hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / mm / mlock.c
blob1b12dfad0794aee359dd3db0d4026c4fe670bd0c
1 /*
2 * linux/mm/mlock.c
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
25 #include "internal.h"
27 int can_do_mlock(void)
29 if (capable(CAP_IPC_LOCK))
30 return 1;
31 if (rlimit(RLIMIT_MEMLOCK) != 0)
32 return 1;
33 return 0;
35 EXPORT_SYMBOL(can_do_mlock);
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
55 * LRU accounting for clear_page_mlock()
57 void clear_page_mlock(struct page *page)
59 if (!TestClearPageMlocked(page))
60 return;
62 mod_zone_page_state(page_zone(page), NR_MLOCK,
63 -hpage_nr_pages(page));
64 count_vm_event(UNEVICTABLE_PGCLEARED);
65 if (!isolate_lru_page(page)) {
66 putback_lru_page(page);
67 } else {
69 * We lost the race. the page already moved to evictable list.
71 if (PageUnevictable(page))
72 count_vm_event(UNEVICTABLE_PGSTRANDED);
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
80 void mlock_vma_page(struct page *page)
82 /* Serialize with page migration */
83 BUG_ON(!PageLocked(page));
85 if (!TestSetPageMlocked(page)) {
86 mod_zone_page_state(page_zone(page), NR_MLOCK,
87 hpage_nr_pages(page));
88 count_vm_event(UNEVICTABLE_PGMLOCKED);
89 if (!isolate_lru_page(page))
90 putback_lru_page(page);
95 * Finish munlock after successful page isolation
97 * Page must be locked. This is a wrapper for try_to_munlock()
98 * and putback_lru_page() with munlock accounting.
100 static void __munlock_isolated_page(struct page *page)
102 int ret = SWAP_AGAIN;
105 * Optimization: if the page was mapped just once, that's our mapping
106 * and we don't need to check all the other vmas.
108 if (page_mapcount(page) > 1)
109 ret = try_to_munlock(page);
111 /* Did try_to_unlock() succeed or punt? */
112 if (ret != SWAP_MLOCK)
113 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
115 putback_lru_page(page);
119 * Accounting for page isolation fail during munlock
121 * Performs accounting when page isolation fails in munlock. There is nothing
122 * else to do because it means some other task has already removed the page
123 * from the LRU. putback_lru_page() will take care of removing the page from
124 * the unevictable list, if necessary. vmscan [page_referenced()] will move
125 * the page back to the unevictable list if some other vma has it mlocked.
127 static void __munlock_isolation_failed(struct page *page)
129 if (PageUnevictable(page))
130 count_vm_event(UNEVICTABLE_PGSTRANDED);
131 else
132 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
136 * munlock_vma_page - munlock a vma page
137 * @page - page to be unlocked, either a normal page or THP page head
139 * returns the size of the page as a page mask (0 for normal page,
140 * HPAGE_PMD_NR - 1 for THP head page)
142 * called from munlock()/munmap() path with page supposedly on the LRU.
143 * When we munlock a page, because the vma where we found the page is being
144 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
145 * page locked so that we can leave it on the unevictable lru list and not
146 * bother vmscan with it. However, to walk the page's rmap list in
147 * try_to_munlock() we must isolate the page from the LRU. If some other
148 * task has removed the page from the LRU, we won't be able to do that.
149 * So we clear the PageMlocked as we might not get another chance. If we
150 * can't isolate the page, we leave it for putback_lru_page() and vmscan
151 * [page_referenced()/try_to_unmap()] to deal with.
153 unsigned int munlock_vma_page(struct page *page)
155 unsigned int nr_pages;
157 /* For try_to_munlock() and to serialize with page migration */
158 BUG_ON(!PageLocked(page));
160 if (TestClearPageMlocked(page)) {
161 nr_pages = hpage_nr_pages(page);
162 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
163 if (!isolate_lru_page(page))
164 __munlock_isolated_page(page);
165 else
166 __munlock_isolation_failed(page);
167 } else {
168 nr_pages = hpage_nr_pages(page);
172 * Regardless of the original PageMlocked flag, we determine nr_pages
173 * after touching the flag. This leaves a possible race with a THP page
174 * split, such that a whole THP page was munlocked, but nr_pages == 1.
175 * Returning a smaller mask due to that is OK, the worst that can
176 * happen is subsequent useless scanning of the former tail pages.
177 * The NR_MLOCK accounting can however become broken.
