hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / mm / vmscan.c
blob5ad29b2925a06117a4b775ac11641cff8c9d443d
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
53 #include "internal.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
58 struct scan_control {
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 unsigned long hibernation_mode;
70 /* This context's GFP mask */
71 gfp_t gfp_mask;
73 int may_writepage;
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
81 int order;
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
90 struct mem_cgroup *target_mem_cgroup;
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
96 nodemask_t *nodemask;
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
110 } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
124 } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
130 * From 0 .. 100. Higher means more swappy.
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
141 return !sc->target_mem_cgroup;
143 #else
144 static bool global_reclaim(struct scan_control *sc)
146 return true;
148 #endif
150 static unsigned long zone_reclaimable_pages(struct zone *zone)
152 int nr;
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
161 return nr;
164 bool zone_reclaimable(struct zone *zone)
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
171 if (!mem_cgroup_disabled())
172 return mem_cgroup_get_lru_size(lruvec, lru);
174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
178 * Add a shrinker callback to be called from the vm.
180 int register_shrinker(struct shrinker *shrinker)
182 size_t size = sizeof(*shrinker->nr_deferred);
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
202 return 0;
204 EXPORT_SYMBOL(register_shrinker);
207 * Remove one
209 void unregister_shrinker(struct shrinker *shrinker)
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
214 kfree(shrinker->nr_deferred);
216 EXPORT_SYMBOL(unregister_shrinker);
218 #define SHRINK_BATCH 128
220 static unsigned long
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
224 unsigned long freed = 0;
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 long nr;
229 long new_nr;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
234 max_pass = shrinker->count_objects(shrinker, shrinkctl);
235 if (max_pass == 0)
236 return 0;
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
253 shrinker->scan_objects, total_scan);
254 total_scan = max_pass;
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
284 while (total_scan >= batch_size) {
285 unsigned long ret;
287 shrinkctl->nr_to_scan = batch_size;
288 ret = shrinker->scan_objects(shrinker, shrinkctl);
289 if (ret == SHRINK_STOP)
290 break;
291 freed += ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
296 cond_resched();
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_deferred[nid]);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
310 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
311 return freed;
315 * Call the shrink functions to age shrinkable caches
317 * Here we assume it costs one seek to replace a lru page and that it also
318 * takes a seek to recreate a cache object. With this in mind we age equal
319 * percentages of the lru and ageable caches. This should balance the seeks
320 * generated by these structures.
322 * If the vm encountered mapped pages on the LRU it increase the pressure on
323 * slab to avoid swapping.
325 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
327 * `lru_pages' represents the number of on-LRU pages in all the zones which
328 * are eligible for the caller's allocation attempt. It is used for balancing
329 * slab reclaim versus page reclaim.
331 * Returns the number of slab objects which we shrunk.
333 unsigned long shrink_slab(struct shrink_control *shrinkctl,
334 unsigned long nr_pages_scanned,
335 unsigned long lru_pages)
337 struct shrinker *shrinker;
338 unsigned long freed = 0;
340 if (nr_pages_scanned == 0)
341 nr_pages_scanned = SWAP_CLUSTER_MAX;
343 if (!down_read_trylock(&shrinker_rwsem)) {
345 * If we would return 0, our callers would understand that we
346 * have nothing else to shrink and give up trying. By returning
347 * 1 we keep it going and assume we'll be able to shrink next
348 * time.
350 freed = 1;
351 goto out;
354 list_for_each_entry(shrinker, &shrinker_list, list) {
355 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
356 if (!node_online(shrinkctl->nid))
357 continue;
359 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
360 (shrinkctl->nid != 0))
361 break;
363 freed += shrink_slab_node(shrinkctl, shrinker,
364 nr_pages_scanned, lru_pages);
368 up_read(&shrinker_rwsem);
369 out:
370 cond_resched();
371 return freed;
374 static inline int is_page_cache_freeable(struct page *page)
377 * A freeable page cache page is referenced only by the caller
378 * that isolated the page, the page cache radix tree and
379 * optional buffer heads at page->private.
381 return page_count(page) - page_has_private(page) == 2;
384 static int may_write_to_queue(struct backing_dev_info *bdi,
385 struct scan_control *sc)
387 if (current->flags & PF_SWAPWRITE)
388 return 1;
389 if (!bdi_write_congested(bdi))
390 return 1;
391 if (bdi == current->backing_dev_info)
392 return 1;
393 return 0;
397 * We detected a synchronous write error writing a page out. Probably
398 * -ENOSPC. We need to propagate that into the address_space for a subsequent
399 * fsync(), msync() or close().
401 * The tricky part is that after writepage we cannot touch the mapping: nothing
402 * prevents it from being freed up. But we have a ref on the page and once
403 * that page is locked, the mapping is pinned.
405 * We're allowed to run sleeping lock_page() here because we know the caller has
406 * __GFP_FS.
408 static void handle_write_error(struct address_space *mapping,
409 struct page *page, int error)
411 lock_page(page);
412 if (page_mapping(page) == mapping)
413 mapping_set_error(mapping, error);
414 unlock_page(page);
417 /* possible outcome of pageout() */
418 typedef enum {
419 /* failed to write page out, page is locked */
420 PAGE_KEEP,
421 /* move page to the active list, page is locked */
422 PAGE_ACTIVATE,
423 /* page has been sent to the disk successfully, page is unlocked */
424 PAGE_SUCCESS,
425 /* page is clean and locked */
426 PAGE_CLEAN,
427 } pageout_t;
430 * pageout is called by shrink_page_list() for each dirty page.
431 * Calls ->writepage().
433 static pageout_t pageout(struct page *page, struct address_space *mapping,
434 struct scan_control *sc)
437 * If the page is dirty, only perform writeback if that write
438 * will be non-blocking. To prevent this allocation from being
439 * stalled by pagecache activity. But note that there may be
440 * stalls if we need to run get_block(). We could test
441 * PagePrivate for that.
443 * If this process is currently in __generic_file_aio_write() against
444 * this page's queue, we can perform writeback even if that
445 * will block.
447 * If the page is swapcache, write it back even if that would
448 * block, for some throttling. This happens by accident, because
449 * swap_backing_dev_info is bust: it doesn't reflect the
450 * congestion state of the swapdevs. Easy to fix, if needed.
452 if (!is_page_cache_freeable(page))
453 return PAGE_KEEP;
454 if (!mapping) {
456 * Some data journaling orphaned pages can have
457 * page->mapping == NULL while being dirty with clean buffers.
459 if (page_has_private(page)) {
460 if (try_to_free_buffers(page)) {
461 ClearPageDirty(page);
462 printk("%s: orphaned page\n", __func__);
463 return PAGE_CLEAN;
466 return PAGE_KEEP;
468 if (mapping->a_ops->writepage == NULL)
469 return PAGE_ACTIVATE;
470 if (!may_write_to_queue(mapping->backing_dev_info, sc))
471 return PAGE_KEEP;
473 if (clear_page_dirty_for_io(page)) {
474 int res;
475 struct writeback_control wbc = {
476 .sync_mode = WB_SYNC_NONE,
477 .nr_to_write = SWAP_CLUSTER_MAX,
478 .range_start = 0,
479 .range_end = LLONG_MAX,
480 .for_reclaim = 1,
483 SetPageReclaim(page);
484 res = mapping->a_ops->writepage(page, &wbc);
485 if (res < 0)
486 handle_write_error(mapping, page, res);
487 if (res == AOP_WRITEPAGE_ACTIVATE) {
488 ClearPageReclaim(page);
489 return PAGE_ACTIVATE;
492 if (!PageWriteback(page)) {
493 /* synchronous write or broken a_ops? */
494 ClearPageReclaim(page);
496 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
497 inc_zone_page_state(page, NR_VMSCAN_WRITE);
498 return PAGE_SUCCESS;
501 return PAGE_CLEAN;
505 * Same as remove_mapping, but if the page is removed from the mapping, it
506 * gets returned with a refcount of 0.
508 static int __remove_mapping(struct address_space *mapping, struct page *page)
510 BUG_ON(!PageLocked(page));
511 BUG_ON(mapping != page_mapping(page));
513 spin_lock_irq(&mapping->tree_lock);
515 * The non racy check for a busy page.
517 * Must be careful with the order of the tests. When someone has
518 * a ref to the page, it may be possible that they dirty it then
519 * drop the reference. So if PageDirty is tested before page_count
520 * here, then the following race may occur:
522 * get_user_pages(&page);
523 * [user mapping goes away]
524 * write_to(page);
525 * !PageDirty(page) [good]
526 * SetPageDirty(page);
527 * put_page(page);
528 * !page_count(page) [good, discard it]
530 * [oops, our write_to data is lost]
532 * Reversing the order of the tests ensures such a situation cannot
533 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
534 * load is not satisfied before that of page->_count.
536 * Note that if SetPageDirty is always performed via set_page_dirty,
537 * and thus under tree_lock, then this ordering is not required.
539 if (!page_freeze_refs(page, 2))
540 goto cannot_free;
541 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
542 if (unlikely(PageDirty(page))) {
543 page_unfreeze_refs(page, 2);
544 goto cannot_free;
547 if (PageSwapCache(page)) {
548 swp_entry_t swap = { .val = page_private(page) };
549 __delete_from_swap_cache(page);
550 spin_unlock_irq(&mapping->tree_lock);
551 swapcache_free(swap, page);
552 } else {
553 void (*freepage)(struct page *);
555 freepage = mapping->a_ops->freepage;
557 __delete_from_page_cache(page);
558 spin_unlock_irq(&mapping->tree_lock);
559 mem_cgroup_uncharge_cache_page(page);
561 if (freepage != NULL)
562 freepage(page);
565 return 1;
567 cannot_free:
568 spin_unlock_irq(&mapping->tree_lock);
569 return 0;
573 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
574 * someone else has a ref on the page, abort and return 0. If it was
575 * successfully detached, return 1. Assumes the caller has a single ref on
576 * this page.
578 int remove_mapping(struct address_space *mapping, struct page *page)
580 if (__remove_mapping(mapping, page)) {
582 * Unfreezing the refcount with 1 rather than 2 effectively
583 * drops the pagecache ref for us without requiring another
584 * atomic operation.
586 page_unfreeze_refs(page, 1);
587 return 1;
589 return 0;
593 * putback_lru_page - put previously isolated page onto appropriate LRU list
594 * @page: page to be put back to appropriate lru list
596 * Add previously isolated @page to appropriate LRU list.
597 * Page may still be unevictable for other reasons.
599 * lru_lock must not be held, interrupts must be enabled.
601 void putback_lru_page(struct page *page)
603 bool is_unevictable;
604 int was_unevictable = PageUnevictable(page);
606 VM_BUG_ON(PageLRU(page));
608 redo:
609 ClearPageUnevictable(page);
611 if (page_evictable(page)) {
613 * For evictable pages, we can use the cache.
614 * In event of a race, worst case is we end up with an
615 * unevictable page on [in]active list.
616 * We know how to handle that.
618 is_unevictable = false;
619 lru_cache_add(page);
620 } else {
622 * Put unevictable pages directly on zone's unevictable
623 * list.
625 is_unevictable = true;
626 add_page_to_unevictable_list(page);
628 * When racing with an mlock or AS_UNEVICTABLE clearing
629 * (page is unlocked) make sure that if the other thread
630 * does not observe our setting of PG_lru and fails
631 * isolation/check_move_unevictable_pages,
632 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
633 * the page back to the evictable list.
635 * The other side is TestClearPageMlocked() or shmem_lock().
637 smp_mb();
641 * page's status can change while we move it among lru. If an evictable
642 * page is on unevictable list, it never be freed. To avoid that,
643 * check after we added it to the list, again.
645 if (is_unevictable && page_evictable(page)) {
646 if (!isolate_lru_page(page)) {
647 put_page(page);
648 goto redo;
650 /* This means someone else dropped this page from LRU
651 * So, it will be freed or putback to LRU again. There is
652 * nothing to do here.
656 if (was_unevictable && !is_unevictable)
657 count_vm_event(UNEVICTABLE_PGRESCUED);
658 else if (!was_unevictable && is_unevictable)
659 count_vm_event(UNEVICTABLE_PGCULLED);
661 put_page(page); /* drop ref from isolate */
664 enum page_references {
665 PAGEREF_RECLAIM,
666 PAGEREF_RECLAIM_CLEAN,
667 PAGEREF_KEEP,
668 PAGEREF_ACTIVATE,
671 static enum page_references page_check_references(struct page *page,
672 struct scan_control *sc)
674 int referenced_ptes, referenced_page;
675 unsigned long vm_flags;
677 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
678 &vm_flags);
679 referenced_page = TestClearPageReferenced(page);
682 * Mlock lost the isolation race with us. Let try_to_unmap()
683 * move the page to the unevictable list.
