4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
8 #include <linux/capability.h>
9 #include <linux/mman.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
27 int can_do_mlock(void)
29 if (capable(CAP_IPC_LOCK
))
31 if (rlimit(RLIMIT_MEMLOCK
) != 0)
35 EXPORT_SYMBOL(can_do_mlock
);
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
55 * LRU accounting for clear_page_mlock()
57 void clear_page_mlock(struct page
*page
)
59 if (!TestClearPageMlocked(page
))
62 mod_zone_page_state(page_zone(page
), NR_MLOCK
,
63 -hpage_nr_pages(page
));
64 count_vm_event(UNEVICTABLE_PGCLEARED
);
65 if (!isolate_lru_page(page
)) {
66 putback_lru_page(page
);
69 * We lost the race. the page already moved to evictable list.
71 if (PageUnevictable(page
))
72 count_vm_event(UNEVICTABLE_PGSTRANDED
);
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
80 void mlock_vma_page(struct page
*page
)
82 /* Serialize with page migration */
83 BUG_ON(!PageLocked(page
));
85 if (!TestSetPageMlocked(page
)) {
86 mod_zone_page_state(page_zone(page
), NR_MLOCK
,
87 hpage_nr_pages(page
));
88 count_vm_event(UNEVICTABLE_PGMLOCKED
);
89 if (!isolate_lru_page(page
))
90 putback_lru_page(page
);
95 * Finish munlock after successful page isolation
97 * Page must be locked. This is a wrapper for try_to_munlock()
98 * and putback_lru_page() with munlock accounting.
100 static void __munlock_isolated_page(struct page
*page
)
102 int ret
= SWAP_AGAIN
;
105 * Optimization: if the page was mapped just once, that's our mapping
106 * and we don't need to check all the other vmas.
108 if (page_mapcount(page
) > 1)
109 ret
= try_to_munlock(page
);
111 /* Did try_to_unlock() succeed or punt? */
112 if (ret
!= SWAP_MLOCK
)
113 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
115 putback_lru_page(page
);
119 * Accounting for page isolation fail during munlock
121 * Performs accounting when page isolation fails in munlock. There is nothing
122 * else to do because it means some other task has already removed the page
123 * from the LRU. putback_lru_page() will take care of removing the page from
124 * the unevictable list, if necessary. vmscan [page_referenced()] will move
125 * the page back to the unevictable list if some other vma has it mlocked.
127 static void __munlock_isolation_failed(struct page
*page
)
129 if (PageUnevictable(page
))
130 count_vm_event(UNEVICTABLE_PGSTRANDED
);
132 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
136 * munlock_vma_page - munlock a vma page
137 * @page - page to be unlocked, either a normal page or THP page head
139 * returns the size of the page as a page mask (0 for normal page,
140 * HPAGE_PMD_NR - 1 for THP head page)
142 * called from munlock()/munmap() path with page supposedly on the LRU.
143 * When we munlock a page, because the vma where we found the page is being
144 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
145 * page locked so that we can leave it on the unevictable lru list and not
146 * bother vmscan with it. However, to walk the page's rmap list in
147 * try_to_munlock() we must isolate the page from the LRU. If some other
148 * task has removed the page from the LRU, we won't be able to do that.
149 * So we clear the PageMlocked as we might not get another chance. If we
150 * can't isolate the page, we leave it for putback_lru_page() and vmscan
151 * [page_referenced()/try_to_unmap()] to deal with.
153 unsigned int munlock_vma_page(struct page
*page
)
155 unsigned int nr_pages
;
157 /* For try_to_munlock() and to serialize with page migration */
158 BUG_ON(!PageLocked(page
));
160 if (TestClearPageMlocked(page
)) {
161 nr_pages
= hpage_nr_pages(page
);
162 mod_zone_page_state(page_zone(page
), NR_MLOCK
, -nr_pages
);
163 if (!isolate_lru_page(page
))
164 __munlock_isolated_page(page
);
166 __munlock_isolation_failed(page
);
168 nr_pages
= hpage_nr_pages(page
);
172 * Regardless of the original PageMlocked flag, we determine nr_pages
173 * after touching the flag. This leaves a possible race with a THP page
174 * split, such that a whole THP page was munlocked, but nr_pages == 1.
175 * Returning a smaller mask due to that is OK, the worst that can
176 * happen is subsequent useless scanning of the former tail pages.
