hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / mm / slab.c
blob2580db062df97488a92beeb1e008d866db4d7f7e
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
130 #include "slab.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
164 static bool pfmemalloc_active __read_mostly;
167 * kmem_bufctl_t:
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
185 typedef unsigned int kmem_bufctl_t;
186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
192 * struct slab_rcu
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
205 struct slab_rcu {
206 struct rcu_head head;
207 struct kmem_cache *cachep;
208 void *addr;
212 * struct slab
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
228 struct slab_rcu __slab_cover_slab_rcu;
233 * struct array_cache
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
244 struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
249 spinlock_t lock;
250 void *entry[]; /*
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
261 #define SLAB_OBJ_PFMEMALLOC 1
262 static inline bool is_obj_pfmemalloc(void *objp)
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
267 static inline void set_obj_pfmemalloc(void **objp)
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
273 static inline void clear_obj_pfmemalloc(void **objp)
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init {
284 struct array_cache cache;
285 void *entries[BOOT_CPUCACHE_ENTRIES];
289 * Need this for bootstrapping a per node allocator.
291 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
292 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
293 #define CACHE_CACHE 0
294 #define SIZE_AC MAX_NUMNODES
295 #define SIZE_NODE (2 * MAX_NUMNODES)
297 static int drain_freelist(struct kmem_cache *cache,
298 struct kmem_cache_node *n, int tofree);
299 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
300 int node);
301 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
302 static void cache_reap(struct work_struct *unused);
304 static int slab_early_init = 1;
306 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
307 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
309 static void kmem_cache_node_init(struct kmem_cache_node *parent)
311 INIT_LIST_HEAD(&parent->slabs_full);
312 INIT_LIST_HEAD(&parent->slabs_partial);
313 INIT_LIST_HEAD(&parent->slabs_free);
314 parent->shared = NULL;
315 parent->alien = NULL;
316 parent->colour_next = 0;
317 spin_lock_init(&parent->list_lock);
318 parent->free_objects = 0;
319 parent->free_touched = 0;
322 #define MAKE_LIST(cachep, listp, slab, nodeid) \
323 do { \
324 INIT_LIST_HEAD(listp); \
325 list_splice(&(cachep->node[nodeid]->slab), listp); \
326 } while (0)
328 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
329 do { \
330 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
331 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
332 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
333 } while (0)
335 #define CFLGS_OFF_SLAB (0x80000000UL)
336 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
338 #define BATCHREFILL_LIMIT 16
340 * Optimization question: fewer reaps means less probability for unnessary
341 * cpucache drain/refill cycles.
343 * OTOH the cpuarrays can contain lots of objects,
344 * which could lock up otherwise freeable slabs.
346 #define REAPTIMEOUT_CPUC (2*HZ)
347 #define REAPTIMEOUT_LIST3 (4*HZ)
349 #if STATS
350 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
351 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
352 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
353 #define STATS_INC_GROWN(x) ((x)->grown++)
354 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
355 #define STATS_SET_HIGH(x) \
356 do { \
357 if ((x)->num_active > (x)->high_mark) \
358 (x)->high_mark = (x)->num_active; \
359 } while (0)
360 #define STATS_INC_ERR(x) ((x)->errors++)
361 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
362 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
363 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
364 #define STATS_SET_FREEABLE(x, i) \
365 do { \
366 if ((x)->max_freeable < i) \
367 (x)->max_freeable = i; \
368 } while (0)
369 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
370 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
371 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
372 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
373 #else
374 #define STATS_INC_ACTIVE(x) do { } while (0)
375 #define STATS_DEC_ACTIVE(x) do { } while (0)
376 #define STATS_INC_ALLOCED(x) do { } while (0)
377 #define STATS_INC_GROWN(x) do { } while (0)
378 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
379 #define STATS_SET_HIGH(x) do { } while (0)
380 #define STATS_INC_ERR(x) do { } while (0)
381 #define STATS_INC_NODEALLOCS(x) do { } while (0)
382 #define STATS_INC_NODEFREES(x) do { } while (0)
383 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
384 #define STATS_SET_FREEABLE(x, i) do { } while (0)
385 #define STATS_INC_ALLOCHIT(x) do { } while (0)
386 #define STATS_INC_ALLOCMISS(x) do { } while (0)
387 #define STATS_INC_FREEHIT(x) do { } while (0)
388 #define STATS_INC_FREEMISS(x) do { } while (0)
389 #endif
391 #if DEBUG
394 * memory layout of objects:
395 * 0 : objp
396 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
397 * the end of an object is aligned with the end of the real
398 * allocation. Catches writes behind the end of the allocation.
399 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
400 * redzone word.
401 * cachep->obj_offset: The real object.
402 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
403 * cachep->size - 1* BYTES_PER_WORD: last caller address
404 * [BYTES_PER_WORD long]
406 static int obj_offset(struct kmem_cache *cachep)
408 return cachep->obj_offset;
411 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
413 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
414 return (unsigned long long*) (objp + obj_offset(cachep) -
415 sizeof(unsigned long long));
418 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
420 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
421 if (cachep->flags & SLAB_STORE_USER)
422 return (unsigned long long *)(objp + cachep->size -
423 sizeof(unsigned long long) -
424 REDZONE_ALIGN);
425 return (unsigned long long *) (objp + cachep->size -
426 sizeof(unsigned long long));
429 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
431 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
432 return (void **)(objp + cachep->size - BYTES_PER_WORD);
435 #else
437 #define obj_offset(x) 0
438 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
439 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
440 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
442 #endif
445 * Do not go above this order unless 0 objects fit into the slab or
446 * overridden on the command line.
448 #define SLAB_MAX_ORDER_HI 1
449 #define SLAB_MAX_ORDER_LO 0
450 static int slab_max_order = SLAB_MAX_ORDER_LO;
451 static bool slab_max_order_set __initdata;
453 static inline struct kmem_cache *virt_to_cache(const void *obj)
455 struct page *page = virt_to_head_page(obj);
456 return page->slab_cache;
459 static inline struct slab *virt_to_slab(const void *obj)
461 struct page *page = virt_to_head_page(obj);
463 VM_BUG_ON(!PageSlab(page));
464 return page->slab_page;
467 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
468 unsigned int idx)
470 return slab->s_mem + cache->size * idx;
474 * We want to avoid an expensive divide : (offset / cache->size)
475 * Using the fact that size is a constant for a particular cache,
476 * we can replace (offset / cache->size) by
477 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
479 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
480 const struct slab *slab, void *obj)
482 u32 offset = (obj - slab->s_mem);
483 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
486 static struct arraycache_init initarray_generic =
487 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
489 /* internal cache of cache description objs */
490 static struct kmem_cache kmem_cache_boot = {
491 .batchcount = 1,
492 .limit = BOOT_CPUCACHE_ENTRIES,
493 .shared = 1,
494 .size = sizeof(struct kmem_cache),
495 .name = "kmem_cache",
498 #define BAD_ALIEN_MAGIC 0x01020304ul
500 #ifdef CONFIG_LOCKDEP
503 * Slab sometimes uses the kmalloc slabs to store the slab headers
504 * for other slabs "off slab".
505 * The locking for this is tricky in that it nests within the locks
506 * of all other slabs in a few places; to deal with this special
507 * locking we put on-slab caches into a separate lock-class.
509 * We set lock class for alien array caches which are up during init.
510 * The lock annotation will be lost if all cpus of a node goes down and
511 * then comes back up during hotplug
513 static struct lock_class_key on_slab_l3_key;
514 static struct lock_class_key on_slab_alc_key;
516 static struct lock_class_key debugobj_l3_key;
517 static struct lock_class_key debugobj_alc_key;
519 static void slab_set_lock_classes(struct kmem_cache *cachep,
520 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
521 int q)
523 struct array_cache **alc;
524 struct kmem_cache_node *n;
525 int r;
527 n = cachep->node[q];
528 if (!n)
529 return;
531 lockdep_set_class(&n->list_lock, l3_key);
532 alc = n->alien;
534 * FIXME: This check for BAD_ALIEN_MAGIC
535 * should go away when common slab code is taught to
536 * work even without alien caches.
537 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
538 * for alloc_alien_cache,
540 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
541 return;
542 for_each_node(r) {
543 if (alc[r])
544 lockdep_set_class(&alc[r]->lock, alc_key);
548 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
550 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
553 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
555 int node;
557 for_each_online_node(node)
558 slab_set_debugobj_lock_classes_node(cachep, node);
561 static void init_node_lock_keys(int q)
563 int i;
565 if (slab_state < UP)
566 return;
568 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
569 struct kmem_cache_node *n;
570 struct kmem_cache *cache = kmalloc_caches[i];
572 if (!cache)
573 continue;
575 n = cache->node[q];
576 if (!n || OFF_SLAB(cache))
577 continue;
579 slab_set_lock_classes(cache, &on_slab_l3_key,
580 &on_slab_alc_key, q);
584 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
586 if (!cachep->node[q])
587 return;
589 slab_set_lock_classes(cachep, &on_slab_l3_key,
590 &on_slab_alc_key, q);
593 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
595 int node;
597 VM_BUG_ON(OFF_SLAB(cachep));
598 for_each_node(node)
599 on_slab_lock_classes_node(cachep, node);
602 static inline void init_lock_keys(void)
604 int node;
606 for_each_node(node)
607 init_node_lock_keys(node);
609 #else
610 static void init_node_lock_keys(int q)
614 static inline void init_lock_keys(void)
618 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
622 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
626 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
630 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
633 #endif
635 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
637 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
639 return cachep->array[smp_processor_id()];
642 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
644 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
648 * Calculate the number of objects and left-over bytes for a given buffer size.
650 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
651 size_t align, int flags, size_t *left_over,
652 unsigned int *num)
654 int nr_objs;
655 size_t mgmt_size;
656 size_t slab_size = PAGE_SIZE << gfporder;
659 * The slab management structure can be either off the slab or
660 * on it. For the latter case, the memory allocated for a
661 * slab is used for:
663 * - The struct slab
664 * - One kmem_bufctl_t for each object
665 * - Padding to respect alignment of @align
666 * - @buffer_size bytes for each object
668 * If the slab management structure is off the slab, then the
669 * alignment will already be calculated into the size. Because
670 * the slabs are all pages aligned, the objects will be at the
671 * correct alignment when allocated.
673 if (flags & CFLGS_OFF_SLAB) {
674 mgmt_size = 0;
675 nr_objs = slab_size / buffer_size;
677 if (nr_objs > SLAB_LIMIT)
678 nr_objs = SLAB_LIMIT;
679 } else {
681 * Ignore padding for the initial guess. The padding
682 * is at most @align-1 bytes, and @buffer_size is at
683 * least @align. In the worst case, this result will
684 * be one greater than the number of objects that fit
685 * into the memory allocation when taking the padding
686 * into account.
688 nr_objs = (slab_size - sizeof(struct slab)) /
689 (buffer_size + sizeof(kmem_bufctl_t));
692 * This calculated number will be either the right
693 * amount, or one greater than what we want.
695 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
696 > slab_size)
697 nr_objs--;
699 if (nr_objs > SLAB_LIMIT)
700 nr_objs = SLAB_LIMIT;
702 mgmt_size = slab_mgmt_size(nr_objs, align);
704 *num = nr_objs;
705 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
708 #if DEBUG
709 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
711 static void __slab_error(const char *function, struct kmem_cache *cachep,
712 char *msg)
714 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
715 function, cachep->name, msg);
716 dump_stack();
717 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
719 #endif
722 * By default on NUMA we use alien caches to stage the freeing of
723 * objects allocated from other nodes. This causes massive memory
724 * inefficiencies when using fake NUMA setup to split memory into a
725 * large number of small nodes, so it can be disabled on the command
726 * line
729 static int use_alien_caches __read_mostly = 1;
730 static int __init noaliencache_setup(char *s)
732 use_alien_caches = 0;
733 return 1;
735 __setup("noaliencache", noaliencache_setup);
737 static int __init slab_max_order_setup(char *str)
739 get_option(&str, &slab_max_order);
740 slab_max_order = slab_max_order < 0 ? 0 :
741 min(slab_max_order, MAX_ORDER - 1);
742 slab_max_order_set = true;
744 return 1;
746 __setup("slab_max_order=", slab_max_order_setup);
748 #ifdef CONFIG_NUMA
750 * Special reaping functions for NUMA systems called from cache_reap().
751 * These take care of doing round robin flushing of alien caches (containing
752 * objects freed on different nodes from which they were allocated) and the
753 * flushing of remote pcps by calling drain_node_pages.
755 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
757 static void init_reap_node(int cpu)
759 int node;
761 node = next_node(cpu_to_mem(cpu), node_online_map);
762 if (node == MAX_NUMNODES)
763 node = first_node(node_online_map);
765 per_cpu(slab_reap_node, cpu) = node;
768 static void next_reap_node(void)
770 int node = __this_cpu_read(slab_reap_node);
772 node = next_node(node, node_online_map);
773 if (unlikely(node >= MAX_NUMNODES))
774 node = first_node(node_online_map);
775 __this_cpu_write(slab_reap_node, node);
778 #else
779 #define init_reap_node(cpu) do { } while (0)
780 #define next_reap_node(void) do { } while (0)
781 #endif
784 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
785 * via the workqueue/eventd.
786 * Add the CPU number into the expiration time to minimize the possibility of
787 * the CPUs getting into lockstep and contending for the global cache chain
788 * lock.
790 static void start_cpu_timer(int cpu)
792 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
795 * When this gets called from do_initcalls via cpucache_init(),
796 * init_workqueues() has already run, so keventd will be setup
797 * at that time.
799 if (keventd_up() && reap_work->work.func == NULL) {
800 init_reap_node(cpu);
801 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
802 schedule_delayed_work_on(cpu, reap_work,
803 __round_jiffies_relative(HZ, cpu));
807 static struct array_cache *alloc_arraycache(int node, int entries,
808 int batchcount, gfp_t gfp)
810 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
811 struct array_cache *nc = NULL;
813 nc = kmalloc_node(memsize, gfp, node);
815 * The array_cache structures contain pointers to free object.
