2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
36 static struct vfsmount
*shm_mnt
;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
88 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
89 pgoff_t start
; /* start of range currently being fallocated */
90 pgoff_t next
; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
95 /* Flag allocation requirements to shmem_getpage */
97 SGP_READ
, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE
, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
105 static unsigned long shmem_default_max_blocks(void)
107 return totalram_pages
/ 2;
110 static unsigned long shmem_default_max_inodes(void)
112 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
116 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
117 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
118 struct shmem_inode_info
*info
, pgoff_t index
);
119 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
120 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
122 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
123 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
125 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
126 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
129 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
131 return sb
->s_fs_info
;
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
140 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
142 return (flags
& VM_NORESERVE
) ?
143 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
146 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
148 if (!(flags
& VM_NORESERVE
))
149 vm_unacct_memory(VM_ACCT(size
));
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
158 static inline int shmem_acct_block(unsigned long flags
)
160 return (flags
& VM_NORESERVE
) ?
161 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
164 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
166 if (flags
& VM_NORESERVE
)
167 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
170 static const struct super_operations shmem_ops
;
171 static const struct address_space_operations shmem_aops
;
172 static const struct file_operations shmem_file_operations
;
173 static const struct inode_operations shmem_inode_operations
;
174 static const struct inode_operations shmem_dir_inode_operations
;
175 static const struct inode_operations shmem_special_inode_operations
;
176 static const struct vm_operations_struct shmem_vm_ops
;
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
179 .ra_pages
= 0, /* No readahead */
180 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
183 static LIST_HEAD(shmem_swaplist
);
184 static DEFINE_MUTEX(shmem_swaplist_mutex
);
186 static int shmem_reserve_inode(struct super_block
*sb
)
188 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
189 if (sbinfo
->max_inodes
) {
190 spin_lock(&sbinfo
->stat_lock
);
191 if (!sbinfo
->free_inodes
) {
192 spin_unlock(&sbinfo
->stat_lock
);
195 sbinfo
->free_inodes
--;
196 spin_unlock(&sbinfo
->stat_lock
);
201 static void shmem_free_inode(struct super_block
*sb
)
203 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
204 if (sbinfo
->max_inodes
) {
205 spin_lock(&sbinfo
->stat_lock
);
206 sbinfo
->free_inodes
++;
207 spin_unlock(&sbinfo
->stat_lock
);
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221 * It has to be called with the spinlock held.
223 static void shmem_recalc_inode(struct inode
*inode
)
225 struct shmem_inode_info
*info
= SHMEM_I(inode
);
228 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
230 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
231 if (sbinfo
->max_blocks
)
232 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
233 info
->alloced
-= freed
;
234 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
235 shmem_unacct_blocks(info
->flags
, freed
);
240 * Replace item expected in radix tree by a new item, while holding tree lock.
242 static int shmem_radix_tree_replace(struct address_space
*mapping
,
243 pgoff_t index
, void *expected
, void *replacement
)
248 VM_BUG_ON(!expected
);
249 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
251 item
= radix_tree_deref_slot_protected(pslot
,
252 &mapping
->tree_lock
);
253 if (item
!= expected
)
256 radix_tree_replace_slot(pslot
, replacement
);
258 radix_tree_delete(&mapping
->page_tree
, index
);
263 * Sometimes, before we decide whether to proceed or to fail, we must check
264 * that an entry was not already brought back from swap by a racing thread.
266 * Checking page is not enough: by the time a SwapCache page is locked, it
267 * might be reused, and again be SwapCache, using the same swap as before.
269 static bool shmem_confirm_swap(struct address_space
*mapping
,
270 pgoff_t index
, swp_entry_t swap
)
275 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
277 return item
== swp_to_radix_entry(swap
);
281 * Like add_to_page_cache_locked, but error if expected item has gone.
283 static int shmem_add_to_page_cache(struct page
*page
,
284 struct address_space
*mapping
,
285 pgoff_t index
, gfp_t gfp
, void *expected
)
289 VM_BUG_ON(!PageLocked(page
));
290 VM_BUG_ON(!PageSwapBacked(page
));
292 page_cache_get(page
);
293 page
->mapping
= mapping
;
296 spin_lock_irq(&mapping
->tree_lock
);
298 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
300 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
304 __inc_zone_page_state(page
, NR_FILE_PAGES
);
305 __inc_zone_page_state(page
, NR_SHMEM
);
306 spin_unlock_irq(&mapping
->tree_lock
);
308 page
->mapping
= NULL
;
309 spin_unlock_irq(&mapping
->tree_lock
);
310 page_cache_release(page
);
316 * Like delete_from_page_cache, but substitutes swap for page.
318 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
320 struct address_space
*mapping
= page
->mapping
;
323 spin_lock_irq(&mapping
->tree_lock
);
324 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
325 page
->mapping
= NULL
;
327 __dec_zone_page_state(page
, NR_FILE_PAGES
);
328 __dec_zone_page_state(page
, NR_SHMEM
);
329 spin_unlock_irq(&mapping
->tree_lock
);
330 page_cache_release(page
);
335 * Like find_get_pages, but collecting swap entries as well as pages.
337 static unsigned shmem_find_get_pages_and_swap(struct address_space
*mapping
,
338 pgoff_t start
, unsigned int nr_pages
,
339 struct page
**pages
, pgoff_t
*indices
)
342 unsigned int ret
= 0;
343 struct radix_tree_iter iter
;
350 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
353 page
= radix_tree_deref_slot(slot
);
356 if (radix_tree_exception(page
)) {
357 if (radix_tree_deref_retry(page
))
360 * Otherwise, we must be storing a swap entry
361 * here as an exceptional entry: so return it
362 * without attempting to raise page count.
366 if (!page_cache_get_speculative(page
))
369 /* Has the page moved? */
370 if (unlikely(page
!= *slot
)) {
371 page_cache_release(page
);
375 indices
[ret
] = iter
.index
;
377 if (++ret
== nr_pages
)
385 * Remove swap entry from radix tree, free the swap and its page cache.
387 static int shmem_free_swap(struct address_space
*mapping
,
388 pgoff_t index
, void *radswap
)
392 spin_lock_irq(&mapping
->tree_lock
);
393 error
= shmem_radix_tree_replace(mapping
, index
, radswap
, NULL
);
394 spin_unlock_irq(&mapping
->tree_lock
);
396 free_swap_and_cache(radix_to_swp_entry(radswap
));
401 * Pagevec may contain swap entries, so shuffle up pages before releasing.
403 static void shmem_deswap_pagevec(struct pagevec
*pvec
)
407 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
408 struct page
*page
= pvec
->pages
[i
];
409 if (!radix_tree_exceptional_entry(page
))
410 pvec
->pages
[j
++] = page
;
416 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
418 void shmem_unlock_mapping(struct address_space
*mapping
)
421 pgoff_t indices
[PAGEVEC_SIZE
];
424 pagevec_init(&pvec
, 0);
426 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
428 while (!mapping_unevictable(mapping
)) {
430 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
433 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
434 PAGEVEC_SIZE
, pvec
.pages
, indices
);
437 index
= indices
[pvec
.nr
- 1] + 1;
438 shmem_deswap_pagevec(&pvec
);
439 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
440 pagevec_release(&pvec
);
446 * Remove range of pages and swap entries from radix tree, and free them.