685 if (vm_flags & VM_LOCKED)
686 return PAGEREF_RECLAIM;
688 if (referenced_ptes) {
689 if (PageSwapBacked(page))
690 return PAGEREF_ACTIVATE;
692 * All mapped pages start out with page table
693 * references from the instantiating fault, so we need
694 * to look twice if a mapped file page is used more
695 * than once.
697 * Mark it and spare it for another trip around the
698 * inactive list. Another page table reference will
699 * lead to its activation.
701 * Note: the mark is set for activated pages as well
702 * so that recently deactivated but used pages are
703 * quickly recovered.
705 SetPageReferenced(page);
707 if (referenced_page || referenced_ptes > 1)
708 return PAGEREF_ACTIVATE;
711 * Activate file-backed executable pages after first usage.
713 if (vm_flags & VM_EXEC)
714 return PAGEREF_ACTIVATE;
716 return PAGEREF_KEEP;
719 /* Reclaim if clean, defer dirty pages to writeback */
720 if (referenced_page && !PageSwapBacked(page))
721 return PAGEREF_RECLAIM_CLEAN;
723 return PAGEREF_RECLAIM;
726 /* Check if a page is dirty or under writeback */
727 static void page_check_dirty_writeback(struct page *page,
728 bool *dirty, bool *writeback)
730 struct address_space *mapping;
733 * Anonymous pages are not handled by flushers and must be written
734 * from reclaim context. Do not stall reclaim based on them
736 if (!page_is_file_cache(page)) {
737 *dirty = false;
738 *writeback = false;
739 return;
742 /* By default assume that the page flags are accurate */
743 *dirty = PageDirty(page);
744 *writeback = PageWriteback(page);
746 /* Verify dirty/writeback state if the filesystem supports it */
747 if (!page_has_private(page))
748 return;
750 mapping = page_mapping(page);
751 if (mapping && mapping->a_ops->is_dirty_writeback)
752 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
756 * shrink_page_list() returns the number of reclaimed pages
758 static unsigned long shrink_page_list(struct list_head *page_list,
759 struct zone *zone,
760 struct scan_control *sc,
761 enum ttu_flags ttu_flags,
762 unsigned long *ret_nr_dirty,
763 unsigned long *ret_nr_unqueued_dirty,
764 unsigned long *ret_nr_congested,
765 unsigned long *ret_nr_writeback,
766 unsigned long *ret_nr_immediate,
767 bool force_reclaim)
769 LIST_HEAD(ret_pages);
770 LIST_HEAD(free_pages);
771 int pgactivate = 0;
772 unsigned long nr_unqueued_dirty = 0;
773 unsigned long nr_dirty = 0;
774 unsigned long nr_congested = 0;
775 unsigned long nr_reclaimed = 0;
776 unsigned long nr_writeback = 0;
777 unsigned long nr_immediate = 0;
779 cond_resched();
781 mem_cgroup_uncharge_start();
782 while (!list_empty(page_list)) {
783 struct address_space *mapping;
784 struct page *page;
785 int may_enter_fs;
786 enum page_references references = PAGEREF_RECLAIM_CLEAN;
787 bool dirty, writeback;
789 cond_resched();
791 page = lru_to_page(page_list);
792 list_del(&page->lru);
794 if (!trylock_page(page))
795 goto keep;
797 VM_BUG_ON(PageActive(page));
798 VM_BUG_ON(page_zone(page) != zone);
800 sc->nr_scanned++;
802 if (unlikely(!page_evictable(page)))
803 goto cull_mlocked;
805 if (!sc->may_unmap && page_mapped(page))
806 goto keep_locked;
808 /* Double the slab pressure for mapped and swapcache pages */
809 if (page_mapped(page) || PageSwapCache(page))
810 sc->nr_scanned++;
812 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
816 * The number of dirty pages determines if a zone is marked
817 * reclaim_congested which affects wait_iff_congested. kswapd
818 * will stall and start writing pages if the tail of the LRU
819 * is all dirty unqueued pages.
821 page_check_dirty_writeback(page, &dirty, &writeback);
822 if (dirty || writeback)
823 nr_dirty++;
825 if (dirty && !writeback)
826 nr_unqueued_dirty++;
829 * Treat this page as congested if the underlying BDI is or if
830 * pages are cycling through the LRU so quickly that the
831 * pages marked for immediate reclaim are making it to the
832 * end of the LRU a second time.
834 mapping = page_mapping(page);
835 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
836 (writeback && PageReclaim(page)))
837 nr_congested++;
840 * If a page at the tail of the LRU is under writeback, there
841 * are three cases to consider.
843 * 1) If reclaim is encountering an excessive number of pages
844 * under writeback and this page is both under writeback and
845 * PageReclaim then it indicates that pages are being queued
846 * for IO but are being recycled through the LRU before the
847 * IO can complete. Waiting on the page itself risks an
848 * indefinite stall if it is impossible to writeback the
849 * page due to IO error or disconnected storage so instead
850 * note that the LRU is being scanned too quickly and the
851 * caller can stall after page list has been processed.
853 * 2) Global reclaim encounters a page, memcg encounters a
854 * page that is not marked for immediate reclaim or
855 * the caller does not have __GFP_IO. In this case mark
856 * the page for immediate reclaim and continue scanning.
858 * __GFP_IO is checked because a loop driver thread might
859 * enter reclaim, and deadlock if it waits on a page for
860 * which it is needed to do the write (loop masks off
861 * __GFP_IO|__GFP_FS for this reason); but more thought
862 * would probably show more reasons.
864 * Don't require __GFP_FS, since we're not going into the
865 * FS, just waiting on its writeback completion. Worryingly,
866 * ext4 gfs2 and xfs allocate pages with
867 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
868 * may_enter_fs here is liable to OOM on them.
870 * 3) memcg encounters a page that is not already marked
871 * PageReclaim. memcg does not have any dirty pages
872 * throttling so we could easily OOM just because too many
873 * pages are in writeback and there is nothing else to
874 * reclaim. Wait for the writeback to complete.
876 if (PageWriteback(page)) {
877 /* Case 1 above */
878 if (current_is_kswapd() &&
879 PageReclaim(page) &&
880 zone_is_reclaim_writeback(zone)) {
881 nr_immediate++;
882 goto keep_locked;
884 /* Case 2 above */
885 } else if (global_reclaim(sc) ||
886 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
888 * This is slightly racy - end_page_writeback()
889 * might have just cleared PageReclaim, then
890 * setting PageReclaim here end up interpreted
891 * as PageReadahead - but that does not matter
892 * enough to care. What we do want is for this
893 * page to have PageReclaim set next time memcg
894 * reclaim reaches the tests above, so it will
895 * then wait_on_page_writeback() to avoid OOM;
896 * and it's also appropriate in global reclaim.
898 SetPageReclaim(page);
899 nr_writeback++;
901 goto keep_locked;
903 /* Case 3 above */
904 } else {
905 wait_on_page_writeback(page);
909 if (!force_reclaim)
910 references = page_check_references(page, sc);
912 switch (references) {
913 case PAGEREF_ACTIVATE:
914 goto activate_locked;
915 case PAGEREF_KEEP:
916 goto keep_locked;
917 case PAGEREF_RECLAIM:
918 case PAGEREF_RECLAIM_CLEAN:
919 ; /* try to reclaim the page below */
923 * Anonymous process memory has backing store?
924 * Try to allocate it some swap space here.
926 if (PageAnon(page) && !PageSwapCache(page)) {
927 if (!(sc->gfp_mask & __GFP_IO))
928 goto keep_locked;
929 if (!add_to_swap(page, page_list))
930 goto activate_locked;
931 may_enter_fs = 1;
933 /* Adding to swap updated mapping */
934 mapping = page_mapping(page);
938 * The page is mapped into the page tables of one or more
939 * processes. Try to unmap it here.
941 if (page_mapped(page) && mapping) {
942 switch (try_to_unmap(page, ttu_flags)) {
943 case SWAP_FAIL:
944 goto activate_locked;
945 case SWAP_AGAIN:
946 goto keep_locked;
947 case SWAP_MLOCK:
948 goto cull_mlocked;
949 case SWAP_SUCCESS:
950 ; /* try to free the page below */
954 if (PageDirty(page)) {
956 * Only kswapd can writeback filesystem pages to
957 * avoid risk of stack overflow but only writeback
958 * if many dirty pages have been encountered.
960 if (page_is_file_cache(page) &&
961 (!current_is_kswapd() ||
962 !zone_is_reclaim_dirty(zone))) {
964 * Immediately reclaim when written back.
965 * Similar in principal to deactivate_page()
966 * except we already have the page isolated
967 * and know it's dirty
969 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
970 SetPageReclaim(page);
972 goto keep_locked;
975 if (references == PAGEREF_RECLAIM_CLEAN)
976 goto keep_locked;
977 if (!may_enter_fs)
978 goto keep_locked;
979 if (!sc->may_writepage)
980 goto keep_locked;
982 /* Page is dirty, try to write it out here */
983 switch (pageout(page, mapping, sc)) {
984 case PAGE_KEEP:
985 goto keep_locked;
986 case PAGE_ACTIVATE:
987 goto activate_locked;
988 case PAGE_SUCCESS:
989 if (PageWriteback(page))
990 goto keep;
991 if (PageDirty(page))
992 goto keep;
995 * A synchronous write - probably a ramdisk. Go
996 * ahead and try to reclaim the page.
998 if (!trylock_page(page))
999 goto keep;
1000 if (PageDirty(page) || PageWriteback(page))
1001 goto keep_locked;
1002 mapping = page_mapping(page);
1003 case PAGE_CLEAN:
1004 ; /* try to free the page below */
1009 * If the page has buffers, try to free the buffer mappings
1010 * associated with this page. If we succeed we try to free
1011 * the page as well.
1013 * We do this even if the page is PageDirty().
1014 * try_to_release_page() does not perform I/O, but it is
1015 * possible for a page to have PageDirty set, but it is actually
1016 * clean (all its buffers are clean). This happens if the
1017 * buffers were written out directly, with submit_bh(). ext3
1018 * will do this, as well as the blockdev mapping.
1019 * try_to_release_page() will discover that cleanness and will
1020 * drop the buffers and mark the page clean - it can be freed.
1022 * Rarely, pages can have buffers and no ->mapping. These are
1023 * the pages which were not successfully invalidated in
1024 * truncate_complete_page(). We try to drop those buffers here
1025 * and if that worked, and the page is no longer mapped into
1026 * process address space (page_count == 1) it can be freed.
1027 * Otherwise, leave the page on the LRU so it is swappable.
1029 if (page_has_private(page)) {
1030 if (!try_to_release_page(page, sc->gfp_mask))
1031 goto activate_locked;
1032 if (!mapping && page_count(page) == 1) {
1033 unlock_page(page);
1034 if (put_page_testzero(page))
1035 goto free_it;
1036 else {
1038 * rare race with speculative reference.
1039 * the speculative reference will free
1040 * this page shortly, so we may
1041 * increment nr_reclaimed here (and
1042 * leave it off the LRU).
1044 nr_reclaimed++;
1045 continue;
1050 if (!mapping || !__remove_mapping(mapping, page))
1051 goto keep_locked;
1054 * At this point, we have no other references and there is
1055 * no way to pick any more up (removed from LRU, removed
1056 * from pagecache). Can use non-atomic bitops now (and
1057 * we obviously don't have to worry about waking up a process
1058 * waiting on the page lock, because there are no references.