816 * However, when such objects are allocated or transferred to another
817 * cache the pointers are not cleared and they could be counted as
818 * valid references during a kmemleak scan. Therefore, kmemleak must
819 * not scan such objects.
821 kmemleak_no_scan(nc);
822 if (nc) {
823 nc->avail = 0;
824 nc->limit = entries;
825 nc->batchcount = batchcount;
826 nc->touched = 0;
827 spin_lock_init(&nc->lock);
829 return nc;
832 static inline bool is_slab_pfmemalloc(struct slab *slabp)
834 struct page *page = virt_to_page(slabp->s_mem);
836 return PageSlabPfmemalloc(page);
839 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
840 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
841 struct array_cache *ac)
843 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
844 struct slab *slabp;
845 unsigned long flags;
847 if (!pfmemalloc_active)
848 return;
850 spin_lock_irqsave(&n->list_lock, flags);
851 list_for_each_entry(slabp, &n->slabs_full, list)
852 if (is_slab_pfmemalloc(slabp))
853 goto out;
855 list_for_each_entry(slabp, &n->slabs_partial, list)
856 if (is_slab_pfmemalloc(slabp))
857 goto out;
859 list_for_each_entry(slabp, &n->slabs_free, list)
860 if (is_slab_pfmemalloc(slabp))
861 goto out;
863 pfmemalloc_active = false;
864 out:
865 spin_unlock_irqrestore(&n->list_lock, flags);
868 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
869 gfp_t flags, bool force_refill)
871 int i;
872 void *objp = ac->entry[--ac->avail];
874 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
875 if (unlikely(is_obj_pfmemalloc(objp))) {
876 struct kmem_cache_node *n;
878 if (gfp_pfmemalloc_allowed(flags)) {
879 clear_obj_pfmemalloc(&objp);
880 return objp;
883 /* The caller cannot use PFMEMALLOC objects, find another one */
884 for (i = 0; i < ac->avail; i++) {
885 /* If a !PFMEMALLOC object is found, swap them */
886 if (!is_obj_pfmemalloc(ac->entry[i])) {
887 objp = ac->entry[i];
888 ac->entry[i] = ac->entry[ac->avail];
889 ac->entry[ac->avail] = objp;
890 return objp;
895 * If there are empty slabs on the slabs_free list and we are
896 * being forced to refill the cache, mark this one !pfmemalloc.
898 n = cachep->node[numa_mem_id()];
899 if (!list_empty(&n->slabs_free) && force_refill) {
900 struct slab *slabp = virt_to_slab(objp);
901 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
902 clear_obj_pfmemalloc(&objp);
903 recheck_pfmemalloc_active(cachep, ac);
904 return objp;
907 /* No !PFMEMALLOC objects available */
908 ac->avail++;
909 objp = NULL;
912 return objp;
915 static inline void *ac_get_obj(struct kmem_cache *cachep,
916 struct array_cache *ac, gfp_t flags, bool force_refill)
918 void *objp;
920 if (unlikely(sk_memalloc_socks()))
921 objp = __ac_get_obj(cachep, ac, flags, force_refill);
922 else
923 objp = ac->entry[--ac->avail];
925 return objp;
928 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
929 void *objp)
931 if (unlikely(pfmemalloc_active)) {
932 /* Some pfmemalloc slabs exist, check if this is one */
933 struct page *page = virt_to_head_page(objp);
934 if (PageSlabPfmemalloc(page))
935 set_obj_pfmemalloc(&objp);
938 return objp;
941 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
942 void *objp)
944 if (unlikely(sk_memalloc_socks()))
945 objp = __ac_put_obj(cachep, ac, objp);
947 ac->entry[ac->avail++] = objp;
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
954 * Return the number of entries transferred.
956 static int transfer_objects(struct array_cache *to,
957 struct array_cache *from, unsigned int max)
959 /* Figure out how many entries to transfer */
960 int nr = min3(from->avail, max, to->limit - to->avail);
962 if (!nr)
963 return 0;
965 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 sizeof(void *) *nr);
968 from->avail -= nr;
969 to->avail += nr;
970 return nr;
973 #ifndef CONFIG_NUMA
975 #define drain_alien_cache(cachep, alien) do { } while (0)
976 #define reap_alien(cachep, n) do { } while (0)
978 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
980 return (struct array_cache **)BAD_ALIEN_MAGIC;
983 static inline void free_alien_cache(struct array_cache **ac_ptr)
987 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
989 return 0;
992 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
993 gfp_t flags)
995 return NULL;
998 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
999 gfp_t flags, int nodeid)
1001 return NULL;
1004 #else /* CONFIG_NUMA */
1006 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1007 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1009 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1011 struct array_cache **ac_ptr;
1012 int memsize = sizeof(void *) * nr_node_ids;
1013 int i;
1015 if (limit > 1)
1016 limit = 12;
1017 ac_ptr = kzalloc_node(memsize, gfp, node);
1018 if (ac_ptr) {
1019 for_each_node(i) {
1020 if (i == node || !node_online(i))
1021 continue;
1022 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1023 if (!ac_ptr[i]) {
1024 for (i--; i >= 0; i--)
1025 kfree(ac_ptr[i]);
1026 kfree(ac_ptr);
1027 return NULL;
1031 return ac_ptr;
1034 static void free_alien_cache(struct array_cache **ac_ptr)
1036 int i;
1038 if (!ac_ptr)
1039 return;
1040 for_each_node(i)
1041 kfree(ac_ptr[i]);
1042 kfree(ac_ptr);
1045 static void __drain_alien_cache(struct kmem_cache *cachep,
1046 struct array_cache *ac, int node)
1048 struct kmem_cache_node *n = cachep->node[node];
1050 if (ac->avail) {
1051 spin_lock(&n->list_lock);
1053 * Stuff objects into the remote nodes shared array first.
1054 * That way we could avoid the overhead of putting the objects
1055 * into the free lists and getting them back later.
1057 if (n->shared)
1058 transfer_objects(n->shared, ac, ac->limit);
1060 free_block(cachep, ac->entry, ac->avail, node);
1061 ac->avail = 0;
1062 spin_unlock(&n->list_lock);
1067 * Called from cache_reap() to regularly drain alien caches round robin.
1069 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1071 int node = __this_cpu_read(slab_reap_node);
1073 if (n->alien) {
1074 struct array_cache *ac = n->alien[node];
1076 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1077 __drain_alien_cache(cachep, ac, node);
1078 spin_unlock_irq(&ac->lock);
1083 static void drain_alien_cache(struct kmem_cache *cachep,
1084 struct array_cache **alien)
1086 int i = 0;
1087 struct array_cache *ac;
1088 unsigned long flags;
1090 for_each_online_node(i) {
1091 ac = alien[i];
1092 if (ac) {
1093 spin_lock_irqsave(&ac->lock, flags);
1094 __drain_alien_cache(cachep, ac, i);
1095 spin_unlock_irqrestore(&ac->lock, flags);
1100 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1102 struct slab *slabp = virt_to_slab(objp);
1103 int nodeid = slabp->nodeid;
1104 struct kmem_cache_node *n;
1105 struct array_cache *alien = NULL;
1106 int node;
1108 node = numa_mem_id();
1111 * Make sure we are not freeing a object from another node to the array
1112 * cache on this cpu.
1114 if (likely(slabp->nodeid == node))
1115 return 0;
1117 n = cachep->node[node];
1118 STATS_INC_NODEFREES(cachep);
1119 if (n->alien && n->alien[nodeid]) {
1120 alien = n->alien[nodeid];
1121 spin_lock(&alien->lock);
1122 if (unlikely(alien->avail == alien->limit)) {
1123 STATS_INC_ACOVERFLOW(cachep);
1124 __drain_alien_cache(cachep, alien, nodeid);
1126 ac_put_obj(cachep, alien, objp);
1127 spin_unlock(&alien->lock);
1128 } else {
1129 spin_lock(&(cachep->node[nodeid])->list_lock);
1130 free_block(cachep, &objp, 1, nodeid);
1131 spin_unlock(&(cachep->node[nodeid])->list_lock);
1133 return 1;
1135 #endif
1138 * Allocates and initializes node for a node on each slab cache, used for
1139 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1140 * will be allocated off-node since memory is not yet online for the new node.
1141 * When hotplugging memory or a cpu, existing node are not replaced if
1142 * already in use.
1144 * Must hold slab_mutex.
1146 static int init_cache_node_node(int node)
1148 struct kmem_cache *cachep;
1149 struct kmem_cache_node *n;
1150 const int memsize = sizeof(struct kmem_cache_node);
1152 list_for_each_entry(cachep, &slab_caches, list) {
1154 * Set up the size64 kmemlist for cpu before we can
1155 * begin anything. Make sure some other cpu on this
1156 * node has not already allocated this
1158 if (!cachep->node[node]) {
1159 n = kmalloc_node(memsize, GFP_KERNEL, node);
1160 if (!n)
1161 return -ENOMEM;
1162 kmem_cache_node_init(n);
1163 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1164 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1167 * The l3s don't come and go as CPUs come and
1168 * go. slab_mutex is sufficient
1169 * protection here.
1171 cachep->node[node] = n;
1174 spin_lock_irq(&cachep->node[node]->list_lock);
1175 cachep->node[node]->free_limit =
1176 (1 + nr_cpus_node(node)) *
1177 cachep->batchcount + cachep->num;
1178 spin_unlock_irq(&cachep->node[node]->list_lock);
1180 return 0;
1183 static inline int slabs_tofree(struct kmem_cache *cachep,
1184 struct kmem_cache_node *n)
1186 return (n->free_objects + cachep->num - 1) / cachep->num;
1189 static void cpuup_canceled(long cpu)
1191 struct kmem_cache *cachep;
1192 struct kmem_cache_node *n = NULL;
1193 int node = cpu_to_mem(cpu);
1194 const struct cpumask *mask = cpumask_of_node(node);
1196 list_for_each_entry(cachep, &slab_caches, list) {
1197 struct array_cache *nc;
1198 struct array_cache *shared;
1199 struct array_cache **alien;
1201 /* cpu is dead; no one can alloc from it. */
1202 nc = cachep->array[cpu];
1203 cachep->array[cpu] = NULL;
1204 n = cachep->node[node];
1206 if (!n)
1207 goto free_array_cache;
1209 spin_lock_irq(&n->list_lock);
1211 /* Free limit for this kmem_cache_node */
1212 n->free_limit -= cachep->batchcount;
1213 if (nc)
1214 free_block(cachep, nc->entry, nc->avail, node);
1216 if (!cpumask_empty(mask)) {
1217 spin_unlock_irq(&n->list_lock);
1218 goto free_array_cache;
1221 shared = n->shared;
1222 if (shared) {
1223 free_block(cachep, shared->entry,
1224 shared->avail, node);
1225 n->shared = NULL;
1228 alien = n->alien;
1229 n->alien = NULL;
1231 spin_unlock_irq(&n->list_lock);
1233 kfree(shared);
1234 if (alien) {
1235 drain_alien_cache(cachep, alien);
1236 free_alien_cache(alien);
1238 free_array_cache:
1239 kfree(nc);
1242 * In the previous loop, all the objects were freed to
1243 * the respective cache's slabs, now we can go ahead and
1244 * shrink each nodelist to its limit.
1246 list_for_each_entry(cachep, &slab_caches, list) {
1247 n = cachep->node[node];
1248 if (!n)
1249 continue;
1250 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1254 static int cpuup_prepare(long cpu)
1256 struct kmem_cache *cachep;
1257 struct kmem_cache_node *n = NULL;
1258 int node = cpu_to_mem(cpu);
1259 int err;
1262 * We need to do this right in the beginning since
1263 * alloc_arraycache's are going to use this list.
1264 * kmalloc_node allows us to add the slab to the right
1265 * kmem_cache_node and not this cpu's kmem_cache_node
1267 err = init_cache_node_node(node);
1268 if (err < 0)
1269 goto bad;
1272 * Now we can go ahead with allocating the shared arrays and
1273 * array caches
1275 list_for_each_entry(cachep, &slab_caches, list) {
1276 struct array_cache *nc;
1277 struct array_cache *shared = NULL;
1278 struct array_cache **alien = NULL;
1280 nc = alloc_arraycache(node, cachep->limit,
1281 cachep->batchcount, GFP_KERNEL);
1282 if (!nc)
1283 goto bad;
1284 if (cachep->shared) {
1285 shared = alloc_arraycache(node,
1286 cachep->shared * cachep->batchcount,
1287 0xbaadf00d, GFP_KERNEL);
1288 if (!shared) {
1289 kfree(nc);
1290 goto bad;
1293 if (use_alien_caches) {
1294 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1295 if (!alien) {
1296 kfree(shared);
1297 kfree(nc);
1298 goto bad;
1301 cachep->array[cpu] = nc;
1302 n = cachep->node[node];
1303 BUG_ON(!n);
1305 spin_lock_irq(&n->list_lock);
1306 if (!n->shared) {
1308 * We are serialised from CPU_DEAD or
1309 * CPU_UP_CANCELLED by the cpucontrol lock
1311 n->shared = shared;
1312 shared = NULL;
1314 #ifdef CONFIG_NUMA
1315 if (!n->alien) {
1316 n->alien = alien;
1317 alien = NULL;
1319 #endif
1320 spin_unlock_irq(&n->list_lock);
1321 kfree(shared);
1322 free_alien_cache(alien);
1323 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1324 slab_set_debugobj_lock_classes_node(cachep, node);
1325 else if (!OFF_SLAB(cachep) &&
1326 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1327 on_slab_lock_classes_node(cachep, node);
1329 init_node_lock_keys(node);
1331 return 0;
1332 bad:
1333 cpuup_canceled(cpu);
1334 return -ENOMEM;
1337 static int cpuup_callback(struct notifier_block *nfb,
1338 unsigned long action, void *hcpu)
1340 long cpu = (long)hcpu;
1341 int err = 0;
1343 switch (action) {
1344 case CPU_UP_PREPARE:
1345 case CPU_UP_PREPARE_FROZEN:
1346 mutex_lock(&slab_mutex);
1347 err = cpuup_prepare(cpu);
1348 mutex_unlock(&slab_mutex);
1349 break;
1350 case CPU_ONLINE:
1351 case CPU_ONLINE_FROZEN:
1352 start_cpu_timer(cpu);
1353 break;
1354 #ifdef CONFIG_HOTPLUG_CPU
1355 case CPU_DOWN_PREPARE:
1356 case CPU_DOWN_PREPARE_FROZEN:
1358 * Shutdown cache reaper. Note that the slab_mutex is
1359 * held so that if cache_reap() is invoked it cannot do
1360 * anything expensive but will only modify reap_work
1361 * and reschedule the timer.
