hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / net / socket.c
blobc8ca896a9a5a1c8f67c053b10de88cd6fe941192
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .aio_read = sock_aio_read,
145 .aio_write = sock_aio_write,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .open = sock_no_open, /* special open code to disallow open via /proc */
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 * Statistics counters of the socket lists
171 static DEFINE_PER_CPU(int, sockets_in_use);
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
221 int err;
222 int len;
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
242 return __put_user(klen, ulen);
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
247 static struct inode *sock_alloc_inode(struct super_block *sb)
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
270 return &ei->vfs_inode;
273 static void sock_destroy_inode(struct inode *inode)
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
284 static void init_once(void *foo)
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
288 inode_init_once(&ei->vfs_inode);
291 static int init_inodecache(void)
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
312 * sockfs_dname() is called from d_path().
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 static struct vfsmount *sock_mnt __read_mostly;
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
340 * Obtains the first available file descriptor and sets it up for use.
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375 SOCK_INODE(sock)->i_fop = &socket_file_ops;
377 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
378 &socket_file_ops);
379 if (unlikely(IS_ERR(file))) {
380 /* drop dentry, keep inode */
381 ihold(path.dentry->d_inode);
382 path_put(&path);
383 return file;
386 sock->file = file;
387 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 file->private_data = sock;
389 return file;
391 EXPORT_SYMBOL(sock_alloc_file);
393 static int sock_map_fd(struct socket *sock, int flags)
395 struct file *newfile;
396 int fd = get_unused_fd_flags(flags);
397 if (unlikely(fd < 0))
398 return fd;
400 newfile = sock_alloc_file(sock, flags, NULL);
401 if (likely(!IS_ERR(newfile))) {
402 fd_install(fd, newfile);
403 return fd;
406 put_unused_fd(fd);
407 return PTR_ERR(newfile);
410 struct socket *sock_from_file(struct file *file, int *err)
412 if (file->f_op == &socket_file_ops)
413 return file->private_data; /* set in sock_map_fd */
415 *err = -ENOTSOCK;
416 return NULL;
418 EXPORT_SYMBOL(sock_from_file);
421 * sockfd_lookup - Go from a file number to its socket slot
422 * @fd: file handle
423 * @err: pointer to an error code return
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
430 * On a success the socket object pointer is returned.
433 struct socket *sockfd_lookup(int fd, int *err)
435 struct file *file;
436 struct socket *sock;
438 file = fget(fd);
439 if (!file) {
440 *err = -EBADF;
441 return NULL;
444 sock = sock_from_file(file, err);
445 if (!sock)
446 fput(file);
447 return sock;
449 EXPORT_SYMBOL(sockfd_lookup);
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453 struct file *file;
454 struct socket *sock;
456 *err = -EBADF;
457 file = fget_light(fd, fput_needed);
458 if (file) {
459 sock = sock_from_file(file, err);
460 if (sock)
461 return sock;
462 fput_light(file, *fput_needed);
464 return NULL;
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
473 const char *proto_name;
474 size_t proto_size;
475 int error;
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
487 strncpy(value, proto_name, proto_size + 1);
489 error = proto_size + 1;
492 out:
493 return error;
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
499 ssize_t len;
500 ssize_t used = 0;
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
521 return used;
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
530 * sock_alloc - allocate a socket
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
537 static struct socket *sock_alloc(void)
539 struct inode *inode;
540 struct socket *sock;
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
546 sock = SOCKET_I(inode);
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
560 * In theory you can't get an open on this inode, but /proc provides
561 * a back door. Remember to keep it shut otherwise you'll let the
562 * creepy crawlies in.
565 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
567 return -ENXIO;
570 const struct file_operations bad_sock_fops = {
571 .owner = THIS_MODULE,
572 .open = sock_no_open,
573 .llseek = noop_llseek,
577 * sock_release - close a socket
578 * @sock: socket to close
580 * The socket is released from the protocol stack if it has a release
581 * callback, and the inode is then released if the socket is bound to
582 * an inode not a file.
