flags
, pc
->mem_cgroup
);
4665 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
4666 unsigned long long val
)
4669 u64 memswlimit
, memlimit
;
4671 int children
= mem_cgroup_count_children(memcg
);
4672 u64 curusage
, oldusage
;
4676 * For keeping hierarchical_reclaim simple, how long we should retry
4677 * is depends on callers. We set our retry-count to be function
4678 * of # of children which we should visit in this loop.
4680 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
4682 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4685 while (retry_count
) {
4686 if (signal_pending(current
)) {
4691 * Rather than hide all in some function, I do this in
4692 * open coded manner. You see what this really does.
4693 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4695 mutex_lock(&set_limit_mutex
);
4696 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4697 if (memswlimit
< val
) {
4699 mutex_unlock(&set_limit_mutex
);
4703 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4707 ret
= res_counter_set_limit(&memcg
->res
, val
);
4709 if (memswlimit
== val
)
4710 memcg
->memsw_is_minimum
= true;
4712 memcg
->memsw_is_minimum
= false;
4714 mutex_unlock(&set_limit_mutex
);
4719 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4720 MEM_CGROUP_RECLAIM_SHRINK
);
4721 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4722 /* Usage is reduced ? */
4723 if (curusage
>= oldusage
)
4726 oldusage
= curusage
;
4728 if (!ret
&& enlarge
)
4729 memcg_oom_recover(memcg
);
4734 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
4735 unsigned long long val
)
4738 u64 memlimit
, memswlimit
, oldusage
, curusage
;
4739 int children
= mem_cgroup_count_children(memcg
);
4743 /* see mem_cgroup_resize_res_limit */
4744 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
4745 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4746 while (retry_count
) {
4747 if (signal_pending(current
)) {
4752 * Rather than hide all in some function, I do this in
4753 * open coded manner. You see what this really does.
4754 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4756 mutex_lock(&set_limit_mutex
);
4757 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4758 if (memlimit
> val
) {
4760 mutex_unlock(&set_limit_mutex
);
4763 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4764 if (memswlimit
< val
)
4766 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
4768 if (memlimit
== val
)
4769 memcg
->memsw_is_minimum
= true;
4771 memcg
->memsw_is_minimum
= false;
4773 mutex_unlock(&set_limit_mutex
);
4778 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4779 MEM_CGROUP_RECLAIM_NOSWAP
|
4780 MEM_CGROUP_RECLAIM_SHRINK
);
4781 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4782 /* Usage is reduced ? */
4783 if (curusage
>= oldusage
)
4786 oldusage
= curusage
;
4788 if (!ret
&& enlarge
)
4789 memcg_oom_recover(memcg
);
4793 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
4795 unsigned long *total_scanned
)
4797 unsigned long nr_reclaimed
= 0;
4798 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
4799 unsigned long reclaimed
;
4801 struct mem_cgroup_tree_per_zone
*mctz
;
4802 unsigned long long excess
;
4803 unsigned long nr_scanned
;
4808 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
4810 * This loop can run a while, specially if mem_cgroup's continuously
4811 * keep exceeding their soft limit and putting the system under
4818 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
4823 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
4824 gfp_mask
, &nr_scanned
);
4825 nr_reclaimed
+= reclaimed
;
4826 *total_scanned
+= nr_scanned
;
4827 spin_lock(&mctz
->lock
);
4830 * If we failed to reclaim anything from this memory cgroup
4831 * it is time to move on to the next cgroup
4837 * Loop until we find yet another one.
4839 * By the time we get the soft_limit lock
4840 * again, someone might have aded the
4841 * group back on the RB tree. Iterate to
4842 * make sure we get a different mem.
4843 * mem_cgroup_largest_soft_limit_node returns
4844 * NULL if no other cgroup is present on
4848 __mem_cgroup_largest_soft_limit_node(mctz
);
4850 css_put(&next_mz
->memcg
->css
);
4851 else /* next_mz == NULL or other memcg */
4855 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
4856 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
4858 * One school of thought says that we should not add
4859 * back the node to the tree if reclaim returns 0.
4860 * But our reclaim could return 0, simply because due
4861 * to priority we are exposing a smaller subset of
4862 * memory to reclaim from. Consider this as a longer
4865 /* If excess == 0, no tree ops */
4866 __mem_cgroup_insert_exceeded(mz
->memcg
, mz
, mctz
, excess
);
4867 spin_unlock(&mctz
->lock
);
4868 css_put(&mz
->memcg
->css
);
4871 * Could not reclaim anything and there are no more
4872 * mem cgroups to try or we seem to be looping without
4873 * reclaiming anything.
4875 if (!nr_reclaimed
&&
4877 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
4879 } while (!nr_reclaimed
);
4881 css_put(&next_mz
->memcg
->css
);
4882 return nr_reclaimed
;
4886 * mem_cgroup_force_empty_list - clears LRU of a group
4887 * @memcg: group to clear
4890 * @lru: lru to to clear
4892 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4893 * reclaim the pages page themselves - pages are moved to the parent (or root)
4896 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
4897 int node
, int zid
, enum lru_list lru
)
4899 struct lruvec
*lruvec
;
4900 unsigned long flags
;
4901 struct list_head
*list
;
4905 zone
= &NODE_DATA(node
)->node_zones
[zid
];
4906 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
4907 list
= &lruvec
->lists
[lru
];
4911 struct page_cgroup
*pc
;
4914 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4915 if (list_empty(list
)) {
4916 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4919 page
= list_entry(list
->prev
, struct page
, lru
);
4921 list_move(&page
->lru
, list
);
4923 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4926 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4928 pc
= lookup_page_cgroup(page
);
4930 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
4931 /* found lock contention or "pc" is obsolete. */
4936 } while (!list_empty(list
));
4940 * make mem_cgroup's charge to be 0 if there is no task by moving
4941 * all the charges and pages to the parent.
4942 * This enables deleting this mem_cgroup.
4944 * Caller is responsible for holding css reference on the memcg.
4946 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
4952 /* This is for making all *used* pages to be on LRU. */
4953 lru_add_drain_all();
4954 drain_all_stock_sync(memcg
);
4955 mem_cgroup_start_move(memcg
);
4956 for_each_node_state(node
, N_MEMORY
) {
4957 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4960 mem_cgroup_force_empty_list(memcg
,
4965 mem_cgroup_end_move(memcg
);
4966 memcg_oom_recover(memcg
);
4970 * Kernel memory may not necessarily be trackable to a specific
4971 * process. So they are not migrated, and therefore we can't
4972 * expect their value to drop to 0 here.
4973 * Having res filled up with kmem only is enough.
4975 * This is a safety check because mem_cgroup_force_empty_list
4976 * could have raced with mem_cgroup_replace_page_cache callers
4977 * so the lru seemed empty but the page could have been added
4978 * right after the check. RES_USAGE should be safe as we always
4979 * charge before adding to the LRU.