447 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
449 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
452 struct address_space
*mapping
= inode
->i_mapping
;
453 struct shmem_inode_info
*info
= SHMEM_I(inode
);
454 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
455 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
456 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
457 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
459 pgoff_t indices
[PAGEVEC_SIZE
];
460 long nr_swaps_freed
= 0;
465 end
= -1; /* unsigned, so actually very big */
467 pagevec_init(&pvec
, 0);
469 while (index
< end
) {
470 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
471 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
472 pvec
.pages
, indices
);
475 mem_cgroup_uncharge_start();
476 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
477 struct page
*page
= pvec
.pages
[i
];
483 if (radix_tree_exceptional_entry(page
)) {
486 nr_swaps_freed
+= !shmem_free_swap(mapping
,
491 if (!trylock_page(page
))
493 if (!unfalloc
|| !PageUptodate(page
)) {
494 if (page
->mapping
== mapping
) {
495 VM_BUG_ON(PageWriteback(page
));
496 truncate_inode_page(mapping
, page
);
501 shmem_deswap_pagevec(&pvec
);
502 pagevec_release(&pvec
);
503 mem_cgroup_uncharge_end();
509 struct page
*page
= NULL
;
510 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
512 unsigned int top
= PAGE_CACHE_SIZE
;
517 zero_user_segment(page
, partial_start
, top
);
518 set_page_dirty(page
);
520 page_cache_release(page
);
524 struct page
*page
= NULL
;
525 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
527 zero_user_segment(page
, 0, partial_end
);
528 set_page_dirty(page
);
530 page_cache_release(page
);
537 while (index
< end
) {
539 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
540 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
541 pvec
.pages
, indices
);
543 /* If all gone or hole-punch or unfalloc, we're done */
544 if (index
== start
|| end
!= -1)
546 /* But if truncating, restart to make sure all gone */
550 mem_cgroup_uncharge_start();
551 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
552 struct page
*page
= pvec
.pages
[i
];
558 if (radix_tree_exceptional_entry(page
)) {
561 if (shmem_free_swap(mapping
, index
, page
)) {
562 /* Swap was replaced by page: retry */
571 if (!unfalloc
|| !PageUptodate(page
)) {
572 if (page
->mapping
== mapping
) {
573 VM_BUG_ON(PageWriteback(page
));
574 truncate_inode_page(mapping
, page
);
576 /* Page was replaced by swap: retry */
584 shmem_deswap_pagevec(&pvec
);
585 pagevec_release(&pvec
);
586 mem_cgroup_uncharge_end();
590 spin_lock(&info
->lock
);
591 info
->swapped
-= nr_swaps_freed
;
592 shmem_recalc_inode(inode
);
593 spin_unlock(&info
->lock
);
596 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
598 shmem_undo_range(inode
, lstart
, lend
, false);
599 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
601 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
603 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
605 struct inode
*inode
= dentry
->d_inode
;
608 error
= inode_change_ok(inode
, attr
);
612 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
613 loff_t oldsize
= inode
->i_size
;
614 loff_t newsize
= attr
->ia_size
;
616 if (newsize
!= oldsize
) {
617 i_size_write(inode
, newsize
);
618 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
620 if (newsize
< oldsize
) {
621 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
622 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
623 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
624 /* unmap again to remove racily COWed private pages */
625 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
629 setattr_copy(inode
, attr
);
630 #ifdef CONFIG_TMPFS_POSIX_ACL
631 if (attr
->ia_valid
& ATTR_MODE
)
632 error
= generic_acl_chmod(inode
);
637 static void shmem_evict_inode(struct inode
*inode
)
639 struct shmem_inode_info
*info
= SHMEM_I(inode
);
641 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
642 shmem_unacct_size(info
->flags
, inode
->i_size
);
644 shmem_truncate_range(inode
, 0, (loff_t
)-1);
645 if (!list_empty(&info
->swaplist
)) {
646 mutex_lock(&shmem_swaplist_mutex
);
647 list_del_init(&info
->swaplist
);
648 mutex_unlock(&shmem_swaplist_mutex
);
651 kfree(info
->symlink
);
653 simple_xattrs_free(&info
->xattrs
);
654 WARN_ON(inode
->i_blocks
);
655 shmem_free_inode(inode
->i_sb
);
660 * If swap found in inode, free it and move page from swapcache to filecache.
662 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
663 swp_entry_t swap
, struct page
**pagep
)
665 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
671 radswap
= swp_to_radix_entry(swap
);
672 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
677 * Move _head_ to start search for next from here.
678 * But be careful: shmem_evict_inode checks list_empty without taking
679 * mutex, and there's an instant in list_move_tail when info->swaplist
680 * would appear empty, if it were the only one on shmem_swaplist.
682 if (shmem_swaplist
.next
!= &info
->swaplist
)
683 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
685 gfp
= mapping_gfp_mask(mapping
);
686 if (shmem_should_replace_page(*pagep
, gfp
)) {
687 mutex_unlock(&shmem_swaplist_mutex
);
688 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
689 mutex_lock(&shmem_swaplist_mutex
);
691 * We needed to drop mutex to make that restrictive page
692 * allocation, but the inode might have been freed while we
693 * dropped it: although a racing shmem_evict_inode() cannot
694 * complete without emptying the radix_tree, our page lock
695 * on this swapcache page is not enough to prevent that -
696 * free_swap_and_cache() of our swap entry will only
697 * trylock_page(), removing swap from radix_tree whatever.
699 * We must not proceed to shmem_add_to_page_cache() if the
700 * inode has been freed, but of course we cannot rely on
701 * inode or mapping or info to check that. However, we can
702 * safely check if our swap entry is still in use (and here
703 * it can't have got reused for another page): if it's still
704 * in use, then the inode cannot have been freed yet, and we
705 * can safely proceed (if it's no longer in use, that tells
706 * nothing about the inode, but we don't need to unuse swap).
708 if (!page_swapcount(*pagep
))
713 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
714 * but also to hold up shmem_evict_inode(): so inode cannot be freed
715 * beneath us (pagelock doesn't help until the page is in pagecache).
718 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
719 GFP_NOWAIT
, radswap
);
720 if (error
!= -ENOMEM
) {
722 * Truncation and eviction use free_swap_and_cache(), which
723 * only does trylock page: if we raced, best clean up here.
725 delete_from_swap_cache(*pagep
);
726 set_page_dirty(*pagep
);
728 spin_lock(&info
->lock
);
730 spin_unlock(&info
->lock
);
733 error
= 1; /* not an error, but entry was found */
739 * Search through swapped inodes to find and replace swap by page.
741 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
743 struct list_head
*this, *next
;
744 struct shmem_inode_info
*info
;
749 * There's a faint possibility that swap page was replaced before
750 * caller locked it: caller will come back later with the right page.
752 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
756 * Charge page using GFP_KERNEL while we can wait, before taking
757 * the shmem_swaplist_mutex which might hold up shmem_writepage().
758 * Charged back to the user (not to caller) when swap account is used.
760 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
763 /* No radix_tree_preload: swap entry keeps a place for page in tree */
765 mutex_lock(&shmem_swaplist_mutex
);
766 list_for_each_safe(this, next
, &shmem_swaplist
) {
767 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
769 found
= shmem_unuse_inode(info
, swap
, &page
);
771 list_del_init(&info
->swaplist
);
776 mutex_unlock(&shmem_swaplist_mutex
);
782 page_cache_release(page
);
787 * Move the page from the page cache to the swap cache.
789 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
791 struct shmem_inode_info
*info
;
792 struct address_space
*mapping
;
797 BUG_ON(!PageLocked(page
));
798 mapping
= page
->mapping
;
800 inode
= mapping
->host
;
801 info
= SHMEM_I(inode
);
802 if (info
->flags
& VM_LOCKED
)
804 if (!total_swap_pages
)
808 * shmem_backing_dev_info's capabilities prevent regular writeback or
809 * sync from ever calling shmem_writepage; but a stacking filesystem
810 * might use ->writepage of its underlying filesystem, in which case
811 * tmpfs should write out to swap only in response to memory pressure,
812 * and not for the writeback threads or sync.
814 if (!wbc
->for_reclaim
) {
815 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
820 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
821 * value into swapfile.c, the only way we can correctly account for a
822 * fallocated page arriving here is now to initialize it and write it.
824 * That's okay for a page already fallocated earlier, but if we have
825 * not yet completed the fallocation, then (a) we want to keep track
826 * of this page in case we have to undo it, and (b) it may not be a
827 * good idea to continue anyway, once we're pushing into swap. So
828 * reactivate the page, and let shmem_fallocate() quit when too many.
830 if (!PageUptodate(page
)) {
831 if (inode
->i_private
) {
832 struct shmem_falloc
*shmem_falloc
;
833 spin_lock(&inode
->i_lock
);
834 shmem_falloc
= inode
->i_private
;
836 !shmem_falloc
->waitq
&&
837 index
>= shmem_falloc
->start
&&
838 index
< shmem_falloc
->next
)
839 shmem_falloc
->nr_unswapped
++;
842 spin_unlock(&inode
->i_lock
);
846 clear_highpage(page
);
847 flush_dcache_page(page
);
848 SetPageUptodate(page
);
851 swap
= get_swap_page();
856 * Add inode to shmem_unuse()'s list of swapped-out inodes,
857 * if it's not already there. Do it now before the page is
858 * moved to swap cache, when its pagelock no longer protects
859 * the inode from eviction. But don't unlock the mutex until
860 * we've incremented swapped, because shmem_unuse_inode() will
861 * prune a !swapped inode from the swaplist under this mutex.