1060 __clear_page_locked(page);
1061 free_it:
1062 nr_reclaimed++;
1065 * Is there need to periodically free_page_list? It would
1066 * appear not as the counts should be low
1068 list_add(&page->lru, &free_pages);
1069 continue;
1071 cull_mlocked:
1072 if (PageSwapCache(page))
1073 try_to_free_swap(page);
1074 unlock_page(page);
1075 putback_lru_page(page);
1076 continue;
1078 activate_locked:
1079 /* Not a candidate for swapping, so reclaim swap space. */
1080 if (PageSwapCache(page) && vm_swap_full())
1081 try_to_free_swap(page);
1082 VM_BUG_ON(PageActive(page));
1083 SetPageActive(page);
1084 pgactivate++;
1085 keep_locked:
1086 unlock_page(page);
1087 keep:
1088 list_add(&page->lru, &ret_pages);
1089 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1092 free_hot_cold_page_list(&free_pages, 1);
1094 list_splice(&ret_pages, page_list);
1095 count_vm_events(PGACTIVATE, pgactivate);
1096 mem_cgroup_uncharge_end();
1097 *ret_nr_dirty += nr_dirty;
1098 *ret_nr_congested += nr_congested;
1099 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1100 *ret_nr_writeback += nr_writeback;
1101 *ret_nr_immediate += nr_immediate;
1102 return nr_reclaimed;
1105 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1106 struct list_head *page_list)
1108 struct scan_control sc = {
1109 .gfp_mask = GFP_KERNEL,
1110 .priority = DEF_PRIORITY,
1111 .may_unmap = 1,
1113 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1114 struct page *page, *next;
1115 LIST_HEAD(clean_pages);
1117 list_for_each_entry_safe(page, next, page_list, lru) {
1118 if (page_is_file_cache(page) && !PageDirty(page) &&
1119 !isolated_balloon_page(page)) {
1120 ClearPageActive(page);
1121 list_move(&page->lru, &clean_pages);
1125 ret = shrink_page_list(&clean_pages, zone, &sc,
1126 TTU_UNMAP|TTU_IGNORE_ACCESS,
1127 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1128 list_splice(&clean_pages, page_list);
1129 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1130 return ret;
1134 * Attempt to remove the specified page from its LRU. Only take this page
1135 * if it is of the appropriate PageActive status. Pages which are being
1136 * freed elsewhere are also ignored.
1138 * page: page to consider
1139 * mode: one of the LRU isolation modes defined above
1141 * returns 0 on success, -ve errno on failure.
1143 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1145 int ret = -EINVAL;
1147 /* Only take pages on the LRU. */
1148 if (!PageLRU(page))
1149 return ret;
1151 /* Compaction should not handle unevictable pages but CMA can do so */
1152 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1153 return ret;
1155 ret = -EBUSY;
1158 * To minimise LRU disruption, the caller can indicate that it only
1159 * wants to isolate pages it will be able to operate on without
1160 * blocking - clean pages for the most part.
1162 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1163 * is used by reclaim when it is cannot write to backing storage
1165 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1166 * that it is possible to migrate without blocking
1168 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1169 /* All the caller can do on PageWriteback is block */
1170 if (PageWriteback(page))
1171 return ret;
1173 if (PageDirty(page)) {
1174 struct address_space *mapping;
1176 /* ISOLATE_CLEAN means only clean pages */
1177 if (mode & ISOLATE_CLEAN)
1178 return ret;
1181 * Only pages without mappings or that have a
1182 * ->migratepage callback are possible to migrate
1183 * without blocking
1185 mapping = page_mapping(page);
1186 if (mapping && !mapping->a_ops->migratepage)
1187 return ret;
1191 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1192 return ret;
1194 if (likely(get_page_unless_zero(page))) {
1196 * Be careful not to clear PageLRU until after we're
1197 * sure the page is not being freed elsewhere -- the
1198 * page release code relies on it.
1200 ClearPageLRU(page);
1201 ret = 0;
1204 return ret;
1208 * zone->lru_lock is heavily contended. Some of the functions that
1209 * shrink the lists perform better by taking out a batch of pages
1210 * and working on them outside the LRU lock.
1212 * For pagecache intensive workloads, this function is the hottest
1213 * spot in the kernel (apart from copy_*_user functions).
1215 * Appropriate locks must be held before calling this function.
1217 * @nr_to_scan: The number of pages to look through on the list.
1218 * @lruvec: The LRU vector to pull pages from.
1219 * @dst: The temp list to put pages on to.
1220 * @nr_scanned: The number of pages that were scanned.
1221 * @sc: The scan_control struct for this reclaim session
1222 * @mode: One of the LRU isolation modes
1223 * @lru: LRU list id for isolating
1225 * returns how many pages were moved onto *@dst.
1227 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1228 struct lruvec *lruvec, struct list_head *dst,
1229 unsigned long *nr_scanned, struct scan_control *sc,
1230 isolate_mode_t mode, enum lru_list lru)
1232 struct list_head *src = &lruvec->lists[lru];
1233 unsigned long nr_taken = 0;
1234 unsigned long scan;
1236 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1237 struct page *page;
1238 int nr_pages;
1240 page = lru_to_page(src);
1241 prefetchw_prev_lru_page(page, src, flags);
1243 VM_BUG_ON(!PageLRU(page));
1245 switch (__isolate_lru_page(page, mode)) {
1246 case 0:
1247 nr_pages = hpage_nr_pages(page);
1248 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1249 list_move(&page->lru, dst);
1250 nr_taken += nr_pages;
1251 break;
1253 case -EBUSY:
1254 /* else it is being freed elsewhere */
1255 list_move(&page->lru, src);
1256 continue;
1258 default:
1259 BUG();
1263 *nr_scanned = scan;
1264 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1265 nr_taken, mode, is_file_lru(lru));
1266 return nr_taken;
1270 * isolate_lru_page - tries to isolate a page from its LRU list
1271 * @page: page to isolate from its LRU list
1273 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1274 * vmstat statistic corresponding to whatever LRU list the page was on.
1276 * Returns 0 if the page was removed from an LRU list.
1277 * Returns -EBUSY if the page was not on an LRU list.
1279 * The returned page will have PageLRU() cleared. If it was found on
1280 * the active list, it will have PageActive set. If it was found on
1281 * the unevictable list, it will have the PageUnevictable bit set. That flag
1282 * may need to be cleared by the caller before letting the page go.
1284 * The vmstat statistic corresponding to the list on which the page was
1285 * found will be decremented.
1287 * Restrictions:
1288 * (1) Must be called with an elevated refcount on the page. This is a
1289 * fundamentnal difference from isolate_lru_pages (which is called
1290 * without a stable reference).
1291 * (2) the lru_lock must not be held.
1292 * (3) interrupts must be enabled.
1294 int isolate_lru_page(struct page *page)
1296 int ret = -EBUSY;
1298 VM_BUG_ON(!page_count(page));
1300 if (PageLRU(page)) {
1301 struct zone *zone = page_zone(page);
1302 struct lruvec *lruvec;
1304 spin_lock_irq(&zone->lru_lock);
1305 lruvec = mem_cgroup_page_lruvec(page, zone);
1306 if (PageLRU(page)) {
1307 int lru = page_lru(page);
1308 get_page(page);
1309 ClearPageLRU(page);
1310 del_page_from_lru_list(page, lruvec, lru);
1311 ret = 0;
1313 spin_unlock_irq(&zone->lru_lock);
1315 return ret;
1319 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1320 * then get resheduled. When there are massive number of tasks doing page
1321 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1322 * the LRU list will go small and be scanned faster than necessary, leading to
1323 * unnecessary swapping, thrashing and OOM.
1325 static int too_many_isolated(struct zone *zone, int file,
1326 struct scan_control *sc)
1328 unsigned long inactive, isolated;
1330 if (current_is_kswapd())
1331 return 0;
1333 if (!global_reclaim(sc))
1334 return 0;
1336 if (file) {
1337 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1338 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1339 } else {
1340 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1341 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1345 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1346 * won't get blocked by normal direct-reclaimers, forming a circular
1347 * deadlock.
1349 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1350 inactive >>= 3;
1352 return isolated > inactive;
1355 static noinline_for_stack void
1356 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1358 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1359 struct zone *zone = lruvec_zone(lruvec);
1360 LIST_HEAD(pages_to_free);
1363 * Put back any unfreeable pages.
1365 while (!list_empty(page_list)) {
1366 struct page *page = lru_to_page(page_list);
1367 int lru;
1369 VM_BUG_ON(PageLRU(page));
1370 list_del(&page->lru);
1371 if (unlikely(!page_evictable(page))) {
1372 spin_unlock_irq(&zone->lru_lock);
1373 putback_lru_page(page);
1374 spin_lock_irq(&zone->lru_lock);
1375 continue;
1378 lruvec = mem_cgroup_page_lruvec(page, zone);
1380 SetPageLRU(page);
1381 lru = page_lru(page);
1382 add_page_to_lru_list(page, lruvec, lru);
1384 if (is_active_lru(lru)) {
1385 int file = is_file_lru(lru);
1386 int numpages = hpage_nr_pages(page);
1387 reclaim_stat->recent_rotated[file] += numpages;
1389 if (put_page_testzero(page)) {
1390 __ClearPageLRU(page);
1391 __ClearPageActive(page);
1392 del_page_from_lru_list(page, lruvec, lru);
1394 if (unlikely(PageCompound(page))) {
1395 spin_unlock_irq(&zone->lru_lock);
1396 (*get_compound_page_dtor(page))(page);
1397 spin_lock_irq(&zone->lru_lock);
1398 } else
1399 list_add(&page->lru, &pages_to_free);
1404 * To save our caller's stack, now use input list for pages to free.
1406 list_splice(&pages_to_free, page_list);
1410 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1411 * of reclaimed pages
1413 static noinline_for_stack unsigned long
1414 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1415 struct scan_control *sc, enum lru_list lru)
1417 LIST_HEAD(page_list);
1418 unsigned long nr_scanned;
1419 unsigned long nr_reclaimed = 0;
1420 unsigned long nr_taken;
1421 unsigned long nr_dirty = 0;
1422 unsigned long nr_congested = 0;
1423 unsigned long nr_unqueued_dirty = 0;
1424 unsigned long nr_writeback = 0;
1425 unsigned long nr_immediate = 0;
1426 isolate_mode_t isolate_mode = 0;
1427 int file = is_file_lru(lru);
1428 struct zone *zone = lruvec_zone(lruvec);
1429 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1431 while (unlikely(too_many_isolated(zone, file, sc))) {
1432 congestion_wait(BLK_RW_ASYNC, HZ/10);
1434 /* We are about to die and free our memory. Return now. */
1435 if (fatal_signal_pending(current))
1436 return SWAP_CLUSTER_MAX;
1439 lru_add_drain();
1441 if (!sc->may_unmap)
1442 isolate_mode |= ISOLATE_UNMAPPED;
1443 if (!sc->may_writepage)
1444 isolate_mode |= ISOLATE_CLEAN;
1446 spin_lock_irq(&zone->lru_lock);
1448 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1449 &nr_scanned, sc, isolate_mode, lru);
1451 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1452 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1454 if (global_reclaim(sc)) {
1455 zone->pages_scanned += nr_scanned;
1456 if (current_is_kswapd())
1457 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1458 else
1459 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1461 spin_unlock_irq(&zone->lru_lock);
1463 if (nr_taken == 0)
1464 return 0;
1466 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1467 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1468 &nr_writeback, &nr_immediate,
1469 false);
1471 spin_lock_irq(&zone->lru_lock);
1473 reclaim_stat->recent_scanned[file] += nr_taken;
1475 if (global_reclaim(sc)) {
1476 if (current_is_kswapd())
1477 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1478 nr_reclaimed);
1479 else
1480 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1481 nr_reclaimed);
1484 putback_inactive_pages(lruvec, &page_list);
1486 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1488 spin_unlock_irq(&zone->lru_lock);
1490 free_hot_cold_page_list(&page_list, 1);
1493 * If reclaim is isolating dirty pages under writeback, it implies
1494 * that the long-lived page allocation rate is exceeding the page
1495 * laundering rate. Either the global limits are not being effective
1496 * at throttling processes due to the page distribution throughout
1497 * zones or there is heavy usage of a slow backing device. The
1498 * only option is to throttle from reclaim context which is not ideal
1499 * as there is no guarantee the dirtying process is throttled in the
1500 * same way balance_dirty_pages() manages.
1502 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1503 * of pages under pages flagged for immediate reclaim and stall if any
1504 * are encountered in the nr_immediate check below.
1506 if (nr_writeback && nr_writeback == nr_taken)
1507 zone_set_flag(zone, ZONE_WRITEBACK);
1510 * memcg will stall in page writeback so only consider forcibly
1511 * stalling for global reclaim
1513 if (global_reclaim(sc)) {
1515 * Tag a zone as congested if all the dirty pages scanned were
1516 * backed by a congested BDI and wait_iff_congested will stall.
1518 if (nr_dirty && nr_dirty == nr_congested)
1519 zone_set_flag(zone, ZONE_CONGESTED);
1522 * If dirty pages are scanned that are not queued for IO, it
1523 * implies that flushers are not keeping up. In this case, flag
1524 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1525 * pages from reclaim context.
1527 if (nr_unqueued_dirty == nr_taken)
1528 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1531 * If kswapd scans pages marked marked for immediate
1532 * reclaim and under writeback (nr_immediate), it implies
1533 * that pages are cycling through the LRU faster than
1534 * they are written so also forcibly stall.