177 * The NR_MLOCK accounting can however become broken.
183 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
185 * @start: start address
188 * This takes care of making the pages present too.
190 * return 0 on success, negative error code on error.
192 * vma->vm_mm->mmap_sem must be held for at least read.
194 long __mlock_vma_pages_range(struct vm_area_struct
*vma
,
195 unsigned long start
, unsigned long end
, int *nonblocking
)
197 struct mm_struct
*mm
= vma
->vm_mm
;
198 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
201 VM_BUG_ON(start
& ~PAGE_MASK
);
202 VM_BUG_ON(end
& ~PAGE_MASK
);
203 VM_BUG_ON(start
< vma
->vm_start
);
204 VM_BUG_ON(end
> vma
->vm_end
);
205 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
207 gup_flags
= FOLL_TOUCH
| FOLL_MLOCK
;
209 * We want to touch writable mappings with a write fault in order
210 * to break COW, except for shared mappings because these don't COW
211 * and we would not want to dirty them for nothing.
213 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
214 gup_flags
|= FOLL_WRITE
;
217 * We want mlock to succeed for regions that have any permissions
218 * other than PROT_NONE.
220 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
221 gup_flags
|= FOLL_FORCE
;
224 * We made sure addr is within a VMA, so the following will
225 * not result in a stack expansion that recurses back here.
227 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
228 NULL
, NULL
, nonblocking
);
232 * convert get_user_pages() return value to posix mlock() error
234 static int __mlock_posix_error_return(long retval
)
236 if (retval
== -EFAULT
)
238 else if (retval
== -ENOMEM
)
244 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
246 * The fast path is available only for evictable pages with single mapping.
247 * Then we can bypass the per-cpu pvec and get better performance.
248 * when mapcount > 1 we need try_to_munlock() which can fail.
249 * when !page_evictable(), we need the full redo logic of putback_lru_page to
250 * avoid leaving evictable page in unevictable list.
252 * In case of success, @page is added to @pvec and @pgrescued is incremented
253 * in case that the page was previously unevictable. @page is also unlocked.
255 static bool __putback_lru_fast_prepare(struct page
*page
, struct pagevec
*pvec
,
258 VM_BUG_ON(PageLRU(page
));
259 VM_BUG_ON(!PageLocked(page
));
261 if (page_mapcount(page
) <= 1 && page_evictable(page
)) {
262 pagevec_add(pvec
, page
);
263 if (TestClearPageUnevictable(page
))
273 * Putback multiple evictable pages to the LRU
275 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
276 * the pages might have meanwhile become unevictable but that is OK.
278 static void __putback_lru_fast(struct pagevec
*pvec
, int pgrescued
)
280 count_vm_events(UNEVICTABLE_PGMUNLOCKED
, pagevec_count(pvec
));
282 *__pagevec_lru_add() calls release_pages() so we don't call
283 * put_page() explicitly
285 __pagevec_lru_add(pvec
);
286 count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
290 * Munlock a batch of pages from the same zone
292 * The work is split to two main phases. First phase clears the Mlocked flag
293 * and attempts to isolate the pages, all under a single zone lru lock.
294 * The second phase finishes the munlock only for pages where isolation
297 * Note that the pagevec may be modified during the process.
299 static void __munlock_pagevec(struct pagevec
*pvec
, struct zone
*zone
)
302 int nr
= pagevec_count(pvec
);
304 struct pagevec pvec_putback
;
307 pagevec_init(&pvec_putback
, 0);
309 /* Phase 1: page isolation */
310 spin_lock_irq(&zone
->lru_lock
);
311 for (i
= 0; i
< nr
; i
++) {
312 struct page
*page
= pvec
->pages
[i
];
314 if (TestClearPageMlocked(page
)) {
315 struct lruvec
*lruvec
;
319 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
320 lru
= page_lru(page
);
322 * We already have pin from follow_page_mask()
323 * so we can spare the get_page() here.
326 del_page_from_lru_list(page
, lruvec
, lru
);
328 __munlock_isolation_failed(page
);
335 * We won't be munlocking this page in the next phase
336 * but we still need to release the follow_page_mask()
337 * pin. We cannot do it under lru_lock however. If it's
338 * the last pin, __page_cache_release would deadlock.