1363 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1364 /* Now the cache_reaper is guaranteed to be not running. */
1365 per_cpu(slab_reap_work, cpu).work.func = NULL;
1366 break;
1367 case CPU_DOWN_FAILED:
1368 case CPU_DOWN_FAILED_FROZEN:
1369 start_cpu_timer(cpu);
1370 break;
1371 case CPU_DEAD:
1372 case CPU_DEAD_FROZEN:
1374 * Even if all the cpus of a node are down, we don't free the
1375 * kmem_cache_node of any cache. This to avoid a race between
1376 * cpu_down, and a kmalloc allocation from another cpu for
1377 * memory from the node of the cpu going down. The node
1378 * structure is usually allocated from kmem_cache_create() and
1379 * gets destroyed at kmem_cache_destroy().
1381 /* fall through */
1382 #endif
1383 case CPU_UP_CANCELED:
1384 case CPU_UP_CANCELED_FROZEN:
1385 mutex_lock(&slab_mutex);
1386 cpuup_canceled(cpu);
1387 mutex_unlock(&slab_mutex);
1388 break;
1390 return notifier_from_errno(err);
1393 static struct notifier_block cpucache_notifier = {
1394 &cpuup_callback, NULL, 0
1397 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1399 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1400 * Returns -EBUSY if all objects cannot be drained so that the node is not
1401 * removed.
1403 * Must hold slab_mutex.
1405 static int __meminit drain_cache_node_node(int node)
1407 struct kmem_cache *cachep;
1408 int ret = 0;
1410 list_for_each_entry(cachep, &slab_caches, list) {
1411 struct kmem_cache_node *n;
1413 n = cachep->node[node];
1414 if (!n)
1415 continue;
1417 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1419 if (!list_empty(&n->slabs_full) ||
1420 !list_empty(&n->slabs_partial)) {
1421 ret = -EBUSY;
1422 break;
1425 return ret;
1428 static int __meminit slab_memory_callback(struct notifier_block *self,
1429 unsigned long action, void *arg)
1431 struct memory_notify *mnb = arg;
1432 int ret = 0;
1433 int nid;
1435 nid = mnb->status_change_nid;
1436 if (nid < 0)
1437 goto out;
1439 switch (action) {
1440 case MEM_GOING_ONLINE:
1441 mutex_lock(&slab_mutex);
1442 ret = init_cache_node_node(nid);
1443 mutex_unlock(&slab_mutex);
1444 break;
1445 case MEM_GOING_OFFLINE:
1446 mutex_lock(&slab_mutex);
1447 ret = drain_cache_node_node(nid);
1448 mutex_unlock(&slab_mutex);
1449 break;
1450 case MEM_ONLINE:
1451 case MEM_OFFLINE:
1452 case MEM_CANCEL_ONLINE:
1453 case MEM_CANCEL_OFFLINE:
1454 break;
1456 out:
1457 return notifier_from_errno(ret);
1459 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1462 * swap the static kmem_cache_node with kmalloced memory
1464 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1465 int nodeid)
1467 struct kmem_cache_node *ptr;
1469 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1470 BUG_ON(!ptr);
1472 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1474 * Do not assume that spinlocks can be initialized via memcpy:
1476 spin_lock_init(&ptr->list_lock);
1478 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1479 cachep->node[nodeid] = ptr;
1483 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1484 * size of kmem_cache_node.
1486 static void __init set_up_node(struct kmem_cache *cachep, int index)
1488 int node;
1490 for_each_online_node(node) {
1491 cachep->node[node] = &init_kmem_cache_node[index + node];
1492 cachep->node[node]->next_reap = jiffies +
1493 REAPTIMEOUT_LIST3 +
1494 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1499 * The memory after the last cpu cache pointer is used for the
1500 * the node pointer.
1502 static void setup_node_pointer(struct kmem_cache *cachep)
1504 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1508 * Initialisation. Called after the page allocator have been initialised and
1509 * before smp_init().
1511 void __init kmem_cache_init(void)
1513 int i;
1515 kmem_cache = &kmem_cache_boot;
1516 setup_node_pointer(kmem_cache);
1518 if (num_possible_nodes() == 1)
1519 use_alien_caches = 0;
1521 for (i = 0; i < NUM_INIT_LISTS; i++)
1522 kmem_cache_node_init(&init_kmem_cache_node[i]);
1524 set_up_node(kmem_cache, CACHE_CACHE);
1527 * Fragmentation resistance on low memory - only use bigger
1528 * page orders on machines with more than 32MB of memory if
1529 * not overridden on the command line.
1531 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1532 slab_max_order = SLAB_MAX_ORDER_HI;
1534 /* Bootstrap is tricky, because several objects are allocated
1535 * from caches that do not exist yet:
1536 * 1) initialize the kmem_cache cache: it contains the struct
1537 * kmem_cache structures of all caches, except kmem_cache itself:
1538 * kmem_cache is statically allocated.
1539 * Initially an __init data area is used for the head array and the
1540 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1541 * array at the end of the bootstrap.
1542 * 2) Create the first kmalloc cache.
1543 * The struct kmem_cache for the new cache is allocated normally.
1544 * An __init data area is used for the head array.
1545 * 3) Create the remaining kmalloc caches, with minimally sized
1546 * head arrays.
1547 * 4) Replace the __init data head arrays for kmem_cache and the first
1548 * kmalloc cache with kmalloc allocated arrays.
1549 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1550 * the other cache's with kmalloc allocated memory.
1551 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1554 /* 1) create the kmem_cache */
1557 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1559 create_boot_cache(kmem_cache, "kmem_cache",
1560 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1561 nr_node_ids * sizeof(struct kmem_cache_node *),
1562 SLAB_HWCACHE_ALIGN);
1563 list_add(&kmem_cache->list, &slab_caches);
1565 /* 2+3) create the kmalloc caches */
1568 * Initialize the caches that provide memory for the array cache and the
1569 * kmem_cache_node structures first. Without this, further allocations will
1570 * bug.
1573 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1574 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1576 if (INDEX_AC != INDEX_NODE)
1577 kmalloc_caches[INDEX_NODE] =
1578 create_kmalloc_cache("kmalloc-node",
1579 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1581 slab_early_init = 0;
1583 /* 4) Replace the bootstrap head arrays */
1585 struct array_cache *ptr;
1587 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1589 memcpy(ptr, cpu_cache_get(kmem_cache),
1590 sizeof(struct arraycache_init));
1592 * Do not assume that spinlocks can be initialized via memcpy:
1594 spin_lock_init(&ptr->lock);
1596 kmem_cache->array[smp_processor_id()] = ptr;
1598 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1600 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1601 != &initarray_generic.cache);
1602 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1603 sizeof(struct arraycache_init));
1605 * Do not assume that spinlocks can be initialized via memcpy:
1607 spin_lock_init(&ptr->lock);
1609 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1611 /* 5) Replace the bootstrap kmem_cache_node */
1613 int nid;
1615 for_each_online_node(nid) {
1616 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1618 init_list(kmalloc_caches[INDEX_AC],
1619 &init_kmem_cache_node[SIZE_AC + nid], nid);
1621 if (INDEX_AC != INDEX_NODE) {
1622 init_list(kmalloc_caches[INDEX_NODE],
1623 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1628 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1631 void __init kmem_cache_init_late(void)
1633 struct kmem_cache *cachep;
1635 slab_state = UP;
1637 /* 6) resize the head arrays to their final sizes */
1638 mutex_lock(&slab_mutex);
1639 list_for_each_entry(cachep, &slab_caches, list)
1640 if (enable_cpucache(cachep, GFP_NOWAIT))
1641 BUG();
1642 mutex_unlock(&slab_mutex);
1644 /* Annotate slab for lockdep -- annotate the malloc caches */
1645 init_lock_keys();
1647 /* Done! */
1648 slab_state = FULL;
1651 * Register a cpu startup notifier callback that initializes
1652 * cpu_cache_get for all new cpus
1654 register_cpu_notifier(&cpucache_notifier);
1656 #ifdef CONFIG_NUMA
1658 * Register a memory hotplug callback that initializes and frees
1659 * node.
1661 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1662 #endif
1665 * The reap timers are started later, with a module init call: That part
1666 * of the kernel is not yet operational.
1670 static int __init cpucache_init(void)
1672 int cpu;
1675 * Register the timers that return unneeded pages to the page allocator
1677 for_each_online_cpu(cpu)
1678 start_cpu_timer(cpu);
1680 /* Done! */
1681 slab_state = FULL;
1682 return 0;
1684 __initcall(cpucache_init);
1686 static noinline void
1687 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1689 struct kmem_cache_node *n;
1690 struct slab *slabp;
1691 unsigned long flags;
1692 int node;
1694 printk(KERN_WARNING
1695 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1696 nodeid, gfpflags);
1697 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1698 cachep->name, cachep->size, cachep->gfporder);
1700 for_each_online_node(node) {
1701 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1702 unsigned long active_slabs = 0, num_slabs = 0;
1704 n = cachep->node[node];
1705 if (!n)
1706 continue;
1708 spin_lock_irqsave(&n->list_lock, flags);
1709 list_for_each_entry(slabp, &n->slabs_full, list) {
1710 active_objs += cachep->num;
1711 active_slabs++;
1713 list_for_each_entry(slabp, &n->slabs_partial, list) {
1714 active_objs += slabp->inuse;
1715 active_slabs++;
1717 list_for_each_entry(slabp, &n->slabs_free, list)
1718 num_slabs++;
1720 free_objects += n->free_objects;
1721 spin_unlock_irqrestore(&n->list_lock, flags);
1723 num_slabs += active_slabs;
1724 num_objs = num_slabs * cachep->num;
1725 printk(KERN_WARNING
1726 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1727 node, active_slabs, num_slabs, active_objs, num_objs,
1728 free_objects);
1733 * Interface to system's page allocator. No need to hold the cache-lock.
1735 * If we requested dmaable memory, we will get it. Even if we
1736 * did not request dmaable memory, we might get it, but that
1737 * would be relatively rare and ignorable.
1739 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1741 struct page *page;
1742 int nr_pages;
1743 int i;
1745 #ifndef CONFIG_MMU
1747 * Nommu uses slab's for process anonymous memory allocations, and thus
1748 * requires __GFP_COMP to properly refcount higher order allocations
1750 flags |= __GFP_COMP;
1751 #endif
1753 flags |= cachep->allocflags;
1754 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1755 flags |= __GFP_RECLAIMABLE;
1757 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1758 if (!page) {
1759 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1760 slab_out_of_memory(cachep, flags, nodeid);
1761 return NULL;
1764 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1765 if (unlikely(page->pfmemalloc))
1766 pfmemalloc_active = true;
1768 nr_pages = (1 << cachep->gfporder);
1769 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1770 add_zone_page_state(page_zone(page),
1771 NR_SLAB_RECLAIMABLE, nr_pages);
1772 else
1773 add_zone_page_state(page_zone(page),
1774 NR_SLAB_UNRECLAIMABLE, nr_pages);
1775 for (i = 0; i < nr_pages; i++) {
1776 __SetPageSlab(page + i);
1778 if (page->pfmemalloc)
1779 SetPageSlabPfmemalloc(page + i);
1781 memcg_bind_pages(cachep, cachep->gfporder);
1783 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1784 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1786 if (cachep->ctor)
1787 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1788 else
1789 kmemcheck_mark_unallocated_pages(page, nr_pages);
1792 return page_address(page);
1796 * Interface to system's page release.