863 mutex_lock(&shmem_swaplist_mutex
);
864 if (list_empty(&info
->swaplist
))
865 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
867 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
868 swap_shmem_alloc(swap
);
869 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
871 spin_lock(&info
->lock
);
873 shmem_recalc_inode(inode
);
874 spin_unlock(&info
->lock
);
876 mutex_unlock(&shmem_swaplist_mutex
);
877 BUG_ON(page_mapped(page
));
878 swap_writepage(page
, wbc
);
882 mutex_unlock(&shmem_swaplist_mutex
);
883 swapcache_free(swap
, NULL
);
885 set_page_dirty(page
);
886 if (wbc
->for_reclaim
)
887 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
894 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
898 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
899 return; /* show nothing */
901 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
903 seq_printf(seq
, ",mpol=%s", buffer
);
906 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
908 struct mempolicy
*mpol
= NULL
;
910 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
913 spin_unlock(&sbinfo
->stat_lock
);
917 #endif /* CONFIG_TMPFS */
919 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
920 struct shmem_inode_info
*info
, pgoff_t index
)
922 struct vm_area_struct pvma
;
925 /* Create a pseudo vma that just contains the policy */
927 /* Bias interleave by inode number to distribute better across nodes */
928 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
930 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
932 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
934 /* Drop reference taken by mpol_shared_policy_lookup() */
935 mpol_cond_put(pvma
.vm_policy
);
940 static struct page
*shmem_alloc_page(gfp_t gfp
,
941 struct shmem_inode_info
*info
, pgoff_t index
)
943 struct vm_area_struct pvma
;
946 /* Create a pseudo vma that just contains the policy */
948 /* Bias interleave by inode number to distribute better across nodes */
949 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
951 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
953 page
= alloc_page_vma(gfp
, &pvma
, 0);
955 /* Drop reference taken by mpol_shared_policy_lookup() */
956 mpol_cond_put(pvma
.vm_policy
);
960 #else /* !CONFIG_NUMA */
962 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
965 #endif /* CONFIG_TMPFS */
967 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
968 struct shmem_inode_info
*info
, pgoff_t index
)
970 return swapin_readahead(swap
, gfp
, NULL
, 0);
973 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
974 struct shmem_inode_info
*info
, pgoff_t index
)
976 return alloc_page(gfp
);
978 #endif /* CONFIG_NUMA */
980 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
981 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
988 * When a page is moved from swapcache to shmem filecache (either by the
989 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
990 * shmem_unuse_inode()), it may have been read in earlier from swap, in
991 * ignorance of the mapping it belongs to. If that mapping has special
992 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
993 * we may need to copy to a suitable page before moving to filecache.
995 * In a future release, this may well be extended to respect cpuset and
996 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
997 * but for now it is a simple matter of zone.
999 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1001 return page_zonenum(page
) > gfp_zone(gfp
);
1004 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1005 struct shmem_inode_info
*info
, pgoff_t index
)
1007 struct page
*oldpage
, *newpage
;
1008 struct address_space
*swap_mapping
;
1013 swap_index
= page_private(oldpage
);
1014 swap_mapping
= page_mapping(oldpage
);
1017 * We have arrived here because our zones are constrained, so don't
1018 * limit chance of success by further cpuset and node constraints.
1020 gfp
&= ~GFP_CONSTRAINT_MASK
;
1021 newpage
= shmem_alloc_page(gfp
, info
, index
);
1025 page_cache_get(newpage
);
1026 copy_highpage(newpage
, oldpage
);
1027 flush_dcache_page(newpage
);
1029 __set_page_locked(newpage
);
1030 SetPageUptodate(newpage
);
1031 SetPageSwapBacked(newpage
);
1032 set_page_private(newpage
, swap_index
);
1033 SetPageSwapCache(newpage
);
1036 * Our caller will very soon move newpage out of swapcache, but it's
1037 * a nice clean interface for us to replace oldpage by newpage there.
1039 spin_lock_irq(&swap_mapping
->tree_lock
);
1040 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1043 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1044 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1046 spin_unlock_irq(&swap_mapping
->tree_lock
);
1048 if (unlikely(error
)) {
1050 * Is this possible? I think not, now that our callers check
1051 * both PageSwapCache and page_private after getting page lock;
1052 * but be defensive. Reverse old to newpage for clear and free.
1056 mem_cgroup_replace_page_cache(oldpage
, newpage
);
1057 lru_cache_add_anon(newpage
);
1061 ClearPageSwapCache(oldpage
);
1062 set_page_private(oldpage
, 0);
1064 unlock_page(oldpage
);
1065 page_cache_release(oldpage
);
1066 page_cache_release(oldpage
);
1071 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1073 * If we allocate a new one we do not mark it dirty. That's up to the
1074 * vm. If we swap it in we mark it dirty since we also free the swap
1075 * entry since a page cannot live in both the swap and page cache
1077 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1078 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1080 struct address_space
*mapping
= inode
->i_mapping
;
1081 struct shmem_inode_info
*info
;
1082 struct shmem_sb_info
*sbinfo
;
1089 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1093 page
= find_lock_page(mapping
, index
);
1094 if (radix_tree_exceptional_entry(page
)) {
1095 swap
= radix_to_swp_entry(page
);
1099 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1100 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1105 /* fallocated page? */
1106 if (page
&& !PageUptodate(page
)) {
1107 if (sgp
!= SGP_READ
)
1110 page_cache_release(page
);
1113 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1119 * Fast cache lookup did not find it:
1120 * bring it back from swap or allocate.
1122 info
= SHMEM_I(inode
);
1123 sbinfo
= SHMEM_SB(inode
->i_sb
);
1126 /* Look it up and read it in.. */
1127 page
= lookup_swap_cache(swap
);
1129 /* here we actually do the io */
1131 *fault_type
|= VM_FAULT_MAJOR
;
1132 page
= shmem_swapin(swap
, gfp
, info
, index
);
1139 /* We have to do this with page locked to prevent races */
1141 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1142 !shmem_confirm_swap(mapping
, index
, swap
)) {
1143 error
= -EEXIST
; /* try again */
1146 if (!PageUptodate(page
)) {
1150 wait_on_page_writeback(page
);
1152 if (shmem_should_replace_page(page
, gfp
)) {
1153 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1158 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1159 gfp
& GFP_RECLAIM_MASK
);
1161 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1162 gfp
, swp_to_radix_entry(swap
));
1164 * We already confirmed swap under page lock, and make
1165 * no memory allocation here, so usually no possibility
1166 * of error; but free_swap_and_cache() only trylocks a
1167 * page, so it is just possible that the entry has been
1168 * truncated or holepunched since swap was confirmed.
1169 * shmem_undo_range() will have done some of the
1170 * unaccounting, now delete_from_swap_cache() will do
1171 * the rest (including mem_cgroup_uncharge_swapcache).
1172 * Reset swap.val? No, leave it so "failed" goes back to
1173 * "repeat": reading a hole and writing should succeed.
1176 delete_from_swap_cache(page
);
1181 spin_lock(&info
->lock
);
1183 shmem_recalc_inode(inode
);
1184 spin_unlock(&info
->lock
);
1186 delete_from_swap_cache(page
);
1187 set_page_dirty(page
);
1191 if (shmem_acct_block(info
->flags
)) {
1195 if (sbinfo
->max_blocks
) {
1196 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1197 sbinfo
->max_blocks
) >= 0) {
1201 percpu_counter_inc(&sbinfo
->used_blocks
);
1204 page
= shmem_alloc_page(gfp
, info
, index
);
1210 SetPageSwapBacked(page
);
1211 __set_page_locked(page
);
1212 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1213 gfp
& GFP_RECLAIM_MASK
);
1216 error
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
1218 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1220 radix_tree_preload_end();
1223 mem_cgroup_uncharge_cache_page(page
);
1226 lru_cache_add_anon(page
);
1228 spin_lock(&info
->lock
);
1230 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1231 shmem_recalc_inode(inode
);
1232 spin_unlock(&info
->lock
);
1236 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1238 if (sgp
== SGP_FALLOC
)
1242 * Let SGP_WRITE caller clear ends if write does not fill page;
1243 * but SGP_FALLOC on a page fallocated earlier must initialize
1244 * it now, lest undo on failure cancel our earlier guarantee.