179 return nr_pages - 1;
183 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
184 * @vma: target vma
185 * @start: start address
186 * @end: end address
188 * This takes care of making the pages present too.
190 * return 0 on success, negative error code on error.
192 * vma->vm_mm->mmap_sem must be held for at least read.
194 long __mlock_vma_pages_range(struct vm_area_struct *vma,
195 unsigned long start, unsigned long end, int *nonblocking)
197 struct mm_struct *mm = vma->vm_mm;
198 unsigned long nr_pages = (end - start) / PAGE_SIZE;
199 int gup_flags;
201 VM_BUG_ON(start & ~PAGE_MASK);
202 VM_BUG_ON(end & ~PAGE_MASK);
203 VM_BUG_ON(start < vma->vm_start);
204 VM_BUG_ON(end > vma->vm_end);
205 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
207 gup_flags = FOLL_TOUCH | FOLL_MLOCK;
209 * We want to touch writable mappings with a write fault in order
210 * to break COW, except for shared mappings because these don't COW
211 * and we would not want to dirty them for nothing.
213 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
214 gup_flags |= FOLL_WRITE;
217 * We want mlock to succeed for regions that have any permissions
218 * other than PROT_NONE.
220 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
221 gup_flags |= FOLL_FORCE;
224 * We made sure addr is within a VMA, so the following will
225 * not result in a stack expansion that recurses back here.
227 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
228 NULL, NULL, nonblocking);
232 * convert get_user_pages() return value to posix mlock() error
234 static int __mlock_posix_error_return(long retval)
236 if (retval == -EFAULT)
237 retval = -ENOMEM;
238 else if (retval == -ENOMEM)
239 retval = -EAGAIN;
240 return retval;
244 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
246 * The fast path is available only for evictable pages with single mapping.
247 * Then we can bypass the per-cpu pvec and get better performance.
248 * when mapcount > 1 we need try_to_munlock() which can fail.
249 * when !page_evictable(), we need the full redo logic of putback_lru_page to
250 * avoid leaving evictable page in unevictable list.
252 * In case of success, @page is added to @pvec and @pgrescued is incremented
253 * in case that the page was previously unevictable. @page is also unlocked.
255 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
256 int *pgrescued)
258 VM_BUG_ON(PageLRU(page));
259 VM_BUG_ON(!PageLocked(page));
261 if (page_mapcount(page) <= 1 && page_evictable(page)) {
262 pagevec_add(pvec, page);
263 if (TestClearPageUnevictable(page))
264 (*pgrescued)++;
265 unlock_page(page);
266 return true;
269 return false;
273 * Putback multiple evictable pages to the LRU
275 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
276 * the pages might have meanwhile become unevictable but that is OK.
278 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
280 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
282 *__pagevec_lru_add() calls release_pages() so we don't call
283 * put_page() explicitly
285 __pagevec_lru_add(pvec);
286 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
290 * Munlock a batch of pages from the same zone
292 * The work is split to two main phases. First phase clears the Mlocked flag
293 * and attempts to isolate the pages, all under a single zone lru lock.
294 * The second phase finishes the munlock only for pages where isolation
295 * succeeded.
297 * Note that the pagevec may be modified during the process.
299 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
301 int i;
302 int nr = pagevec_count(pvec);
303 int delta_munlocked;
304 struct pagevec pvec_putback;
305 int pgrescued = 0;
307 pagevec_init(&pvec_putback, 0);
309 /* Phase 1: page isolation */
310 spin_lock_irq(&zone->lru_lock);
311 for (i = 0; i < nr; i++) {
312 struct page *page = pvec->pages[i];
314 if (TestClearPageMlocked(page)) {
315 struct lruvec *lruvec;
316 int lru;
318 if (PageLRU(page)) {
319 lruvec = mem_cgroup_page_lruvec(page, zone);
320 lru = page_lru(page);
322 * We already have pin from follow_page_mask()
323 * so we can spare the get_page() here.
325 ClearPageLRU(page);
326 del_page_from_lru_list(page, lruvec, lru);
327 } else {
328 __munlock_isolation_failed(page);
329 goto skip_munlock;
332 } else {
333 skip_munlock:
335 * We won't be munlocking this page in the next phase
336 * but we still need to release the follow_page_mask()
337 * pin. We cannot do it under lru_lock however. If it's
338 * the last pin, __page_cache_release would deadlock.