1798 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1800 unsigned long i = (1 << cachep->gfporder);
1801 struct page *page = virt_to_page(addr);
1802 const unsigned long nr_freed = i;
1804 kmemcheck_free_shadow(page, cachep->gfporder);
1806 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1807 sub_zone_page_state(page_zone(page),
1808 NR_SLAB_RECLAIMABLE, nr_freed);
1809 else
1810 sub_zone_page_state(page_zone(page),
1811 NR_SLAB_UNRECLAIMABLE, nr_freed);
1812 while (i--) {
1813 BUG_ON(!PageSlab(page));
1814 __ClearPageSlabPfmemalloc(page);
1815 __ClearPageSlab(page);
1816 page++;
1819 memcg_release_pages(cachep, cachep->gfporder);
1820 if (current->reclaim_state)
1821 current->reclaim_state->reclaimed_slab += nr_freed;
1822 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1825 static void kmem_rcu_free(struct rcu_head *head)
1827 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1828 struct kmem_cache *cachep = slab_rcu->cachep;
1830 kmem_freepages(cachep, slab_rcu->addr);
1831 if (OFF_SLAB(cachep))
1832 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1835 #if DEBUG
1837 #ifdef CONFIG_DEBUG_PAGEALLOC
1838 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1839 unsigned long caller)
1841 int size = cachep->object_size;
1843 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1845 if (size < 5 * sizeof(unsigned long))
1846 return;
1848 *addr++ = 0x12345678;
1849 *addr++ = caller;
1850 *addr++ = smp_processor_id();
1851 size -= 3 * sizeof(unsigned long);
1853 unsigned long *sptr = &caller;
1854 unsigned long svalue;
1856 while (!kstack_end(sptr)) {
1857 svalue = *sptr++;
1858 if (kernel_text_address(svalue)) {
1859 *addr++ = svalue;
1860 size -= sizeof(unsigned long);
1861 if (size <= sizeof(unsigned long))
1862 break;
1867 *addr++ = 0x87654321;
1869 #endif
1871 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1873 int size = cachep->object_size;
1874 addr = &((char *)addr)[obj_offset(cachep)];
1876 memset(addr, val, size);
1877 *(unsigned char *)(addr + size - 1) = POISON_END;
1880 static void dump_line(char *data, int offset, int limit)
1882 int i;
1883 unsigned char error = 0;
1884 int bad_count = 0;
1886 printk(KERN_ERR "%03x: ", offset);
1887 for (i = 0; i < limit; i++) {
1888 if (data[offset + i] != POISON_FREE) {
1889 error = data[offset + i];
1890 bad_count++;
1893 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1894 &data[offset], limit, 1);
1896 if (bad_count == 1) {
1897 error ^= POISON_FREE;
1898 if (!(error & (error - 1))) {
1899 printk(KERN_ERR "Single bit error detected. Probably "
1900 "bad RAM.\n");
1901 #ifdef CONFIG_X86
1902 printk(KERN_ERR "Run memtest86+ or a similar memory "
1903 "test tool.\n");
1904 #else
1905 printk(KERN_ERR "Run a memory test tool.\n");
1906 #endif
1910 #endif
1912 #if DEBUG
1914 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1916 int i, size;
1917 char *realobj;
1919 if (cachep->flags & SLAB_RED_ZONE) {
1920 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1921 *dbg_redzone1(cachep, objp),
1922 *dbg_redzone2(cachep, objp));
1925 if (cachep->flags & SLAB_STORE_USER) {
1926 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1927 *dbg_userword(cachep, objp),
1928 *dbg_userword(cachep, objp));
1930 realobj = (char *)objp + obj_offset(cachep);
1931 size = cachep->object_size;
1932 for (i = 0; i < size && lines; i += 16, lines--) {
1933 int limit;
1934 limit = 16;
1935 if (i + limit > size)
1936 limit = size - i;
1937 dump_line(realobj, i, limit);
1941 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1943 char *realobj;
1944 int size, i;
1945 int lines = 0;
1947 realobj = (char *)objp + obj_offset(cachep);
1948 size = cachep->object_size;
1950 for (i = 0; i < size; i++) {
1951 char exp = POISON_FREE;
1952 if (i == size - 1)
1953 exp = POISON_END;
1954 if (realobj[i] != exp) {
1955 int limit;
1956 /* Mismatch ! */
1957 /* Print header */
1958 if (lines == 0) {
1959 printk(KERN_ERR
1960 "Slab corruption (%s): %s start=%p, len=%d\n",
1961 print_tainted(), cachep->name, realobj, size);
1962 print_objinfo(cachep, objp, 0);
1964 /* Hexdump the affected line */
1965 i = (i / 16) * 16;
1966 limit = 16;
1967 if (i + limit > size)
1968 limit = size - i;
1969 dump_line(realobj, i, limit);
1970 i += 16;
1971 lines++;
1972 /* Limit to 5 lines */
1973 if (lines > 5)
1974 break;
1977 if (lines != 0) {
1978 /* Print some data about the neighboring objects, if they
1979 * exist:
1981 struct slab *slabp = virt_to_slab(objp);
1982 unsigned int objnr;
1984 objnr = obj_to_index(cachep, slabp, objp);
1985 if (objnr) {
1986 objp = index_to_obj(cachep, slabp, objnr - 1);
1987 realobj = (char *)objp + obj_offset(cachep);
1988 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1989 realobj, size);
1990 print_objinfo(cachep, objp, 2);
1992 if (objnr + 1 < cachep->num) {
1993 objp = index_to_obj(cachep, slabp, objnr + 1);
1994 realobj = (char *)objp + obj_offset(cachep);
1995 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1996 realobj, size);
1997 print_objinfo(cachep, objp, 2);
2001 #endif
2003 #if DEBUG
2004 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2006 int i;
2007 for (i = 0; i < cachep->num; i++) {
2008 void *objp = index_to_obj(cachep, slabp, i);
2010 if (cachep->flags & SLAB_POISON) {
2011 #ifdef CONFIG_DEBUG_PAGEALLOC
2012 if (cachep->size % PAGE_SIZE == 0 &&
2013 OFF_SLAB(cachep))
2014 kernel_map_pages(virt_to_page(objp),
2015 cachep->size / PAGE_SIZE, 1);
2016 else
2017 check_poison_obj(cachep, objp);
2018 #else
2019 check_poison_obj(cachep, objp);
2020 #endif
2022 if (cachep->flags & SLAB_RED_ZONE) {
2023 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2024 slab_error(cachep, "start of a freed object "
2025 "was overwritten");
2026 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2027 slab_error(cachep, "end of a freed object "
2028 "was overwritten");
2032 #else
2033 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2036 #endif
2039 * slab_destroy - destroy and release all objects in a slab
2040 * @cachep: cache pointer being destroyed
2041 * @slabp: slab pointer being destroyed
2043 * Destroy all the objs in a slab, and release the mem back to the system.
2044 * Before calling the slab must have been unlinked from the cache. The
2045 * cache-lock is not held/needed.
2047 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2049 void *addr = slabp->s_mem - slabp->colouroff;
2051 slab_destroy_debugcheck(cachep, slabp);
2052 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2053 struct slab_rcu *slab_rcu;
2055 slab_rcu = (struct slab_rcu *)slabp;
2056 slab_rcu->cachep = cachep;
2057 slab_rcu->addr = addr;
2058 call_rcu(&slab_rcu->head, kmem_rcu_free);
2059 } else {
2060 kmem_freepages(cachep, addr);
2061 if (OFF_SLAB(cachep))
2062 kmem_cache_free(cachep->slabp_cache, slabp);
2067 * calculate_slab_order - calculate size (page order) of slabs
2068 * @cachep: pointer to the cache that is being created
2069 * @size: size of objects to be created in this cache.
2070 * @align: required alignment for the objects.
2071 * @flags: slab allocation flags
2073 * Also calculates the number of objects per slab.
2075 * This could be made much more intelligent. For now, try to avoid using
2076 * high order pages for slabs. When the gfp() functions are more friendly
2077 * towards high-order requests, this should be changed.
2079 static size_t calculate_slab_order(struct kmem_cache *cachep,
2080 size_t size, size_t align, unsigned long flags)
2082 unsigned long offslab_limit;
2083 size_t left_over = 0;
2084 int gfporder;
2086 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2087 unsigned int num;
2088 size_t remainder;
2090 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2091 if (!num)
2092 continue;
2094 if (flags & CFLGS_OFF_SLAB) {
2096 * Max number of objs-per-slab for caches which
2097 * use off-slab slabs. Needed to avoid a possible
2098 * looping condition in cache_grow().
2100 offslab_limit = size - sizeof(struct slab);
2101 offslab_limit /= sizeof(kmem_bufctl_t);
2103 if (num > offslab_limit)
2104 break;
2107 /* Found something acceptable - save it away */
2108 cachep->num = num;
2109 cachep->gfporder = gfporder;
2110 left_over = remainder;
2113 * A VFS-reclaimable slab tends to have most allocations
2114 * as GFP_NOFS and we really don't want to have to be allocating
2115 * higher-order pages when we are unable to shrink dcache.
2117 if (flags & SLAB_RECLAIM_ACCOUNT)
2118 break;
2121 * Large number of objects is good, but very large slabs are
2122 * currently bad for the gfp()s.
2124 if (gfporder >= slab_max_order)
2125 break;
2128 * Acceptable internal fragmentation?
2130 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2131 break;
2133 return left_over;
2136 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2138 if (slab_state >= FULL)
2139 return enable_cpucache(cachep, gfp);
2141 if (slab_state == DOWN) {
2143 * Note: Creation of first cache (kmem_cache).
2144 * The setup_node is taken care
2145 * of by the caller of __kmem_cache_create
2147 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2148 slab_state = PARTIAL;
2149 } else if (slab_state == PARTIAL) {
2151 * Note: the second kmem_cache_create must create the cache
2152 * that's used by kmalloc(24), otherwise the creation of
2153 * further caches will BUG().
2155 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2158 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2159 * the second cache, then we need to set up all its node/,
2160 * otherwise the creation of further caches will BUG().
2162 set_up_node(cachep, SIZE_AC);
2163 if (INDEX_AC == INDEX_NODE)
2164 slab_state = PARTIAL_NODE;
2165 else
2166 slab_state = PARTIAL_ARRAYCACHE;
2167 } else {
2168 /* Remaining boot caches */
2169 cachep->array[smp_processor_id()] =
2170 kmalloc(sizeof(struct arraycache_init), gfp);
2172 if (slab_state == PARTIAL_ARRAYCACHE) {
2173 set_up_node(cachep, SIZE_NODE);
2174 slab_state = PARTIAL_NODE;
2175 } else {
2176 int node;
2177 for_each_online_node(node) {
2178 cachep->node[node] =
2179 kmalloc_node(sizeof(struct kmem_cache_node),
2180 gfp, node);
2181 BUG_ON(!cachep->node[node]);
2182 kmem_cache_node_init(cachep->node[node]);
2186 cachep->node[numa_mem_id()]->next_reap =
2187 jiffies + REAPTIMEOUT_LIST3 +
2188 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2190 cpu_cache_get(cachep)->avail = 0;
2191 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2192 cpu_cache_get(cachep)->batchcount = 1;
2193 cpu_cache_get(cachep)->touched = 0;
2194 cachep->batchcount = 1;
2195 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2196 return 0;
2200 * __kmem_cache_create - Create a cache.
2201 * @cachep: cache management descriptor
2202 * @flags: SLAB flags
2204 * Returns a ptr to the cache on success, NULL on failure.
2205 * Cannot be called within a int, but can be interrupted.
2206 * The @ctor is run when new pages are allocated by the cache.
2208 * The flags are
2210 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2211 * to catch references to uninitialised memory.
2213 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2214 * for buffer overruns.
2216 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2217 * cacheline. This can be beneficial if you're counting cycles as closely
2218 * as davem.
2221 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2223 size_t left_over, slab_size, ralign;
2224 gfp_t gfp;
2225 int err;
2226 size_t size = cachep->size;
2228 #if DEBUG
2229 #if FORCED_DEBUG
2231 * Enable redzoning and last user accounting, except for caches with
2232 * large objects, if the increased size would increase the object size
2233 * above the next power of two: caches with object sizes just above a
2234 * power of two have a significant amount of internal fragmentation.
2236 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2237 2 * sizeof(unsigned long long)))
2238 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2239 if (!(flags & SLAB_DESTROY_BY_RCU))
2240 flags |= SLAB_POISON;
2241 #endif
2242 if (flags & SLAB_DESTROY_BY_RCU)
2243 BUG_ON(flags & SLAB_POISON);
2244 #endif
2247 * Check that size is in terms of words. This is needed to avoid
2248 * unaligned accesses for some archs when redzoning is used, and makes
2249 * sure any on-slab bufctl's are also correctly aligned.
2251 if (size & (BYTES_PER_WORD - 1)) {
2252 size += (BYTES_PER_WORD - 1);
2253 size &= ~(BYTES_PER_WORD - 1);
2257 * Redzoning and user store require word alignment or possibly larger.
2258 * Note this will be overridden by architecture or caller mandated
2259 * alignment if either is greater than BYTES_PER_WORD.
2261 if (flags & SLAB_STORE_USER)
2262 ralign = BYTES_PER_WORD;
2264 if (flags & SLAB_RED_ZONE) {
2265 ralign = REDZONE_ALIGN;
2266 /* If redzoning, ensure that the second redzone is suitably
2267 * aligned, by adjusting the object size accordingly. */
2268 size += REDZONE_ALIGN - 1;
2269 size &= ~(REDZONE_ALIGN - 1);
2272 /* 3) caller mandated alignment */
2273 if (ralign < cachep->align) {
2274 ralign = cachep->align;
2276 /* disable debug if necessary */
2277 if (ralign > __alignof__(unsigned long long))
2278 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2280 * 4) Store it.
2282 cachep->align = ralign;
2284 if (slab_is_available())
2285 gfp = GFP_KERNEL;
2286 else
2287 gfp = GFP_NOWAIT;
2289 setup_node_pointer(cachep);
2290 #if DEBUG
2293 * Both debugging options require word-alignment which is calculated
2294 * into align above.
2296 if (flags & SLAB_RED_ZONE) {
2297 /* add space for red zone words */
2298 cachep->obj_offset += sizeof(unsigned long long);
2299 size += 2 * sizeof(unsigned long long);
2301 if (flags & SLAB_STORE_USER) {
2302 /* user store requires one word storage behind the end of
2303 * the real object. But if the second red zone needs to be
2304 * aligned to 64 bits, we must allow that much space.
2306 if (flags & SLAB_RED_ZONE)
2307 size += REDZONE_ALIGN;
2308 else
2309 size += BYTES_PER_WORD;
2311 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2312 if (size >= kmalloc_size(INDEX_NODE + 1)
2313 && cachep->object_size > cache_line_size()
2314 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2315 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2316 size = PAGE_SIZE;
2318 #endif
2319 #endif
2322 * Determine if the slab management is 'on' or 'off' slab.
2323 * (bootstrapping cannot cope with offslab caches so don't do
2324 * it too early on. Always use on-slab management when
2325 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2327 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2328 !(flags & SLAB_NOLEAKTRACE))
2330 * Size is large, assume best to place the slab management obj
2331 * off-slab (should allow better packing of objs).
2333 flags |= CFLGS_OFF_SLAB;
2335 size = ALIGN(size, cachep->align);
2337 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2339 if (!cachep->num)
2340 return -E2BIG;
2342 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2343 + sizeof(struct slab), cachep->align);
2346 * If the slab has been placed off-slab, and we have enough space then
2347 * move it on-slab. This is at the expense of any extra colouring.
2349 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2350 flags &= ~CFLGS_OFF_SLAB;
2351 left_over -= slab_size;
2354 if (flags & CFLGS_OFF_SLAB) {
2355 /* really off slab. No need for manual alignment */
2356 slab_size =
2357 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2359 #ifdef CONFIG_PAGE_POISONING
2360 /* If we're going to use the generic kernel_map_pages()
2361 * poisoning, then it's going to smash the contents of
2362 * the redzone and userword anyhow, so switch them off.