1246 if (sgp
!= SGP_WRITE
) {
1247 clear_highpage(page
);
1248 flush_dcache_page(page
);
1249 SetPageUptodate(page
);
1251 if (sgp
== SGP_DIRTY
)
1252 set_page_dirty(page
);
1255 /* Perhaps the file has been truncated since we checked */
1256 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1257 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1271 info
= SHMEM_I(inode
);
1272 ClearPageDirty(page
);
1273 delete_from_page_cache(page
);
1274 spin_lock(&info
->lock
);
1276 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1277 spin_unlock(&info
->lock
);
1279 sbinfo
= SHMEM_SB(inode
->i_sb
);
1280 if (sbinfo
->max_blocks
)
1281 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1283 shmem_unacct_blocks(info
->flags
, 1);
1285 if (swap
.val
&& error
!= -EINVAL
&&
1286 !shmem_confirm_swap(mapping
, index
, swap
))
1291 page_cache_release(page
);
1293 if (error
== -ENOSPC
&& !once
++) {
1294 info
= SHMEM_I(inode
);
1295 spin_lock(&info
->lock
);
1296 shmem_recalc_inode(inode
);
1297 spin_unlock(&info
->lock
);
1300 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1305 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1307 struct inode
*inode
= file_inode(vma
->vm_file
);
1309 int ret
= VM_FAULT_LOCKED
;
1312 * Trinity finds that probing a hole which tmpfs is punching can
1313 * prevent the hole-punch from ever completing: which in turn
1314 * locks writers out with its hold on i_mutex. So refrain from
1315 * faulting pages into the hole while it's being punched. Although
1316 * shmem_undo_range() does remove the additions, it may be unable to
1317 * keep up, as each new page needs its own unmap_mapping_range() call,
1318 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1320 * It does not matter if we sometimes reach this check just before the
1321 * hole-punch begins, so that one fault then races with the punch:
1322 * we just need to make racing faults a rare case.
1324 * The implementation below would be much simpler if we just used a
1325 * standard mutex or completion: but we cannot take i_mutex in fault,
1326 * and bloating every shmem inode for this unlikely case would be sad.
1328 if (unlikely(inode
->i_private
)) {
1329 struct shmem_falloc
*shmem_falloc
;
1331 spin_lock(&inode
->i_lock
);
1332 shmem_falloc
= inode
->i_private
;
1334 shmem_falloc
->waitq
&&
1335 vmf
->pgoff
>= shmem_falloc
->start
&&
1336 vmf
->pgoff
< shmem_falloc
->next
) {
1337 wait_queue_head_t
*shmem_falloc_waitq
;
1338 DEFINE_WAIT(shmem_fault_wait
);
1340 ret
= VM_FAULT_NOPAGE
;
1341 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1342 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1343 /* It's polite to up mmap_sem if we can */
1344 up_read(&vma
->vm_mm
->mmap_sem
);
1345 ret
= VM_FAULT_RETRY
;
1348 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1349 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1350 TASK_UNINTERRUPTIBLE
);
1351 spin_unlock(&inode
->i_lock
);
1355 * shmem_falloc_waitq points into the shmem_fallocate()
1356 * stack of the hole-punching task: shmem_falloc_waitq
1357 * is usually invalid by the time we reach here, but
1358 * finish_wait() does not dereference it in that case;
1359 * though i_lock needed lest racing with wake_up_all().
1361 spin_lock(&inode
->i_lock
);
1362 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1363 spin_unlock(&inode
->i_lock
);
1366 spin_unlock(&inode
->i_lock
);
1369 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1371 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1373 if (ret
& VM_FAULT_MAJOR
) {
1374 count_vm_event(PGMAJFAULT
);
1375 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1381 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1383 struct inode
*inode
= file_inode(vma
->vm_file
);
1384 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1387 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1390 struct inode
*inode
= file_inode(vma
->vm_file
);
1393 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1394 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1398 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1400 struct inode
*inode
= file_inode(file
);
1401 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1402 int retval
= -ENOMEM
;
1404 spin_lock(&info
->lock
);
1405 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1406 if (!user_shm_lock(inode
->i_size
, user
))
1408 info
->flags
|= VM_LOCKED
;
1409 mapping_set_unevictable(file
->f_mapping
);
1411 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1412 user_shm_unlock(inode
->i_size
, user
);
1413 info
->flags
&= ~VM_LOCKED
;
1414 mapping_clear_unevictable(file
->f_mapping
);
1419 spin_unlock(&info
->lock
);
1423 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1425 file_accessed(file
);
1426 vma
->vm_ops
= &shmem_vm_ops
;
1430 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1431 umode_t mode
, dev_t dev
, unsigned long flags
)
1433 struct inode
*inode
;
1434 struct shmem_inode_info
*info
;
1435 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1437 if (shmem_reserve_inode(sb
))
1440 inode
= new_inode(sb
);
1442 inode
->i_ino
= get_next_ino();
1443 inode_init_owner(inode
, dir
, mode
);
1444 inode
->i_blocks
= 0;
1445 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1446 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1447 inode
->i_generation
= get_seconds();
1448 info
= SHMEM_I(inode
);
1449 memset(info
, 0, (char *)inode
- (char *)info
);
1450 spin_lock_init(&info
->lock
);
1451 info
->flags
= flags
& VM_NORESERVE
;
1452 INIT_LIST_HEAD(&info
->swaplist
);
1453 simple_xattrs_init(&info
->xattrs
);
1454 cache_no_acl(inode
);
1456 switch (mode
& S_IFMT
) {
1458 inode
->i_op
= &shmem_special_inode_operations
;
1459 init_special_inode(inode
, mode
, dev
);
1462 inode
->i_mapping
->a_ops
= &shmem_aops
;
1463 inode
->i_op
= &shmem_inode_operations
;
1464 inode
->i_fop
= &shmem_file_operations
;
1465 mpol_shared_policy_init(&info
->policy
,
1466 shmem_get_sbmpol(sbinfo
));
1470 /* Some things misbehave if size == 0 on a directory */
1471 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1472 inode
->i_op
= &shmem_dir_inode_operations
;
1473 inode
->i_fop
= &simple_dir_operations
;
1477 * Must not load anything in the rbtree,
1478 * mpol_free_shared_policy will not be called.
1480 mpol_shared_policy_init(&info
->policy
, NULL
);
1484 shmem_free_inode(sb
);
1489 static const struct inode_operations shmem_symlink_inode_operations
;
1490 static const struct inode_operations shmem_short_symlink_operations
;
1492 #ifdef CONFIG_TMPFS_XATTR
1493 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1495 #define shmem_initxattrs NULL
1499 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1500 loff_t pos
, unsigned len
, unsigned flags
,
1501 struct page
**pagep
, void **fsdata
)
1503 struct inode
*inode
= mapping
->host
;
1504 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1505 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1509 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1510 loff_t pos
, unsigned len
, unsigned copied
,
1511 struct page
*page
, void *fsdata
)
1513 struct inode
*inode
= mapping
->host
;
1515 if (pos
+ copied
> inode
->i_size
)
1516 i_size_write(inode
, pos
+ copied
);
1518 if (!PageUptodate(page
)) {
1519 if (copied
< PAGE_CACHE_SIZE
) {
1520 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1521 zero_user_segments(page
, 0, from
,
1522 from
+ copied
, PAGE_CACHE_SIZE
);
1524 SetPageUptodate(page
);
1526 set_page_dirty(page
);
1528 page_cache_release(page
);
1533 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1535 struct inode
*inode
= file_inode(filp
);
1536 struct address_space
*mapping
= inode
->i_mapping
;
1538 unsigned long offset
;
1539 enum sgp_type sgp
= SGP_READ
;
1542 * Might this read be for a stacking filesystem? Then when reading
1543 * holes of a sparse file, we actually need to allocate those pages,
1544 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1546 if (segment_eq(get_fs(), KERNEL_DS
))
1549 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1550 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1553 struct page
*page
= NULL
;
1555 unsigned long nr
, ret
;
1556 loff_t i_size
= i_size_read(inode
);
1558 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1559 if (index
> end_index
)
1561 if (index
== end_index
) {
1562 nr
= i_size
& ~PAGE_CACHE_MASK
;
1567 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1569 if (desc
->error
== -EINVAL
)
1577 * We must evaluate after, since reads (unlike writes)
1578 * are called without i_mutex protection against truncate
1580 nr
= PAGE_CACHE_SIZE
;
1581 i_size
= i_size_read(inode
);
1582 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1583 if (index
== end_index
) {
1584 nr
= i_size
& ~PAGE_CACHE_MASK
;
1587 page_cache_release(page
);
1595 * If users can be writing to this page using arbitrary
1596 * virtual addresses, take care about potential aliasing
1597 * before reading the page on the kernel side.
