hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / mm / sparse.c
blob4ac1d7ef548f8ce75b65ae64057c300c8b0cc48c
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
18 * Permanent SPARSEMEM data:
20 * 1) mem_section - memory sections, mem_map's for valid memory
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 ____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 ____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
43 int page_to_nid(const struct page *page)
45 return section_to_node_table[page_to_section(page)];
47 EXPORT_SYMBOL(page_to_nid);
49 static void set_section_nid(unsigned long section_nr, int nid)
51 section_to_node_table[section_nr] = nid;
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
57 #endif
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
68 section = kzalloc_node(array_size, GFP_KERNEL, nid);
69 else
70 section = kzalloc(array_size, GFP_KERNEL);
71 } else {
72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
75 return section;
78 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
80 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 struct mem_section *section;
83 if (mem_section[root])
84 return -EEXIST;
86 section = sparse_index_alloc(nid);
87 if (!section)
88 return -ENOMEM;
90 mem_section[root] = section;
92 return 0;
94 #else /* !SPARSEMEM_EXTREME */
95 static inline int sparse_index_init(unsigned long section_nr, int nid)
97 return 0;
99 #endif
102 * Although written for the SPARSEMEM_EXTREME case, this happens
103 * to also work for the flat array case because
104 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
106 int __section_nr(struct mem_section* ms)
108 unsigned long root_nr;
109 struct mem_section* root;
111 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
112 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
113 if (!root)
114 continue;
116 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
117 break;
120 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
122 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
131 static inline unsigned long sparse_encode_early_nid(int nid)
133 return (nid << SECTION_NID_SHIFT);
136 static inline int sparse_early_nid(struct mem_section *section)
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
167 /* Record a memory area against a node. */
168 void __init memory_present(int nid, unsigned long start, unsigned long end)
170 unsigned long pfn;
172 start &= PAGE_SECTION_MASK;
173 mminit_validate_memmodel_limits(&start, &end);
174 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
175 unsigned long section = pfn_to_section_nr(pfn);
176 struct mem_section *ms;
178 sparse_index_init(section, nid);
179 set_section_nid(section, nid);
181 ms = __nr_to_section(section);
182 if (!ms->section_mem_map)
183 ms->section_mem_map = sparse_encode_early_nid(nid) |
184 SECTION_MARKED_PRESENT;
189 * Only used by the i386 NUMA architecures, but relatively
190 * generic code.
192 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
193 unsigned long end_pfn)
195 unsigned long pfn;
196 unsigned long nr_pages = 0;
198 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
199 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
200 if (nid != early_pfn_to_nid(pfn))
201 continue;
203 if (pfn_present(pfn))
204 nr_pages += PAGES_PER_SECTION;
207 return nr_pages * sizeof(struct page);
211 * Subtle, we encode the real pfn into the mem_map such that
212 * the identity pfn - section_mem_map will return the actual
213 * physical page frame number.
215 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
217 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
221 * Decode mem_map from the coded memmap
223 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
225 /* mask off the extra low bits of information */
226 coded_mem_map &= SECTION_MAP_MASK;
227 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
230 static int __meminit sparse_init_one_section(struct mem_section *ms,
231 unsigned long pnum, struct page *mem_map,
232 unsigned long *pageblock_bitmap)
234 if (!present_section(ms))
235 return -EINVAL;
237 ms->section_mem_map &= ~SECTION_MAP_MASK;
238 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
239 SECTION_HAS_MEM_MAP;
240 ms->pageblock_flags = pageblock_bitmap;
242 return 1;
245 unsigned long usemap_size(void)
247 unsigned long size_bytes;
248 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
249 size_bytes = roundup(size_bytes, sizeof(unsigned long));
250 return size_bytes;
253 #ifdef CONFIG_MEMORY_HOTPLUG
254 static unsigned long *__kmalloc_section_usemap(void)
256 return kmalloc(usemap_size(), GFP_KERNEL);
258 #endif /* CONFIG_MEMORY_HOTPLUG */
260 #ifdef CONFIG_MEMORY_HOTREMOVE
261 static unsigned long * __init
262 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
263 unsigned long size)
265 unsigned long goal, limit;
266 unsigned long *p;
267 int nid;
269 * A page may contain usemaps for other sections preventing the
270 * page being freed and making a section unremovable while
271 * other sections referencing the usemap retmain active. Similarly,
272 * a pgdat can prevent a section being removed. If section A
273 * contains a pgdat and section B contains the usemap, both
274 * sections become inter-dependent. This allocates usemaps
275 * from the same section as the pgdat where possible to avoid
276 * this problem.