2364 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2365 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2366 #endif
2369 cachep->colour_off = cache_line_size();
2370 /* Offset must be a multiple of the alignment. */
2371 if (cachep->colour_off < cachep->align)
2372 cachep->colour_off = cachep->align;
2373 cachep->colour = left_over / cachep->colour_off;
2374 cachep->slab_size = slab_size;
2375 cachep->flags = flags;
2376 cachep->allocflags = 0;
2377 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2378 cachep->allocflags |= GFP_DMA;
2379 cachep->size = size;
2380 cachep->reciprocal_buffer_size = reciprocal_value(size);
2382 if (flags & CFLGS_OFF_SLAB) {
2383 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2385 * This is a possibility for one of the malloc_sizes caches.
2386 * But since we go off slab only for object size greater than
2387 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2388 * this should not happen at all.
2389 * But leave a BUG_ON for some lucky dude.
2391 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2394 err = setup_cpu_cache(cachep, gfp);
2395 if (err) {
2396 __kmem_cache_shutdown(cachep);
2397 return err;
2400 if (flags & SLAB_DEBUG_OBJECTS) {
2402 * Would deadlock through slab_destroy()->call_rcu()->
2403 * debug_object_activate()->kmem_cache_alloc().
2405 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2407 slab_set_debugobj_lock_classes(cachep);
2408 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2409 on_slab_lock_classes(cachep);
2411 return 0;
2414 #if DEBUG
2415 static void check_irq_off(void)
2417 BUG_ON(!irqs_disabled());
2420 static void check_irq_on(void)
2422 BUG_ON(irqs_disabled());
2425 static void check_spinlock_acquired(struct kmem_cache *cachep)
2427 #ifdef CONFIG_SMP
2428 check_irq_off();
2429 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2430 #endif
2433 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2435 #ifdef CONFIG_SMP
2436 check_irq_off();
2437 assert_spin_locked(&cachep->node[node]->list_lock);
2438 #endif
2441 #else
2442 #define check_irq_off() do { } while(0)
2443 #define check_irq_on() do { } while(0)
2444 #define check_spinlock_acquired(x) do { } while(0)
2445 #define check_spinlock_acquired_node(x, y) do { } while(0)
2446 #endif
2448 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2449 struct array_cache *ac,
2450 int force, int node);
2452 static void do_drain(void *arg)
2454 struct kmem_cache *cachep = arg;
2455 struct array_cache *ac;
2456 int node = numa_mem_id();
2458 check_irq_off();
2459 ac = cpu_cache_get(cachep);
2460 spin_lock(&cachep->node[node]->list_lock);
2461 free_block(cachep, ac->entry, ac->avail, node);
2462 spin_unlock(&cachep->node[node]->list_lock);
2463 ac->avail = 0;
2466 static void drain_cpu_caches(struct kmem_cache *cachep)
2468 struct kmem_cache_node *n;
2469 int node;
2471 on_each_cpu(do_drain, cachep, 1);
2472 check_irq_on();
2473 for_each_online_node(node) {
2474 n = cachep->node[node];
2475 if (n && n->alien)
2476 drain_alien_cache(cachep, n->alien);
2479 for_each_online_node(node) {
2480 n = cachep->node[node];
2481 if (n)
2482 drain_array(cachep, n, n->shared, 1, node);
2487 * Remove slabs from the list of free slabs.
2488 * Specify the number of slabs to drain in tofree.
2490 * Returns the actual number of slabs released.
2492 static int drain_freelist(struct kmem_cache *cache,
2493 struct kmem_cache_node *n, int tofree)
2495 struct list_head *p;
2496 int nr_freed;
2497 struct slab *slabp;
2499 nr_freed = 0;
2500 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2502 spin_lock_irq(&n->list_lock);
2503 p = n->slabs_free.prev;
2504 if (p == &n->slabs_free) {
2505 spin_unlock_irq(&n->list_lock);
2506 goto out;
2509 slabp = list_entry(p, struct slab, list);
2510 #if DEBUG
2511 BUG_ON(slabp->inuse);
2512 #endif
2513 list_del(&slabp->list);
2515 * Safe to drop the lock. The slab is no longer linked
2516 * to the cache.
2518 n->free_objects -= cache->num;
2519 spin_unlock_irq(&n->list_lock);
2520 slab_destroy(cache, slabp);
2521 nr_freed++;
2523 out:
2524 return nr_freed;
2527 /* Called with slab_mutex held to protect against cpu hotplug */
2528 static int __cache_shrink(struct kmem_cache *cachep)
2530 int ret = 0, i = 0;
2531 struct kmem_cache_node *n;
2533 drain_cpu_caches(cachep);
2535 check_irq_on();
2536 for_each_online_node(i) {
2537 n = cachep->node[i];
2538 if (!n)
2539 continue;
2541 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2543 ret += !list_empty(&n->slabs_full) ||
2544 !list_empty(&n->slabs_partial);
2546 return (ret ? 1 : 0);
2550 * kmem_cache_shrink - Shrink a cache.
2551 * @cachep: The cache to shrink.
2553 * Releases as many slabs as possible for a cache.
2554 * To help debugging, a zero exit status indicates all slabs were released.
2556 int kmem_cache_shrink(struct kmem_cache *cachep)
2558 int ret;
2559 BUG_ON(!cachep || in_interrupt());
2561 get_online_cpus();
2562 mutex_lock(&slab_mutex);
2563 ret = __cache_shrink(cachep);
2564 mutex_unlock(&slab_mutex);
2565 put_online_cpus();
2566 return ret;
2568 EXPORT_SYMBOL(kmem_cache_shrink);
2570 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2572 int i;
2573 struct kmem_cache_node *n;
2574 int rc = __cache_shrink(cachep);
2576 if (rc)
2577 return rc;
2579 for_each_online_cpu(i)
2580 kfree(cachep->array[i]);
2582 /* NUMA: free the node structures */
2583 for_each_online_node(i) {
2584 n = cachep->node[i];
2585 if (n) {
2586 kfree(n->shared);
2587 free_alien_cache(n->alien);
2588 kfree(n);
2591 return 0;
2595 * Get the memory for a slab management obj.
2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597 * always come from malloc_sizes caches. The slab descriptor cannot
2598 * come from the same cache which is getting created because,
2599 * when we are searching for an appropriate cache for these
2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601 * If we are creating a malloc_sizes cache here it would not be visible to
2602 * kmem_find_general_cachep till the initialization is complete.
2603 * Hence we cannot have slabp_cache same as the original cache.
2605 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2606 int colour_off, gfp_t local_flags,
2607 int nodeid)
2609 struct slab *slabp;
2611 if (OFF_SLAB(cachep)) {
2612 /* Slab management obj is off-slab. */
2613 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2614 local_flags, nodeid);
2616 * If the first object in the slab is leaked (it's allocated
2617 * but no one has a reference to it), we want to make sure
2618 * kmemleak does not treat the ->s_mem pointer as a reference
2619 * to the object. Otherwise we will not report the leak.
2621 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2622 local_flags);
2623 if (!slabp)
2624 return NULL;
2625 } else {
2626 slabp = objp + colour_off;
2627 colour_off += cachep->slab_size;
2629 slabp->inuse = 0;
2630 slabp->colouroff = colour_off;
2631 slabp->s_mem = objp + colour_off;
2632 slabp->nodeid = nodeid;
2633 slabp->free = 0;
2634 return slabp;
2637 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2639 return (kmem_bufctl_t *) (slabp + 1);
2642 static void cache_init_objs(struct kmem_cache *cachep,
2643 struct slab *slabp)
2645 int i;
2647 for (i = 0; i < cachep->num; i++) {
2648 void *objp = index_to_obj(cachep, slabp, i);
2649 #if DEBUG
2650 /* need to poison the objs? */
2651 if (cachep->flags & SLAB_POISON)
2652 poison_obj(cachep, objp, POISON_FREE);
2653 if (cachep->flags & SLAB_STORE_USER)
2654 *dbg_userword(cachep, objp) = NULL;
2656 if (cachep->flags & SLAB_RED_ZONE) {
2657 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2658 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2661 * Constructors are not allowed to allocate memory from the same
2662 * cache which they are a constructor for. Otherwise, deadlock.
2663 * They must also be threaded.
2665 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2666 cachep->ctor(objp + obj_offset(cachep));
2668 if (cachep->flags & SLAB_RED_ZONE) {
2669 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2670 slab_error(cachep, "constructor overwrote the"
2671 " end of an object");
2672 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2673 slab_error(cachep, "constructor overwrote the"
2674 " start of an object");
2676 if ((cachep->size % PAGE_SIZE) == 0 &&
2677 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2678 kernel_map_pages(virt_to_page(objp),
2679 cachep->size / PAGE_SIZE, 0);
2680 #else
2681 if (cachep->ctor)
2682 cachep->ctor(objp);
2683 #endif
2684 slab_bufctl(slabp)[i] = i + 1;
2686 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2689 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2691 if (CONFIG_ZONE_DMA_FLAG) {
2692 if (flags & GFP_DMA)
2693 BUG_ON(!(cachep->allocflags & GFP_DMA));
2694 else
2695 BUG_ON(cachep->allocflags & GFP_DMA);
2699 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2700 int nodeid)
2702 void *objp = index_to_obj(cachep, slabp, slabp->free);
2703 kmem_bufctl_t next;
2705 slabp->inuse++;
2706 next = slab_bufctl(slabp)[slabp->free];
2707 #if DEBUG
2708 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2709 WARN_ON(slabp->nodeid != nodeid);
2710 #endif
2711 slabp->free = next;
2713 return objp;
2716 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2717 void *objp, int nodeid)
2719 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2721 #if DEBUG
2722 /* Verify that the slab belongs to the intended node */
2723 WARN_ON(slabp->nodeid != nodeid);
2725 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2726 printk(KERN_ERR "slab: double free detected in cache "
2727 "'%s', objp %p\n", cachep->name, objp);
2728 BUG();
2730 #endif
2731 slab_bufctl(slabp)[objnr] = slabp->free;
2732 slabp->free = objnr;
2733 slabp->inuse--;
2737 * Map pages beginning at addr to the given cache and slab. This is required
2738 * for the slab allocator to be able to lookup the cache and slab of a
2739 * virtual address for kfree, ksize, and slab debugging.
2741 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2742 void *addr)
2744 int nr_pages;
2745 struct page *page;
2747 page = virt_to_page(addr);
2749 nr_pages = 1;
2750 if (likely(!PageCompound(page)))
2751 nr_pages <<= cache->gfporder;
2753 do {
2754 page->slab_cache = cache;
2755 page->slab_page = slab;
2756 page++;
2757 } while (--nr_pages);
2761 * Grow (by 1) the number of slabs within a cache. This is called by
2762 * kmem_cache_alloc() when there are no active objs left in a cache.
2764 static int cache_grow(struct kmem_cache *cachep,
2765 gfp_t flags, int nodeid, void *objp)
2767 struct slab *slabp;
2768 size_t offset;
2769 gfp_t local_flags;
2770 struct kmem_cache_node *n;
2773 * Be lazy and only check for valid flags here, keeping it out of the
2774 * critical path in kmem_cache_alloc().
2776 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2777 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2779 /* Take the node list lock to change the colour_next on this node */
2780 check_irq_off();
2781 n = cachep->node[nodeid];
2782 spin_lock(&n->list_lock);
2784 /* Get colour for the slab, and cal the next value. */
2785 offset = n->colour_next;
2786 n->colour_next++;
2787 if (n->colour_next >= cachep->colour)
2788 n->colour_next = 0;
2789 spin_unlock(&n->list_lock);
2791 offset *= cachep->colour_off;
2793 if (local_flags & __GFP_WAIT)
2794 local_irq_enable();
2797 * The test for missing atomic flag is performed here, rather than
2798 * the more obvious place, simply to reduce the critical path length
2799 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2800 * will eventually be caught here (where it matters).
2802 kmem_flagcheck(cachep, flags);
2805 * Get mem for the objs. Attempt to allocate a physical page from
2806 * 'nodeid'.
2808 if (!objp)
2809 objp = kmem_getpages(cachep, local_flags, nodeid);
2810 if (!objp)
2811 goto failed;
2813 /* Get slab management. */
2814 slabp = alloc_slabmgmt(cachep, objp, offset,
2815 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2816 if (!slabp)
2817 goto opps1;
2819 slab_map_pages(cachep, slabp, objp);
2821 cache_init_objs(cachep, slabp);
2823 if (local_flags & __GFP_WAIT)
2824 local_irq_disable();
2825 check_irq_off();
2826 spin_lock(&n->list_lock);
2828 /* Make slab active. */
2829 list_add_tail(&slabp->list, &(n->slabs_free));
2830 STATS_INC_GROWN(cachep);
2831 n->free_objects += cachep->num;
2832 spin_unlock(&n->list_lock);
2833 return 1;
2834 opps1:
2835 kmem_freepages(cachep, objp);
2836 failed:
2837 if (local_flags & __GFP_WAIT)
2838 local_irq_disable();
2839 return 0;
2842 #if DEBUG
2845 * Perform extra freeing checks:
2846 * - detect bad pointers.
2847 * - POISON/RED_ZONE checking
2849 static void kfree_debugcheck(const void *objp)
2851 if (!virt_addr_valid(objp)) {
2852 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2853 (unsigned long)objp);
2854 BUG();
2858 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2860 unsigned long long redzone1, redzone2;
2862 redzone1 = *dbg_redzone1(cache, obj);
2863 redzone2 = *dbg_redzone2(cache, obj);
2866 * Redzone is ok.