1536 if (nr_immediate)
1537 congestion_wait(BLK_RW_ASYNC, HZ/10);
1541 * Stall direct reclaim for IO completions if underlying BDIs or zone
1542 * is congested. Allow kswapd to continue until it starts encountering
1543 * unqueued dirty pages or cycling through the LRU too quickly.
1545 if (!sc->hibernation_mode && !current_is_kswapd())
1546 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1548 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1549 zone_idx(zone),
1550 nr_scanned, nr_reclaimed,
1551 sc->priority,
1552 trace_shrink_flags(file));
1553 return nr_reclaimed;
1557 * This moves pages from the active list to the inactive list.
1559 * We move them the other way if the page is referenced by one or more
1560 * processes, from rmap.
1562 * If the pages are mostly unmapped, the processing is fast and it is
1563 * appropriate to hold zone->lru_lock across the whole operation. But if
1564 * the pages are mapped, the processing is slow (page_referenced()) so we
1565 * should drop zone->lru_lock around each page. It's impossible to balance
1566 * this, so instead we remove the pages from the LRU while processing them.
1567 * It is safe to rely on PG_active against the non-LRU pages in here because
1568 * nobody will play with that bit on a non-LRU page.
1570 * The downside is that we have to touch page->_count against each page.
1571 * But we had to alter page->flags anyway.
1574 static void move_active_pages_to_lru(struct lruvec *lruvec,
1575 struct list_head *list,
1576 struct list_head *pages_to_free,
1577 enum lru_list lru)
1579 struct zone *zone = lruvec_zone(lruvec);
1580 unsigned long pgmoved = 0;
1581 struct page *page;
1582 int nr_pages;
1584 while (!list_empty(list)) {
1585 page = lru_to_page(list);
1586 lruvec = mem_cgroup_page_lruvec(page, zone);
1588 VM_BUG_ON(PageLRU(page));
1589 SetPageLRU(page);
1591 nr_pages = hpage_nr_pages(page);
1592 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1593 list_move(&page->lru, &lruvec->lists[lru]);
1594 pgmoved += nr_pages;
1596 if (put_page_testzero(page)) {
1597 __ClearPageLRU(page);
1598 __ClearPageActive(page);
1599 del_page_from_lru_list(page, lruvec, lru);
1601 if (unlikely(PageCompound(page))) {
1602 spin_unlock_irq(&zone->lru_lock);
1603 (*get_compound_page_dtor(page))(page);
1604 spin_lock_irq(&zone->lru_lock);
1605 } else
1606 list_add(&page->lru, pages_to_free);
1609 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1610 if (!is_active_lru(lru))
1611 __count_vm_events(PGDEACTIVATE, pgmoved);
1614 static void shrink_active_list(unsigned long nr_to_scan,
1615 struct lruvec *lruvec,
1616 struct scan_control *sc,
1617 enum lru_list lru)
1619 unsigned long nr_taken;
1620 unsigned long nr_scanned;
1621 unsigned long vm_flags;
1622 LIST_HEAD(l_hold); /* The pages which were snipped off */
1623 LIST_HEAD(l_active);
1624 LIST_HEAD(l_inactive);
1625 struct page *page;
1626 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1627 unsigned long nr_rotated = 0;
1628 isolate_mode_t isolate_mode = 0;
1629 int file = is_file_lru(lru);
1630 struct zone *zone = lruvec_zone(lruvec);
1632 lru_add_drain();
1634 if (!sc->may_unmap)
1635 isolate_mode |= ISOLATE_UNMAPPED;
1636 if (!sc->may_writepage)
1637 isolate_mode |= ISOLATE_CLEAN;
1639 spin_lock_irq(&zone->lru_lock);
1641 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1642 &nr_scanned, sc, isolate_mode, lru);
1643 if (global_reclaim(sc))
1644 zone->pages_scanned += nr_scanned;
1646 reclaim_stat->recent_scanned[file] += nr_taken;
1648 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1649 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1650 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1651 spin_unlock_irq(&zone->lru_lock);
1653 while (!list_empty(&l_hold)) {
1654 cond_resched();
1655 page = lru_to_page(&l_hold);
1656 list_del(&page->lru);
1658 if (unlikely(!page_evictable(page))) {
1659 putback_lru_page(page);
1660 continue;
1663 if (unlikely(buffer_heads_over_limit)) {
1664 if (page_has_private(page) && trylock_page(page)) {
1665 if (page_has_private(page))
1666 try_to_release_page(page, 0);
1667 unlock_page(page);
1671 if (page_referenced(page, 0, sc->target_mem_cgroup,
1672 &vm_flags)) {
1673 nr_rotated += hpage_nr_pages(page);
1675 * Identify referenced, file-backed active pages and
1676 * give them one more trip around the active list. So
1677 * that executable code get better chances to stay in
1678 * memory under moderate memory pressure. Anon pages
1679 * are not likely to be evicted by use-once streaming
1680 * IO, plus JVM can create lots of anon VM_EXEC pages,
1681 * so we ignore them here.
1683 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1684 list_add(&page->lru, &l_active);
1685 continue;
1689 ClearPageActive(page); /* we are de-activating */
1690 list_add(&page->lru, &l_inactive);
1694 * Move pages back to the lru list.
1696 spin_lock_irq(&zone->lru_lock);
1698 * Count referenced pages from currently used mappings as rotated,
1699 * even though only some of them are actually re-activated. This
1700 * helps balance scan pressure between file and anonymous pages in
1701 * get_scan_ratio.
1703 reclaim_stat->recent_rotated[file] += nr_rotated;
1705 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1706 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1707 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1708 spin_unlock_irq(&zone->lru_lock);
1710 free_hot_cold_page_list(&l_hold, 1);
1713 #ifdef CONFIG_SWAP
1714 static int inactive_anon_is_low_global(struct zone *zone)
1716 unsigned long active, inactive;
1718 active = zone_page_state(zone, NR_ACTIVE_ANON);
1719 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1721 if (inactive * zone->inactive_ratio < active)
1722 return 1;
1724 return 0;
1728 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1729 * @lruvec: LRU vector to check
1731 * Returns true if the zone does not have enough inactive anon pages,
1732 * meaning some active anon pages need to be deactivated.
1734 static int inactive_anon_is_low(struct lruvec *lruvec)
1737 * If we don't have swap space, anonymous page deactivation
1738 * is pointless.
1740 if (!total_swap_pages)
1741 return 0;
1743 if (!mem_cgroup_disabled())
1744 return mem_cgroup_inactive_anon_is_low(lruvec);
1746 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1748 #else
1749 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1751 return 0;
1753 #endif
1756 * inactive_file_is_low - check if file pages need to be deactivated
1757 * @lruvec: LRU vector to check
1759 * When the system is doing streaming IO, memory pressure here
1760 * ensures that active file pages get deactivated, until more
1761 * than half of the file pages are on the inactive list.
1763 * Once we get to that situation, protect the system's working
1764 * set from being evicted by disabling active file page aging.
1766 * This uses a different ratio than the anonymous pages, because
1767 * the page cache uses a use-once replacement algorithm.
1769 static int inactive_file_is_low(struct lruvec *lruvec)
1771 unsigned long inactive;
1772 unsigned long active;
1774 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1775 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1777 return active > inactive;
1780 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1782 if (is_file_lru(lru))
1783 return inactive_file_is_low(lruvec);
1784 else
1785 return inactive_anon_is_low(lruvec);
1788 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1789 struct lruvec *lruvec, struct scan_control *sc)
1791 if (is_active_lru(lru)) {
1792 if (inactive_list_is_low(lruvec, lru))
1793 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1794 return 0;
1797 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1800 static int vmscan_swappiness(struct scan_control *sc)
1802 if (global_reclaim(sc))
1803 return vm_swappiness;
1804 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1807 enum scan_balance {
1808 SCAN_EQUAL,
1809 SCAN_FRACT,
1810 SCAN_ANON,
1811 SCAN_FILE,
1815 * Determine how aggressively the anon and file LRU lists should be
1816 * scanned. The relative value of each set of LRU lists is determined
1817 * by looking at the fraction of the pages scanned we did rotate back
1818 * onto the active list instead of evict.
1820 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1821 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1823 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1824 unsigned long *nr)
1826 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1827 u64 fraction[2];
1828 u64 denominator = 0; /* gcc */
1829 struct zone *zone = lruvec_zone(lruvec);
1830 unsigned long anon_prio, file_prio;
1831 enum scan_balance scan_balance;
1832 unsigned long anon, file, free;
1833 bool force_scan = false;
1834 unsigned long ap, fp;
1835 enum lru_list lru;
1838 * If the zone or memcg is small, nr[l] can be 0. This
1839 * results in no scanning on this priority and a potential
1840 * priority drop. Global direct reclaim can go to the next
1841 * zone and tends to have no problems. Global kswapd is for
1842 * zone balancing and it needs to scan a minimum amount. When
1843 * reclaiming for a memcg, a priority drop can cause high
1844 * latencies, so it's better to scan a minimum amount there as
1845 * well.
1847 if (current_is_kswapd() && !zone_reclaimable(zone))
1848 force_scan = true;
1849 if (!global_reclaim(sc))
1850 force_scan = true;
1852 /* If we have no swap space, do not bother scanning anon pages. */
1853 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1854 scan_balance = SCAN_FILE;
1855 goto out;
1859 * Global reclaim will swap to prevent OOM even with no
1860 * swappiness, but memcg users want to use this knob to
1861 * disable swapping for individual groups completely when
1862 * using the memory controller's swap limit feature would be
1863 * too expensive.
1865 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1866 scan_balance = SCAN_FILE;
1867 goto out;
1871 * Do not apply any pressure balancing cleverness when the
1872 * system is close to OOM, scan both anon and file equally
1873 * (unless the swappiness setting disagrees with swapping).
1875 if (!sc->priority && vmscan_swappiness(sc)) {
1876 scan_balance = SCAN_EQUAL;
1877 goto out;
1880 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1881 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1882 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1883 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1886 * If it's foreseeable that reclaiming the file cache won't be
1887 * enough to get the zone back into a desirable shape, we have
1888 * to swap. Better start now and leave the - probably heavily
1889 * thrashing - remaining file pages alone.
1891 if (global_reclaim(sc)) {
1892 free = zone_page_state(zone, NR_FREE_PAGES);
1893 if (unlikely(file + free <= high_wmark_pages(zone))) {
1894 scan_balance = SCAN_ANON;
1895 goto out;
1900 * There is enough inactive page cache, do not reclaim
1901 * anything from the anonymous working set right now.
1903 if (!inactive_file_is_low(lruvec)) {
1904 scan_balance = SCAN_FILE;
1905 goto out;
1908 scan_balance = SCAN_FRACT;
1911 * With swappiness at 100, anonymous and file have the same priority.
1912 * This scanning priority is essentially the inverse of IO cost.
1914 anon_prio = vmscan_swappiness(sc);
1915 file_prio = 200 - anon_prio;
1918 * OK, so we have swap space and a fair amount of page cache
1919 * pages. We use the recently rotated / recently scanned
1920 * ratios to determine how valuable each cache is.
1922 * Because workloads change over time (and to avoid overflow)
1923 * we keep these statistics as a floating average, which ends
1924 * up weighing recent references more than old ones.
1926 * anon in [0], file in [1]
1928 spin_lock_irq(&zone->lru_lock);
1929 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1930 reclaim_stat->recent_scanned[0] /= 2;
1931 reclaim_stat->recent_rotated[0] /= 2;
1934 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1935 reclaim_stat->recent_scanned[1] /= 2;
1936 reclaim_stat->recent_rotated[1] /= 2;
1940 * The amount of pressure on anon vs file pages is inversely
1941 * proportional to the fraction of recently scanned pages on
1942 * each list that were recently referenced and in active use.
1944 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1945 ap /= reclaim_stat->recent_rotated[0] + 1;
1947 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1948 fp /= reclaim_stat->recent_rotated[1] + 1;
1949 spin_unlock_irq(&zone->lru_lock);
1951 fraction[0] = ap;
1952 fraction[1] = fp;
1953 denominator = ap + fp + 1;
1954 out:
1955 for_each_evictable_lru(lru) {
1956 int file = is_file_lru(lru);
1957 unsigned long size;
1958 unsigned long scan;
1960 size = get_lru_size(lruvec, lru);
1961 scan = size >> sc->priority;
1963 if (!scan && force_scan)
1964 scan = min(size, SWAP_CLUSTER_MAX);
1966 switch (scan_balance) {
1967 case SCAN_EQUAL:
1968 /* Scan lists relative to size */
1969 break;
1970 case SCAN_FRACT:
1972 * Scan types proportional to swappiness and
1973 * their relative recent reclaim efficiency.