585 void sock_release(struct socket *sock)
587 if (sock->ops) {
588 struct module *owner = sock->ops->owner;
590 sock->ops->release(sock);
591 sock->ops = NULL;
592 module_put(owner);
595 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
596 printk(KERN_ERR "sock_release: fasync list not empty!\n");
598 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
599 return;
601 this_cpu_sub(sockets_in_use, 1);
602 if (!sock->file) {
603 iput(SOCK_INODE(sock));
604 return;
606 sock->file = NULL;
608 EXPORT_SYMBOL(sock_release);
610 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
612 *tx_flags = 0;
613 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
614 *tx_flags |= SKBTX_HW_TSTAMP;
615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
616 *tx_flags |= SKBTX_SW_TSTAMP;
617 if (sock_flag(sk, SOCK_WIFI_STATUS))
618 *tx_flags |= SKBTX_WIFI_STATUS;
620 EXPORT_SYMBOL(sock_tx_timestamp);
622 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
623 struct msghdr *msg, size_t size)
625 struct sock_iocb *si = kiocb_to_siocb(iocb);
627 si->sock = sock;
628 si->scm = NULL;
629 si->msg = msg;
630 si->size = size;
632 return sock->ops->sendmsg(iocb, sock, msg, size);
635 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
636 struct msghdr *msg, size_t size)
638 int err = security_socket_sendmsg(sock, msg, size);
640 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
643 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
645 struct kiocb iocb;
646 struct sock_iocb siocb;
647 int ret;
649 init_sync_kiocb(&iocb, NULL);
650 iocb.private = &siocb;
651 ret = __sock_sendmsg(&iocb, sock, msg, size);
652 if (-EIOCBQUEUED == ret)
653 ret = wait_on_sync_kiocb(&iocb);
654 return ret;
656 EXPORT_SYMBOL(sock_sendmsg);
658 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
660 struct kiocb iocb;
661 struct sock_iocb siocb;
662 int ret;
664 init_sync_kiocb(&iocb, NULL);
665 iocb.private = &siocb;
666 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
667 if (-EIOCBQUEUED == ret)
668 ret = wait_on_sync_kiocb(&iocb);
669 return ret;
672 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
673 struct kvec *vec, size_t num, size_t size)
675 mm_segment_t oldfs = get_fs();
676 int result;
678 set_fs(KERNEL_DS);
680 * the following is safe, since for compiler definitions of kvec and
681 * iovec are identical, yielding the same in-core layout and alignment
683 msg->msg_iov = (struct iovec *)vec;
684 msg->msg_iovlen = num;
685 result = sock_sendmsg(sock, msg, size);
686 set_fs(oldfs);
687 return result;
689 EXPORT_SYMBOL(kernel_sendmsg);
692 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
694 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
695 struct sk_buff *skb)
697 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
698 struct timespec ts[3];
699 int empty = 1;
700 struct skb_shared_hwtstamps *shhwtstamps =
701 skb_hwtstamps(skb);
703 /* Race occurred between timestamp enabling and packet
704 receiving. Fill in the current time for now. */
705 if (need_software_tstamp && skb->tstamp.tv64 == 0)
706 __net_timestamp(skb);
708 if (need_software_tstamp) {
709 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
710 struct timeval tv;
711 skb_get_timestamp(skb, &tv);
712 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
713 sizeof(tv), &tv);
714 } else {
715 skb_get_timestampns(skb, &ts[0]);
716 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
717 sizeof(ts[0]), &ts[0]);
722 memset(ts, 0, sizeof(ts));
723 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
724 ktime_to_timespec_cond(skb->tstamp, ts + 0))
725 empty = 0;
726 if (shhwtstamps) {
727 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
728 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
729 empty = 0;
730 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
731 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
732 empty = 0;
734 if (!empty)
735 put_cmsg(msg, SOL_SOCKET,
736 SCM_TIMESTAMPING, sizeof(ts), &ts);
738 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
740 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