2868 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2869 return;
2871 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2872 slab_error(cache, "double free detected");
2873 else
2874 slab_error(cache, "memory outside object was overwritten");
2876 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2877 obj, redzone1, redzone2);
2880 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2881 unsigned long caller)
2883 struct page *page;
2884 unsigned int objnr;
2885 struct slab *slabp;
2887 BUG_ON(virt_to_cache(objp) != cachep);
2889 objp -= obj_offset(cachep);
2890 kfree_debugcheck(objp);
2891 page = virt_to_head_page(objp);
2893 slabp = page->slab_page;
2895 if (cachep->flags & SLAB_RED_ZONE) {
2896 verify_redzone_free(cachep, objp);
2897 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2898 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2900 if (cachep->flags & SLAB_STORE_USER)
2901 *dbg_userword(cachep, objp) = (void *)caller;
2903 objnr = obj_to_index(cachep, slabp, objp);
2905 BUG_ON(objnr >= cachep->num);
2906 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2908 #ifdef CONFIG_DEBUG_SLAB_LEAK
2909 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2910 #endif
2911 if (cachep->flags & SLAB_POISON) {
2912 #ifdef CONFIG_DEBUG_PAGEALLOC
2913 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2914 store_stackinfo(cachep, objp, caller);
2915 kernel_map_pages(virt_to_page(objp),
2916 cachep->size / PAGE_SIZE, 0);
2917 } else {
2918 poison_obj(cachep, objp, POISON_FREE);
2920 #else
2921 poison_obj(cachep, objp, POISON_FREE);
2922 #endif
2924 return objp;
2927 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2929 kmem_bufctl_t i;
2930 int entries = 0;
2932 /* Check slab's freelist to see if this obj is there. */
2933 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2934 entries++;
2935 if (entries > cachep->num || i >= cachep->num)
2936 goto bad;
2938 if (entries != cachep->num - slabp->inuse) {
2939 bad:
2940 printk(KERN_ERR "slab: Internal list corruption detected in "
2941 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2942 cachep->name, cachep->num, slabp, slabp->inuse,
2943 print_tainted());
2944 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2945 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2947 BUG();
2950 #else
2951 #define kfree_debugcheck(x) do { } while(0)
2952 #define cache_free_debugcheck(x,objp,z) (objp)
2953 #define check_slabp(x,y) do { } while(0)
2954 #endif
2956 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2957 bool force_refill)
2959 int batchcount;
2960 struct kmem_cache_node *n;
2961 struct array_cache *ac;
2962 int node;
2964 check_irq_off();
2965 node = numa_mem_id();
2966 if (unlikely(force_refill))
2967 goto force_grow;
2968 retry:
2969 ac = cpu_cache_get(cachep);
2970 batchcount = ac->batchcount;
2971 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2973 * If there was little recent activity on this cache, then
2974 * perform only a partial refill. Otherwise we could generate
2975 * refill bouncing.
2977 batchcount = BATCHREFILL_LIMIT;
2979 n = cachep->node[node];
2981 BUG_ON(ac->avail > 0 || !n);
2982 spin_lock(&n->list_lock);
2984 /* See if we can refill from the shared array */
2985 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2986 n->shared->touched = 1;
2987 goto alloc_done;
2990 while (batchcount > 0) {
2991 struct list_head *entry;
2992 struct slab *slabp;
2993 /* Get slab alloc is to come from. */
2994 entry = n->slabs_partial.next;
2995 if (entry == &n->slabs_partial) {
2996 n->free_touched = 1;
2997 entry = n->slabs_free.next;
2998 if (entry == &n->slabs_free)
2999 goto must_grow;
3002 slabp = list_entry(entry, struct slab, list);
3003 check_slabp(cachep, slabp);
3004 check_spinlock_acquired(cachep);
3007 * The slab was either on partial or free list so
3008 * there must be at least one object available for
3009 * allocation.
3011 BUG_ON(slabp->inuse >= cachep->num);
3013 while (slabp->inuse < cachep->num && batchcount--) {
3014 STATS_INC_ALLOCED(cachep);
3015 STATS_INC_ACTIVE(cachep);
3016 STATS_SET_HIGH(cachep);
3018 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3019 node));
3021 check_slabp(cachep, slabp);
3023 /* move slabp to correct slabp list: */
3024 list_del(&slabp->list);
3025 if (slabp->free == BUFCTL_END)
3026 list_add(&slabp->list, &n->slabs_full);
3027 else
3028 list_add(&slabp->list, &n->slabs_partial);
3031 must_grow:
3032 n->free_objects -= ac->avail;
3033 alloc_done:
3034 spin_unlock(&n->list_lock);
3036 if (unlikely(!ac->avail)) {
3037 int x;
3038 force_grow:
3039 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3041 /* cache_grow can reenable interrupts, then ac could change. */
3042 ac = cpu_cache_get(cachep);
3043 node = numa_mem_id();
3045 /* no objects in sight? abort */
3046 if (!x && (ac->avail == 0 || force_refill))
3047 return NULL;
3049 if (!ac->avail) /* objects refilled by interrupt? */
3050 goto retry;
3052 ac->touched = 1;
3054 return ac_get_obj(cachep, ac, flags, force_refill);
3057 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3058 gfp_t flags)
3060 might_sleep_if(flags & __GFP_WAIT);
3061 #if DEBUG
3062 kmem_flagcheck(cachep, flags);
3063 #endif
3066 #if DEBUG
3067 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3068 gfp_t flags, void *objp, unsigned long caller)
3070 if (!objp)
3071 return objp;
3072 if (cachep->flags & SLAB_POISON) {
3073 #ifdef CONFIG_DEBUG_PAGEALLOC
3074 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3075 kernel_map_pages(virt_to_page(objp),
3076 cachep->size / PAGE_SIZE, 1);
3077 else
3078 check_poison_obj(cachep, objp);
3079 #else
3080 check_poison_obj(cachep, objp);
3081 #endif
3082 poison_obj(cachep, objp, POISON_INUSE);
3084 if (cachep->flags & SLAB_STORE_USER)
3085 *dbg_userword(cachep, objp) = (void *)caller;
3087 if (cachep->flags & SLAB_RED_ZONE) {
3088 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3089 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3090 slab_error(cachep, "double free, or memory outside"
3091 " object was overwritten");
3092 printk(KERN_ERR
3093 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094 objp, *dbg_redzone1(cachep, objp),
3095 *dbg_redzone2(cachep, objp));
3097 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3100 #ifdef CONFIG_DEBUG_SLAB_LEAK
3102 struct slab *slabp;
3103 unsigned objnr;
3105 slabp = virt_to_head_page(objp)->slab_page;
3106 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3107 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3109 #endif
3110 objp += obj_offset(cachep);
3111 if (cachep->ctor && cachep->flags & SLAB_POISON)
3112 cachep->ctor(objp);
3113 if (ARCH_SLAB_MINALIGN &&
3114 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3115 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3116 objp, (int)ARCH_SLAB_MINALIGN);
3118 return objp;
3120 #else
3121 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3122 #endif
3124 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3126 if (cachep == kmem_cache)
3127 return false;
3129 return should_failslab(cachep->object_size, flags, cachep->flags);
3132 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3134 void *objp;
3135 struct array_cache *ac;
3136 bool force_refill = false;
3138 check_irq_off();
3140 ac = cpu_cache_get(cachep);
3141 if (likely(ac->avail)) {
3142 ac->touched = 1;
3143 objp = ac_get_obj(cachep, ac, flags, false);
3146 * Allow for the possibility all avail objects are not allowed
3147 * by the current flags
3149 if (objp) {
3150 STATS_INC_ALLOCHIT(cachep);
3151 goto out;
3153 force_refill = true;
3156 STATS_INC_ALLOCMISS(cachep);
3157 objp = cache_alloc_refill(cachep, flags, force_refill);
3159 * the 'ac' may be updated by cache_alloc_refill(),
3160 * and kmemleak_erase() requires its correct value.
3162 ac = cpu_cache_get(cachep);
3164 out:
3166 * To avoid a false negative, if an object that is in one of the
3167 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3168 * treat the array pointers as a reference to the object.
3170 if (objp)
3171 kmemleak_erase(&ac->entry[ac->avail]);
3172 return objp;
3175 #ifdef CONFIG_NUMA
3177 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3179 * If we are in_interrupt, then process context, including cpusets and
3180 * mempolicy, may not apply and should not be used for allocation policy.
3182 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3184 int nid_alloc, nid_here;
3186 if (in_interrupt() || (flags & __GFP_THISNODE))
3187 return NULL;
3188 nid_alloc = nid_here = numa_mem_id();
3189 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3190 nid_alloc = cpuset_slab_spread_node();
3191 else if (current->mempolicy)
3192 nid_alloc = slab_node();
3193 if (nid_alloc != nid_here)
3194 return ____cache_alloc_node(cachep, flags, nid_alloc);
3195 return NULL;
3199 * Fallback function if there was no memory available and no objects on a
3200 * certain node and fall back is permitted. First we scan all the
3201 * available node for available objects. If that fails then we
3202 * perform an allocation without specifying a node. This allows the page
3203 * allocator to do its reclaim / fallback magic. We then insert the
3204 * slab into the proper nodelist and then allocate from it.
3206 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3208 struct zonelist *zonelist;
3209 gfp_t local_flags;
3210 struct zoneref *z;
3211 struct zone *zone;
3212 enum zone_type high_zoneidx = gfp_zone(flags);
3213 void *obj = NULL;
3214 int nid;
3215 unsigned int cpuset_mems_cookie;
3217 if (flags & __GFP_THISNODE)
3218 return NULL;
3220 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3222 retry_cpuset:
3223 cpuset_mems_cookie = get_mems_allowed();
3224 zonelist = node_zonelist(slab_node(), flags);
3226 retry:
3228 * Look through allowed nodes for objects available
3229 * from existing per node queues.
3231 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3232 nid = zone_to_nid(zone);
3234 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3235 cache->node[nid] &&
3236 cache->node[nid]->free_objects) {
3237 obj = ____cache_alloc_node(cache,
3238 flags | GFP_THISNODE, nid);
3239 if (obj)
3240 break;
3244 if (!obj) {
3246 * This allocation will be performed within the constraints
3247 * of the current cpuset / memory policy requirements.
3248 * We may trigger various forms of reclaim on the allowed
3249 * set and go into memory reserves if necessary.
3251 if (local_flags & __GFP_WAIT)
3252 local_irq_enable();
3253 kmem_flagcheck(cache, flags);
3254 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3255 if (local_flags & __GFP_WAIT)
3256 local_irq_disable();
3257 if (obj) {
3259 * Insert into the appropriate per node queues
3261 nid = page_to_nid(virt_to_page(obj));
3262 if (cache_grow(cache, flags, nid, obj)) {
3263 obj = ____cache_alloc_node(cache,
3264 flags | GFP_THISNODE, nid);
3265 if (!obj)
3267 * Another processor may allocate the
3268 * objects in the slab since we are
3269 * not holding any locks.
3271 goto retry;
3272 } else {
3273 /* cache_grow already freed obj */
3274 obj = NULL;
3279 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3280 goto retry_cpuset;
3281 return obj;
3285 * A interface to enable slab creation on nodeid
3287 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3288 int nodeid)
3290 struct list_head *entry;
3291 struct slab *slabp;
3292 struct kmem_cache_node *n;
3293 void *obj;
3294 int x;
3296 VM_BUG_ON(nodeid > num_online_nodes());
3297 n = cachep->node[nodeid];
3298 BUG_ON(!n);
3300 retry:
3301 check_irq_off();
3302 spin_lock(&n->list_lock);
3303 entry = n->slabs_partial.next;
3304 if (entry == &n->slabs_partial) {
3305 n->free_touched = 1;
3306 entry = n->slabs_free.next;
3307 if (entry == &n->slabs_free)
3308 goto must_grow;
3311 slabp = list_entry(entry, struct slab, list);
3312 check_spinlock_acquired_node(cachep, nodeid);
3313 check_slabp(cachep, slabp);
3315 STATS_INC_NODEALLOCS(cachep);
3316 STATS_INC_ACTIVE(cachep);
3317 STATS_SET_HIGH(cachep);
3319 BUG_ON(slabp->inuse == cachep->num);
3321 obj = slab_get_obj(cachep, slabp, nodeid);
3322 check_slabp(cachep, slabp);
3323 n->free_objects--;
3324 /* move slabp to correct slabp list: */
3325 list_del(&slabp->list);
3327 if (slabp->free == BUFCTL_END)
3328 list_add(&slabp->list, &n->slabs_full);
3329 else
3330 list_add(&slabp->list, &n->slabs_partial);
3332 spin_unlock(&n->list_lock);
3333 goto done;
3335 must_grow:
3336 spin_unlock(&n->list_lock);
3337 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3338 if (x)
3339 goto retry;
3341 return fallback_alloc(cachep, flags);
3343 done:
3344 return obj;
3347 static __always_inline void *
3348 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3349 unsigned long caller)
3351 unsigned long save_flags;
3352 void *ptr;
3353 int slab_node = numa_mem_id();
3355 flags &= gfp_allowed_mask;
3357 lockdep_trace_alloc(flags);
3359 if (slab_should_failslab(cachep, flags))
3360 return NULL;
3362 cachep = memcg_kmem_get_cache(cachep, flags);
3364 cache_alloc_debugcheck_before(cachep, flags);
3365 local_irq_save(save_flags);
3367 if (nodeid == NUMA_NO_NODE)
3368 nodeid = slab_node;
3370 if (unlikely(!cachep->node[nodeid])) {
3371 /* Node not bootstrapped yet */
3372 ptr = fallback_alloc(cachep, flags);
3373 goto out;
3376 if (nodeid == slab_node) {
3378 * Use the locally cached objects if possible.
3379 * However ____cache_alloc does not allow fallback
3380 * to other nodes. It may fail while we still have
3381 * objects on other nodes available.
3383 ptr = ____cache_alloc(cachep, flags);
3384 if (ptr)
3385 goto out;
3387 /* ___cache_alloc_node can fall back to other nodes */
3388 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3389 out:
3390 local_irq_restore(save_flags);
3391 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3392 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3393 flags);
3395 if (likely(ptr))
3396 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3398 if (unlikely((flags & __GFP_ZERO) && ptr))
3399 memset(ptr, 0, cachep->object_size);
3401 return ptr;
3404 static __always_inline void *
3405 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3407 void *objp;
3409 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3410 objp = alternate_node_alloc(cache, flags);
3411 if (objp)
3412 goto out;
3414 objp = ____cache_alloc(cache, flags);
3417 * We may just have run out of memory on the local node.