4981 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
4982 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
4983 } while (usage
> 0);
4986 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
4988 lockdep_assert_held(&memcg_create_mutex
);
4990 * The lock does not prevent addition or deletion to the list
4991 * of children, but it prevents a new child from being
4992 * initialized based on this parent in css_online(), so it's
4993 * enough to decide whether hierarchically inherited
4994 * attributes can still be changed or not.
4996 return memcg
->use_hierarchy
&&
4997 !list_empty(&memcg
->css
.cgroup
->children
);
5001 * Reclaims as many pages from the given memcg as possible and moves
5002 * the rest to the parent.
5004 * Caller is responsible for holding css reference for memcg.
5006 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
5008 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
5009 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
5011 /* returns EBUSY if there is a task or if we come here twice. */
5012 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
5015 /* we call try-to-free pages for make this cgroup empty */
5016 lru_add_drain_all();
5017 /* try to free all pages in this cgroup */
5018 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
5021 if (signal_pending(current
))
5024 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
5028 /* maybe some writeback is necessary */
5029 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
5034 mem_cgroup_reparent_charges(memcg
);
5039 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state
*css
,
5042 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5044 if (mem_cgroup_is_root(memcg
))
5046 return mem_cgroup_force_empty(memcg
);
5049 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
5052 return mem_cgroup_from_css(css
)->use_hierarchy
;
5055 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
5056 struct cftype
*cft
, u64 val
)
5059 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5060 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5062 mutex_lock(&memcg_create_mutex
);
5064 if (memcg
->use_hierarchy
== val
)
5068 * If parent's use_hierarchy is set, we can't make any modifications
5069 * in the child subtrees. If it is unset, then the change can
5070 * occur, provided the current cgroup has no children.
5072 * For the root cgroup, parent_mem is NULL, we allow value to be
5073 * set if there are no children.
5075 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
5076 (val
== 1 || val
== 0)) {
5077 if (list_empty(&memcg
->css
.cgroup
->children
))
5078 memcg
->use_hierarchy
= val
;
5085 mutex_unlock(&memcg_create_mutex
);
5091 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
5092 enum mem_cgroup_stat_index idx
)
5094 struct mem_cgroup
*iter
;
5097 /* Per-cpu values can be negative, use a signed accumulator */
5098 for_each_mem_cgroup_tree(iter
, memcg
)
5099 val
+= mem_cgroup_read_stat(iter
, idx
);
5101 if (val
< 0) /* race ? */
5106 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
5110 if (!mem_cgroup_is_root(memcg
)) {
5112 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
5114 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
5118 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5119 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5121 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
5122 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
5125 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
5127 return val
<< PAGE_SHIFT
;
5130 static ssize_t
mem_cgroup_read(struct cgroup_subsys_state
*css
,
5131 struct cftype
*cft
, struct file
*file
,
5132 char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
5134 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5140 type
= MEMFILE_TYPE(cft
->private);
5141 name
= MEMFILE_ATTR(cft
->private);
5145 if (name
== RES_USAGE
)
5146 val
= mem_cgroup_usage(memcg
, false);
5148 val
= res_counter_read_u64(&memcg
->res
, name
);
5151 if (name
== RES_USAGE
)
5152 val
= mem_cgroup_usage(memcg
, true);
5154 val
= res_counter_read_u64(&memcg
->memsw
, name
);
5157 val
= res_counter_read_u64(&memcg
->kmem
, name
);
5163 len
= scnprintf(str
, sizeof(str
), "%llu\n", (unsigned long long)val
);
5164 return simple_read_from_buffer(buf
, nbytes
, ppos
, str
, len
);
5167 static int memcg_update_kmem_limit(struct cgroup_subsys_state
*css
, u64 val
)
5170 #ifdef CONFIG_MEMCG_KMEM
5171 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5173 * For simplicity, we won't allow this to be disabled. It also can't
5174 * be changed if the cgroup has children already, or if tasks had
5177 * If tasks join before we set the limit, a person looking at
5178 * kmem.usage_in_bytes will have no way to determine when it took
5179 * place, which makes the value quite meaningless.
5181 * After it first became limited, changes in the value of the limit are
5182 * of course permitted.
5184 mutex_lock(&memcg_create_mutex
);
5185 mutex_lock(&set_limit_mutex
);
5186 if (!memcg
->kmem_account_flags
&& val
!= RES_COUNTER_MAX
) {
5187 if (cgroup_task_count(css
->cgroup
) || memcg_has_children(memcg
)) {
5191 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5194 ret
= memcg_update_cache_sizes(memcg
);
5196 res_counter_set_limit(&memcg
->kmem
, RES_COUNTER_MAX
);
5199 static_key_slow_inc(&memcg_kmem_enabled_key
);
5201 * setting the active bit after the inc will guarantee no one
5202 * starts accounting before all call sites are patched
5204 memcg_kmem_set_active(memcg
);
5206 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5208 mutex_unlock(&set_limit_mutex
);
5209 mutex_unlock(&memcg_create_mutex
);
5214 #ifdef CONFIG_MEMCG_KMEM
5215 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
5218 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
5222 memcg
->kmem_account_flags
= parent
->kmem_account_flags
;
5224 * When that happen, we need to disable the static branch only on those
5225 * memcgs that enabled it. To achieve this, we would be forced to
5226 * complicate the code by keeping track of which memcgs were the ones
5227 * that actually enabled limits, and which ones got it from its
5230 * It is a lot simpler just to do static_key_slow_inc() on every child
5231 * that is accounted.
5233 if (!memcg_kmem_is_active(memcg
))
5237 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5238 * memcg is active already. If the later initialization fails then the
5239 * cgroup core triggers the cleanup so we do not have to do it here.
5241 static_key_slow_inc(&memcg_kmem_enabled_key
);
5243 mutex_lock(&set_limit_mutex
);
5244 memcg_stop_kmem_account();
5245 ret
= memcg_update_cache_sizes(memcg
);
5246 memcg_resume_kmem_account();
5247 mutex_unlock(&set_limit_mutex
);
5251 #endif /* CONFIG_MEMCG_KMEM */
5254 * The user of this function is...