340 pagevec_add(&pvec_putback
, pvec
->pages
[i
]);
341 pvec
->pages
[i
] = NULL
;
344 delta_munlocked
= -nr
+ pagevec_count(&pvec_putback
);
345 __mod_zone_page_state(zone
, NR_MLOCK
, delta_munlocked
);
346 spin_unlock_irq(&zone
->lru_lock
);
348 /* Now we can release pins of pages that we are not munlocking */
349 pagevec_release(&pvec_putback
);
351 /* Phase 2: page munlock */
352 for (i
= 0; i
< nr
; i
++) {
353 struct page
*page
= pvec
->pages
[i
];
357 if (!__putback_lru_fast_prepare(page
, &pvec_putback
,
360 * Slow path. We don't want to lose the last
361 * pin before unlock_page()
363 get_page(page
); /* for putback_lru_page() */
364 __munlock_isolated_page(page
);
366 put_page(page
); /* from follow_page_mask() */
372 * Phase 3: page putback for pages that qualified for the fast path
373 * This will also call put_page() to return pin from follow_page_mask()
375 if (pagevec_count(&pvec_putback
))
376 __putback_lru_fast(&pvec_putback
, pgrescued
);
380 * Fill up pagevec for __munlock_pagevec using pte walk
382 * The function expects that the struct page corresponding to @start address is
383 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
385 * The rest of @pvec is filled by subsequent pages within the same pmd and same
386 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
387 * pages also get pinned.
389 * Returns the address of the next page that should be scanned. This equals
390 * @start + PAGE_SIZE when no page could be added by the pte walk.
392 static unsigned long __munlock_pagevec_fill(struct pagevec
*pvec
,
393 struct vm_area_struct
*vma
, int zoneid
, unsigned long start
,
400 * Initialize pte walk starting at the already pinned page where we
401 * are sure that there is a pte, as it was pinned under the same
404 pte
= get_locked_pte(vma
->vm_mm
, start
, &ptl
);
405 /* Make sure we do not cross the page table boundary */
406 end
= pgd_addr_end(start
, end
);
407 end
= pud_addr_end(start
, end
);
408 end
= pmd_addr_end(start
, end
);
410 /* The page next to the pinned page is the first we will try to get */
412 while (start
< end
) {
413 struct page
*page
= NULL
;
415 if (pte_present(*pte
))
416 page
= vm_normal_page(vma
, start
, *pte
);
418 * Break if page could not be obtained or the page's node+zone does not
421 if (!page
|| page_zone_id(page
) != zoneid
)
426 * Increase the address that will be returned *before* the
427 * eventual break due to pvec becoming full by adding the page
430 if (pagevec_add(pvec
, page
) == 0)
433 pte_unmap_unlock(pte
, ptl
);
438 * munlock_vma_pages_range() - munlock all pages in the vma range.'
439 * @vma - vma containing range to be munlock()ed.
440 * @start - start address in @vma of the range
441 * @end - end of range in @vma.
443 * For mremap(), munmap() and exit().
445 * Called with @vma VM_LOCKED.
447 * Returns with VM_LOCKED cleared. Callers must be prepared to
450 * We don't save and restore VM_LOCKED here because pages are
451 * still on lru. In unmap path, pages might be scanned by reclaim
452 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
453 * free them. This will result in freeing mlocked pages.
455 void munlock_vma_pages_range(struct vm_area_struct
*vma
,
456 unsigned long start
, unsigned long end
)
458 vma
->vm_flags
&= ~VM_LOCKED
;
460 while (start
< end
) {
461 struct page
*page
= NULL
;
462 unsigned int page_mask
;
463 unsigned long page_increm
;
468 pagevec_init(&pvec
, 0);
470 * Although FOLL_DUMP is intended for get_dump_page(),
471 * it just so happens that its special treatment of the
472 * ZERO_PAGE (returning an error instead of doing get_page)
473 * suits munlock very well (and if somehow an abnormal page
474 * has sneaked into the range, we won't oops here: great).
476 page
= follow_page_mask(vma
, start
, FOLL_GET
| FOLL_DUMP
,
479 if (page
&& !IS_ERR(page
)) {
480 if (PageTransHuge(page
)) {
483 * Any THP page found by follow_page_mask() may
484 * have gotten split before reaching
485 * munlock_vma_page(), so we need to recompute
486 * the page_mask here.