3418 * ____cache_alloc_node() knows how to locate memory on other nodes
3420 if (!objp)
3421 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3423 out:
3424 return objp;
3426 #else
3428 static __always_inline void *
3429 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3431 return ____cache_alloc(cachep, flags);
3434 #endif /* CONFIG_NUMA */
3436 static __always_inline void *
3437 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3439 unsigned long save_flags;
3440 void *objp;
3442 flags &= gfp_allowed_mask;
3444 lockdep_trace_alloc(flags);
3446 if (slab_should_failslab(cachep, flags))
3447 return NULL;
3449 cachep = memcg_kmem_get_cache(cachep, flags);
3451 cache_alloc_debugcheck_before(cachep, flags);
3452 local_irq_save(save_flags);
3453 objp = __do_cache_alloc(cachep, flags);
3454 local_irq_restore(save_flags);
3455 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3456 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3457 flags);
3458 prefetchw(objp);
3460 if (likely(objp))
3461 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3463 if (unlikely((flags & __GFP_ZERO) && objp))
3464 memset(objp, 0, cachep->object_size);
3466 return objp;
3470 * Caller needs to acquire correct kmem_list's list_lock
3472 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3473 int node)
3475 int i;
3476 struct kmem_cache_node *n;
3478 for (i = 0; i < nr_objects; i++) {
3479 void *objp;
3480 struct slab *slabp;
3482 clear_obj_pfmemalloc(&objpp[i]);
3483 objp = objpp[i];
3485 slabp = virt_to_slab(objp);
3486 n = cachep->node[node];
3487 list_del(&slabp->list);
3488 check_spinlock_acquired_node(cachep, node);
3489 check_slabp(cachep, slabp);
3490 slab_put_obj(cachep, slabp, objp, node);
3491 STATS_DEC_ACTIVE(cachep);
3492 n->free_objects++;
3493 check_slabp(cachep, slabp);
3495 /* fixup slab chains */
3496 if (slabp->inuse == 0) {
3497 if (n->free_objects > n->free_limit) {
3498 n->free_objects -= cachep->num;
3499 /* No need to drop any previously held
3500 * lock here, even if we have a off-slab slab
3501 * descriptor it is guaranteed to come from
3502 * a different cache, refer to comments before
3503 * alloc_slabmgmt.
3505 slab_destroy(cachep, slabp);
3506 } else {
3507 list_add(&slabp->list, &n->slabs_free);
3509 } else {
3510 /* Unconditionally move a slab to the end of the
3511 * partial list on free - maximum time for the
3512 * other objects to be freed, too.
3514 list_add_tail(&slabp->list, &n->slabs_partial);
3519 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3521 int batchcount;
3522 struct kmem_cache_node *n;
3523 int node = numa_mem_id();
3525 batchcount = ac->batchcount;
3526 #if DEBUG
3527 BUG_ON(!batchcount || batchcount > ac->avail);
3528 #endif
3529 check_irq_off();
3530 n = cachep->node[node];
3531 spin_lock(&n->list_lock);
3532 if (n->shared) {
3533 struct array_cache *shared_array = n->shared;
3534 int max = shared_array->limit - shared_array->avail;
3535 if (max) {
3536 if (batchcount > max)
3537 batchcount = max;
3538 memcpy(&(shared_array->entry[shared_array->avail]),
3539 ac->entry, sizeof(void *) * batchcount);
3540 shared_array->avail += batchcount;
3541 goto free_done;
3545 free_block(cachep, ac->entry, batchcount, node);
3546 free_done:
3547 #if STATS
3549 int i = 0;
3550 struct list_head *p;
3552 p = n->slabs_free.next;
3553 while (p != &(n->slabs_free)) {
3554 struct slab *slabp;
3556 slabp = list_entry(p, struct slab, list);
3557 BUG_ON(slabp->inuse);
3559 i++;
3560 p = p->next;
3562 STATS_SET_FREEABLE(cachep, i);
3564 #endif
3565 spin_unlock(&n->list_lock);
3566 ac->avail -= batchcount;
3567 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3571 * Release an obj back to its cache. If the obj has a constructed state, it must
3572 * be in this state _before_ it is released. Called with disabled ints.
3574 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3575 unsigned long caller)
3577 struct array_cache *ac = cpu_cache_get(cachep);
3579 check_irq_off();
3580 kmemleak_free_recursive(objp, cachep->flags);
3581 objp = cache_free_debugcheck(cachep, objp, caller);
3583 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3586 * Skip calling cache_free_alien() when the platform is not numa.
3587 * This will avoid cache misses that happen while accessing slabp (which
3588 * is per page memory reference) to get nodeid. Instead use a global
3589 * variable to skip the call, which is mostly likely to be present in
3590 * the cache.
3592 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3593 return;
3595 if (likely(ac->avail < ac->limit)) {
3596 STATS_INC_FREEHIT(cachep);
3597 } else {
3598 STATS_INC_FREEMISS(cachep);
3599 cache_flusharray(cachep, ac);
3602 ac_put_obj(cachep, ac, objp);
3606 * kmem_cache_alloc - Allocate an object
3607 * @cachep: The cache to allocate from.
3608 * @flags: See kmalloc().
3610 * Allocate an object from this cache. The flags are only relevant
3611 * if the cache has no available objects.
3613 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3615 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3617 trace_kmem_cache_alloc(_RET_IP_, ret,
3618 cachep->object_size, cachep->size, flags);
3620 return ret;
3622 EXPORT_SYMBOL(kmem_cache_alloc);
3624 #ifdef CONFIG_TRACING
3625 void *
3626 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3628 void *ret;
3630 ret = slab_alloc(cachep, flags, _RET_IP_);
3632 trace_kmalloc(_RET_IP_, ret,
3633 size, cachep->size, flags);
3634 return ret;
3636 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3637 #endif
3639 #ifdef CONFIG_NUMA
3641 * kmem_cache_alloc_node - Allocate an object on the specified node
3642 * @cachep: The cache to allocate from.
3643 * @flags: See kmalloc().
3644 * @nodeid: node number of the target node.
3646 * Identical to kmem_cache_alloc but it will allocate memory on the given
3647 * node, which can improve the performance for cpu bound structures.
3649 * Fallback to other node is possible if __GFP_THISNODE is not set.
3651 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3653 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3655 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3656 cachep->object_size, cachep->size,
3657 flags, nodeid);
3659 return ret;
3661 EXPORT_SYMBOL(kmem_cache_alloc_node);
3663 #ifdef CONFIG_TRACING
3664 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3665 gfp_t flags,
3666 int nodeid,
3667 size_t size)
3669 void *ret;
3671 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3673 trace_kmalloc_node(_RET_IP_, ret,
3674 size, cachep->size,
3675 flags, nodeid);
3676 return ret;
3678 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3679 #endif
3681 static __always_inline void *
3682 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3684 struct kmem_cache *cachep;
3686 cachep = kmalloc_slab(size, flags);
3687 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688 return cachep;
3689 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3692 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3693 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3697 EXPORT_SYMBOL(__kmalloc_node);
3699 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700 int node, unsigned long caller)
3702 return __do_kmalloc_node(size, flags, node, caller);
3704 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705 #else
3706 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3708 return __do_kmalloc_node(size, flags, node, 0);
3710 EXPORT_SYMBOL(__kmalloc_node);
3711 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3712 #endif /* CONFIG_NUMA */
3715 * __do_kmalloc - allocate memory
3716 * @size: how many bytes of memory are required.
3717 * @flags: the type of memory to allocate (see kmalloc).
3718 * @caller: function caller for debug tracking of the caller
3720 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3721 unsigned long caller)
3723 struct kmem_cache *cachep;
3724 void *ret;
3726 /* If you want to save a few bytes .text space: replace
3727 * __ with kmem_.
3728 * Then kmalloc uses the uninlined functions instead of the inline
3729 * functions.
3731 cachep = kmalloc_slab(size, flags);
3732 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3733 return cachep;
3734 ret = slab_alloc(cachep, flags, caller);
3736 trace_kmalloc(caller, ret,
3737 size, cachep->size, flags);
3739 return ret;
3743 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3744 void *__kmalloc(size_t size, gfp_t flags)
3746 return __do_kmalloc(size, flags, _RET_IP_);
3748 EXPORT_SYMBOL(__kmalloc);
3750 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3752 return __do_kmalloc(size, flags, caller);
3754 EXPORT_SYMBOL(__kmalloc_track_caller);
3756 #else
3757 void *__kmalloc(size_t size, gfp_t flags)
3759 return __do_kmalloc(size, flags, 0);
3761 EXPORT_SYMBOL(__kmalloc);
3762 #endif
3765 * kmem_cache_free - Deallocate an object
3766 * @cachep: The cache the allocation was from.
3767 * @objp: The previously allocated object.
3769 * Free an object which was previously allocated from this
3770 * cache.
3772 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3774 unsigned long flags;
3775 cachep = cache_from_obj(cachep, objp);
3776 if (!cachep)
3777 return;
3779 local_irq_save(flags);
3780 debug_check_no_locks_freed(objp, cachep->object_size);
3781 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3782 debug_check_no_obj_freed(objp, cachep->object_size);
3783 __cache_free(cachep, objp, _RET_IP_);
3784 local_irq_restore(flags);
3786 trace_kmem_cache_free(_RET_IP_, objp);
3788 EXPORT_SYMBOL(kmem_cache_free);
3791 * kfree - free previously allocated memory
3792 * @objp: pointer returned by kmalloc.
3794 * If @objp is NULL, no operation is performed.
3796 * Don't free memory not originally allocated by kmalloc()
3797 * or you will run into trouble.
3799 void kfree(const void *objp)
3801 struct kmem_cache *c;
3802 unsigned long flags;
3804 trace_kfree(_RET_IP_, objp);
3806 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3807 return;
3808 local_irq_save(flags);
3809 kfree_debugcheck(objp);
3810 c = virt_to_cache(objp);
3811 debug_check_no_locks_freed(objp, c->object_size);
3813 debug_check_no_obj_freed(objp, c->object_size);
3814 __cache_free(c, (void *)objp, _RET_IP_);
3815 local_irq_restore(flags);
3817 EXPORT_SYMBOL(kfree);
3820 * This initializes kmem_cache_node or resizes various caches for all nodes.
3822 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3824 int node;
3825 struct kmem_cache_node *n;
3826 struct array_cache *new_shared;
3827 struct array_cache **new_alien = NULL;
3829 for_each_online_node(node) {
3831 if (use_alien_caches) {
3832 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3833 if (!new_alien)
3834 goto fail;
3837 new_shared = NULL;
3838 if (cachep->shared) {
3839 new_shared = alloc_arraycache(node,
3840 cachep->shared*cachep->batchcount,
3841 0xbaadf00d, gfp);
3842 if (!new_shared) {
3843 free_alien_cache(new_alien);
3844 goto fail;
3848 n = cachep->node[node];
3849 if (n) {
3850 struct array_cache *shared = n->shared;
3852 spin_lock_irq(&n->list_lock);
3854 if (shared)
3855 free_block(cachep, shared->entry,
3856 shared->avail, node);
3858 n->shared = new_shared;
3859 if (!n->alien) {
3860 n->alien = new_alien;
3861 new_alien = NULL;
3863 n->free_limit = (1 + nr_cpus_node(node)) *
3864 cachep->batchcount + cachep->num;
3865 spin_unlock_irq(&n->list_lock);
3866 kfree(shared);
3867 free_alien_cache(new_alien);
3868 continue;
3870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3871 if (!n) {
3872 free_alien_cache(new_alien);
3873 kfree(new_shared);
3874 goto fail;
3877 kmem_cache_node_init(n);
3878 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3879 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3880 n->shared = new_shared;
3881 n->alien = new_alien;
3882 n->free_limit = (1 + nr_cpus_node(node)) *
3883 cachep->batchcount + cachep->num;
3884 cachep->node[node] = n;
3886 return 0;
3888 fail:
3889 if (!cachep->list.next) {
3890 /* Cache is not active yet. Roll back what we did */
3891 node--;
3892 while (node >= 0) {
3893 if (cachep->node[node]) {
3894 n = cachep->node[node];
3896 kfree(n->shared);
3897 free_alien_cache(n->alien);
3898 kfree(n);
3899 cachep->node[node] = NULL;
3901 node--;
3904 return -ENOMEM;
3907 struct ccupdate_struct {
3908 struct kmem_cache *cachep;
3909 struct array_cache *new[0];
3912 static void do_ccupdate_local(void *info)
3914 struct ccupdate_struct *new = info;
3915 struct array_cache *old;
3917 check_irq_off();
3918 old = cpu_cache_get(new->cachep);
3920 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3921 new->new[smp_processor_id()] = old;
3924 /* Always called with the slab_mutex held */
3925 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3926 int batchcount, int shared, gfp_t gfp)
3928 struct ccupdate_struct *new;
3929 int i;
3931 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3932 gfp);
3933 if (!new)
3934 return -ENOMEM;
3936 for_each_online_cpu(i) {
3937 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3938 batchcount, gfp);
3939 if (!new->new[i]) {
3940 for (i--; i >= 0; i--)
3941 kfree(new->new[i]);
3942 kfree(new);
3943 return -ENOMEM;
3946 new->cachep = cachep;
3948 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3950 check_irq_on();
3951 cachep->batchcount = batchcount;
3952 cachep->limit = limit;
3953 cachep->shared = shared;
3955 for_each_online_cpu(i) {
3956 struct array_cache *ccold = new->new[i];
3957 if (!ccold)
3958 continue;
3959 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3960 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3961 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3962 kfree(ccold);
3964 kfree(new);
3965 return alloc_kmemlist(cachep, gfp);
3968 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3969 int batchcount, int shared, gfp_t gfp)
3971 int ret;
3972 struct kmem_cache *c = NULL;
3973 int i = 0;
3975 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3977 if (slab_state < FULL)
3978 return ret;
3980 if ((ret < 0) || !is_root_cache(cachep))
3981 return ret;
3983 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3984 for_each_memcg_cache_index(i) {
3985 c = cache_from_memcg(cachep, i);
3986 if (c)
3987 /* return value determined by the parent cache only */
3988 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3991 return ret;
3994 /* Called with slab_mutex held always */
3995 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3997 int err;
3998 int limit = 0;
3999 int shared = 0;
4000 int batchcount = 0;
4002 if (!is_root_cache(cachep)) {
4003 struct kmem_cache *root = memcg_root_cache(cachep);
4004 limit = root->limit;
4005 shared = root->shared;
4006 batchcount = root->batchcount;
4009 if (limit && shared && batchcount)
4010 goto skip_setup;
4012 * The head array serves three purposes:
4013 * - create a LIFO ordering, i.e. return objects that are cache-warm
4014 * - reduce the number of spinlock operations.