1599 if (mapping_writably_mapped(mapping
))
1600 flush_dcache_page(page
);
1602 * Mark the page accessed if we read the beginning.
1605 mark_page_accessed(page
);
1607 page
= ZERO_PAGE(0);
1608 page_cache_get(page
);
1612 * Ok, we have the page, and it's up-to-date, so
1613 * now we can copy it to user space...
1615 * The actor routine returns how many bytes were actually used..
1616 * NOTE! This may not be the same as how much of a user buffer
1617 * we filled up (we may be padding etc), so we can only update
1618 * "pos" here (the actor routine has to update the user buffer
1619 * pointers and the remaining count).
1621 ret
= actor(desc
, page
, offset
, nr
);
1623 index
+= offset
>> PAGE_CACHE_SHIFT
;
1624 offset
&= ~PAGE_CACHE_MASK
;
1626 page_cache_release(page
);
1627 if (ret
!= nr
|| !desc
->count
)
1633 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1634 file_accessed(filp
);
1637 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1638 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1640 struct file
*filp
= iocb
->ki_filp
;
1644 loff_t
*ppos
= &iocb
->ki_pos
;
1646 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1650 for (seg
= 0; seg
< nr_segs
; seg
++) {
1651 read_descriptor_t desc
;
1654 desc
.arg
.buf
= iov
[seg
].iov_base
;
1655 desc
.count
= iov
[seg
].iov_len
;
1656 if (desc
.count
== 0)
1659 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1660 retval
+= desc
.written
;
1662 retval
= retval
?: desc
.error
;
1671 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1672 struct pipe_inode_info
*pipe
, size_t len
,
1675 struct address_space
*mapping
= in
->f_mapping
;
1676 struct inode
*inode
= mapping
->host
;
1677 unsigned int loff
, nr_pages
, req_pages
;
1678 struct page
*pages
[PIPE_DEF_BUFFERS
];
1679 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1681 pgoff_t index
, end_index
;
1684 struct splice_pipe_desc spd
= {
1687 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1689 .ops
= &page_cache_pipe_buf_ops
,
1690 .spd_release
= spd_release_page
,
1693 isize
= i_size_read(inode
);
1694 if (unlikely(*ppos
>= isize
))
1697 left
= isize
- *ppos
;
1698 if (unlikely(left
< len
))
1701 if (splice_grow_spd(pipe
, &spd
))
1704 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1705 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1706 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1707 nr_pages
= min(req_pages
, pipe
->buffers
);
1709 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1710 nr_pages
, spd
.pages
);
1711 index
+= spd
.nr_pages
;
1714 while (spd
.nr_pages
< nr_pages
) {
1715 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1719 spd
.pages
[spd
.nr_pages
++] = page
;
1723 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1724 nr_pages
= spd
.nr_pages
;
1727 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1728 unsigned int this_len
;
1733 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1734 page
= spd
.pages
[page_nr
];
1736 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1737 error
= shmem_getpage(inode
, index
, &page
,
1742 page_cache_release(spd
.pages
[page_nr
]);
1743 spd
.pages
[page_nr
] = page
;
1746 isize
= i_size_read(inode
);
1747 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1748 if (unlikely(!isize
|| index
> end_index
))
1751 if (end_index
== index
) {
1754 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1758 this_len
= min(this_len
, plen
- loff
);
1762 spd
.partial
[page_nr
].offset
= loff
;
1763 spd
.partial
[page_nr
].len
= this_len
;
1770 while (page_nr
< nr_pages
)
1771 page_cache_release(spd
.pages
[page_nr
++]);
1774 error
= splice_to_pipe(pipe
, &spd
);
1776 splice_shrink_spd(&spd
);
1786 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1788 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1789 pgoff_t index
, pgoff_t end
, int whence
)
1792 struct pagevec pvec
;
1793 pgoff_t indices
[PAGEVEC_SIZE
];
1797 pagevec_init(&pvec
, 0);
1798 pvec
.nr
= 1; /* start small: we may be there already */
1800 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
1801 pvec
.nr
, pvec
.pages
, indices
);
1803 if (whence
== SEEK_DATA
)
1807 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1808 if (index
< indices
[i
]) {
1809 if (whence
== SEEK_HOLE
) {
1815 page
= pvec
.pages
[i
];
1816 if (page
&& !radix_tree_exceptional_entry(page
)) {
1817 if (!PageUptodate(page
))
1821 (page
&& whence
== SEEK_DATA
) ||
1822 (!page
&& whence
== SEEK_HOLE
)) {
1827 shmem_deswap_pagevec(&pvec
);
1828 pagevec_release(&pvec
);
1829 pvec
.nr
= PAGEVEC_SIZE
;
1835 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1837 struct address_space
*mapping
= file
->f_mapping
;
1838 struct inode
*inode
= mapping
->host
;
1842 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1843 return generic_file_llseek_size(file
, offset
, whence
,
1844 MAX_LFS_FILESIZE
, i_size_read(inode
));
1845 mutex_lock(&inode
->i_mutex
);
1846 /* We're holding i_mutex so we can access i_size directly */
1850 else if (offset
>= inode
->i_size
)
1853 start
= offset
>> PAGE_CACHE_SHIFT
;
1854 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1855 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1856 new_offset
<<= PAGE_CACHE_SHIFT
;
1857 if (new_offset
> offset
) {
1858 if (new_offset
< inode
->i_size
)
1859 offset
= new_offset
;
1860 else if (whence
== SEEK_DATA
)
1863 offset
= inode
->i_size
;
1868 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
1869 mutex_unlock(&inode
->i_mutex
);
1873 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1876 struct inode
*inode
= file_inode(file
);
1877 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1878 struct shmem_falloc shmem_falloc
;
1879 pgoff_t start
, index
, end
;
1882 mutex_lock(&inode
->i_mutex
);
1884 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1885 struct address_space
*mapping
= file
->f_mapping
;
1886 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1887 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1888 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
1890 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
1891 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
1892 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
1893 spin_lock(&inode
->i_lock
);
1894 inode
->i_private
= &shmem_falloc
;
1895 spin_unlock(&inode
->i_lock
);
1897 if ((u64
)unmap_end
> (u64
)unmap_start
)
1898 unmap_mapping_range(mapping
, unmap_start
,
1899 1 + unmap_end
- unmap_start
, 0);
1900 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1901 /* No need to unmap again: hole-punching leaves COWed pages */
1903 spin_lock(&inode
->i_lock
);
1904 inode
->i_private
= NULL
;
1905 wake_up_all(&shmem_falloc_waitq
);
1906 spin_unlock(&inode
->i_lock
);
1911 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1912 error
= inode_newsize_ok(inode
, offset
+ len
);
1916 start
= offset
>> PAGE_CACHE_SHIFT
;
1917 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1918 /* Try to avoid a swapstorm if len is impossible to satisfy */
1919 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1924 shmem_falloc
.waitq
= NULL
;
1925 shmem_falloc
.start
= start
;
1926 shmem_falloc
.next
= start
;
1927 shmem_falloc
.nr_falloced
= 0;
1928 shmem_falloc
.nr_unswapped
= 0;
1929 spin_lock(&inode
->i_lock
);
1930 inode
->i_private
= &shmem_falloc
;
1931 spin_unlock(&inode
->i_lock
);
1933 for (index
= start
; index
< end
; index
++) {
1937 * Good, the fallocate(2) manpage permits EINTR: we may have
1938 * been interrupted because we are using up too much memory.