1975 scan = div64_u64(scan * fraction[file], denominator);
1976 break;
1977 case SCAN_FILE:
1978 case SCAN_ANON:
1979 /* Scan one type exclusively */
1980 if ((scan_balance == SCAN_FILE) != file)
1981 scan = 0;
1982 break;
1983 default:
1984 /* Look ma, no brain */
1985 BUG();
1987 nr[lru] = scan;
1992 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1994 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1996 unsigned long nr[NR_LRU_LISTS];
1997 unsigned long targets[NR_LRU_LISTS];
1998 unsigned long nr_to_scan;
1999 enum lru_list lru;
2000 unsigned long nr_reclaimed = 0;
2001 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2002 struct blk_plug plug;
2003 bool scan_adjusted = false;
2005 get_scan_count(lruvec, sc, nr);
2007 /* Record the original scan target for proportional adjustments later */
2008 memcpy(targets, nr, sizeof(nr));
2010 blk_start_plug(&plug);
2011 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2012 nr[LRU_INACTIVE_FILE]) {
2013 unsigned long nr_anon, nr_file, percentage;
2014 unsigned long nr_scanned;
2016 for_each_evictable_lru(lru) {
2017 if (nr[lru]) {
2018 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2019 nr[lru] -= nr_to_scan;
2021 nr_reclaimed += shrink_list(lru, nr_to_scan,
2022 lruvec, sc);
2026 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2027 continue;
2030 * For global direct reclaim, reclaim only the number of pages
2031 * requested. Less care is taken to scan proportionally as it
2032 * is more important to minimise direct reclaim stall latency
2033 * than it is to properly age the LRU lists.
2035 if (global_reclaim(sc) && !current_is_kswapd())
2036 break;
2039 * For kswapd and memcg, reclaim at least the number of pages
2040 * requested. Ensure that the anon and file LRUs shrink
2041 * proportionally what was requested by get_scan_count(). We
2042 * stop reclaiming one LRU and reduce the amount scanning
2043 * proportional to the original scan target.
2045 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2046 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2048 if (nr_file > nr_anon) {
2049 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2050 targets[LRU_ACTIVE_ANON] + 1;
2051 lru = LRU_BASE;
2052 percentage = nr_anon * 100 / scan_target;
2053 } else {
2054 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2055 targets[LRU_ACTIVE_FILE] + 1;
2056 lru = LRU_FILE;
2057 percentage = nr_file * 100 / scan_target;
2060 /* Stop scanning the smaller of the LRU */
2061 nr[lru] = 0;
2062 nr[lru + LRU_ACTIVE] = 0;
2065 * Recalculate the other LRU scan count based on its original
2066 * scan target and the percentage scanning already complete
2068 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2069 nr_scanned = targets[lru] - nr[lru];
2070 nr[lru] = targets[lru] * (100 - percentage) / 100;
2071 nr[lru] -= min(nr[lru], nr_scanned);
2073 lru += LRU_ACTIVE;
2074 nr_scanned = targets[lru] - nr[lru];
2075 nr[lru] = targets[lru] * (100 - percentage) / 100;
2076 nr[lru] -= min(nr[lru], nr_scanned);
2078 scan_adjusted = true;
2080 blk_finish_plug(&plug);
2081 sc->nr_reclaimed += nr_reclaimed;
2084 * Even if we did not try to evict anon pages at all, we want to
2085 * rebalance the anon lru active/inactive ratio.
2087 if (inactive_anon_is_low(lruvec))
2088 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2089 sc, LRU_ACTIVE_ANON);
2091 throttle_vm_writeout(sc->gfp_mask);
2094 /* Use reclaim/compaction for costly allocs or under memory pressure */
2095 static bool in_reclaim_compaction(struct scan_control *sc)
2097 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2098 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2099 sc->priority < DEF_PRIORITY - 2))
2100 return true;
2102 return false;
2106 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2107 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2108 * true if more pages should be reclaimed such that when the page allocator
2109 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2110 * It will give up earlier than that if there is difficulty reclaiming pages.
2112 static inline bool should_continue_reclaim(struct zone *zone,
2113 unsigned long nr_reclaimed,
2114 unsigned long nr_scanned,
2115 struct scan_control *sc)
2117 unsigned long pages_for_compaction;
2118 unsigned long inactive_lru_pages;
2120 /* If not in reclaim/compaction mode, stop */
2121 if (!in_reclaim_compaction(sc))
2122 return false;
2124 /* Consider stopping depending on scan and reclaim activity */
2125 if (sc->gfp_mask & __GFP_REPEAT) {
2127 * For __GFP_REPEAT allocations, stop reclaiming if the
2128 * full LRU list has been scanned and we are still failing
2129 * to reclaim pages. This full LRU scan is potentially
2130 * expensive but a __GFP_REPEAT caller really wants to succeed
2132 if (!nr_reclaimed && !nr_scanned)
2133 return false;
2134 } else {
2136 * For non-__GFP_REPEAT allocations which can presumably
2137 * fail without consequence, stop if we failed to reclaim
2138 * any pages from the last SWAP_CLUSTER_MAX number of
2139 * pages that were scanned. This will return to the
2140 * caller faster at the risk reclaim/compaction and
2141 * the resulting allocation attempt fails
2143 if (!nr_reclaimed)
2144 return false;
2148 * If we have not reclaimed enough pages for compaction and the
2149 * inactive lists are large enough, continue reclaiming
2151 pages_for_compaction = (2UL << sc->order);
2152 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2153 if (get_nr_swap_pages() > 0)
2154 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2155 if (sc->nr_reclaimed < pages_for_compaction &&
2156 inactive_lru_pages > pages_for_compaction)
2157 return true;
2159 /* If compaction would go ahead or the allocation would succeed, stop */
2160 switch (compaction_suitable(zone, sc->order)) {
2161 case COMPACT_PARTIAL:
2162 case COMPACT_CONTINUE:
2163 return false;
2164 default:
2165 return true;
2169 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2171 unsigned long nr_reclaimed, nr_scanned;
2173 do {
2174 struct mem_cgroup *root = sc->target_mem_cgroup;
2175 struct mem_cgroup_reclaim_cookie reclaim = {
2176 .zone = zone,
2177 .priority = sc->priority,
2179 struct mem_cgroup *memcg;
2181 nr_reclaimed = sc->nr_reclaimed;
2182 nr_scanned = sc->nr_scanned;
2184 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2185 do {
2186 struct lruvec *lruvec;
2188 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2190 shrink_lruvec(lruvec, sc);
2193 * Direct reclaim and kswapd have to scan all memory
2194 * cgroups to fulfill the overall scan target for the
2195 * zone.
2197 * Limit reclaim, on the other hand, only cares about
2198 * nr_to_reclaim pages to be reclaimed and it will
2199 * retry with decreasing priority if one round over the
2200 * whole hierarchy is not sufficient.
2202 if (!global_reclaim(sc) &&
2203 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2204 mem_cgroup_iter_break(root, memcg);
2205 break;
2207 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2208 } while (memcg);
2210 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2211 sc->nr_scanned - nr_scanned,
2212 sc->nr_reclaimed - nr_reclaimed);
2214 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2215 sc->nr_scanned - nr_scanned, sc));
2218 /* Returns true if compaction should go ahead for a high-order request */
2219 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2221 unsigned long balance_gap, watermark;
2222 bool watermark_ok;
2224 /* Do not consider compaction for orders reclaim is meant to satisfy */
2225 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2226 return false;
2229 * Compaction takes time to run and there are potentially other
2230 * callers using the pages just freed. Continue reclaiming until
2231 * there is a buffer of free pages available to give compaction
2232 * a reasonable chance of completing and allocating the page
2234 balance_gap = min(low_wmark_pages(zone),
2235 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2236 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2237 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2238 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2241 * If compaction is deferred, reclaim up to a point where
2242 * compaction will have a chance of success when re-enabled
2244 if (compaction_deferred(zone, sc->order))
2245 return watermark_ok;
2247 /* If compaction is not ready to start, keep reclaiming */
2248 if (!compaction_suitable(zone, sc->order))
2249 return false;
2251 return watermark_ok;
2255 * This is the direct reclaim path, for page-allocating processes. We only
2256 * try to reclaim pages from zones which will satisfy the caller's allocation
2257 * request.
2259 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2260 * Because:
2261 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2262 * allocation or
2263 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2264 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2265 * zone defense algorithm.
2267 * If a zone is deemed to be full of pinned pages then just give it a light
2268 * scan then give up on it.
2270 * This function returns true if a zone is being reclaimed for a costly
2271 * high-order allocation and compaction is ready to begin. This indicates to
2272 * the caller that it should consider retrying the allocation instead of
2273 * further reclaim.
2275 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2277 struct zoneref *z;
2278 struct zone *zone;
2279 unsigned long nr_soft_reclaimed;
2280 unsigned long nr_soft_scanned;
2281 bool aborted_reclaim = false;
2284 * If the number of buffer_heads in the machine exceeds the maximum
2285 * allowed level, force direct reclaim to scan the highmem zone as
2286 * highmem pages could be pinning lowmem pages storing buffer_heads
2288 if (buffer_heads_over_limit)
2289 sc->gfp_mask |= __GFP_HIGHMEM;
2291 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2292 gfp_zone(sc->gfp_mask), sc->nodemask) {
2293 if (!populated_zone(zone))
2294 continue;
2296 * Take care memory controller reclaiming has small influence
2297 * to global LRU.
2299 if (global_reclaim(sc)) {
2300 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2301 continue;
2302 if (sc->priority != DEF_PRIORITY &&
2303 !zone_reclaimable(zone))
2304 continue; /* Let kswapd poll it */
2305 if (IS_ENABLED(CONFIG_COMPACTION)) {
2307 * If we already have plenty of memory free for
2308 * compaction in this zone, don't free any more.
2309 * Even though compaction is invoked for any
2310 * non-zero order, only frequent costly order
2311 * reclamation is disruptive enough to become a
2312 * noticeable problem, like transparent huge
2313 * page allocations.
2315 if (compaction_ready(zone, sc)) {
2316 aborted_reclaim = true;
2317 continue;
2321 * This steals pages from memory cgroups over softlimit
2322 * and returns the number of reclaimed pages and
2323 * scanned pages. This works for global memory pressure
2324 * and balancing, not for a memcg's limit.
2326 nr_soft_scanned = 0;
2327 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2328 sc->order, sc->gfp_mask,
2329 &nr_soft_scanned);
2330 sc->nr_reclaimed += nr_soft_reclaimed;
2331 sc->nr_scanned += nr_soft_scanned;
2332 /* need some check for avoid more shrink_zone() */
2335 shrink_zone(zone, sc);
2338 return aborted_reclaim;
2341 /* All zones in zonelist are unreclaimable? */
2342 static bool all_unreclaimable(struct zonelist *zonelist,
2343 struct scan_control *sc)
2345 struct zoneref *z;
2346 struct zone *zone;
2348 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2349 gfp_zone(sc->gfp_mask), sc->nodemask) {
2350 if (!populated_zone(zone))
2351 continue;
2352 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2353 continue;
2354 if (zone_reclaimable(zone))
2355 return false;
2358 return true;
2362 * This is the main entry point to direct page reclaim.
2364 * If a full scan of the inactive list fails to free enough memory then we
2365 * are "out of memory" and something needs to be killed.
2367 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2368 * high - the zone may be full of dirty or under-writeback pages, which this
2369 * caller can't do much about. We kick the writeback threads and take explicit
2370 * naps in the hope that some of these pages can be written. But if the
2371 * allocating task holds filesystem locks which prevent writeout this might not
2372 * work, and the allocation attempt will fail.
2374 * returns: 0, if no pages reclaimed
2375 * else, the number of pages reclaimed
2377 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2378 struct scan_control *sc,
2379 struct shrink_control *shrink)
2381 unsigned long total_scanned = 0;
2382 struct reclaim_state *reclaim_state = current->reclaim_state;
2383 struct zoneref *z;
2384 struct zone *zone;
2385 unsigned long writeback_threshold;
2386 bool aborted_reclaim;
2388 delayacct_freepages_start();
2390 if (global_reclaim(sc))
2391 count_vm_event(ALLOCSTALL);
2393 do {
2394 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2395 sc->priority);
2396 sc->nr_scanned = 0;
2397 aborted_reclaim = shrink_zones(zonelist, sc);
2400 * Don't shrink slabs when reclaiming memory from over limit
2401 * cgroups but do shrink slab at least once when aborting
2402 * reclaim for compaction to avoid unevenly scanning file/anon
2403 * LRU pages over slab pages.