488 page_mask
= munlock_vma_page(page
);
490 put_page(page
); /* follow_page_mask() */
493 * Non-huge pages are handled in batches via
494 * pagevec. The pin from follow_page_mask()
495 * prevents them from collapsing by THP.
497 pagevec_add(&pvec
, page
);
498 zone
= page_zone(page
);
499 zoneid
= page_zone_id(page
);
502 * Try to fill the rest of pagevec using fast
503 * pte walk. This will also update start to
504 * the next page to process. Then munlock the
507 start
= __munlock_pagevec_fill(&pvec
, vma
,
509 __munlock_pagevec(&pvec
, zone
);
513 /* It's a bug to munlock in the middle of a THP page */
514 VM_BUG_ON((start
>> PAGE_SHIFT
) & page_mask
);
515 page_increm
= 1 + page_mask
;
516 start
+= page_increm
* PAGE_SIZE
;
523 * mlock_fixup - handle mlock[all]/munlock[all] requests.
525 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
526 * munlock is a no-op. However, for some special vmas, we go ahead and
529 * For vmas that pass the filters, merge/split as appropriate.
531 static int mlock_fixup(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
532 unsigned long start
, unsigned long end
, vm_flags_t newflags
)
534 struct mm_struct
*mm
= vma
->vm_mm
;
538 int lock
= !!(newflags
& VM_LOCKED
);
540 if (newflags
== vma
->vm_flags
|| (vma
->vm_flags
& VM_SPECIAL
) ||
541 is_vm_hugetlb_page(vma
) || vma
== get_gate_vma(current
->mm
))
542 goto out
; /* don't set VM_LOCKED, don't count */
544 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
545 *prev
= vma_merge(mm
, *prev
, start
, end
, newflags
, vma
->anon_vma
,
546 vma
->vm_file
, pgoff
, vma_policy(vma
));
552 if (start
!= vma
->vm_start
) {
553 ret
= split_vma(mm
, vma
, start
, 1);
558 if (end
!= vma
->vm_end
) {
559 ret
= split_vma(mm
, vma
, end
, 0);
566 * Keep track of amount of locked VM.
568 nr_pages
= (end
- start
) >> PAGE_SHIFT
;
570 nr_pages
= -nr_pages
;
571 mm
->locked_vm
+= nr_pages
;
574 * vm_flags is protected by the mmap_sem held in write mode.
575 * It's okay if try_to_unmap_one unmaps a page just after we
576 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
580 vma
->vm_flags
= newflags
;
582 munlock_vma_pages_range(vma
, start
, end
);
589 static int do_mlock(unsigned long start
, size_t len
, int on
)
591 unsigned long nstart
, end
, tmp
;
592 struct vm_area_struct
* vma
, * prev
;
595 VM_BUG_ON(start
& ~PAGE_MASK
);
596 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
602 vma
= find_vma(current
->mm
, start
);
603 if (!vma
|| vma
->vm_start
> start
)
607 if (start
> vma
->vm_start
)
610 for (nstart
= start
; ; ) {
613 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
615 newflags
= vma
->vm_flags
& ~VM_LOCKED
;
617 newflags
|= VM_LOCKED
;
622 error
= mlock_fixup(vma
, &prev
, nstart
, tmp
, newflags
);
626 if (nstart
< prev
->vm_end
)
627 nstart
= prev
->vm_end
;
632 if (!vma
|| vma
->vm_start
!= nstart
) {
641 * __mm_populate - populate and/or mlock pages within a range of address space.
643 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
644 * flags. VMAs must be already marked with the desired vm_flags, and
645 * mmap_sem must not be held.
647 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
649 struct mm_struct
*mm
= current
->mm
;
650 unsigned long end
, nstart
, nend
;
651 struct vm_area_struct
*vma
= NULL
;
655 VM_BUG_ON(start
& ~PAGE_MASK
);
656 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
659 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
661 * We want to fault in pages for [nstart; end) address range.
662 * Find first corresponding VMA.
666 down_read(&mm
->mmap_sem
);
667 vma
= find_vma(mm
, nstart
);
668 } else if (nstart
>= vma
->vm_end
)
670 if (!vma
|| vma
->vm_start
>= end
)
673 * Set [nstart; nend) to intersection of desired address
674 * range with the first VMA. Also, skip undesirable VMA types.