5257 static int mem_cgroup_write(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
5260 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5263 unsigned long long val
;
5266 type
= MEMFILE_TYPE(cft
->private);
5267 name
= MEMFILE_ATTR(cft
->private);
5271 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
5275 /* This function does all necessary parse...reuse it */
5276 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5280 ret
= mem_cgroup_resize_limit(memcg
, val
);
5281 else if (type
== _MEMSWAP
)
5282 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
5283 else if (type
== _KMEM
)
5284 ret
= memcg_update_kmem_limit(css
, val
);
5288 case RES_SOFT_LIMIT
:
5289 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5293 * For memsw, soft limits are hard to implement in terms
5294 * of semantics, for now, we support soft limits for
5295 * control without swap
5298 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
5303 ret
= -EINVAL
; /* should be BUG() ? */
5309 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
5310 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
5312 unsigned long long min_limit
, min_memsw_limit
, tmp
;
5314 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5315 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5316 if (!memcg
->use_hierarchy
)
5319 while (css_parent(&memcg
->css
)) {
5320 memcg
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5321 if (!memcg
->use_hierarchy
)
5323 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5324 min_limit
= min(min_limit
, tmp
);
5325 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5326 min_memsw_limit
= min(min_memsw_limit
, tmp
);
5329 *mem_limit
= min_limit
;
5330 *memsw_limit
= min_memsw_limit
;
5333 static int mem_cgroup_reset(struct cgroup_subsys_state
*css
, unsigned int event
)
5335 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5339 type
= MEMFILE_TYPE(event
);
5340 name
= MEMFILE_ATTR(event
);
5345 res_counter_reset_max(&memcg
->res
);
5346 else if (type
== _MEMSWAP
)
5347 res_counter_reset_max(&memcg
->memsw
);
5348 else if (type
== _KMEM
)
5349 res_counter_reset_max(&memcg
->kmem
);
5355 res_counter_reset_failcnt(&memcg
->res
);
5356 else if (type
== _MEMSWAP
)
5357 res_counter_reset_failcnt(&memcg
->memsw
);
5358 else if (type
== _KMEM
)
5359 res_counter_reset_failcnt(&memcg
->kmem
);
5368 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
5371 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
5375 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
5376 struct cftype
*cft
, u64 val
)
5378 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5380 if (val
>= (1 << NR_MOVE_TYPE
))
5384 * No kind of locking is needed in here, because ->can_attach() will
5385 * check this value once in the beginning of the process, and then carry
5386 * on with stale data. This means that changes to this value will only
5387 * affect task migrations starting after the change.
5389 memcg
->move_charge_at_immigrate
= val
;
5393 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
5394 struct cftype
*cft
, u64 val
)
5401 static int memcg_numa_stat_show(struct cgroup_subsys_state
*css
,
5402 struct cftype
*cft
, struct seq_file
*m
)
5405 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
5406 unsigned long node_nr
;
5407 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5409 total_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL
);
5410 seq_printf(m
, "total=%lu", total_nr
);
5411 for_each_node_state(nid
, N_MEMORY
) {
5412 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL
);
5413 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5417 file_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_FILE
);
5418 seq_printf(m
, "file=%lu", file_nr
);
5419 for_each_node_state(nid
, N_MEMORY
) {
5420 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5422 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5426 anon_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_ANON
);
5427 seq_printf(m
, "anon=%lu", anon_nr
);
5428 for_each_node_state(nid
, N_MEMORY
) {
5429 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5431 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5435 unevictable_nr
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
5436 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
5437 for_each_node_state(nid
, N_MEMORY
) {
5438 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5439 BIT(LRU_UNEVICTABLE
));
5440 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5445 #endif /* CONFIG_NUMA */
5447 static inline void mem_cgroup_lru_names_not_uptodate(void)
5449 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
5452 static int memcg_stat_show(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
5455 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5456 struct mem_cgroup
*mi
;
5459 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5460 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5462 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
5463 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
5466 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
5467 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
5468 mem_cgroup_read_events(memcg
, i
));
5470 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
5471 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
5472 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
5474 /* Hierarchical information */
5476 unsigned long long limit
, memsw_limit
;
5477 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
5478 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
5479 if (do_swap_account
)
5480 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
5484 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5487 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5489 for_each_mem_cgroup_tree(mi
, memcg
)
5490 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
5491 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
5494 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
5495 unsigned long long val
= 0;
5497 for_each_mem_cgroup_tree(mi
, memcg
)
5498 val
+= mem_cgroup_read_events(mi
, i
);
5499 seq_printf(m
, "total_%s %llu\n",
5500 mem_cgroup_events_names
[i
], val
);
5503 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5504 unsigned long long val
= 0;
5506 for_each_mem_cgroup_tree(mi
, memcg
)
5507 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
5508 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
5511 #ifdef CONFIG_DEBUG_VM
5514 struct mem_cgroup_per_zone
*mz
;
5515 struct zone_reclaim_stat
*rstat
;
5516 unsigned long recent_rotated
[2] = {0, 0};
5517 unsigned long recent_scanned
[2] = {0, 0};
5519 for_each_online_node(nid
)
5520 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
5521 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
5522 rstat
= &mz
->lruvec
.reclaim_stat
;
5524 recent_rotated
[0] += rstat
->recent_rotated
[0];
5525 recent_rotated
[1] += rstat
->recent_rotated
[1];
5526 recent_scanned
[0] += rstat
->recent_scanned
[0];
5527 recent_scanned
[1] += rstat
->recent_scanned
[1];
5529 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
5530 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
5531 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
5532 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
5539 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
5542 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5544 return mem_cgroup_swappiness(memcg
);
5547 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
5548 struct cftype
*cft
, u64 val
)
5550 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5551 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5553 if (val
> 100 || !parent
)
5556 mutex_lock(&memcg_create_mutex
);
5558 /* If under hierarchy, only empty-root can set this value */
5559 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5560 mutex_unlock(&memcg_create_mutex
);
5564 memcg
->swappiness
= val
;
5566 mutex_unlock(&memcg_create_mutex
);
5571 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
5573 struct mem_cgroup_threshold_ary
*t
;
5579 t
= rcu_dereference(memcg
->thresholds
.primary
);
5581 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
5586 usage
= mem_cgroup_usage(memcg
, swap
);
5589 * current_threshold points to threshold just below or equal to usage.
5590 * If it's not true, a threshold was crossed after last
5591 * call of __mem_cgroup_threshold().
5593 i
= t
->current_threshold
;
5596 * Iterate backward over array of thresholds starting from
5597 * current_threshold and check if a threshold is crossed.
5598 * If none of thresholds below usage is crossed, we read
5599 * only one element of the array here.
5601 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
5602 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5604 /* i = current_threshold + 1 */
5608 * Iterate forward over array of thresholds starting from
5609 * current_threshold+1 and check if a threshold is crossed.
5610 * If none of thresholds above usage is crossed, we read
5611 * only one element of the array here.