741 struct sk_buff *skb)
743 int ack;
745 if (!sock_flag(sk, SOCK_WIFI_STATUS))
746 return;
747 if (!skb->wifi_acked_valid)
748 return;
750 ack = skb->wifi_acked;
752 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
754 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
756 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
757 struct sk_buff *skb)
759 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
760 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
761 sizeof(__u32), &skb->dropcount);
764 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
765 struct sk_buff *skb)
767 sock_recv_timestamp(msg, sk, skb);
768 sock_recv_drops(msg, sk, skb);
770 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
772 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
773 struct msghdr *msg, size_t size, int flags)
775 struct sock_iocb *si = kiocb_to_siocb(iocb);
777 si->sock = sock;
778 si->scm = NULL;
779 si->msg = msg;
780 si->size = size;
781 si->flags = flags;
783 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
786 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
787 struct msghdr *msg, size_t size, int flags)
789 int err = security_socket_recvmsg(sock, msg, size, flags);
791 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
794 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
795 size_t size, int flags)
797 struct kiocb iocb;
798 struct sock_iocb siocb;
799 int ret;
801 init_sync_kiocb(&iocb, NULL);
802 iocb.private = &siocb;
803 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
804 if (-EIOCBQUEUED == ret)
805 ret = wait_on_sync_kiocb(&iocb);
806 return ret;
808 EXPORT_SYMBOL(sock_recvmsg);
810 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
811 size_t size, int flags)
813 struct kiocb iocb;
814 struct sock_iocb siocb;
815 int ret;
817 init_sync_kiocb(&iocb, NULL);
818 iocb.private = &siocb;
819 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
820 if (-EIOCBQUEUED == ret)
821 ret = wait_on_sync_kiocb(&iocb);
822 return ret;
826 * kernel_recvmsg - Receive a message from a socket (kernel space)
827 * @sock: The socket to receive the message from
828 * @msg: Received message
829 * @vec: Input s/g array for message data
830 * @num: Size of input s/g array
831 * @size: Number of bytes to read
832 * @flags: Message flags (MSG_DONTWAIT, etc...)
834 * On return the msg structure contains the scatter/gather array passed in the
835 * vec argument. The array is modified so that it consists of the unfilled
836 * portion of the original array.
838 * The returned value is the total number of bytes received, or an error.
840 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
841 struct kvec *vec, size_t num, size_t size, int flags)
843 mm_segment_t oldfs = get_fs();
844 int result;
846 set_fs(KERNEL_DS);
848 * the following is safe, since for compiler definitions of kvec and
849 * iovec are identical, yielding the same in-core layout and alignment
851 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
852 result = sock_recvmsg(sock, msg, size, flags);
853 set_fs(oldfs);
854 return result;
856 EXPORT_SYMBOL(kernel_recvmsg);
858 static ssize_t sock_sendpage(struct file *file, struct page *page,
859 int offset, size_t size, loff_t *ppos, int more)
861 struct socket *sock;
862 int flags;
864 sock = file->private_data;
866 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
867 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
868 flags |= more;
870 return kernel_sendpage(sock, page, offset, size, flags);
873 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
874 struct pipe_inode_info *pipe, size_t len,
875 unsigned int flags)
877 struct socket *sock = file->private_data;
879 if (unlikely(!sock->ops->splice_read))
880 return -EINVAL;
882 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
885 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
886 struct sock_iocb *siocb)
888 if (!is_sync_kiocb(iocb))
889 BUG();
891 siocb->kiocb = iocb;
892 iocb->private = siocb;
893 return siocb;
896 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