340 pagevec_add(&pvec_putback, pvec->pages[i]);
341 pvec->pages[i] = NULL;
344 delta_munlocked = -nr + pagevec_count(&pvec_putback);
345 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
346 spin_unlock_irq(&zone->lru_lock);
348 /* Now we can release pins of pages that we are not munlocking */
349 pagevec_release(&pvec_putback);
351 /* Phase 2: page munlock */
352 for (i = 0; i < nr; i++) {
353 struct page *page = pvec->pages[i];
355 if (page) {
356 lock_page(page);
357 if (!__putback_lru_fast_prepare(page, &pvec_putback,
358 &pgrescued)) {
360 * Slow path. We don't want to lose the last
361 * pin before unlock_page()
363 get_page(page); /* for putback_lru_page() */
364 __munlock_isolated_page(page);
365 unlock_page(page);
366 put_page(page); /* from follow_page_mask() */
372 * Phase 3: page putback for pages that qualified for the fast path
373 * This will also call put_page() to return pin from follow_page_mask()
375 if (pagevec_count(&pvec_putback))
376 __putback_lru_fast(&pvec_putback, pgrescued);
380 * Fill up pagevec for __munlock_pagevec using pte walk
382 * The function expects that the struct page corresponding to @start address is
383 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
385 * The rest of @pvec is filled by subsequent pages within the same pmd and same
386 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
387 * pages also get pinned.
389 * Returns the address of the next page that should be scanned. This equals
390 * @start + PAGE_SIZE when no page could be added by the pte walk.
392 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
393 struct vm_area_struct *vma, int zoneid, unsigned long start,
394 unsigned long end)
396 pte_t *pte;
397 spinlock_t *ptl;
400 * Initialize pte walk starting at the already pinned page where we
401 * are sure that there is a pte, as it was pinned under the same
402 * mmap_sem write op.
404 pte = get_locked_pte(vma->vm_mm, start, &ptl);
405 /* Make sure we do not cross the page table boundary */
406 end = pgd_addr_end(start, end);
407 end = pud_addr_end(start, end);
408 end = pmd_addr_end(start, end);
410 /* The page next to the pinned page is the first we will try to get */
411 start += PAGE_SIZE;
412 while (start < end) {
413 struct page *page = NULL;
414 pte++;
415 if (pte_present(*pte))
416 page = vm_normal_page(vma, start, *pte);
418 * Break if page could not be obtained or the page's node+zone does not
419 * match
421 if (!page || page_zone_id(page) != zoneid)
422 break;
424 get_page(page);
426 * Increase the address that will be returned *before* the
427 * eventual break due to pvec becoming full by adding the page
429 start += PAGE_SIZE;
430 if (pagevec_add(pvec, page) == 0)
431 break;
433 pte_unmap_unlock(pte, ptl);
434 return start;
438 * munlock_vma_pages_range() - munlock all pages in the vma range.'
439 * @vma - vma containing range to be munlock()ed.
440 * @start - start address in @vma of the range
441 * @end - end of range in @vma.
443 * For mremap(), munmap() and exit().
445 * Called with @vma VM_LOCKED.
447 * Returns with VM_LOCKED cleared. Callers must be prepared to
448 * deal with this.
450 * We don't save and restore VM_LOCKED here because pages are
451 * still on lru. In unmap path, pages might be scanned by reclaim
452 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
453 * free them. This will result in freeing mlocked pages.
455 void munlock_vma_pages_range(struct vm_area_struct *vma,
456 unsigned long start, unsigned long end)
458 vma->vm_flags &= ~VM_LOCKED;
460 while (start < end) {
461 struct page *page = NULL;
462 unsigned int page_mask;
463 unsigned long page_increm;
464 struct pagevec pvec;
465 struct zone *zone;
466 int zoneid;
468 pagevec_init(&pvec, 0);
470 * Although FOLL_DUMP is intended for get_dump_page(),
471 * it just so happens that its special treatment of the
472 * ZERO_PAGE (returning an error instead of doing get_page)
473 * suits munlock very well (and if somehow an abnormal page
474 * has sneaked into the range, we won't oops here: great).
476 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
477 &page_mask);
479 if (page && !IS_ERR(page)) {
480 if (PageTransHuge(page)) {
481 lock_page(page);
483 * Any THP page found by follow_page_mask() may
484 * have gotten split before reaching
485 * munlock_vma_page(), so we need to recompute
486 * the page_mask here.
488 page_mask = munlock_vma_page(page);
489 unlock_page(page);
490 put_page(page); /* follow_page_mask() */
491 } else {
493 * Non-huge pages are handled in batches via
494 * pagevec. The pin from follow_page_mask()
495 * prevents them from collapsing by THP.