2405 if (global_reclaim(sc)) {
2406 unsigned long lru_pages = 0;
2408 nodes_clear(shrink->nodes_to_scan);
2409 for_each_zone_zonelist(zone, z, zonelist,
2410 gfp_zone(sc->gfp_mask)) {
2411 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2412 continue;
2414 lru_pages += zone_reclaimable_pages(zone);
2415 node_set(zone_to_nid(zone),
2416 shrink->nodes_to_scan);
2419 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2420 if (reclaim_state) {
2421 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2422 reclaim_state->reclaimed_slab = 0;
2425 total_scanned += sc->nr_scanned;
2426 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2427 goto out;
2430 * If we're getting trouble reclaiming, start doing
2431 * writepage even in laptop mode.
2433 if (sc->priority < DEF_PRIORITY - 2)
2434 sc->may_writepage = 1;
2437 * Try to write back as many pages as we just scanned. This
2438 * tends to cause slow streaming writers to write data to the
2439 * disk smoothly, at the dirtying rate, which is nice. But
2440 * that's undesirable in laptop mode, where we *want* lumpy
2441 * writeout. So in laptop mode, write out the whole world.
2443 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2444 if (total_scanned > writeback_threshold) {
2445 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2446 WB_REASON_TRY_TO_FREE_PAGES);
2447 sc->may_writepage = 1;
2449 } while (--sc->priority >= 0 && !aborted_reclaim);
2451 out:
2452 delayacct_freepages_end();
2454 if (sc->nr_reclaimed)
2455 return sc->nr_reclaimed;
2458 * As hibernation is going on, kswapd is freezed so that it can't mark
2459 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2460 * check.
2462 if (oom_killer_disabled)
2463 return 0;
2465 /* Aborted reclaim to try compaction? don't OOM, then */
2466 if (aborted_reclaim)
2467 return 1;
2469 /* top priority shrink_zones still had more to do? don't OOM, then */
2470 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2471 return 1;
2473 return 0;
2476 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2478 struct zone *zone;
2479 unsigned long pfmemalloc_reserve = 0;
2480 unsigned long free_pages = 0;
2481 int i;
2482 bool wmark_ok;
2484 for (i = 0; i <= ZONE_NORMAL; i++) {
2485 zone = &pgdat->node_zones[i];
2486 if (!populated_zone(zone))
2487 continue;
2489 pfmemalloc_reserve += min_wmark_pages(zone);
2490 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2493 /* If there are no reserves (unexpected config) then do not throttle */
2494 if (!pfmemalloc_reserve)
2495 return true;
2497 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2499 /* kswapd must be awake if processes are being throttled */
2500 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2501 pgdat->classzone_idx = min(pgdat->classzone_idx,
2502 (enum zone_type)ZONE_NORMAL);
2503 wake_up_interruptible(&pgdat->kswapd_wait);
2506 return wmark_ok;
2510 * Throttle direct reclaimers if backing storage is backed by the network
2511 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2512 * depleted. kswapd will continue to make progress and wake the processes
2513 * when the low watermark is reached.
2515 * Returns true if a fatal signal was delivered during throttling. If this
2516 * happens, the page allocator should not consider triggering the OOM killer.
2518 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2519 nodemask_t *nodemask)
2521 struct zoneref *z;
2522 struct zone *zone;
2523 pg_data_t *pgdat = NULL;
2526 * Kernel threads should not be throttled as they may be indirectly
2527 * responsible for cleaning pages necessary for reclaim to make forward
2528 * progress. kjournald for example may enter direct reclaim while
2529 * committing a transaction where throttling it could forcing other
2530 * processes to block on log_wait_commit().
2532 if (current->flags & PF_KTHREAD)
2533 goto out;
2536 * If a fatal signal is pending, this process should not throttle.
2537 * It should return quickly so it can exit and free its memory
2539 if (fatal_signal_pending(current))
2540 goto out;
2543 * Check if the pfmemalloc reserves are ok by finding the first node
2544 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2545 * GFP_KERNEL will be required for allocating network buffers when
2546 * swapping over the network so ZONE_HIGHMEM is unusable.
2548 * Throttling is based on the first usable node and throttled processes
2549 * wait on a queue until kswapd makes progress and wakes them. There
2550 * is an affinity then between processes waking up and where reclaim
2551 * progress has been made assuming the process wakes on the same node.
2552 * More importantly, processes running on remote nodes will not compete
2553 * for remote pfmemalloc reserves and processes on different nodes
2554 * should make reasonable progress.
2556 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2557 gfp_mask, nodemask) {
2558 if (zone_idx(zone) > ZONE_NORMAL)
2559 continue;
2561 /* Throttle based on the first usable node */
2562 pgdat = zone->zone_pgdat;
2563 if (pfmemalloc_watermark_ok(pgdat))
2564 goto out;
2565 break;
2568 /* If no zone was usable by the allocation flags then do not throttle */
2569 if (!pgdat)
2570 goto out;
2572 /* Account for the throttling */
2573 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2576 * If the caller cannot enter the filesystem, it's possible that it
2577 * is due to the caller holding an FS lock or performing a journal
2578 * transaction in the case of a filesystem like ext[3|4]. In this case,
2579 * it is not safe to block on pfmemalloc_wait as kswapd could be
2580 * blocked waiting on the same lock. Instead, throttle for up to a
2581 * second before continuing.
2583 if (!(gfp_mask & __GFP_FS)) {
2584 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2585 pfmemalloc_watermark_ok(pgdat), HZ);
2587 goto check_pending;
2590 /* Throttle until kswapd wakes the process */
2591 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2592 pfmemalloc_watermark_ok(pgdat));
2594 check_pending:
2595 if (fatal_signal_pending(current))
2596 return true;
2598 out:
2599 return false;
2602 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2603 gfp_t gfp_mask, nodemask_t *nodemask)
2605 unsigned long nr_reclaimed;
2606 struct scan_control sc = {
2607 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2608 .may_writepage = !laptop_mode,
2609 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2610 .may_unmap = 1,
2611 .may_swap = 1,
2612 .order = order,
2613 .priority = DEF_PRIORITY,
2614 .target_mem_cgroup = NULL,
2615 .nodemask = nodemask,
2617 struct shrink_control shrink = {
2618 .gfp_mask = sc.gfp_mask,
2622 * Do not enter reclaim if fatal signal was delivered while throttled.
2623 * 1 is returned so that the page allocator does not OOM kill at this
2624 * point.
2626 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2627 return 1;
2629 trace_mm_vmscan_direct_reclaim_begin(order,
2630 sc.may_writepage,
2631 gfp_mask);
2633 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2635 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2637 return nr_reclaimed;
2640 #ifdef CONFIG_MEMCG
2642 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2643 gfp_t gfp_mask, bool noswap,
2644 struct zone *zone,
2645 unsigned long *nr_scanned)
2647 struct scan_control sc = {
2648 .nr_scanned = 0,
2649 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2650 .may_writepage = !laptop_mode,
2651 .may_unmap = 1,
2652 .may_swap = !noswap,
2653 .order = 0,
2654 .priority = 0,
2655 .target_mem_cgroup = memcg,
2657 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2659 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2660 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2662 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2663 sc.may_writepage,
2664 sc.gfp_mask);
2667 * NOTE: Although we can get the priority field, using it
2668 * here is not a good idea, since it limits the pages we can scan.
2669 * if we don't reclaim here, the shrink_zone from balance_pgdat
2670 * will pick up pages from other mem cgroup's as well. We hack
2671 * the priority and make it zero.
2673 shrink_lruvec(lruvec, &sc);
2675 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2677 *nr_scanned = sc.nr_scanned;
2678 return sc.nr_reclaimed;
2681 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2682 gfp_t gfp_mask,
2683 bool noswap)
2685 struct zonelist *zonelist;
2686 unsigned long nr_reclaimed;
2687 int nid;
2688 struct scan_control sc = {
2689 .may_writepage = !laptop_mode,
2690 .may_unmap = 1,
2691 .may_swap = !noswap,
2692 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2693 .order = 0,
2694 .priority = DEF_PRIORITY,
2695 .target_mem_cgroup = memcg,
2696 .nodemask = NULL, /* we don't care the placement */
2697 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2698 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2700 struct shrink_control shrink = {
2701 .gfp_mask = sc.gfp_mask,
2705 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2706 * take care of from where we get pages. So the node where we start the
2707 * scan does not need to be the current node.
2709 nid = mem_cgroup_select_victim_node(memcg);
2711 zonelist = NODE_DATA(nid)->node_zonelists;
2713 trace_mm_vmscan_memcg_reclaim_begin(0,
2714 sc.may_writepage,
2715 sc.gfp_mask);
2717 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2719 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2721 return nr_reclaimed;
2723 #endif
2725 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2727 struct mem_cgroup *memcg;
2729 if (!total_swap_pages)
2730 return;
2732 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2733 do {
2734 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2736 if (inactive_anon_is_low(lruvec))
2737 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2738 sc, LRU_ACTIVE_ANON);
2740 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2741 } while (memcg);
2744 static bool zone_balanced(struct zone *zone, int order,
2745 unsigned long balance_gap, int classzone_idx)
2747 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2748 balance_gap, classzone_idx, 0))
2749 return false;
2751 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2752 !compaction_suitable(zone, order))
2753 return false;
2755 return true;
2759 * pgdat_balanced() is used when checking if a node is balanced.
2761 * For order-0, all zones must be balanced!
2763 * For high-order allocations only zones that meet watermarks and are in a
2764 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2765 * total of balanced pages must be at least 25% of the zones allowed by
2766 * classzone_idx for the node to be considered balanced. Forcing all zones to
2767 * be balanced for high orders can cause excessive reclaim when there are
2768 * imbalanced zones.
2769 * The choice of 25% is due to
2770 * o a 16M DMA zone that is balanced will not balance a zone on any
2771 * reasonable sized machine
2772 * o On all other machines, the top zone must be at least a reasonable
2773 * percentage of the middle zones. For example, on 32-bit x86, highmem
2774 * would need to be at least 256M for it to be balance a whole node.
2775 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2776 * to balance a node on its own. These seemed like reasonable ratios.
2778 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2780 unsigned long managed_pages = 0;
2781 unsigned long balanced_pages = 0;
2782 int i;
2784 /* Check the watermark levels */
2785 for (i = 0; i <= classzone_idx; i++) {
2786 struct zone *zone = pgdat->node_zones + i;
2788 if (!populated_zone(zone))
2789 continue;
2791 managed_pages += zone->managed_pages;
2794 * A special case here:
2796 * balance_pgdat() skips over all_unreclaimable after
2797 * DEF_PRIORITY. Effectively, it considers them balanced so
2798 * they must be considered balanced here as well!
2800 if (!zone_reclaimable(zone)) {
2801 balanced_pages += zone->managed_pages;
2802 continue;
2805 if (zone_balanced(zone, order, 0, i))
2806 balanced_pages += zone->managed_pages;
2807 else if (!order)
2808 return false;
2811 if (order)
2812 return balanced_pages >= (managed_pages >> 2);
2813 else
2814 return true;
2818 * Prepare kswapd for sleeping. This verifies that there are no processes
2819 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2821 * Returns true if kswapd is ready to sleep
2823 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2824 int classzone_idx)
2826 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2827 if (remaining)
2828 return false;
2831 * There is a potential race between when kswapd checks its watermarks
2832 * and a process gets throttled. There is also a potential race if
2833 * processes get throttled, kswapd wakes, a large process exits therby
2834 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2835 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2836 * so wake them now if necessary. If necessary, processes will wake
2837 * kswapd and get throttled again
2839 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2840 wake_up(&pgdat->pfmemalloc_wait);
2841 return false;
2844 return pgdat_balanced(pgdat, order, classzone_idx);
2848 * kswapd shrinks the zone by the number of pages required to reach
2849 * the high watermark.
2851 * Returns true if kswapd scanned at least the requested number of pages to
2852 * reclaim or if the lack of progress was due to pages under writeback.
2853 * This is used to determine if the scanning priority needs to be raised.