5613 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
5614 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5616 /* Update current_threshold */
5617 t
->current_threshold
= i
- 1;
5622 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
5625 __mem_cgroup_threshold(memcg
, false);
5626 if (do_swap_account
)
5627 __mem_cgroup_threshold(memcg
, true);
5629 memcg
= parent_mem_cgroup(memcg
);
5633 static int compare_thresholds(const void *a
, const void *b
)
5635 const struct mem_cgroup_threshold
*_a
= a
;
5636 const struct mem_cgroup_threshold
*_b
= b
;
5638 if (_a
->threshold
> _b
->threshold
)
5641 if (_a
->threshold
< _b
->threshold
)
5647 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
5649 struct mem_cgroup_eventfd_list
*ev
;
5651 spin_lock(&memcg_oom_lock
);
5653 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
5654 eventfd_signal(ev
->eventfd
, 1);
5656 spin_unlock(&memcg_oom_lock
);
5660 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
5662 struct mem_cgroup
*iter
;
5664 for_each_mem_cgroup_tree(iter
, memcg
)
5665 mem_cgroup_oom_notify_cb(iter
);
5668 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state
*css
,
5669 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5671 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5672 struct mem_cgroup_thresholds
*thresholds
;
5673 struct mem_cgroup_threshold_ary
*new;
5674 enum res_type type
= MEMFILE_TYPE(cft
->private);
5675 u64 threshold
, usage
;
5678 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
5682 mutex_lock(&memcg
->thresholds_lock
);
5685 thresholds
= &memcg
->thresholds
;
5686 else if (type
== _MEMSWAP
)
5687 thresholds
= &memcg
->memsw_thresholds
;
5691 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5693 /* Check if a threshold crossed before adding a new one */
5694 if (thresholds
->primary
)
5695 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5697 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
5699 /* Allocate memory for new array of thresholds */
5700 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
5708 /* Copy thresholds (if any) to new array */
5709 if (thresholds
->primary
) {
5710 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
5711 sizeof(struct mem_cgroup_threshold
));
5714 /* Add new threshold */
5715 new->entries
[size
- 1].eventfd
= eventfd
;
5716 new->entries
[size
- 1].threshold
= threshold
;
5718 /* Sort thresholds. Registering of new threshold isn't time-critical */
5719 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
5720 compare_thresholds
, NULL
);
5722 /* Find current threshold */
5723 new->current_threshold
= -1;
5724 for (i
= 0; i
< size
; i
++) {
5725 if (new->entries
[i
].threshold
<= usage
) {
5727 * new->current_threshold will not be used until
5728 * rcu_assign_pointer(), so it's safe to increment
5731 ++new->current_threshold
;
5736 /* Free old spare buffer and save old primary buffer as spare */
5737 kfree(thresholds
->spare
);
5738 thresholds
->spare
= thresholds
->primary
;
5740 rcu_assign_pointer(thresholds
->primary
, new);
5742 /* To be sure that nobody uses thresholds */
5746 mutex_unlock(&memcg
->thresholds_lock
);
5751 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state
*css
,
5752 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5754 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5755 struct mem_cgroup_thresholds
*thresholds
;
5756 struct mem_cgroup_threshold_ary
*new;
5757 enum res_type type
= MEMFILE_TYPE(cft
->private);
5761 mutex_lock(&memcg
->thresholds_lock
);
5763 thresholds
= &memcg
->thresholds
;
5764 else if (type
== _MEMSWAP
)
5765 thresholds
= &memcg
->memsw_thresholds
;
5769 if (!thresholds
->primary
)
5772 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5774 /* Check if a threshold crossed before removing */
5775 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5777 /* Calculate new number of threshold */
5779 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
5780 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
5784 new = thresholds
->spare
;
5786 /* Set thresholds array to NULL if we don't have thresholds */
5795 /* Copy thresholds and find current threshold */
5796 new->current_threshold
= -1;
5797 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
5798 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
5801 new->entries
[j
] = thresholds
->primary
->entries
[i
];
5802 if (new->entries
[j
].threshold
<= usage
) {
5804 * new->current_threshold will not be used
5805 * until rcu_assign_pointer(), so it's safe to increment
5808 ++new->current_threshold
;
5814 /* Swap primary and spare array */
5815 thresholds
->spare
= thresholds
->primary
;
5816 /* If all events are unregistered, free the spare array */
5818 kfree(thresholds
->spare
);
5819 thresholds
->spare
= NULL
;
5822 rcu_assign_pointer(thresholds
->primary
, new);
5824 /* To be sure that nobody uses thresholds */
5827 mutex_unlock(&memcg
->thresholds_lock
);
5830 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state
*css
,
5831 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5833 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5834 struct mem_cgroup_eventfd_list
*event
;
5835 enum res_type type
= MEMFILE_TYPE(cft
->private);
5837 BUG_ON(type
!= _OOM_TYPE
);
5838 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
5842 spin_lock(&memcg_oom_lock
);
5844 event
->eventfd
= eventfd
;
5845 list_add(&event
->list
, &memcg
->oom_notify
);
5847 /* already in OOM ? */
5848 if (atomic_read(&memcg
->under_oom
))
5849 eventfd_signal(eventfd
, 1);
5850 spin_unlock(&memcg_oom_lock
);
5855 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state
*css
,
5856 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5858 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5859 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
5860 enum res_type type
= MEMFILE_TYPE(cft
->private);
5862 BUG_ON(type
!= _OOM_TYPE
);
5864 spin_lock(&memcg_oom_lock
);
5866 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
5867 if (ev
->eventfd
== eventfd
) {
5868 list_del(&ev
->list
);
5873 spin_unlock(&memcg_oom_lock
);
5876 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state
*css
,
5877 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
5879 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5881 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
5883 if (atomic_read(&memcg
->under_oom
))
5884 cb
->fill(cb
, "under_oom", 1);
5886 cb
->fill(cb
, "under_oom", 0);
5890 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
5891 struct cftype
*cft
, u64 val
)
5893 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5894 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5896 /* cannot set to root cgroup and only 0 and 1 are allowed */
5897 if (!parent
|| !((val
== 0) || (val
== 1)))
5900 mutex_lock(&memcg_create_mutex
);
5901 /* oom-kill-disable is a flag for subhierarchy. */
5902 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5903 mutex_unlock(&memcg_create_mutex
);
5906 memcg
->oom_kill_disable
= val
;
5908 memcg_oom_recover(memcg
);
5909 mutex_unlock(&memcg_create_mutex
);
5913 #ifdef CONFIG_MEMCG_KMEM
5914 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5918 memcg
->kmemcg_id
= -1;
5919 ret
= memcg_propagate_kmem(memcg
);
5923 return mem_cgroup_sockets_init(memcg
, ss
);
5926 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
5928 mem_cgroup_sockets_destroy(memcg
);
5931 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
5933 if (!memcg_kmem_is_active(memcg
))
5937 * kmem charges can outlive the cgroup. In the case of slab
5938 * pages, for instance, a page contain objects from various
5939 * processes. As we prevent from taking a reference for every
5940 * such allocation we have to be careful when doing uncharge
5941 * (see memcg_uncharge_kmem) and here during offlining.
5943 * The idea is that that only the _last_ uncharge which sees
5944 * the dead memcg will drop the last reference. An additional
5945 * reference is taken here before the group is marked dead
5946 * which is then paired with css_put during uncharge resp. here.