497 pagevec_add(&pvec, page);
498 zone = page_zone(page);
499 zoneid = page_zone_id(page);
502 * Try to fill the rest of pagevec using fast
503 * pte walk. This will also update start to
504 * the next page to process. Then munlock the
505 * pagevec.
507 start = __munlock_pagevec_fill(&pvec, vma,
508 zoneid, start, end);
509 __munlock_pagevec(&pvec, zone);
510 goto next;
513 /* It's a bug to munlock in the middle of a THP page */
514 VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
515 page_increm = 1 + page_mask;
516 start += page_increm * PAGE_SIZE;
517 next:
518 cond_resched();
523 * mlock_fixup - handle mlock[all]/munlock[all] requests.
525 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
526 * munlock is a no-op. However, for some special vmas, we go ahead and
527 * populate the ptes.
529 * For vmas that pass the filters, merge/split as appropriate.
531 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
532 unsigned long start, unsigned long end, vm_flags_t newflags)
534 struct mm_struct *mm = vma->vm_mm;
535 pgoff_t pgoff;
536 int nr_pages;
537 int ret = 0;
538 int lock = !!(newflags & VM_LOCKED);
540 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
541 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
542 goto out; /* don't set VM_LOCKED, don't count */
544 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
545 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
546 vma->vm_file, pgoff, vma_policy(vma));
547 if (*prev) {
548 vma = *prev;
549 goto success;
552 if (start != vma->vm_start) {
553 ret = split_vma(mm, vma, start, 1);
554 if (ret)
555 goto out;
558 if (end != vma->vm_end) {
559 ret = split_vma(mm, vma, end, 0);
560 if (ret)
561 goto out;
564 success:
566 * Keep track of amount of locked VM.
568 nr_pages = (end - start) >> PAGE_SHIFT;
569 if (!lock)
570 nr_pages = -nr_pages;
571 mm->locked_vm += nr_pages;
574 * vm_flags is protected by the mmap_sem held in write mode.
575 * It's okay if try_to_unmap_one unmaps a page just after we
576 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
579 if (lock)
580 vma->vm_flags = newflags;
581 else
582 munlock_vma_pages_range(vma, start, end);
584 out:
585 *prev = vma;
586 return ret;
589 static int do_mlock(unsigned long start, size_t len, int on)
591 unsigned long nstart, end, tmp;
592 struct vm_area_struct * vma, * prev;
593 int error;
595 VM_BUG_ON(start & ~PAGE_MASK);
596 VM_BUG_ON(len != PAGE_ALIGN(len));
597 end = start + len;
598 if (end < start)
599 return -EINVAL;
600 if (end == start)
601 return 0;
602 vma = find_vma(current->mm, start);
603 if (!vma || vma->vm_start > start)
604 return -ENOMEM;
606 prev = vma->vm_prev;
607 if (start > vma->vm_start)
608 prev = vma;
610 for (nstart = start ; ; ) {
611 vm_flags_t newflags;
613 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
615 newflags = vma->vm_flags & ~VM_LOCKED;
616 if (on)
617 newflags |= VM_LOCKED;
619 tmp = vma->vm_end;
620 if (tmp > end)
621 tmp = end;
622 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
623 if (error)
624 break;
625 nstart = tmp;
626 if (nstart < prev->vm_end)
627 nstart = prev->vm_end;
628 if (nstart >= end)
629 break;
631 vma = prev->vm_next;
632 if (!vma || vma->vm_start != nstart) {
633 error = -ENOMEM;
634 break;
637 return error;
641 * __mm_populate - populate and/or mlock pages within a range of address space.
643 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
644 * flags. VMAs must be already marked with the desired vm_flags, and
645 * mmap_sem must not be held.
647 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
649 struct mm_struct *mm = current->mm;
650 unsigned long end, nstart, nend;
651 struct vm_area_struct *vma = NULL;
652 int locked = 0;
653 long ret = 0;
655 VM_BUG_ON(start & ~PAGE_MASK);
656 VM_BUG_ON(len != PAGE_ALIGN(len));
657 end = start + len;
659 for (nstart = start; nstart < end; nstart = nend) {
661 * We want to fault in pages for [nstart; end) address range.
662 * Find first corresponding VMA.
664 if (!locked) {
665 locked = 1;
666 down_read(&mm->mmap_sem);
667 vma = find_vma(mm, nstart);
668 } else if (nstart >= vma->vm_end)
669 vma = vma->vm_next;
670 if (!vma || vma->vm_start >= end)
671 break;
673 * Set [nstart; nend) to intersection of desired address
674 * range with the first VMA. Also, skip undesirable VMA types.