1940 if (signal_pending(current
))
1942 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1945 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1948 /* Remove the !PageUptodate pages we added */
1949 shmem_undo_range(inode
,
1950 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1951 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1956 * Inform shmem_writepage() how far we have reached.
1957 * No need for lock or barrier: we have the page lock.
1959 shmem_falloc
.next
++;
1960 if (!PageUptodate(page
))
1961 shmem_falloc
.nr_falloced
++;
1964 * If !PageUptodate, leave it that way so that freeable pages
1965 * can be recognized if we need to rollback on error later.
1966 * But set_page_dirty so that memory pressure will swap rather
1967 * than free the pages we are allocating (and SGP_CACHE pages
1968 * might still be clean: we now need to mark those dirty too).
1970 set_page_dirty(page
);
1972 page_cache_release(page
);
1976 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1977 i_size_write(inode
, offset
+ len
);
1978 inode
->i_ctime
= CURRENT_TIME
;
1980 spin_lock(&inode
->i_lock
);
1981 inode
->i_private
= NULL
;
1982 spin_unlock(&inode
->i_lock
);
1984 mutex_unlock(&inode
->i_mutex
);
1988 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1990 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1992 buf
->f_type
= TMPFS_MAGIC
;
1993 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1994 buf
->f_namelen
= NAME_MAX
;
1995 if (sbinfo
->max_blocks
) {
1996 buf
->f_blocks
= sbinfo
->max_blocks
;
1998 buf
->f_bfree
= sbinfo
->max_blocks
-
1999 percpu_counter_sum(&sbinfo
->used_blocks
);
2001 if (sbinfo
->max_inodes
) {
2002 buf
->f_files
= sbinfo
->max_inodes
;
2003 buf
->f_ffree
= sbinfo
->free_inodes
;
2005 /* else leave those fields 0 like simple_statfs */
2010 * File creation. Allocate an inode, and we're done..
2013 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2015 struct inode
*inode
;
2016 int error
= -ENOSPC
;
2018 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2020 #ifdef CONFIG_TMPFS_POSIX_ACL
2021 error
= generic_acl_init(inode
, dir
);
2027 error
= security_inode_init_security(inode
, dir
,
2029 shmem_initxattrs
, NULL
);
2031 if (error
!= -EOPNOTSUPP
) {
2038 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2039 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2040 d_instantiate(dentry
, inode
);
2041 dget(dentry
); /* Extra count - pin the dentry in core */
2047 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2049 struct inode
*inode
;
2050 int error
= -ENOSPC
;
2052 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2054 error
= security_inode_init_security(inode
, dir
,
2056 shmem_initxattrs
, NULL
);
2058 if (error
!= -EOPNOTSUPP
) {
2063 #ifdef CONFIG_TMPFS_POSIX_ACL
2064 error
= generic_acl_init(inode
, dir
);
2072 d_tmpfile(dentry
, inode
);
2077 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2081 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2087 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2090 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2096 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2098 struct inode
*inode
= old_dentry
->d_inode
;
2102 * No ordinary (disk based) filesystem counts links as inodes;
2103 * but each new link needs a new dentry, pinning lowmem, and
2104 * tmpfs dentries cannot be pruned until they are unlinked.
2106 ret
= shmem_reserve_inode(inode
->i_sb
);
2110 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2111 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2113 ihold(inode
); /* New dentry reference */
2114 dget(dentry
); /* Extra pinning count for the created dentry */
2115 d_instantiate(dentry
, inode
);
2120 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2122 struct inode
*inode
= dentry
->d_inode
;
2124 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2125 shmem_free_inode(inode
->i_sb
);
2127 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2128 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2130 dput(dentry
); /* Undo the count from "create" - this does all the work */
2134 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2136 if (!simple_empty(dentry
))
2139 drop_nlink(dentry
->d_inode
);
2141 return shmem_unlink(dir
, dentry
);
2145 * The VFS layer already does all the dentry stuff for rename,
2146 * we just have to decrement the usage count for the target if
2147 * it exists so that the VFS layer correctly free's it when it
2150 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2152 struct inode
*inode
= old_dentry
->d_inode
;
2153 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2155 if (!simple_empty(new_dentry
))
2158 if (new_dentry
->d_inode
) {
2159 (void) shmem_unlink(new_dir
, new_dentry
);
2161 drop_nlink(old_dir
);
2162 } else if (they_are_dirs
) {
2163 drop_nlink(old_dir
);
2167 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2168 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2169 old_dir
->i_ctime
= old_dir
->i_mtime
=
2170 new_dir
->i_ctime
= new_dir
->i_mtime
=
2171 inode
->i_ctime
= CURRENT_TIME
;
2175 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2179 struct inode
*inode
;
2182 struct shmem_inode_info
*info
;
2184 len
= strlen(symname
) + 1;
2185 if (len
> PAGE_CACHE_SIZE
)
2186 return -ENAMETOOLONG
;
2188 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2192 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2193 shmem_initxattrs
, NULL
);
2195 if (error
!= -EOPNOTSUPP
) {
2202 info
= SHMEM_I(inode
);
2203 inode
->i_size
= len
-1;
2204 if (len
<= SHORT_SYMLINK_LEN
) {
2205 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2206 if (!info
->symlink
) {
2210 inode
->i_op
= &shmem_short_symlink_operations
;
2212 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2217 inode
->i_mapping
->a_ops
= &shmem_aops
;
2218 inode
->i_op
= &shmem_symlink_inode_operations
;
2219 kaddr
= kmap_atomic(page
);
2220 memcpy(kaddr
, symname
, len
);
2221 kunmap_atomic(kaddr
);
2222 SetPageUptodate(page
);
2223 set_page_dirty(page
);
2225 page_cache_release(page
);
2227 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2228 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2229 d_instantiate(dentry
, inode
);
2234 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2236 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2240 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2242 struct page
*page
= NULL
;
2243 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2244 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2250 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2252 if (!IS_ERR(nd_get_link(nd
))) {
2253 struct page
*page
= cookie
;
2255 mark_page_accessed(page
);
2256 page_cache_release(page
);
2260 #ifdef CONFIG_TMPFS_XATTR
2262 * Superblocks without xattr inode operations may get some security.* xattr
2263 * support from the LSM "for free". As soon as we have any other xattrs
2264 * like ACLs, we also need to implement the security.* handlers at
2265 * filesystem level, though.
2269 * Callback for security_inode_init_security() for acquiring xattrs.
2271 static int shmem_initxattrs(struct inode
*inode
,
2272 const struct xattr
*xattr_array
,
2275 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2276 const struct xattr
*xattr
;
2277 struct simple_xattr
*new_xattr
;
2280 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2281 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2285 len
= strlen(xattr
->name
) + 1;
2286 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2288 if (!new_xattr
->name
) {
2293 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2294 XATTR_SECURITY_PREFIX_LEN
);
2295 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2298 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2304 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2305 #ifdef CONFIG_TMPFS_POSIX_ACL
2306 &generic_acl_access_handler
,
2307 &generic_acl_default_handler
,
2312 static int shmem_xattr_validate(const char *name
)
2314 struct { const char *prefix
; size_t len
; } arr
[] = {
2315 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2316 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2320 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2321 size_t preflen
= arr
[i
].len
;
2322 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2331 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2332 void *buffer
, size_t size
)
2334 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2338 * If this is a request for a synthetic attribute in the system.*
2339 * namespace use the generic infrastructure to resolve a handler
2340 * for it via sb->s_xattr.
2342 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2343 return generic_getxattr(dentry
, name
, buffer
, size
);
2345 err
= shmem_xattr_validate(name
);
2349 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2352 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2353 const void *value
, size_t size
, int flags
)
2355 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2359 * If this is a request for a synthetic attribute in the system.*
2360 * namespace use the generic infrastructure to resolve a handler
2361 * for it via sb->s_xattr.
2363 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2364 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2366 err
= shmem_xattr_validate(name
);
2370 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2373 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2375 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2379 * If this is a request for a synthetic attribute in the system.*
2380 * namespace use the generic infrastructure to resolve a handler
2381 * for it via sb->s_xattr.