5948 * Although this might sound strange as this path is called from
5949 * css_offline() when the referencemight have dropped down to 0
5950 * and shouldn't be incremented anymore (css_tryget would fail)
5951 * we do not have other options because of the kmem allocations
5954 css_get(&memcg
->css
);
5956 memcg_kmem_mark_dead(memcg
);
5958 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
5961 if (memcg_kmem_test_and_clear_dead(memcg
))
5962 css_put(&memcg
->css
);
5965 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5970 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
5974 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
5979 static struct cftype mem_cgroup_files
[] = {
5981 .name
= "usage_in_bytes",
5982 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
5983 .read
= mem_cgroup_read
,
5984 .register_event
= mem_cgroup_usage_register_event
,
5985 .unregister_event
= mem_cgroup_usage_unregister_event
,
5988 .name
= "max_usage_in_bytes",
5989 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
5990 .trigger
= mem_cgroup_reset
,
5991 .read
= mem_cgroup_read
,
5994 .name
= "limit_in_bytes",
5995 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
5996 .write_string
= mem_cgroup_write
,
5997 .read
= mem_cgroup_read
,
6000 .name
= "soft_limit_in_bytes",
6001 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
6002 .write_string
= mem_cgroup_write
,
6003 .read
= mem_cgroup_read
,
6007 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
6008 .trigger
= mem_cgroup_reset
,
6009 .read
= mem_cgroup_read
,
6013 .read_seq_string
= memcg_stat_show
,
6016 .name
= "force_empty",
6017 .trigger
= mem_cgroup_force_empty_write
,
6020 .name
= "use_hierarchy",
6021 .flags
= CFTYPE_INSANE
,
6022 .write_u64
= mem_cgroup_hierarchy_write
,
6023 .read_u64
= mem_cgroup_hierarchy_read
,
6026 .name
= "swappiness",
6027 .read_u64
= mem_cgroup_swappiness_read
,
6028 .write_u64
= mem_cgroup_swappiness_write
,
6031 .name
= "move_charge_at_immigrate",
6032 .read_u64
= mem_cgroup_move_charge_read
,
6033 .write_u64
= mem_cgroup_move_charge_write
,
6036 .name
= "oom_control",
6037 .read_map
= mem_cgroup_oom_control_read
,
6038 .write_u64
= mem_cgroup_oom_control_write
,
6039 .register_event
= mem_cgroup_oom_register_event
,
6040 .unregister_event
= mem_cgroup_oom_unregister_event
,
6041 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
6044 .name
= "pressure_level",
6045 .register_event
= vmpressure_register_event
,
6046 .unregister_event
= vmpressure_unregister_event
,
6050 .name
= "numa_stat",
6051 .read_seq_string
= memcg_numa_stat_show
,
6054 #ifdef CONFIG_MEMCG_KMEM
6056 .name
= "kmem.limit_in_bytes",
6057 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
6058 .write_string
= mem_cgroup_write
,
6059 .read
= mem_cgroup_read
,
6062 .name
= "kmem.usage_in_bytes",
6063 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
6064 .read
= mem_cgroup_read
,
6067 .name
= "kmem.failcnt",
6068 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
6069 .trigger
= mem_cgroup_reset
,
6070 .read
= mem_cgroup_read
,
6073 .name
= "kmem.max_usage_in_bytes",
6074 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
6075 .trigger
= mem_cgroup_reset
,
6076 .read
= mem_cgroup_read
,
6078 #ifdef CONFIG_SLABINFO
6080 .name
= "kmem.slabinfo",
6081 .read_seq_string
= mem_cgroup_slabinfo_read
,
6085 { }, /* terminate */
6088 #ifdef CONFIG_MEMCG_SWAP
6089 static struct cftype memsw_cgroup_files
[] = {
6091 .name
= "memsw.usage_in_bytes",
6092 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6093 .read
= mem_cgroup_read
,
6094 .register_event
= mem_cgroup_usage_register_event
,
6095 .unregister_event
= mem_cgroup_usage_unregister_event
,
6098 .name
= "memsw.max_usage_in_bytes",
6099 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6100 .trigger
= mem_cgroup_reset
,
6101 .read
= mem_cgroup_read
,
6104 .name
= "memsw.limit_in_bytes",
6105 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6106 .write_string
= mem_cgroup_write
,
6107 .read
= mem_cgroup_read
,
6110 .name
= "memsw.failcnt",
6111 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6112 .trigger
= mem_cgroup_reset
,
6113 .read
= mem_cgroup_read
,
6115 { }, /* terminate */
6118 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6120 struct mem_cgroup_per_node
*pn
;
6121 struct mem_cgroup_per_zone
*mz
;
6122 int zone
, tmp
= node
;
6124 * This routine is called against possible nodes.
6125 * But it's BUG to call kmalloc() against offline node.
6127 * TODO: this routine can waste much memory for nodes which will
6128 * never be onlined. It's better to use memory hotplug callback
6131 if (!node_state(node
, N_NORMAL_MEMORY
))
6133 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
6137 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6138 mz
= &pn
->zoneinfo
[zone
];
6139 lruvec_init(&mz
->lruvec
);
6140 mz
->usage_in_excess
= 0;
6141 mz
->on_tree
= false;
6144 memcg
->nodeinfo
[node
] = pn
;
6148 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6150 kfree(memcg
->nodeinfo
[node
]);
6153 static struct mem_cgroup
*mem_cgroup_alloc(void)
6155 struct mem_cgroup
*memcg
;
6156 size_t size
= memcg_size();
6158 /* Can be very big if nr_node_ids is very big */
6159 if (size
< PAGE_SIZE
)
6160 memcg
= kzalloc(size
, GFP_KERNEL
);
6162 memcg
= vzalloc(size
);
6167 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
6170 spin_lock_init(&memcg
->pcp_counter_lock
);
6174 if (size
< PAGE_SIZE
)
6182 * At destroying mem_cgroup, references from swap_cgroup can remain.
6183 * (scanning all at force_empty is too costly...)
6185 * Instead of clearing all references at force_empty, we remember
6186 * the number of reference from swap_cgroup and free mem_cgroup when
6187 * it goes down to 0.
6189 * Removal of cgroup itself succeeds regardless of refs from swap.
6192 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
6195 size_t size
= memcg_size();
6197 mem_cgroup_remove_from_trees(memcg
);
6198 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
6201 free_mem_cgroup_per_zone_info(memcg
, node
);
6203 free_percpu(memcg
->stat
);
6206 * We need to make sure that (at least for now), the jump label
6207 * destruction code runs outside of the cgroup lock. This is because
6208 * get_online_cpus(), which is called from the static_branch update,
6209 * can't be called inside the cgroup_lock. cpusets are the ones
6210 * enforcing this dependency, so if they ever change, we might as well.