676 nend = min(end, vma->vm_end);
677 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
678 continue;
679 if (nstart < vma->vm_start)
680 nstart = vma->vm_start;
682 * Now fault in a range of pages. __mlock_vma_pages_range()
683 * double checks the vma flags, so that it won't mlock pages
684 * if the vma was already munlocked.
686 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
687 if (ret < 0) {
688 if (ignore_errors) {
689 ret = 0;
690 continue; /* continue at next VMA */
692 ret = __mlock_posix_error_return(ret);
693 break;
695 nend = nstart + ret * PAGE_SIZE;
696 ret = 0;
698 if (locked)
699 up_read(&mm->mmap_sem);
700 return ret; /* 0 or negative error code */
703 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
705 unsigned long locked;
706 unsigned long lock_limit;
707 int error = -ENOMEM;
709 if (!can_do_mlock())
710 return -EPERM;
712 lru_add_drain_all(); /* flush pagevec */
714 down_write(&current->mm->mmap_sem);
715 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
716 start &= PAGE_MASK;
718 locked = len >> PAGE_SHIFT;
719 locked += current->mm->locked_vm;
721 lock_limit = rlimit(RLIMIT_MEMLOCK);
722 lock_limit >>= PAGE_SHIFT;
724 /* check against resource limits */
725 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
726 error = do_mlock(start, len, 1);
727 up_write(&current->mm->mmap_sem);
728 if (!error)
729 error = __mm_populate(start, len, 0);
730 return error;
733 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
735 int ret;
737 down_write(&current->mm->mmap_sem);
738 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
739 start &= PAGE_MASK;
740 ret = do_mlock(start, len, 0);
741 up_write(&current->mm->mmap_sem);
742 return ret;
745 static int do_mlockall(int flags)
747 struct vm_area_struct * vma, * prev = NULL;
749 if (flags & MCL_FUTURE)
750 current->mm->def_flags |= VM_LOCKED;
751 else
752 current->mm->def_flags &= ~VM_LOCKED;
753 if (flags == MCL_FUTURE)
754 goto out;
756 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
757 vm_flags_t newflags;
759 newflags = vma->vm_flags & ~VM_LOCKED;
760 if (flags & MCL_CURRENT)
761 newflags |= VM_LOCKED;
763 /* Ignore errors */
764 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
765 cond_resched();
767 out:
768 return 0;
771 SYSCALL_DEFINE1(mlockall, int, flags)
773 unsigned long lock_limit;
774 int ret = -EINVAL;
776 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
777 goto out;
779 ret = -EPERM;
780 if (!can_do_mlock())
781 goto out;
783 if (flags & MCL_CURRENT)
784 lru_add_drain_all(); /* flush pagevec */
786 down_write(&current->mm->mmap_sem);
788 lock_limit = rlimit(RLIMIT_MEMLOCK);
789 lock_limit >>= PAGE_SHIFT;
791 ret = -ENOMEM;
792 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
793 capable(CAP_IPC_LOCK))
794 ret = do_mlockall(flags);
795 up_write(&current->mm->mmap_sem);
796 if (!ret && (flags & MCL_CURRENT))
797 mm_populate(0, TASK_SIZE);
798 out:
799 return ret;
802 SYSCALL_DEFINE0(munlockall)
804 int ret;
806 down_write(&current->mm->mmap_sem);
807 ret = do_mlockall(0);
808 up_write(&current->mm->mmap_sem);
809 return ret;
813 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
814 * shm segments) get accounted against the user_struct instead.
816 static DEFINE_SPINLOCK(shmlock_user_lock);
818 int user_shm_lock(size_t size, struct user_struct *user)
820 unsigned long lock_limit, locked;
821 int allowed = 0;
823 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
824 lock_limit = rlimit(RLIMIT_MEMLOCK);
825 if (lock_limit == RLIM_INFINITY)
826 allowed = 1;
827 lock_limit >>= PAGE_SHIFT;
828 spin_lock(&shmlock_user_lock);
829 if (!allowed &&
830 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
831 goto out;
832 get_uid(user);
833 user->locked_shm += locked;
834 allowed = 1;
835 out:
836 spin_unlock(&shmlock_user_lock);
837 return allowed;
840 void user_shm_unlock(size_t size, struct user_struct *user)
842 spin_lock(&shmlock_user_lock);
843 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 spin_unlock(&shmlock_user_lock);
845 free_uid(user);