2383 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2384 return generic_removexattr(dentry
, name
);
2386 err
= shmem_xattr_validate(name
);
2390 return simple_xattr_remove(&info
->xattrs
, name
);
2393 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2395 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2396 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2398 #endif /* CONFIG_TMPFS_XATTR */
2400 static const struct inode_operations shmem_short_symlink_operations
= {
2401 .readlink
= generic_readlink
,
2402 .follow_link
= shmem_follow_short_symlink
,
2403 #ifdef CONFIG_TMPFS_XATTR
2404 .setxattr
= shmem_setxattr
,
2405 .getxattr
= shmem_getxattr
,
2406 .listxattr
= shmem_listxattr
,
2407 .removexattr
= shmem_removexattr
,
2411 static const struct inode_operations shmem_symlink_inode_operations
= {
2412 .readlink
= generic_readlink
,
2413 .follow_link
= shmem_follow_link
,
2414 .put_link
= shmem_put_link
,
2415 #ifdef CONFIG_TMPFS_XATTR
2416 .setxattr
= shmem_setxattr
,
2417 .getxattr
= shmem_getxattr
,
2418 .listxattr
= shmem_listxattr
,
2419 .removexattr
= shmem_removexattr
,
2423 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2425 return ERR_PTR(-ESTALE
);
2428 static int shmem_match(struct inode
*ino
, void *vfh
)
2432 inum
= (inum
<< 32) | fh
[1];
2433 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2436 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2437 struct fid
*fid
, int fh_len
, int fh_type
)
2439 struct inode
*inode
;
2440 struct dentry
*dentry
= NULL
;
2447 inum
= (inum
<< 32) | fid
->raw
[1];
2449 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2450 shmem_match
, fid
->raw
);
2452 dentry
= d_find_alias(inode
);
2459 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2460 struct inode
*parent
)
2464 return FILEID_INVALID
;
2467 if (inode_unhashed(inode
)) {
2468 /* Unfortunately insert_inode_hash is not idempotent,
2469 * so as we hash inodes here rather than at creation
2470 * time, we need a lock to ensure we only try
2473 static DEFINE_SPINLOCK(lock
);
2475 if (inode_unhashed(inode
))
2476 __insert_inode_hash(inode
,
2477 inode
->i_ino
+ inode
->i_generation
);
2481 fh
[0] = inode
->i_generation
;
2482 fh
[1] = inode
->i_ino
;
2483 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2489 static const struct export_operations shmem_export_ops
= {
2490 .get_parent
= shmem_get_parent
,
2491 .encode_fh
= shmem_encode_fh
,
2492 .fh_to_dentry
= shmem_fh_to_dentry
,
2495 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2498 char *this_char
, *value
, *rest
;
2499 struct mempolicy
*mpol
= NULL
;
2503 while (options
!= NULL
) {
2504 this_char
= options
;
2507 * NUL-terminate this option: unfortunately,
2508 * mount options form a comma-separated list,
2509 * but mpol's nodelist may also contain commas.
2511 options
= strchr(options
, ',');
2512 if (options
== NULL
)
2515 if (!isdigit(*options
)) {
2522 if ((value
= strchr(this_char
,'=')) != NULL
) {
2526 "tmpfs: No value for mount option '%s'\n",
2531 if (!strcmp(this_char
,"size")) {
2532 unsigned long long size
;
2533 size
= memparse(value
,&rest
);
2535 size
<<= PAGE_SHIFT
;
2536 size
*= totalram_pages
;
2542 sbinfo
->max_blocks
=
2543 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2544 } else if (!strcmp(this_char
,"nr_blocks")) {
2545 sbinfo
->max_blocks
= memparse(value
, &rest
);
2548 } else if (!strcmp(this_char
,"nr_inodes")) {
2549 sbinfo
->max_inodes
= memparse(value
, &rest
);
2552 } else if (!strcmp(this_char
,"mode")) {
2555 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2558 } else if (!strcmp(this_char
,"uid")) {
2561 uid
= simple_strtoul(value
, &rest
, 0);
2564 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2565 if (!uid_valid(sbinfo
->uid
))
2567 } else if (!strcmp(this_char
,"gid")) {
2570 gid
= simple_strtoul(value
, &rest
, 0);
2573 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2574 if (!gid_valid(sbinfo
->gid
))
2576 } else if (!strcmp(this_char
,"mpol")) {
2579 if (mpol_parse_str(value
, &mpol
))
2582 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2587 sbinfo
->mpol
= mpol
;
2591 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2599 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2601 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2602 struct shmem_sb_info config
= *sbinfo
;
2603 unsigned long inodes
;
2604 int error
= -EINVAL
;
2607 if (shmem_parse_options(data
, &config
, true))
2610 spin_lock(&sbinfo
->stat_lock
);
2611 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2612 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2614 if (config
.max_inodes
< inodes
)
2617 * Those tests disallow limited->unlimited while any are in use;
2618 * but we must separately disallow unlimited->limited, because
2619 * in that case we have no record of how much is already in use.
2621 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2623 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2627 sbinfo
->max_blocks
= config
.max_blocks
;
2628 sbinfo
->max_inodes
= config
.max_inodes
;
2629 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2632 * Preserve previous mempolicy unless mpol remount option was specified.
2635 mpol_put(sbinfo
->mpol
);
2636 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2639 spin_unlock(&sbinfo
->stat_lock
);
2643 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2645 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2647 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2648 seq_printf(seq
, ",size=%luk",
2649 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2650 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2651 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2652 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2653 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2654 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2655 seq_printf(seq
, ",uid=%u",
2656 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2657 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2658 seq_printf(seq
, ",gid=%u",
2659 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2660 shmem_show_mpol(seq
, sbinfo
->mpol
);
2663 #endif /* CONFIG_TMPFS */
2665 static void shmem_put_super(struct super_block
*sb
)
2667 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2669 percpu_counter_destroy(&sbinfo
->used_blocks
);
2670 mpol_put(sbinfo
->mpol
);
2672 sb
->s_fs_info
= NULL
;
2675 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2677 struct inode
*inode
;
2678 struct shmem_sb_info
*sbinfo
;
2681 /* Round up to L1_CACHE_BYTES to resist false sharing */
2682 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2683 L1_CACHE_BYTES
), GFP_KERNEL
);
2687 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2688 sbinfo
->uid
= current_fsuid();
2689 sbinfo
->gid
= current_fsgid();
2690 sb
->s_fs_info
= sbinfo
;
2694 * Per default we only allow half of the physical ram per
2695 * tmpfs instance, limiting inodes to one per page of lowmem;
2696 * but the internal instance is left unlimited.