278 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
279 limit = goal + (1UL << PA_SECTION_SHIFT);
280 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
281 again:
282 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
283 SMP_CACHE_BYTES, goal, limit);
284 if (!p && limit) {
285 limit = 0;
286 goto again;
288 return p;
291 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
293 unsigned long usemap_snr, pgdat_snr;
294 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
295 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
296 struct pglist_data *pgdat = NODE_DATA(nid);
297 int usemap_nid;
299 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
300 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
301 if (usemap_snr == pgdat_snr)
302 return;
304 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
305 /* skip redundant message */
306 return;
308 old_usemap_snr = usemap_snr;
309 old_pgdat_snr = pgdat_snr;
311 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
312 if (usemap_nid != nid) {
313 printk(KERN_INFO
314 "node %d must be removed before remove section %ld\n",
315 nid, usemap_snr);
316 return;
319 * There is a circular dependency.
320 * Some platforms allow un-removable section because they will just
321 * gather other removable sections for dynamic partitioning.
322 * Just notify un-removable section's number here.
324 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
325 pgdat_snr, nid);
326 printk(KERN_CONT
327 " have a circular dependency on usemap and pgdat allocations\n");
329 #else
330 static unsigned long * __init
331 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
332 unsigned long size)
334 return alloc_bootmem_node_nopanic(pgdat, size);
337 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
340 #endif /* CONFIG_MEMORY_HOTREMOVE */
342 static void __init sparse_early_usemaps_alloc_node(void *data,
343 unsigned long pnum_begin,
344 unsigned long pnum_end,
345 unsigned long usemap_count, int nodeid)
347 void *usemap;
348 unsigned long pnum;
349 unsigned long **usemap_map = (unsigned long **)data;
350 int size = usemap_size();
352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
353 size * usemap_count);
354 if (!usemap) {
355 printk(KERN_WARNING "%s: allocation failed\n", __func__);
356 return;
359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360 if (!present_section_nr(pnum))
361 continue;
362 usemap_map[pnum] = usemap;
363 usemap += size;
364 check_usemap_section_nr(nodeid, usemap_map[pnum]);
368 #ifndef CONFIG_SPARSEMEM_VMEMMAP
369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
371 struct page *map;
372 unsigned long size;
374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375 if (map)
376 return map;
378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
381 return map;
383 void __init sparse_mem_maps_populate_node(struct page **map_map,
384 unsigned long pnum_begin,
385 unsigned long pnum_end,
386 unsigned long map_count, int nodeid)
388 void *map;
389 unsigned long pnum;
390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
392 map = alloc_remap(nodeid, size * map_count);
393 if (map) {
394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 if (!present_section_nr(pnum))
396 continue;
397 map_map[pnum] = map;
398 map += size;
400 return;
403 size = PAGE_ALIGN(size);
404 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
406 if (map) {
407 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408 if (!present_section_nr(pnum))
409 continue;
410 map_map[pnum] = map;
411 map += size;
413 return;
416 /* fallback */
417 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
418 struct mem_section *ms;
420 if (!present_section_nr(pnum))
421 continue;
422 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
423 if (map_map[pnum])
424 continue;
425 ms = __nr_to_section(pnum);
426 printk(KERN_ERR "%s: sparsemem memory map backing failed "
427 "some memory will not be available.\n", __func__);
428 ms->section_mem_map = 0;
431 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
433 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
434 static void __init sparse_early_mem_maps_alloc_node(void *data,
435 unsigned long pnum_begin,
436 unsigned long pnum_end,
437 unsigned long map_count, int nodeid)
439 struct page **map_map = (struct page **)data;
440 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
441 map_count, nodeid);
443 #else
444 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
446 struct page *map;
447 struct mem_section *ms = __nr_to_section(pnum);
448 int nid = sparse_early_nid(ms);
450 map = sparse_mem_map_populate(pnum, nid);
451 if (map)
452 return map;
454 printk(KERN_ERR "%s: sparsemem memory map backing failed "
455 "some memory will not be available.\n", __func__);
456 ms->section_mem_map = 0;
457 return NULL;
459 #endif
461 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
466 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
467 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
469 static void __init alloc_usemap_and_memmap(void (*alloc_func)
470 (void *, unsigned long, unsigned long,
471 unsigned long, int), void *data)
473 unsigned long pnum;
474 unsigned long map_count;
475 int nodeid_begin = 0;
476 unsigned long pnum_begin = 0;