4015 * - reduce the number of linked list operations on the slab and
4016 * bufctl chains: array operations are cheaper.
4017 * The numbers are guessed, we should auto-tune as described by
4018 * Bonwick.
4020 if (cachep->size > 131072)
4021 limit = 1;
4022 else if (cachep->size > PAGE_SIZE)
4023 limit = 8;
4024 else if (cachep->size > 1024)
4025 limit = 24;
4026 else if (cachep->size > 256)
4027 limit = 54;
4028 else
4029 limit = 120;
4032 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4033 * allocation behaviour: Most allocs on one cpu, most free operations
4034 * on another cpu. For these cases, an efficient object passing between
4035 * cpus is necessary. This is provided by a shared array. The array
4036 * replaces Bonwick's magazine layer.
4037 * On uniprocessor, it's functionally equivalent (but less efficient)
4038 * to a larger limit. Thus disabled by default.
4040 shared = 0;
4041 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4042 shared = 8;
4044 #if DEBUG
4046 * With debugging enabled, large batchcount lead to excessively long
4047 * periods with disabled local interrupts. Limit the batchcount
4049 if (limit > 32)
4050 limit = 32;
4051 #endif
4052 batchcount = (limit + 1) / 2;
4053 skip_setup:
4054 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4055 if (err)
4056 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4057 cachep->name, -err);
4058 return err;
4062 * Drain an array if it contains any elements taking the node lock only if
4063 * necessary. Note that the node listlock also protects the array_cache
4064 * if drain_array() is used on the shared array.
4066 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4067 struct array_cache *ac, int force, int node)
4069 int tofree;
4071 if (!ac || !ac->avail)
4072 return;
4073 if (ac->touched && !force) {
4074 ac->touched = 0;
4075 } else {
4076 spin_lock_irq(&n->list_lock);
4077 if (ac->avail) {
4078 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4079 if (tofree > ac->avail)
4080 tofree = (ac->avail + 1) / 2;
4081 free_block(cachep, ac->entry, tofree, node);
4082 ac->avail -= tofree;
4083 memmove(ac->entry, &(ac->entry[tofree]),
4084 sizeof(void *) * ac->avail);
4086 spin_unlock_irq(&n->list_lock);
4091 * cache_reap - Reclaim memory from caches.
4092 * @w: work descriptor
4094 * Called from workqueue/eventd every few seconds.
4095 * Purpose:
4096 * - clear the per-cpu caches for this CPU.
4097 * - return freeable pages to the main free memory pool.
4099 * If we cannot acquire the cache chain mutex then just give up - we'll try
4100 * again on the next iteration.
4102 static void cache_reap(struct work_struct *w)
4104 struct kmem_cache *searchp;
4105 struct kmem_cache_node *n;
4106 int node = numa_mem_id();
4107 struct delayed_work *work = to_delayed_work(w);
4109 if (!mutex_trylock(&slab_mutex))
4110 /* Give up. Setup the next iteration. */
4111 goto out;
4113 list_for_each_entry(searchp, &slab_caches, list) {
4114 check_irq_on();
4117 * We only take the node lock if absolutely necessary and we
4118 * have established with reasonable certainty that
4119 * we can do some work if the lock was obtained.
4121 n = searchp->node[node];
4123 reap_alien(searchp, n);
4125 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4128 * These are racy checks but it does not matter
4129 * if we skip one check or scan twice.
4131 if (time_after(n->next_reap, jiffies))
4132 goto next;
4134 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
4136 drain_array(searchp, n, n->shared, 0, node);
4138 if (n->free_touched)
4139 n->free_touched = 0;
4140 else {
4141 int freed;
4143 freed = drain_freelist(searchp, n, (n->free_limit +
4144 5 * searchp->num - 1) / (5 * searchp->num));
4145 STATS_ADD_REAPED(searchp, freed);
4147 next:
4148 cond_resched();
4150 check_irq_on();
4151 mutex_unlock(&slab_mutex);
4152 next_reap_node();
4153 out:
4154 /* Set up the next iteration */
4155 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4158 #ifdef CONFIG_SLABINFO
4159 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4161 struct slab *slabp;
4162 unsigned long active_objs;
4163 unsigned long num_objs;
4164 unsigned long active_slabs = 0;
4165 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4166 const char *name;
4167 char *error = NULL;
4168 int node;
4169 struct kmem_cache_node *n;
4171 active_objs = 0;
4172 num_slabs = 0;
4173 for_each_online_node(node) {
4174 n = cachep->node[node];
4175 if (!n)
4176 continue;
4178 check_irq_on();
4179 spin_lock_irq(&n->list_lock);
4181 list_for_each_entry(slabp, &n->slabs_full, list) {
4182 if (slabp->inuse != cachep->num && !error)
4183 error = "slabs_full accounting error";
4184 active_objs += cachep->num;
4185 active_slabs++;
4187 list_for_each_entry(slabp, &n->slabs_partial, list) {
4188 if (slabp->inuse == cachep->num && !error)
4189 error = "slabs_partial inuse accounting error";
4190 if (!slabp->inuse && !error)
4191 error = "slabs_partial/inuse accounting error";
4192 active_objs += slabp->inuse;
4193 active_slabs++;
4195 list_for_each_entry(slabp, &n->slabs_free, list) {
4196 if (slabp->inuse && !error)
4197 error = "slabs_free/inuse accounting error";
4198 num_slabs++;
4200 free_objects += n->free_objects;
4201 if (n->shared)
4202 shared_avail += n->shared->avail;
4204 spin_unlock_irq(&n->list_lock);
4206 num_slabs += active_slabs;
4207 num_objs = num_slabs * cachep->num;
4208 if (num_objs - active_objs != free_objects && !error)
4209 error = "free_objects accounting error";
4211 name = cachep->name;
4212 if (error)
4213 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4215 sinfo->active_objs = active_objs;
4216 sinfo->num_objs = num_objs;
4217 sinfo->active_slabs = active_slabs;
4218 sinfo->num_slabs = num_slabs;
4219 sinfo->shared_avail = shared_avail;
4220 sinfo->limit = cachep->limit;
4221 sinfo->batchcount = cachep->batchcount;
4222 sinfo->shared = cachep->shared;
4223 sinfo->objects_per_slab = cachep->num;
4224 sinfo->cache_order = cachep->gfporder;
4227 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4229 #if STATS
4230 { /* node stats */
4231 unsigned long high = cachep->high_mark;
4232 unsigned long allocs = cachep->num_allocations;
4233 unsigned long grown = cachep->grown;
4234 unsigned long reaped = cachep->reaped;
4235 unsigned long errors = cachep->errors;
4236 unsigned long max_freeable = cachep->max_freeable;
4237 unsigned long node_allocs = cachep->node_allocs;
4238 unsigned long node_frees = cachep->node_frees;
4239 unsigned long overflows = cachep->node_overflow;
4241 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4242 "%4lu %4lu %4lu %4lu %4lu",
4243 allocs, high, grown,
4244 reaped, errors, max_freeable, node_allocs,
4245 node_frees, overflows);
4247 /* cpu stats */
4249 unsigned long allochit = atomic_read(&cachep->allochit);
4250 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4251 unsigned long freehit = atomic_read(&cachep->freehit);
4252 unsigned long freemiss = atomic_read(&cachep->freemiss);
4254 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4255 allochit, allocmiss, freehit, freemiss);
4257 #endif
4260 #define MAX_SLABINFO_WRITE 128
4262 * slabinfo_write - Tuning for the slab allocator
4263 * @file: unused
4264 * @buffer: user buffer
4265 * @count: data length
4266 * @ppos: unused
4268 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4269 size_t count, loff_t *ppos)
4271 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4272 int limit, batchcount, shared, res;
4273 struct kmem_cache *cachep;
4275 if (count > MAX_SLABINFO_WRITE)
4276 return -EINVAL;
4277 if (copy_from_user(&kbuf, buffer, count))
4278 return -EFAULT;
4279 kbuf[MAX_SLABINFO_WRITE] = '\0';
4281 tmp = strchr(kbuf, ' ');
4282 if (!tmp)
4283 return -EINVAL;
4284 *tmp = '\0';
4285 tmp++;
4286 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4287 return -EINVAL;
4289 /* Find the cache in the chain of caches. */
4290 mutex_lock(&slab_mutex);
4291 res = -EINVAL;
4292 list_for_each_entry(cachep, &slab_caches, list) {
4293 if (!strcmp(cachep->name, kbuf)) {
4294 if (limit < 1 || batchcount < 1 ||
4295 batchcount > limit || shared < 0) {
4296 res = 0;
4297 } else {
4298 res = do_tune_cpucache(cachep, limit,
4299 batchcount, shared,
4300 GFP_KERNEL);
4302 break;
4305 mutex_unlock(&slab_mutex);
4306 if (res >= 0)
4307 res = count;
4308 return res;
4311 #ifdef CONFIG_DEBUG_SLAB_LEAK
4313 static void *leaks_start(struct seq_file *m, loff_t *pos)
4315 mutex_lock(&slab_mutex);
4316 return seq_list_start(&slab_caches, *pos);
4319 static inline int add_caller(unsigned long *n, unsigned long v)
4321 unsigned long *p;
4322 int l;
4323 if (!v)
4324 return 1;
4325 l = n[1];
4326 p = n + 2;
4327 while (l) {
4328 int i = l/2;
4329 unsigned long *q = p + 2 * i;
4330 if (*q == v) {
4331 q[1]++;
4332 return 1;
4334 if (*q > v) {
4335 l = i;
4336 } else {
4337 p = q + 2;
4338 l -= i + 1;
4341 if (++n[1] == n[0])
4342 return 0;
4343 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4344 p[0] = v;
4345 p[1] = 1;
4346 return 1;
4349 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4351 void *p;
4352 int i;
4353 if (n[0] == n[1])
4354 return;
4355 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4356 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4357 continue;
4358 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4359 return;
4363 static void show_symbol(struct seq_file *m, unsigned long address)
4365 #ifdef CONFIG_KALLSYMS
4366 unsigned long offset, size;
4367 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4369 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4370 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4371 if (modname[0])
4372 seq_printf(m, " [%s]", modname);
4373 return;
4375 #endif
4376 seq_printf(m, "%p", (void *)address);
4379 static int leaks_show(struct seq_file *m, void *p)
4381 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4382 struct slab *slabp;
4383 struct kmem_cache_node *n;
4384 const char *name;
4385 unsigned long *x = m->private;
4386 int node;
4387 int i;
4389 if (!(cachep->flags & SLAB_STORE_USER))
4390 return 0;
4391 if (!(cachep->flags & SLAB_RED_ZONE))
4392 return 0;
4394 /* OK, we can do it */
4396 x[1] = 0;
4398 for_each_online_node(node) {
4399 n = cachep->node[node];
4400 if (!n)
4401 continue;
4403 check_irq_on();
4404 spin_lock_irq(&n->list_lock);
4406 list_for_each_entry(slabp, &n->slabs_full, list)
4407 handle_slab(x, cachep, slabp);
4408 list_for_each_entry(slabp, &n->slabs_partial, list)
4409 handle_slab(x, cachep, slabp);
4410 spin_unlock_irq(&n->list_lock);
4412 name = cachep->name;
4413 if (x[0] == x[1]) {
4414 /* Increase the buffer size */
4415 mutex_unlock(&slab_mutex);
4416 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4417 if (!m->private) {
4418 /* Too bad, we are really out */
4419 m->private = x;
4420 mutex_lock(&slab_mutex);
4421 return -ENOMEM;
4423 *(unsigned long *)m->private = x[0] * 2;
4424 kfree(x);
4425 mutex_lock(&slab_mutex);
4426 /* Now make sure this entry will be retried */
4427 m->count = m->size;
4428 return 0;
4430 for (i = 0; i < x[1]; i++) {
4431 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4432 show_symbol(m, x[2*i+2]);
4433 seq_putc(m, '\n');
4436 return 0;
4439 static const struct seq_operations slabstats_op = {
4440 .start = leaks_start,
4441 .next = slab_next,
4442 .stop = slab_stop,
4443 .show = leaks_show,
4446 static int slabstats_open(struct inode *inode, struct file *file)
4448 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4449 int ret = -ENOMEM;
4450 if (n) {
4451 ret = seq_open(file, &slabstats_op);
4452 if (!ret) {
4453 struct seq_file *m = file->private_data;
4454 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4455 m->private = n;
4456 n = NULL;
4458 kfree(n);
4460 return ret;
4463 static const struct file_operations proc_slabstats_operations = {
4464 .open = slabstats_open,
4465 .read = seq_read,
4466 .llseek = seq_lseek,
4467 .release = seq_release_private,
4469 #endif
4471 static int __init slab_proc_init(void)
4473 #ifdef CONFIG_DEBUG_SLAB_LEAK
4474 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4475 #endif
4476 return 0;
4478 module_init(slab_proc_init);
4479 #endif
4482 * ksize - get the actual amount of memory allocated for a given object
4483 * @objp: Pointer to the object
4485 * kmalloc may internally round up allocations and return more memory
4486 * than requested. ksize() can be used to determine the actual amount of
4487 * memory allocated. The caller may use this additional memory, even though
4488 * a smaller amount of memory was initially specified with the kmalloc call.
4489 * The caller must guarantee that objp points to a valid object previously
4490 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4491 * must not be freed during the duration of the call.
4493 size_t ksize(const void *objp)
4495 BUG_ON(!objp);
4496 if (unlikely(objp == ZERO_SIZE_PTR))
4497 return 0;
4499 return virt_to_cache(objp)->object_size;
4501 EXPORT_SYMBOL(ksize);