2698 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
2699 sbinfo
->max_blocks
= shmem_default_max_blocks();
2700 sbinfo
->max_inodes
= shmem_default_max_inodes();
2701 if (shmem_parse_options(data
, sbinfo
, false)) {
2706 sb
->s_flags
|= MS_NOUSER
;
2708 sb
->s_export_op
= &shmem_export_ops
;
2709 sb
->s_flags
|= MS_NOSEC
;
2711 sb
->s_flags
|= MS_NOUSER
;
2714 spin_lock_init(&sbinfo
->stat_lock
);
2715 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2717 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2719 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2720 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2721 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2722 sb
->s_magic
= TMPFS_MAGIC
;
2723 sb
->s_op
= &shmem_ops
;
2724 sb
->s_time_gran
= 1;
2725 #ifdef CONFIG_TMPFS_XATTR
2726 sb
->s_xattr
= shmem_xattr_handlers
;
2728 #ifdef CONFIG_TMPFS_POSIX_ACL
2729 sb
->s_flags
|= MS_POSIXACL
;
2732 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2735 inode
->i_uid
= sbinfo
->uid
;
2736 inode
->i_gid
= sbinfo
->gid
;
2737 sb
->s_root
= d_make_root(inode
);
2743 shmem_put_super(sb
);
2747 static struct kmem_cache
*shmem_inode_cachep
;
2749 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2751 struct shmem_inode_info
*info
;
2752 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2755 return &info
->vfs_inode
;
2758 static void shmem_destroy_callback(struct rcu_head
*head
)
2760 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2761 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2764 static void shmem_destroy_inode(struct inode
*inode
)
2766 if (S_ISREG(inode
->i_mode
))
2767 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2768 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2771 static void shmem_init_inode(void *foo
)
2773 struct shmem_inode_info
*info
= foo
;
2774 inode_init_once(&info
->vfs_inode
);
2777 static int shmem_init_inodecache(void)
2779 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2780 sizeof(struct shmem_inode_info
),
2781 0, SLAB_PANIC
, shmem_init_inode
);
2785 static void shmem_destroy_inodecache(void)
2787 kmem_cache_destroy(shmem_inode_cachep
);
2790 static const struct address_space_operations shmem_aops
= {
2791 .writepage
= shmem_writepage
,
2792 .set_page_dirty
= __set_page_dirty_no_writeback
,
2794 .write_begin
= shmem_write_begin
,
2795 .write_end
= shmem_write_end
,
2797 .migratepage
= migrate_page
,
2798 .error_remove_page
= generic_error_remove_page
,
2801 static const struct file_operations shmem_file_operations
= {
2804 .llseek
= shmem_file_llseek
,
2805 .read
= do_sync_read
,
2806 .write
= do_sync_write
,
2807 .aio_read
= shmem_file_aio_read
,
2808 .aio_write
= generic_file_aio_write
,
2809 .fsync
= noop_fsync
,
2810 .splice_read
= shmem_file_splice_read
,
2811 .splice_write
= generic_file_splice_write
,
2812 .fallocate
= shmem_fallocate
,
2816 static const struct inode_operations shmem_inode_operations
= {
2817 .setattr
= shmem_setattr
,
2818 #ifdef CONFIG_TMPFS_XATTR
2819 .setxattr
= shmem_setxattr
,
2820 .getxattr
= shmem_getxattr
,
2821 .listxattr
= shmem_listxattr
,
2822 .removexattr
= shmem_removexattr
,
2826 static const struct inode_operations shmem_dir_inode_operations
= {
2828 .create
= shmem_create
,
2829 .lookup
= simple_lookup
,
2831 .unlink
= shmem_unlink
,
2832 .symlink
= shmem_symlink
,
2833 .mkdir
= shmem_mkdir
,
2834 .rmdir
= shmem_rmdir
,
2835 .mknod
= shmem_mknod
,
2836 .rename
= shmem_rename
,
2837 .tmpfile
= shmem_tmpfile
,
2839 #ifdef CONFIG_TMPFS_XATTR
2840 .setxattr
= shmem_setxattr
,
2841 .getxattr
= shmem_getxattr
,
2842 .listxattr
= shmem_listxattr
,
2843 .removexattr
= shmem_removexattr
,
2845 #ifdef CONFIG_TMPFS_POSIX_ACL
2846 .setattr
= shmem_setattr
,
2850 static const struct inode_operations shmem_special_inode_operations
= {
2851 #ifdef CONFIG_TMPFS_XATTR
2852 .setxattr
= shmem_setxattr
,
2853 .getxattr
= shmem_getxattr
,
2854 .listxattr
= shmem_listxattr
,
2855 .removexattr
= shmem_removexattr
,
2857 #ifdef CONFIG_TMPFS_POSIX_ACL
2858 .setattr
= shmem_setattr
,
2862 static const struct super_operations shmem_ops
= {
2863 .alloc_inode
= shmem_alloc_inode
,
2864 .destroy_inode
= shmem_destroy_inode
,
2866 .statfs
= shmem_statfs
,
2867 .remount_fs
= shmem_remount_fs
,
2868 .show_options
= shmem_show_options
,
2870 .evict_inode
= shmem_evict_inode
,
2871 .drop_inode
= generic_delete_inode
,
2872 .put_super
= shmem_put_super
,
2875 static const struct vm_operations_struct shmem_vm_ops
= {
2876 .fault
= shmem_fault
,
2878 .set_policy
= shmem_set_policy
,
2879 .get_policy
= shmem_get_policy
,
2881 .remap_pages
= generic_file_remap_pages
,
2884 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2885 int flags
, const char *dev_name
, void *data
)
2887 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2890 static struct file_system_type shmem_fs_type
= {
2891 .owner
= THIS_MODULE
,
2893 .mount
= shmem_mount
,
2894 .kill_sb
= kill_litter_super
,
2895 .fs_flags
= FS_USERNS_MOUNT
,
2898 int __init
shmem_init(void)
2902 /* If rootfs called this, don't re-init */
2903 if (shmem_inode_cachep
)
2906 error
= bdi_init(&shmem_backing_dev_info
);
2910 error
= shmem_init_inodecache();
2914 error
= register_filesystem(&shmem_fs_type
);
2916 printk(KERN_ERR
"Could not register tmpfs\n");
2920 shm_mnt
= kern_mount(&shmem_fs_type
);
2921 if (IS_ERR(shm_mnt
)) {
2922 error
= PTR_ERR(shm_mnt
);
2923 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2929 unregister_filesystem(&shmem_fs_type
);
2931 shmem_destroy_inodecache();
2933 bdi_destroy(&shmem_backing_dev_info
);
2935 shm_mnt
= ERR_PTR(error
);
2939 #else /* !CONFIG_SHMEM */
2942 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2944 * This is intended for small system where the benefits of the full
2945 * shmem code (swap-backed and resource-limited) are outweighed by
2946 * their complexity. On systems without swap this code should be
2947 * effectively equivalent, but much lighter weight.
2950 static struct file_system_type shmem_fs_type
= {
2952 .mount
= ramfs_mount
,
2953 .kill_sb
= kill_litter_super
,
2954 .fs_flags
= FS_USERNS_MOUNT
,
2957 int __init
shmem_init(void)
2959 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2961 shm_mnt
= kern_mount(&shmem_fs_type
);
2962 BUG_ON(IS_ERR(shm_mnt
));
2967 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2972 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2977 void shmem_unlock_mapping(struct address_space
*mapping
)
2981 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2983 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2985 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2987 #define shmem_vm_ops generic_file_vm_ops
2988 #define shmem_file_operations ramfs_file_operations
2989 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2990 #define shmem_acct_size(flags, size) 0
2991 #define shmem_unacct_size(flags, size) do {} while (0)
2993 #endif /* CONFIG_SHMEM */
2997 static struct dentry_operations anon_ops
= {
2998 .d_dname
= simple_dname
3002 * shmem_file_setup - get an unlinked file living in tmpfs
3003 * @name: name for dentry (to be seen in /proc/<pid>/maps
3004 * @size: size to be set for the file
3005 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3007 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3010 struct inode
*inode
;
3012 struct super_block
*sb
;
3015 if (IS_ERR(shm_mnt
))
3016 return ERR_CAST(shm_mnt
);
3018 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3019 return ERR_PTR(-EINVAL
);
3021 if (shmem_acct_size(flags
, size
))
3022 return ERR_PTR(-ENOMEM
);
3024 res
= ERR_PTR(-ENOMEM
);
3026 this.len
= strlen(name
);
3027 this.hash
= 0; /* will go */
3028 sb
= shm_mnt
->mnt_sb
;
3029 path
.dentry
= d_alloc_pseudo(sb
, &this);
3032 d_set_d_op(path
.dentry
, &anon_ops
);
3033 path
.mnt
= mntget(shm_mnt
);
3035 res
= ERR_PTR(-ENOSPC
);
3036 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
3040 d_instantiate(path
.dentry
, inode
);
3041 inode
->i_size
= size
;
3042 clear_nlink(inode
); /* It is unlinked */
3043 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3047 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
3048 &shmem_file_operations
);
3057 shmem_unacct_size(flags
, size
);
3060 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3063 * shmem_zero_setup - setup a shared anonymous mapping
3064 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3066 int shmem_zero_setup(struct vm_area_struct
*vma
)
3069 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3071 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
3073 return PTR_ERR(file
);
3077 vma
->vm_file
= file
;
3078 vma
->vm_ops
= &shmem_vm_ops
;
3083 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3084 * @mapping: the page's address_space
3085 * @index: the page index
3086 * @gfp: the page allocator flags to use if allocating
3088 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3089 * with any new page allocations done using the specified allocation flags.
3090 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3091 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3092 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3094 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3095 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3097 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3098 pgoff_t index
, gfp_t gfp
)
3101 struct inode
*inode
= mapping
->host
;
3105 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3106 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3108 page
= ERR_PTR(error
);
3114 * The tiny !SHMEM case uses ramfs without swap
3116 return read_cache_page_gfp(mapping
, index
, gfp
);
3119 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);