478 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
479 struct mem_section *ms;
481 if (!present_section_nr(pnum))
482 continue;
483 ms = __nr_to_section(pnum);
484 nodeid_begin = sparse_early_nid(ms);
485 pnum_begin = pnum;
486 break;
488 map_count = 1;
489 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
490 struct mem_section *ms;
491 int nodeid;
493 if (!present_section_nr(pnum))
494 continue;
495 ms = __nr_to_section(pnum);
496 nodeid = sparse_early_nid(ms);
497 if (nodeid == nodeid_begin) {
498 map_count++;
499 continue;
501 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
502 alloc_func(data, pnum_begin, pnum,
503 map_count, nodeid_begin);
504 /* new start, update count etc*/
505 nodeid_begin = nodeid;
506 pnum_begin = pnum;
507 map_count = 1;
509 /* ok, last chunk */
510 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
511 map_count, nodeid_begin);
515 * Allocate the accumulated non-linear sections, allocate a mem_map
516 * for each and record the physical to section mapping.
518 void __init sparse_init(void)
520 unsigned long pnum;
521 struct page *map;
522 unsigned long *usemap;
523 unsigned long **usemap_map;
524 int size;
525 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
526 int size2;
527 struct page **map_map;
528 #endif
530 /* see include/linux/mmzone.h 'struct mem_section' definition */
531 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
533 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
534 set_pageblock_order();
537 * map is using big page (aka 2M in x86 64 bit)
538 * usemap is less one page (aka 24 bytes)
539 * so alloc 2M (with 2M align) and 24 bytes in turn will
540 * make next 2M slip to one more 2M later.
541 * then in big system, the memory will have a lot of holes...
542 * here try to allocate 2M pages continuously.
544 * powerpc need to call sparse_init_one_section right after each
545 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
547 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
548 usemap_map = alloc_bootmem(size);
549 if (!usemap_map)
550 panic("can not allocate usemap_map\n");
551 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
552 (void *)usemap_map);
554 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
555 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
556 map_map = alloc_bootmem(size2);
557 if (!map_map)
558 panic("can not allocate map_map\n");
559 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
560 (void *)map_map);
561 #endif
563 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
564 if (!present_section_nr(pnum))
565 continue;
567 usemap = usemap_map[pnum];
568 if (!usemap)
569 continue;
571 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572 map = map_map[pnum];
573 #else
574 map = sparse_early_mem_map_alloc(pnum);
575 #endif
576 if (!map)
577 continue;
579 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
580 usemap);
583 vmemmap_populate_print_last();
585 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586 free_bootmem(__pa(map_map), size2);
587 #endif
588 free_bootmem(__pa(usemap_map), size);
591 #ifdef CONFIG_MEMORY_HOTPLUG
592 #ifdef CONFIG_SPARSEMEM_VMEMMAP
593 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
594 unsigned long nr_pages)
596 /* This will make the necessary allocations eventually. */
597 return sparse_mem_map_populate(pnum, nid);
599 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
601 unsigned long start = (unsigned long)memmap;
602 unsigned long end = (unsigned long)(memmap + nr_pages);
604 vmemmap_free(start, end);
606 #ifdef CONFIG_MEMORY_HOTREMOVE
607 static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
609 unsigned long start = (unsigned long)memmap;
610 unsigned long end = (unsigned long)(memmap + nr_pages);
612 vmemmap_free(start, end);
614 #endif /* CONFIG_MEMORY_HOTREMOVE */
615 #else
616 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
618 struct page *page, *ret;
619 unsigned long memmap_size = sizeof(struct page) * nr_pages;
621 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
622 if (page)
623 goto got_map_page;
625 ret = vmalloc(memmap_size);
626 if (ret)
627 goto got_map_ptr;
629 return NULL;
630 got_map_page:
631 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
632 got_map_ptr:
634 return ret;
637 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
638 unsigned long nr_pages)
640 return __kmalloc_section_memmap(nr_pages);
643 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
645 if (is_vmalloc_addr(memmap))
646 vfree(memmap);
647 else
648 free_pages((unsigned long)memmap,
649 get_order(sizeof(struct page) * nr_pages));
652 #ifdef CONFIG_MEMORY_HOTREMOVE
653 static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
655 unsigned long maps_section_nr, removing_section_nr, i;
656 unsigned long magic;
657 struct page *page = virt_to_page(memmap);
659 for (i = 0; i < nr_pages; i++, page++) {
660 magic = (unsigned long) page->lru.next;
662 BUG_ON(magic == NODE_INFO);
664 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
665 removing_section_nr = page->private;
668 * When this function is called, the removing section is
669 * logical offlined state. This means all pages are isolated
670 * from page allocator. If removing section's memmap is placed
671 * on the same section, it must not be freed.