2855 static bool kswapd_shrink_zone(struct zone *zone,
2856 int classzone_idx,
2857 struct scan_control *sc,
2858 unsigned long lru_pages,
2859 unsigned long *nr_attempted)
2861 int testorder = sc->order;
2862 unsigned long balance_gap;
2863 struct reclaim_state *reclaim_state = current->reclaim_state;
2864 struct shrink_control shrink = {
2865 .gfp_mask = sc->gfp_mask,
2867 bool lowmem_pressure;
2869 /* Reclaim above the high watermark. */
2870 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2873 * Kswapd reclaims only single pages with compaction enabled. Trying
2874 * too hard to reclaim until contiguous free pages have become
2875 * available can hurt performance by evicting too much useful data
2876 * from memory. Do not reclaim more than needed for compaction.
2878 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2879 compaction_suitable(zone, sc->order) !=
2880 COMPACT_SKIPPED)
2881 testorder = 0;
2884 * We put equal pressure on every zone, unless one zone has way too
2885 * many pages free already. The "too many pages" is defined as the
2886 * high wmark plus a "gap" where the gap is either the low
2887 * watermark or 1% of the zone, whichever is smaller.
2889 balance_gap = min(low_wmark_pages(zone),
2890 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2891 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2894 * If there is no low memory pressure or the zone is balanced then no
2895 * reclaim is necessary
2897 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2898 if (!lowmem_pressure && zone_balanced(zone, testorder,
2899 balance_gap, classzone_idx))
2900 return true;
2902 shrink_zone(zone, sc);
2903 nodes_clear(shrink.nodes_to_scan);
2904 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2906 reclaim_state->reclaimed_slab = 0;
2907 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2908 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2910 /* Account for the number of pages attempted to reclaim */
2911 *nr_attempted += sc->nr_to_reclaim;
2913 zone_clear_flag(zone, ZONE_WRITEBACK);
2916 * If a zone reaches its high watermark, consider it to be no longer
2917 * congested. It's possible there are dirty pages backed by congested
2918 * BDIs but as pressure is relieved, speculatively avoid congestion
2919 * waits.
2921 if (zone_reclaimable(zone) &&
2922 zone_balanced(zone, testorder, 0, classzone_idx)) {
2923 zone_clear_flag(zone, ZONE_CONGESTED);
2924 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2927 return sc->nr_scanned >= sc->nr_to_reclaim;
2931 * For kswapd, balance_pgdat() will work across all this node's zones until
2932 * they are all at high_wmark_pages(zone).
2934 * Returns the final order kswapd was reclaiming at
2936 * There is special handling here for zones which are full of pinned pages.
2937 * This can happen if the pages are all mlocked, or if they are all used by
2938 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2939 * What we do is to detect the case where all pages in the zone have been
2940 * scanned twice and there has been zero successful reclaim. Mark the zone as
2941 * dead and from now on, only perform a short scan. Basically we're polling
2942 * the zone for when the problem goes away.
2944 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2945 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2946 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2947 * lower zones regardless of the number of free pages in the lower zones. This
2948 * interoperates with the page allocator fallback scheme to ensure that aging
2949 * of pages is balanced across the zones.
2951 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2952 int *classzone_idx)
2954 int i;
2955 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2956 unsigned long nr_soft_reclaimed;
2957 unsigned long nr_soft_scanned;
2958 struct scan_control sc = {
2959 .gfp_mask = GFP_KERNEL,
2960 .priority = DEF_PRIORITY,
2961 .may_unmap = 1,
2962 .may_swap = 1,
2963 .may_writepage = !laptop_mode,
2964 .order = order,
2965 .target_mem_cgroup = NULL,
2967 count_vm_event(PAGEOUTRUN);
2969 do {
2970 unsigned long lru_pages = 0;
2971 unsigned long nr_attempted = 0;
2972 bool raise_priority = true;
2973 bool pgdat_needs_compaction = (order > 0);
2975 sc.nr_reclaimed = 0;
2978 * Scan in the highmem->dma direction for the highest
2979 * zone which needs scanning
2981 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2982 struct zone *zone = pgdat->node_zones + i;
2984 if (!populated_zone(zone))
2985 continue;
2987 if (sc.priority != DEF_PRIORITY &&
2988 !zone_reclaimable(zone))
2989 continue;
2992 * Do some background aging of the anon list, to give
2993 * pages a chance to be referenced before reclaiming.
2995 age_active_anon(zone, &sc);
2998 * If the number of buffer_heads in the machine
2999 * exceeds the maximum allowed level and this node
3000 * has a highmem zone, force kswapd to reclaim from
3001 * it to relieve lowmem pressure.
3003 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3004 end_zone = i;
3005 break;
3008 if (!zone_balanced(zone, order, 0, 0)) {
3009 end_zone = i;
3010 break;
3011 } else {
3013 * If balanced, clear the dirty and congested
3014 * flags
3016 zone_clear_flag(zone, ZONE_CONGESTED);
3017 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3021 if (i < 0)
3022 goto out;
3024 for (i = 0; i <= end_zone; i++) {
3025 struct zone *zone = pgdat->node_zones + i;
3027 if (!populated_zone(zone))
3028 continue;
3030 lru_pages += zone_reclaimable_pages(zone);
3033 * If any zone is currently balanced then kswapd will
3034 * not call compaction as it is expected that the
3035 * necessary pages are already available.
3037 if (pgdat_needs_compaction &&
3038 zone_watermark_ok(zone, order,
3039 low_wmark_pages(zone),
3040 *classzone_idx, 0))
3041 pgdat_needs_compaction = false;
3045 * If we're getting trouble reclaiming, start doing writepage
3046 * even in laptop mode.
3048 if (sc.priority < DEF_PRIORITY - 2)
3049 sc.may_writepage = 1;
3052 * Now scan the zone in the dma->highmem direction, stopping
3053 * at the last zone which needs scanning.
3055 * We do this because the page allocator works in the opposite
3056 * direction. This prevents the page allocator from allocating
3057 * pages behind kswapd's direction of progress, which would
3058 * cause too much scanning of the lower zones.
3060 for (i = 0; i <= end_zone; i++) {
3061 struct zone *zone = pgdat->node_zones + i;
3063 if (!populated_zone(zone))
3064 continue;
3066 if (sc.priority != DEF_PRIORITY &&
3067 !zone_reclaimable(zone))
3068 continue;
3070 sc.nr_scanned = 0;
3072 nr_soft_scanned = 0;
3074 * Call soft limit reclaim before calling shrink_zone.
3076 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3077 order, sc.gfp_mask,
3078 &nr_soft_scanned);
3079 sc.nr_reclaimed += nr_soft_reclaimed;
3082 * There should be no need to raise the scanning
3083 * priority if enough pages are already being scanned
3084 * that that high watermark would be met at 100%
3085 * efficiency.
3087 if (kswapd_shrink_zone(zone, end_zone, &sc,
3088 lru_pages, &nr_attempted))
3089 raise_priority = false;
3093 * If the low watermark is met there is no need for processes
3094 * to be throttled on pfmemalloc_wait as they should not be
3095 * able to safely make forward progress. Wake them
3097 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3098 pfmemalloc_watermark_ok(pgdat))
3099 wake_up(&pgdat->pfmemalloc_wait);
3102 * Fragmentation may mean that the system cannot be rebalanced
3103 * for high-order allocations in all zones. If twice the
3104 * allocation size has been reclaimed and the zones are still
3105 * not balanced then recheck the watermarks at order-0 to
3106 * prevent kswapd reclaiming excessively. Assume that a
3107 * process requested a high-order can direct reclaim/compact.
3109 if (order && sc.nr_reclaimed >= 2UL << order)
3110 order = sc.order = 0;
3112 /* Check if kswapd should be suspending */
3113 if (try_to_freeze() || kthread_should_stop())
3114 break;
3117 * Compact if necessary and kswapd is reclaiming at least the
3118 * high watermark number of pages as requsted
3120 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3121 compact_pgdat(pgdat, order);
3124 * Raise priority if scanning rate is too low or there was no
3125 * progress in reclaiming pages
3127 if (raise_priority || !sc.nr_reclaimed)
3128 sc.priority--;
3129 } while (sc.priority >= 1 &&
3130 !pgdat_balanced(pgdat, order, *classzone_idx));
3132 out:
3134 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3135 * makes a decision on the order we were last reclaiming at. However,
3136 * if another caller entered the allocator slow path while kswapd
3137 * was awake, order will remain at the higher level
3139 *classzone_idx = end_zone;
3140 return order;
3143 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3145 long remaining = 0;
3146 DEFINE_WAIT(wait);
3148 if (freezing(current) || kthread_should_stop())
3149 return;
3151 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3153 /* Try to sleep for a short interval */
3154 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3155 remaining = schedule_timeout(HZ/10);
3156 finish_wait(&pgdat->kswapd_wait, &wait);
3157 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3161 * After a short sleep, check if it was a premature sleep. If not, then
3162 * go fully to sleep until explicitly woken up.
3164 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3165 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3168 * vmstat counters are not perfectly accurate and the estimated
3169 * value for counters such as NR_FREE_PAGES can deviate from the
3170 * true value by nr_online_cpus * threshold. To avoid the zone
3171 * watermarks being breached while under pressure, we reduce the
3172 * per-cpu vmstat threshold while kswapd is awake and restore
3173 * them before going back to sleep.
3175 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3178 * Compaction records what page blocks it recently failed to
3179 * isolate pages from and skips them in the future scanning.
3180 * When kswapd is going to sleep, it is reasonable to assume
3181 * that pages and compaction may succeed so reset the cache.
3183 reset_isolation_suitable(pgdat);
3185 if (!kthread_should_stop())
3186 schedule();
3188 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3189 } else {
3190 if (remaining)
3191 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3192 else
3193 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3195 finish_wait(&pgdat->kswapd_wait, &wait);
3199 * The background pageout daemon, started as a kernel thread
3200 * from the init process.
3202 * This basically trickles out pages so that we have _some_
3203 * free memory available even if there is no other activity
3204 * that frees anything up. This is needed for things like routing
3205 * etc, where we otherwise might have all activity going on in
3206 * asynchronous contexts that cannot page things out.
3208 * If there are applications that are active memory-allocators
3209 * (most normal use), this basically shouldn't matter.
3211 static int kswapd(void *p)
3213 unsigned long order, new_order;
3214 unsigned balanced_order;
3215 int classzone_idx, new_classzone_idx;
3216 int balanced_classzone_idx;
3217 pg_data_t *pgdat = (pg_data_t*)p;
3218 struct task_struct *tsk = current;
3220 struct reclaim_state reclaim_state = {
3221 .reclaimed_slab = 0,
3223 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3225 lockdep_set_current_reclaim_state(GFP_KERNEL);
3227 if (!cpumask_empty(cpumask))
3228 set_cpus_allowed_ptr(tsk, cpumask);
3229 current->reclaim_state = &reclaim_state;
3232 * Tell the memory management that we're a "memory allocator",
3233 * and that if we need more memory we should get access to it
3234 * regardless (see "__alloc_pages()"). "kswapd" should
3235 * never get caught in the normal page freeing logic.
3237 * (Kswapd normally doesn't need memory anyway, but sometimes
3238 * you need a small amount of memory in order to be able to
3239 * page out something else, and this flag essentially protects
3240 * us from recursively trying to free more memory as we're
3241 * trying to free the first piece of memory in the first place).
3243 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3244 set_freezable();
3246 order = new_order = 0;
3247 balanced_order = 0;
3248 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3249 balanced_classzone_idx = classzone_idx;
3250 for ( ; ; ) {
3251 bool ret;
3254 * If the last balance_pgdat was unsuccessful it's unlikely a
3255 * new request of a similar or harder type will succeed soon
3256 * so consider going to sleep on the basis we reclaimed at
3258 if (balanced_classzone_idx >= new_classzone_idx &&
3259 balanced_order == new_order) {
3260 new_order = pgdat->kswapd_max_order;
3261 new_classzone_idx = pgdat->classzone_idx;
3262 pgdat->kswapd_max_order = 0;
3263 pgdat->classzone_idx = pgdat->nr_zones - 1;
3266 if (order < new_order || classzone_idx > new_classzone_idx) {
3268 * Don't sleep if someone wants a larger 'order'
3269 * allocation or has tigher zone constraints
3271 order = new_order;
3272 classzone_idx = new_classzone_idx;
3273 } else {
3274 kswapd_try_to_sleep(pgdat, balanced_order,
3275 balanced_classzone_idx);
3276 order = pgdat->kswapd_max_order;
3277 classzone_idx = pgdat->classzone_idx;
3278 new_order = order;
3279 new_classzone_idx = classzone_idx;
3280 pgdat->kswapd_max_order = 0;
3281 pgdat->classzone_idx = pgdat->nr_zones - 1;
3284 ret = try_to_freeze();
3285 if (kthread_should_stop())
3286 break;
3289 * We can speed up thawing tasks if we don't call balance_pgdat
3290 * after returning from the refrigerator
3292 if (!ret) {
3293 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3294 balanced_classzone_idx = classzone_idx;
3295 balanced_order = balance_pgdat(pgdat, order,
3296 &balanced_classzone_idx);
3300 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3301 current->reclaim_state = NULL;
3302 lockdep_clear_current_reclaim_state();
3304 return 0;
3308 * A zone is low on free memory, so wake its kswapd task to service it.