6212 * schedule_work() will guarantee this happens. Be careful if you need
6213 * to move this code around, and make sure it is outside
6216 disarm_static_keys(memcg
);
6217 if (size
< PAGE_SIZE
)
6224 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6226 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
6228 if (!memcg
->res
.parent
)
6230 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
6232 EXPORT_SYMBOL(parent_mem_cgroup
);
6234 static void __init
mem_cgroup_soft_limit_tree_init(void)
6236 struct mem_cgroup_tree_per_node
*rtpn
;
6237 struct mem_cgroup_tree_per_zone
*rtpz
;
6238 int tmp
, node
, zone
;
6240 for_each_node(node
) {
6242 if (!node_state(node
, N_NORMAL_MEMORY
))
6244 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
6247 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6249 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6250 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
6251 rtpz
->rb_root
= RB_ROOT
;
6252 spin_lock_init(&rtpz
->lock
);
6257 static struct cgroup_subsys_state
* __ref
6258 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6260 struct mem_cgroup
*memcg
;
6261 long error
= -ENOMEM
;
6264 memcg
= mem_cgroup_alloc();
6266 return ERR_PTR(error
);
6269 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
6273 if (parent_css
== NULL
) {
6274 root_mem_cgroup
= memcg
;
6275 res_counter_init(&memcg
->res
, NULL
);
6276 res_counter_init(&memcg
->memsw
, NULL
);
6277 res_counter_init(&memcg
->kmem
, NULL
);
6280 memcg
->last_scanned_node
= MAX_NUMNODES
;
6281 INIT_LIST_HEAD(&memcg
->oom_notify
);
6282 memcg
->move_charge_at_immigrate
= 0;
6283 mutex_init(&memcg
->thresholds_lock
);
6284 spin_lock_init(&memcg
->move_lock
);
6285 vmpressure_init(&memcg
->vmpressure
);
6290 __mem_cgroup_free(memcg
);
6291 return ERR_PTR(error
);
6295 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
6297 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6298 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(css
));
6304 mutex_lock(&memcg_create_mutex
);
6306 memcg
->use_hierarchy
= parent
->use_hierarchy
;
6307 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
6308 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
6310 if (parent
->use_hierarchy
) {
6311 res_counter_init(&memcg
->res
, &parent
->res
);
6312 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
6313 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
6316 * No need to take a reference to the parent because cgroup
6317 * core guarantees its existence.
6320 res_counter_init(&memcg
->res
, NULL
);
6321 res_counter_init(&memcg
->memsw
, NULL
);
6322 res_counter_init(&memcg
->kmem
, NULL
);
6324 * Deeper hierachy with use_hierarchy == false doesn't make
6325 * much sense so let cgroup subsystem know about this
6326 * unfortunate state in our controller.
6328 if (parent
!= root_mem_cgroup
)
6329 mem_cgroup_subsys
.broken_hierarchy
= true;
6332 error
= memcg_init_kmem(memcg
, &mem_cgroup_subsys
);
6333 mutex_unlock(&memcg_create_mutex
);
6338 * Announce all parents that a group from their hierarchy is gone.
6340 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup
*memcg
)
6342 struct mem_cgroup
*parent
= memcg
;
6344 while ((parent
= parent_mem_cgroup(parent
)))
6345 mem_cgroup_iter_invalidate(parent
);
6348 * if the root memcg is not hierarchical we have to check it
6351 if (!root_mem_cgroup
->use_hierarchy
)
6352 mem_cgroup_iter_invalidate(root_mem_cgroup
);
6355 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
6357 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6358 struct cgroup_subsys_state
*iter
;
6360 kmem_cgroup_css_offline(memcg
);
6362 mem_cgroup_invalidate_reclaim_iterators(memcg
);
6365 * This requires that offlining is serialized. Right now that is
6366 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6369 css_for_each_descendant_post(iter
, css
) {
6371 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter
));
6376 mem_cgroup_destroy_all_caches(memcg
);
6377 vmpressure_cleanup(&memcg
->vmpressure
);
6380 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
6382 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6384 * XXX: css_offline() would be where we should reparent all
6385 * memory to prepare the cgroup for destruction. However,
6386 * memcg does not do css_tryget() and res_counter charging
6387 * under the same RCU lock region, which means that charging
6388 * could race with offlining. Offlining only happens to
6389 * cgroups with no tasks in them but charges can show up
6390 * without any tasks from the swapin path when the target
6391 * memcg is looked up from the swapout record and not from the
6392 * current task as it usually is. A race like this can leak
6393 * charges and put pages with stale cgroup pointers into
6397 * lookup_swap_cgroup_id()
6399 * mem_cgroup_lookup()
6402 * disable css_tryget()
6405 * reparent_charges()
6406 * res_counter_charge()
6409 * pc->mem_cgroup = dead memcg
6412 * The bulk of the charges are still moved in offline_css() to
6413 * avoid pinning a lot of pages in case a long-term reference
6414 * like a swapout record is deferring the css_free() to long
6415 * after offlining. But this makes sure we catch any charges
6416 * made after offlining:
6418 mem_cgroup_reparent_charges(memcg
);
6420 memcg_destroy_kmem(memcg
);
6421 __mem_cgroup_free(memcg
);
6425 /* Handlers for move charge at task migration. */
6426 #define PRECHARGE_COUNT_AT_ONCE 256
6427 static int mem_cgroup_do_precharge(unsigned long count
)
6430 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6431 struct mem_cgroup
*memcg
= mc
.to
;
6433 if (mem_cgroup_is_root(memcg
)) {
6434 mc
.precharge
+= count
;
6435 /* we don't need css_get for root */
6438 /* try to charge at once */
6440 struct res_counter
*dummy
;
6442 * "memcg" cannot be under rmdir() because we've already checked
6443 * by cgroup_lock_live_cgroup() that it is not removed and we
6444 * are still under the same cgroup_mutex. So we can postpone
6447 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
6449 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
6450 PAGE_SIZE
* count
, &dummy
)) {
6451 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
6454 mc
.precharge
+= count
;
6458 /* fall back to one by one charge */
6460 if (signal_pending(current
)) {
6464 if (!batch_count
--) {
6465 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6468 ret
= __mem_cgroup_try_charge(NULL
,
6469 GFP_KERNEL
, 1, &memcg
, false);
6471 /* mem_cgroup_clear_mc() will do uncharge later */
6479 * get_mctgt_type - get target type of moving charge
6480 * @vma: the vma the pte to be checked belongs
6481 * @addr: the address corresponding to the pte to be checked
6482 * @ptent: the pte to be checked
6483 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6486 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6487 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6488 * move charge. if @target is not NULL, the page is stored in target->page
6489 * with extra refcnt got(Callers should handle it).
6490 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6491 * target for charge migration. if @target is not NULL, the entry is stored
6494 * Called with pte lock held.