676 nend
= min(end
, vma
->vm_end
);
677 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
679 if (nstart
< vma
->vm_start
)
680 nstart
= vma
->vm_start
;
682 * Now fault in a range of pages. __mlock_vma_pages_range()
683 * double checks the vma flags, so that it won't mlock pages
684 * if the vma was already munlocked.
686 ret
= __mlock_vma_pages_range(vma
, nstart
, nend
, &locked
);
690 continue; /* continue at next VMA */
692 ret
= __mlock_posix_error_return(ret
);
695 nend
= nstart
+ ret
* PAGE_SIZE
;
699 up_read(&mm
->mmap_sem
);
700 return ret
; /* 0 or negative error code */
703 SYSCALL_DEFINE2(mlock
, unsigned long, start
, size_t, len
)
705 unsigned long locked
;
706 unsigned long lock_limit
;
712 lru_add_drain_all(); /* flush pagevec */
714 down_write(¤t
->mm
->mmap_sem
);
715 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
718 locked
= len
>> PAGE_SHIFT
;
719 locked
+= current
->mm
->locked_vm
;
721 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
722 lock_limit
>>= PAGE_SHIFT
;
724 /* check against resource limits */
725 if ((locked
<= lock_limit
) || capable(CAP_IPC_LOCK
))
726 error
= do_mlock(start
, len
, 1);
727 up_write(¤t
->mm
->mmap_sem
);
729 error
= __mm_populate(start
, len
, 0);
733 SYSCALL_DEFINE2(munlock
, unsigned long, start
, size_t, len
)
737 down_write(¤t
->mm
->mmap_sem
);
738 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
740 ret
= do_mlock(start
, len
, 0);
741 up_write(¤t
->mm
->mmap_sem
);
745 static int do_mlockall(int flags
)
747 struct vm_area_struct
* vma
, * prev
= NULL
;
749 if (flags
& MCL_FUTURE
)
750 current
->mm
->def_flags
|= VM_LOCKED
;
752 current
->mm
->def_flags
&= ~VM_LOCKED
;
753 if (flags
== MCL_FUTURE
)
756 for (vma
= current
->mm
->mmap
; vma
; vma
= prev
->vm_next
) {
759 newflags
= vma
->vm_flags
& ~VM_LOCKED
;
760 if (flags
& MCL_CURRENT
)
761 newflags
|= VM_LOCKED
;
764 mlock_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
, newflags
);
771 SYSCALL_DEFINE1(mlockall
, int, flags
)
773 unsigned long lock_limit
;
776 if (!flags
|| (flags
& ~(MCL_CURRENT
| MCL_FUTURE
)))
783 if (flags
& MCL_CURRENT
)
784 lru_add_drain_all(); /* flush pagevec */
786 down_write(¤t
->mm
->mmap_sem
);
788 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
789 lock_limit
>>= PAGE_SHIFT
;
792 if (!(flags
& MCL_CURRENT
) || (current
->mm
->total_vm
<= lock_limit
) ||
793 capable(CAP_IPC_LOCK
))
794 ret
= do_mlockall(flags
);
795 up_write(¤t
->mm
->mmap_sem
);
796 if (!ret
&& (flags
& MCL_CURRENT
))
797 mm_populate(0, TASK_SIZE
);
802 SYSCALL_DEFINE0(munlockall
)
806 down_write(¤t
->mm
->mmap_sem
);
807 ret
= do_mlockall(0);
808 up_write(¤t
->mm
->mmap_sem
);
813 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
814 * shm segments) get accounted against the user_struct instead.
816 static DEFINE_SPINLOCK(shmlock_user_lock
);
818 int user_shm_lock(size_t size
, struct user_struct
*user
)
820 unsigned long lock_limit
, locked
;
823 locked
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
824 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
825 if (lock_limit
== RLIM_INFINITY
)
827 lock_limit
>>= PAGE_SHIFT
;
828 spin_lock(&shmlock_user_lock
);
830 locked
+ user
->locked_shm
> lock_limit
&& !capable(CAP_IPC_LOCK
))
833 user
->locked_shm
+= locked
;
836 spin_unlock(&shmlock_user_lock
);
840 void user_shm_unlock(size_t size
, struct user_struct
*user
)
842 spin_lock(&shmlock_user_lock
);
843 user
->locked_shm
-= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
844 spin_unlock(&shmlock_user_lock
);