3310 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3312 pg_data_t *pgdat;
3314 if (!populated_zone(zone))
3315 return;
3317 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3318 return;
3319 pgdat = zone->zone_pgdat;
3320 if (pgdat->kswapd_max_order < order) {
3321 pgdat->kswapd_max_order = order;
3322 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3324 if (!waitqueue_active(&pgdat->kswapd_wait))
3325 return;
3326 if (zone_balanced(zone, order, 0, 0))
3327 return;
3329 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3330 wake_up_interruptible(&pgdat->kswapd_wait);
3333 #ifdef CONFIG_HIBERNATION
3335 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3336 * freed pages.
3338 * Rather than trying to age LRUs the aim is to preserve the overall
3339 * LRU order by reclaiming preferentially
3340 * inactive > active > active referenced > active mapped
3342 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3344 struct reclaim_state reclaim_state;
3345 struct scan_control sc = {
3346 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3347 .may_swap = 1,
3348 .may_unmap = 1,
3349 .may_writepage = 1,
3350 .nr_to_reclaim = nr_to_reclaim,
3351 .hibernation_mode = 1,
3352 .order = 0,
3353 .priority = DEF_PRIORITY,
3355 struct shrink_control shrink = {
3356 .gfp_mask = sc.gfp_mask,
3358 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3359 struct task_struct *p = current;
3360 unsigned long nr_reclaimed;
3362 p->flags |= PF_MEMALLOC;
3363 lockdep_set_current_reclaim_state(sc.gfp_mask);
3364 reclaim_state.reclaimed_slab = 0;
3365 p->reclaim_state = &reclaim_state;
3367 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3369 p->reclaim_state = NULL;
3370 lockdep_clear_current_reclaim_state();
3371 p->flags &= ~PF_MEMALLOC;
3373 return nr_reclaimed;
3375 #endif /* CONFIG_HIBERNATION */
3377 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3378 not required for correctness. So if the last cpu in a node goes
3379 away, we get changed to run anywhere: as the first one comes back,
3380 restore their cpu bindings. */
3381 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3382 void *hcpu)
3384 int nid;
3386 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3387 for_each_node_state(nid, N_MEMORY) {
3388 pg_data_t *pgdat = NODE_DATA(nid);
3389 const struct cpumask *mask;
3391 mask = cpumask_of_node(pgdat->node_id);
3393 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3394 /* One of our CPUs online: restore mask */
3395 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3398 return NOTIFY_OK;
3402 * This kswapd start function will be called by init and node-hot-add.
3403 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3405 int kswapd_run(int nid)
3407 pg_data_t *pgdat = NODE_DATA(nid);
3408 int ret = 0;
3410 if (pgdat->kswapd)
3411 return 0;
3413 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3414 if (IS_ERR(pgdat->kswapd)) {
3415 /* failure at boot is fatal */
3416 BUG_ON(system_state == SYSTEM_BOOTING);
3417 pr_err("Failed to start kswapd on node %d\n", nid);
3418 ret = PTR_ERR(pgdat->kswapd);
3419 pgdat->kswapd = NULL;
3421 return ret;
3425 * Called by memory hotplug when all memory in a node is offlined. Caller must
3426 * hold lock_memory_hotplug().
3428 void kswapd_stop(int nid)
3430 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3432 if (kswapd) {
3433 kthread_stop(kswapd);
3434 NODE_DATA(nid)->kswapd = NULL;
3438 static int __init kswapd_init(void)
3440 int nid;
3442 swap_setup();
3443 for_each_node_state(nid, N_MEMORY)
3444 kswapd_run(nid);
3445 hotcpu_notifier(cpu_callback, 0);
3446 return 0;
3449 module_init(kswapd_init)
3451 #ifdef CONFIG_NUMA
3453 * Zone reclaim mode
3455 * If non-zero call zone_reclaim when the number of free pages falls below
3456 * the watermarks.
3458 int zone_reclaim_mode __read_mostly;
3460 #define RECLAIM_OFF 0
3461 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3462 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3463 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3466 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3467 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3468 * a zone.
3470 #define ZONE_RECLAIM_PRIORITY 4
3473 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3474 * occur.
3476 int sysctl_min_unmapped_ratio = 1;
3479 * If the number of slab pages in a zone grows beyond this percentage then
3480 * slab reclaim needs to occur.
3482 int sysctl_min_slab_ratio = 5;
3484 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3486 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3487 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3488 zone_page_state(zone, NR_ACTIVE_FILE);
3491 * It's possible for there to be more file mapped pages than
3492 * accounted for by the pages on the file LRU lists because
3493 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3495 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3498 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3499 static long zone_pagecache_reclaimable(struct zone *zone)
3501 long nr_pagecache_reclaimable;
3502 long delta = 0;
3505 * If RECLAIM_SWAP is set, then all file pages are considered
3506 * potentially reclaimable. Otherwise, we have to worry about
3507 * pages like swapcache and zone_unmapped_file_pages() provides
3508 * a better estimate
3510 if (zone_reclaim_mode & RECLAIM_SWAP)
3511 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3512 else
3513 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3515 /* If we can't clean pages, remove dirty pages from consideration */
3516 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3517 delta += zone_page_state(zone, NR_FILE_DIRTY);
3519 /* Watch for any possible underflows due to delta */
3520 if (unlikely(delta > nr_pagecache_reclaimable))
3521 delta = nr_pagecache_reclaimable;
3523 return nr_pagecache_reclaimable - delta;
3527 * Try to free up some pages from this zone through reclaim.
3529 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3531 /* Minimum pages needed in order to stay on node */
3532 const unsigned long nr_pages = 1 << order;
3533 struct task_struct *p = current;
3534 struct reclaim_state reclaim_state;
3535 struct scan_control sc = {
3536 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3537 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3538 .may_swap = 1,
3539 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3540 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3541 .order = order,
3542 .priority = ZONE_RECLAIM_PRIORITY,
3544 struct shrink_control shrink = {
3545 .gfp_mask = sc.gfp_mask,
3547 unsigned long nr_slab_pages0, nr_slab_pages1;
3549 cond_resched();
3551 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3552 * and we also need to be able to write out pages for RECLAIM_WRITE
3553 * and RECLAIM_SWAP.
3555 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3556 lockdep_set_current_reclaim_state(gfp_mask);
3557 reclaim_state.reclaimed_slab = 0;
3558 p->reclaim_state = &reclaim_state;
3560 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3562 * Free memory by calling shrink zone with increasing
3563 * priorities until we have enough memory freed.
3565 do {
3566 shrink_zone(zone, &sc);
3567 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3570 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3571 if (nr_slab_pages0 > zone->min_slab_pages) {
3573 * shrink_slab() does not currently allow us to determine how
3574 * many pages were freed in this zone. So we take the current
3575 * number of slab pages and shake the slab until it is reduced
3576 * by the same nr_pages that we used for reclaiming unmapped
3577 * pages.
3579 nodes_clear(shrink.nodes_to_scan);
3580 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3581 for (;;) {
3582 unsigned long lru_pages = zone_reclaimable_pages(zone);
3584 /* No reclaimable slab or very low memory pressure */
3585 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3586 break;
3588 /* Freed enough memory */
3589 nr_slab_pages1 = zone_page_state(zone,
3590 NR_SLAB_RECLAIMABLE);
3591 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3592 break;
3596 * Update nr_reclaimed by the number of slab pages we
3597 * reclaimed from this zone.
3599 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3600 if (nr_slab_pages1 < nr_slab_pages0)
3601 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3604 p->reclaim_state = NULL;
3605 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3606 lockdep_clear_current_reclaim_state();
3607 return sc.nr_reclaimed >= nr_pages;
3610 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3612 int node_id;
3613 int ret;
3616 * Zone reclaim reclaims unmapped file backed pages and
3617 * slab pages if we are over the defined limits.
3619 * A small portion of unmapped file backed pages is needed for
3620 * file I/O otherwise pages read by file I/O will be immediately
3621 * thrown out if the zone is overallocated. So we do not reclaim
3622 * if less than a specified percentage of the zone is used by
3623 * unmapped file backed pages.
3625 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3626 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3627 return ZONE_RECLAIM_FULL;
3629 if (!zone_reclaimable(zone))
3630 return ZONE_RECLAIM_FULL;
3633 * Do not scan if the allocation should not be delayed.
3635 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3636 return ZONE_RECLAIM_NOSCAN;
3639 * Only run zone reclaim on the local zone or on zones that do not
3640 * have associated processors. This will favor the local processor
3641 * over remote processors and spread off node memory allocations
3642 * as wide as possible.
3644 node_id = zone_to_nid(zone);
3645 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3646 return ZONE_RECLAIM_NOSCAN;
3648 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3649 return ZONE_RECLAIM_NOSCAN;
3651 ret = __zone_reclaim(zone, gfp_mask, order);
3652 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3654 if (!ret)
3655 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3657 return ret;
3659 #endif
3662 * page_evictable - test whether a page is evictable
3663 * @page: the page to test
3665 * Test whether page is evictable--i.e., should be placed on active/inactive
3666 * lists vs unevictable list.
3668 * Reasons page might not be evictable:
3669 * (1) page's mapping marked unevictable
3670 * (2) page is part of an mlocked VMA
3673 int page_evictable(struct page *page)
3675 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3678 #ifdef CONFIG_SHMEM
3680 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3681 * @pages: array of pages to check
3682 * @nr_pages: number of pages to check
3684 * Checks pages for evictability and moves them to the appropriate lru list.
3686 * This function is only used for SysV IPC SHM_UNLOCK.
3688 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3690 struct lruvec *lruvec;
3691 struct zone *zone = NULL;
3692 int pgscanned = 0;
3693 int pgrescued = 0;
3694 int i;
3696 for (i = 0; i < nr_pages; i++) {
3697 struct page *page = pages[i];
3698 struct zone *pagezone;
3700 pgscanned++;
3701 pagezone = page_zone(page);
3702 if (pagezone != zone) {
3703 if (zone)
3704 spin_unlock_irq(&zone->lru_lock);
3705 zone = pagezone;
3706 spin_lock_irq(&zone->lru_lock);
3708 lruvec = mem_cgroup_page_lruvec(page, zone);
3710 if (!PageLRU(page) || !PageUnevictable(page))
3711 continue;
3713 if (page_evictable(page)) {
3714 enum lru_list lru = page_lru_base_type(page);
3716 VM_BUG_ON(PageActive(page));
3717 ClearPageUnevictable(page);
3718 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3719 add_page_to_lru_list(page, lruvec, lru);
3720 pgrescued++;
3724 if (zone) {
3725 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3726 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3727 spin_unlock_irq(&zone->lru_lock);
3730 #endif /* CONFIG_SHMEM */
3732 static void warn_scan_unevictable_pages(void)
3734 printk_once(KERN_WARNING
3735 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3736 "disabled for lack of a legitimate use case. If you have "
3737 "one, please send an email to linux-mm@kvack.org.\n",
3738 current->comm);
3742 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3743 * all nodes' unevictable lists for evictable pages
3745 unsigned long scan_unevictable_pages;
3747 int scan_unevictable_handler(struct ctl_table *table, int write,
3748 void __user *buffer,
3749 size_t *length, loff_t *ppos)
3751 warn_scan_unevictable_pages();
3752 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3753 scan_unevictable_pages = 0;
3754 return 0;
3757 #ifdef CONFIG_NUMA
3759 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3760 * a specified node's per zone unevictable lists for evictable pages.
3763 static ssize_t read_scan_unevictable_node(struct device *dev,
3764 struct device_attribute *attr,
3765 char *buf)
3767 warn_scan_unevictable_pages();
3768 return sprintf(buf, "0\n"); /* always zero; should fit... */
3771 static ssize_t write_scan_unevictable_node(struct device *dev,
3772 struct device_attribute *attr,
3773 const char *buf, size_t count)
3775 warn_scan_unevictable_pages();
3776 return 1;
3780 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3781 read_scan_unevictable_node,
3782 write_scan_unevictable_node);
3784 int scan_unevictable_register_node(struct node *node)
3786 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3789 void scan_unevictable_unregister_node(struct node *node)
3791 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3793 #endif