6501 enum mc_target_type
{
6507 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
6508 unsigned long addr
, pte_t ptent
)
6510 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
6512 if (!page
|| !page_mapped(page
))
6514 if (PageAnon(page
)) {
6515 /* we don't move shared anon */
6518 } else if (!move_file())
6519 /* we ignore mapcount for file pages */
6521 if (!get_page_unless_zero(page
))
6528 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6529 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6531 struct page
*page
= NULL
;
6532 swp_entry_t ent
= pte_to_swp_entry(ptent
);
6534 if (!move_anon() || non_swap_entry(ent
))
6537 * Because lookup_swap_cache() updates some statistics counter,
6538 * we call find_get_page() with swapper_space directly.
6540 page
= find_get_page(swap_address_space(ent
), ent
.val
);
6541 if (do_swap_account
)
6542 entry
->val
= ent
.val
;
6547 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6548 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6554 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
6555 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6557 struct page
*page
= NULL
;
6558 struct address_space
*mapping
;
6561 if (!vma
->vm_file
) /* anonymous vma */
6566 mapping
= vma
->vm_file
->f_mapping
;
6567 if (pte_none(ptent
))
6568 pgoff
= linear_page_index(vma
, addr
);
6569 else /* pte_file(ptent) is true */
6570 pgoff
= pte_to_pgoff(ptent
);
6572 /* page is moved even if it's not RSS of this task(page-faulted). */
6573 page
= find_get_page(mapping
, pgoff
);
6576 /* shmem/tmpfs may report page out on swap: account for that too. */
6577 if (radix_tree_exceptional_entry(page
)) {
6578 swp_entry_t swap
= radix_to_swp_entry(page
);
6579 if (do_swap_account
)
6581 page
= find_get_page(swap_address_space(swap
), swap
.val
);
6587 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
6588 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
6590 struct page
*page
= NULL
;
6591 struct page_cgroup
*pc
;
6592 enum mc_target_type ret
= MC_TARGET_NONE
;
6593 swp_entry_t ent
= { .val
= 0 };
6595 if (pte_present(ptent
))
6596 page
= mc_handle_present_pte(vma
, addr
, ptent
);
6597 else if (is_swap_pte(ptent
))
6598 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
6599 else if (pte_none(ptent
) || pte_file(ptent
))
6600 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
6602 if (!page
&& !ent
.val
)
6605 pc
= lookup_page_cgroup(page
);
6607 * Do only loose check w/o page_cgroup lock.
6608 * mem_cgroup_move_account() checks the pc is valid or not under
6611 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6612 ret
= MC_TARGET_PAGE
;
6614 target
->page
= page
;
6616 if (!ret
|| !target
)
6619 /* There is a swap entry and a page doesn't exist or isn't charged */
6620 if (ent
.val
&& !ret
&&
6621 css_id(&mc
.from
->css
) == lookup_swap_cgroup_id(ent
)) {
6622 ret
= MC_TARGET_SWAP
;
6629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6631 * We don't consider swapping or file mapped pages because THP does not
6632 * support them for now.
6633 * Caller should make sure that pmd_trans_huge(pmd) is true.
6635 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6636 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6638 struct page
*page
= NULL
;
6639 struct page_cgroup
*pc
;
6640 enum mc_target_type ret
= MC_TARGET_NONE
;
6642 page
= pmd_page(pmd
);
6643 VM_BUG_ON(!page
|| !PageHead(page
));
6646 pc
= lookup_page_cgroup(page
);
6647 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6648 ret
= MC_TARGET_PAGE
;
6651 target
->page
= page
;
6657 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6658 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6660 return MC_TARGET_NONE
;
6664 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
6665 unsigned long addr
, unsigned long end
,
6666 struct mm_walk
*walk
)
6668 struct vm_area_struct
*vma
= walk
->private;
6672 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6673 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
6674 mc
.precharge
+= HPAGE_PMD_NR
;
6675 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6679 if (pmd_trans_unstable(pmd
))
6681 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6682 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
6683 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
6684 mc
.precharge
++; /* increment precharge temporarily */
6685 pte_unmap_unlock(pte
- 1, ptl
);
6691 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
6693 unsigned long precharge
;
6694 struct vm_area_struct
*vma
;
6696 down_read(&mm
->mmap_sem
);
6697 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6698 struct mm_walk mem_cgroup_count_precharge_walk
= {
6699 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
6703 if (is_vm_hugetlb_page(vma
))
6705 walk_page_range(vma
->vm_start
, vma
->vm_end
,
6706 &mem_cgroup_count_precharge_walk
);
6708 up_read(&mm
->mmap_sem
);
6710 precharge
= mc
.precharge
;
6716 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
6718 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
6720 VM_BUG_ON(mc
.moving_task
);
6721 mc
.moving_task
= current
;
6722 return mem_cgroup_do_precharge(precharge
);
6725 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6726 static void __mem_cgroup_clear_mc(void)
6728 struct mem_cgroup
*from
= mc
.from
;
6729 struct mem_cgroup
*to
= mc
.to
;
6732 /* we must uncharge all the leftover precharges from mc.to */
6734 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
6738 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6739 * we must uncharge here.
6741 if (mc
.moved_charge
) {
6742 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
6743 mc
.moved_charge
= 0;
6745 /* we must fixup refcnts and charges */
6746 if (mc
.moved_swap
) {
6747 /* uncharge swap account from the old cgroup */
6748 if (!mem_cgroup_is_root(mc
.from
))
6749 res_counter_uncharge(&mc
.from
->memsw
,
6750 PAGE_SIZE
* mc
.moved_swap
);
6752 for (i
= 0; i
< mc
.moved_swap
; i
++)
6753 css_put(&mc
.from
->css
);
6755 if (!mem_cgroup_is_root(mc
.to
)) {
6757 * we charged both to->res and to->memsw, so we should
6760 res_counter_uncharge(&mc
.to
->res
,
6761 PAGE_SIZE
* mc
.moved_swap
);
6763 /* we've already done css_get(mc.to) */
6766 memcg_oom_recover(from
);
6767 memcg_oom_recover(to
);
6768 wake_up_all(&mc
.waitq
);
6771 static void mem_cgroup_clear_mc(void)
6773 struct mem_cgroup
*from
= mc
.from
;
6776 * we must clear moving_task before waking up waiters at the end of
6779 mc
.moving_task
= NULL
;
6780 __mem_cgroup_clear_mc();
6781 spin_lock(&mc
.lock
);
6784 spin_unlock(&mc
.lock
);
6785 mem_cgroup_end_move(from
);
6788 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
6789 struct cgroup_taskset
*tset
)
6791 struct task_struct
*p
= cgroup_taskset_first(tset
);
6793 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6794 unsigned long move_charge_at_immigrate
;
6797 * We are now commited to this value whatever it is. Changes in this
6798 * tunable will only affect upcoming migrations, not the current one.