672 * If it is freed, page allocator may allocate it which will
673 * be removed physically soon.
675 if (maps_section_nr != removing_section_nr)
676 put_page_bootmem(page);
679 #endif /* CONFIG_MEMORY_HOTREMOVE */
680 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
683 * returns the number of sections whose mem_maps were properly
684 * set. If this is <=0, then that means that the passed-in
685 * map was not consumed and must be freed.
687 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
688 int nr_pages)
690 unsigned long section_nr = pfn_to_section_nr(start_pfn);
691 struct pglist_data *pgdat = zone->zone_pgdat;
692 struct mem_section *ms;
693 struct page *memmap;
694 unsigned long *usemap;
695 unsigned long flags;
696 int ret;
699 * no locking for this, because it does its own
700 * plus, it does a kmalloc
702 ret = sparse_index_init(section_nr, pgdat->node_id);
703 if (ret < 0 && ret != -EEXIST)
704 return ret;
705 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
706 if (!memmap)
707 return -ENOMEM;
708 usemap = __kmalloc_section_usemap();
709 if (!usemap) {
710 __kfree_section_memmap(memmap, nr_pages);
711 return -ENOMEM;
714 pgdat_resize_lock(pgdat, &flags);
716 ms = __pfn_to_section(start_pfn);
717 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
718 ret = -EEXIST;
719 goto out;
722 memset(memmap, 0, sizeof(struct page) * nr_pages);
724 ms->section_mem_map |= SECTION_MARKED_PRESENT;
726 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
728 out:
729 pgdat_resize_unlock(pgdat, &flags);
730 if (ret <= 0) {
731 kfree(usemap);
732 __kfree_section_memmap(memmap, nr_pages);
734 return ret;
737 #ifdef CONFIG_MEMORY_HOTREMOVE
738 #ifdef CONFIG_MEMORY_FAILURE
739 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
741 int i;
743 if (!memmap)
744 return;
746 for (i = 0; i < PAGES_PER_SECTION; i++) {
747 if (PageHWPoison(&memmap[i])) {
748 atomic_long_sub(1, &num_poisoned_pages);
749 ClearPageHWPoison(&memmap[i]);
753 #else
754 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
757 #endif
759 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
761 struct page *usemap_page;
762 unsigned long nr_pages;
764 if (!usemap)
765 return;
767 usemap_page = virt_to_page(usemap);
769 * Check to see if allocation came from hot-plug-add
771 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
772 kfree(usemap);
773 if (memmap)
774 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
775 return;
779 * The usemap came from bootmem. This is packed with other usemaps
780 * on the section which has pgdat at boot time. Just keep it as is now.
783 if (memmap) {
784 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
785 >> PAGE_SHIFT;
787 free_map_bootmem(memmap, nr_pages);
791 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
793 struct page *memmap = NULL;
794 unsigned long *usemap = NULL, flags;
795 struct pglist_data *pgdat = zone->zone_pgdat;
797 pgdat_resize_lock(pgdat, &flags);
798 if (ms->section_mem_map) {
799 usemap = ms->pageblock_flags;
800 memmap = sparse_decode_mem_map(ms->section_mem_map,
801 __section_nr(ms));
802 ms->section_mem_map = 0;
803 ms->pageblock_flags = NULL;
805 pgdat_resize_unlock(pgdat, &flags);
807 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
808 free_section_usemap(memmap, usemap);
810 #endif /* CONFIG_MEMORY_HOTREMOVE */
811 #endif /* CONFIG_MEMORY_HOTPLUG */