6799 * So we need to save it, and keep it going.
6801 move_charge_at_immigrate
= memcg
->move_charge_at_immigrate
;
6802 if (move_charge_at_immigrate
) {
6803 struct mm_struct
*mm
;
6804 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
6806 VM_BUG_ON(from
== memcg
);
6808 mm
= get_task_mm(p
);
6811 /* We move charges only when we move a owner of the mm */
6812 if (mm
->owner
== p
) {
6815 VM_BUG_ON(mc
.precharge
);
6816 VM_BUG_ON(mc
.moved_charge
);
6817 VM_BUG_ON(mc
.moved_swap
);
6818 mem_cgroup_start_move(from
);
6819 spin_lock(&mc
.lock
);
6822 mc
.immigrate_flags
= move_charge_at_immigrate
;
6823 spin_unlock(&mc
.lock
);
6824 /* We set mc.moving_task later */
6826 ret
= mem_cgroup_precharge_mc(mm
);
6828 mem_cgroup_clear_mc();
6835 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
6836 struct cgroup_taskset
*tset
)
6838 mem_cgroup_clear_mc();
6841 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
6842 unsigned long addr
, unsigned long end
,
6843 struct mm_walk
*walk
)
6846 struct vm_area_struct
*vma
= walk
->private;
6849 enum mc_target_type target_type
;
6850 union mc_target target
;
6852 struct page_cgroup
*pc
;
6855 * We don't take compound_lock() here but no race with splitting thp
6857 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6858 * under splitting, which means there's no concurrent thp split,
6859 * - if another thread runs into split_huge_page() just after we
6860 * entered this if-block, the thread must wait for page table lock
6861 * to be unlocked in __split_huge_page_splitting(), where the main
6862 * part of thp split is not executed yet.
6864 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6865 if (mc
.precharge
< HPAGE_PMD_NR
) {
6866 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6869 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
6870 if (target_type
== MC_TARGET_PAGE
) {
6872 if (!isolate_lru_page(page
)) {
6873 pc
= lookup_page_cgroup(page
);
6874 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
6875 pc
, mc
.from
, mc
.to
)) {
6876 mc
.precharge
-= HPAGE_PMD_NR
;
6877 mc
.moved_charge
+= HPAGE_PMD_NR
;
6879 putback_lru_page(page
);
6883 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6887 if (pmd_trans_unstable(pmd
))
6890 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6891 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
6892 pte_t ptent
= *(pte
++);
6898 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
6899 case MC_TARGET_PAGE
:
6901 if (isolate_lru_page(page
))
6903 pc
= lookup_page_cgroup(page
);
6904 if (!mem_cgroup_move_account(page
, 1, pc
,
6907 /* we uncharge from mc.from later. */
6910 putback_lru_page(page
);
6911 put
: /* get_mctgt_type() gets the page */
6914 case MC_TARGET_SWAP
:
6916 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
6918 /* we fixup refcnts and charges later. */
6926 pte_unmap_unlock(pte
- 1, ptl
);
6931 * We have consumed all precharges we got in can_attach().
6932 * We try charge one by one, but don't do any additional
6933 * charges to mc.to if we have failed in charge once in attach()
6936 ret
= mem_cgroup_do_precharge(1);
6944 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
6946 struct vm_area_struct
*vma
;
6948 lru_add_drain_all();
6950 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
6952 * Someone who are holding the mmap_sem might be waiting in
6953 * waitq. So we cancel all extra charges, wake up all waiters,
6954 * and retry. Because we cancel precharges, we might not be able
6955 * to move enough charges, but moving charge is a best-effort
6956 * feature anyway, so it wouldn't be a big problem.
6958 __mem_cgroup_clear_mc();
6962 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6964 struct mm_walk mem_cgroup_move_charge_walk
= {
6965 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
6969 if (is_vm_hugetlb_page(vma
))
6971 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
6972 &mem_cgroup_move_charge_walk
);
6975 * means we have consumed all precharges and failed in
6976 * doing additional charge. Just abandon here.
6980 up_read(&mm
->mmap_sem
);
6983 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
6984 struct cgroup_taskset
*tset
)
6986 struct task_struct
*p
= cgroup_taskset_first(tset
);
6987 struct mm_struct
*mm
= get_task_mm(p
);
6991 mem_cgroup_move_charge(mm
);
6995 mem_cgroup_clear_mc();
6997 #else /* !CONFIG_MMU */
6998 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
6999 struct cgroup_taskset
*tset
)
7003 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
7004 struct cgroup_taskset
*tset
)
7007 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
7008 struct cgroup_taskset
*tset
)
7014 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7015 * to verify sane_behavior flag on each mount attempt.
7017 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
7020 * use_hierarchy is forced with sane_behavior. cgroup core
7021 * guarantees that @root doesn't have any children, so turning it
7022 * on for the root memcg is enough.
7024 if (cgroup_sane_behavior(root_css
->cgroup
))
7025 mem_cgroup_from_css(root_css
)->use_hierarchy
= true;
7028 struct cgroup_subsys mem_cgroup_subsys
= {
7030 .subsys_id
= mem_cgroup_subsys_id
,
7031 .css_alloc
= mem_cgroup_css_alloc
,
7032 .css_online
= mem_cgroup_css_online
,
7033 .css_offline
= mem_cgroup_css_offline
,
7034 .css_free
= mem_cgroup_css_free
,
7035 .can_attach
= mem_cgroup_can_attach
,
7036 .cancel_attach
= mem_cgroup_cancel_attach
,
7037 .attach
= mem_cgroup_move_task
,
7038 .bind
= mem_cgroup_bind
,
7039 .base_cftypes
= mem_cgroup_files
,
7044 #ifdef CONFIG_MEMCG_SWAP
7045 static int __init
enable_swap_account(char *s
)
7047 if (!strcmp(s
, "1"))
7048 really_do_swap_account
= 1;
7049 else if (!strcmp(s
, "0"))
7050 really_do_swap_account
= 0;
7053 __setup("swapaccount=", enable_swap_account
);
7055 static void __init
memsw_file_init(void)
7057 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys
, memsw_cgroup_files
));
7060 static void __init
enable_swap_cgroup(void)
7062 if (!mem_cgroup_disabled() && really_do_swap_account
) {
7063 do_swap_account
= 1;
7069 static void __init
enable_swap_cgroup(void)
7075 * subsys_initcall() for memory controller.
7077 * Some parts like hotcpu_notifier() have to be initialized from this context
7078 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7079 * everything that doesn't depend on a specific mem_cgroup structure should
7080 * be initialized from here.
7082 static int __init
mem_cgroup_init(void)
7084 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
7085 enable_swap_cgroup();
7086 mem_cgroup_soft_limit_tree_init();
7090 subsys_initcall(mem_cgroup_init
);