897 struct file *file, const struct iovec *iov,
898 unsigned long nr_segs)
900 struct socket *sock = file->private_data;
901 size_t size = 0;
902 int i;
904 for (i = 0; i < nr_segs; i++)
905 size += iov[i].iov_len;
907 msg->msg_name = NULL;
908 msg->msg_namelen = 0;
909 msg->msg_control = NULL;
910 msg->msg_controllen = 0;
911 msg->msg_iov = (struct iovec *)iov;
912 msg->msg_iovlen = nr_segs;
913 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
915 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
919 unsigned long nr_segs, loff_t pos)
921 struct sock_iocb siocb, *x;
923 if (pos != 0)
924 return -ESPIPE;
926 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
927 return 0;
930 x = alloc_sock_iocb(iocb, &siocb);
931 if (!x)
932 return -ENOMEM;
933 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
937 struct file *file, const struct iovec *iov,
938 unsigned long nr_segs)
940 struct socket *sock = file->private_data;
941 size_t size = 0;
942 int i;
944 for (i = 0; i < nr_segs; i++)
945 size += iov[i].iov_len;
947 msg->msg_name = NULL;
948 msg->msg_namelen = 0;
949 msg->msg_control = NULL;
950 msg->msg_controllen = 0;
951 msg->msg_iov = (struct iovec *)iov;
952 msg->msg_iovlen = nr_segs;
953 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
954 if (sock->type == SOCK_SEQPACKET)
955 msg->msg_flags |= MSG_EOR;
957 return __sock_sendmsg(iocb, sock, msg, size);
960 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
961 unsigned long nr_segs, loff_t pos)
963 struct sock_iocb siocb, *x;
965 if (pos != 0)
966 return -ESPIPE;
968 x = alloc_sock_iocb(iocb, &siocb);
969 if (!x)
970 return -ENOMEM;
972 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
976 * Atomic setting of ioctl hooks to avoid race
977 * with module unload.
980 static DEFINE_MUTEX(br_ioctl_mutex);
981 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
983 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
985 mutex_lock(&br_ioctl_mutex);
986 br_ioctl_hook = hook;
987 mutex_unlock(&br_ioctl_mutex);
989 EXPORT_SYMBOL(brioctl_set);
991 static DEFINE_MUTEX(vlan_ioctl_mutex);
992 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
994 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
996 mutex_lock(&vlan_ioctl_mutex);
997 vlan_ioctl_hook = hook;
998 mutex_unlock(&vlan_ioctl_mutex);
1000 EXPORT_SYMBOL(vlan_ioctl_set);
1002 static DEFINE_MUTEX(dlci_ioctl_mutex);
1003 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1005 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1007 mutex_lock(&dlci_ioctl_mutex);
1008 dlci_ioctl_hook = hook;
1009 mutex_unlock(&dlci_ioctl_mutex);
1011 EXPORT_SYMBOL(dlci_ioctl_set);
1013 static long sock_do_ioctl(struct net *net, struct socket *sock,
1014 unsigned int cmd, unsigned long arg)
1016 int err;
1017 void __user *argp = (void __user *)arg;
1019 err = sock->ops->ioctl(sock, cmd, arg);
1022 * If this ioctl is unknown try to hand it down
1023 * to the NIC driver.
1025 if (err == -ENOIOCTLCMD)
1026 err = dev_ioctl(net, cmd, argp);
1028 return err;
1032 * With an ioctl, arg may well be a user mode pointer, but we don't know
1033 * what to do with it - that's up to the protocol still.
1036 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1038 struct socket *sock;
1039 struct sock *sk;
1040 void __user *argp = (void __user *)arg;
1041 int pid, err;
1042 struct net *net;
1044 sock = file->private_data;
1045 sk = sock->sk;
1046 net = sock_net(sk);
1047 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1048 err = dev_ioctl(net, cmd, argp);
1049 } else
1050 #ifdef CONFIG_WEXT_CORE
1051 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1052 err = dev_ioctl(net, cmd, argp);
1053 } else
1054 #endif
1055 switch (cmd) {
1056 case FIOSETOWN:
1057 case SIOCSPGRP:
1058 err = -EFAULT;
1059 if (get_user(pid, (int __user *)argp))
1060 break;
1061 err = f_setown(sock->file, pid, 1);
1062 break;
1063 case FIOGETOWN:
1064 case SIOCGPGRP:
1065 err = put_user(f_getown(sock->file),
1066 (int __user *)argp);
1067 break;
1068 case SIOCGIFBR:
1069 case SIOCSIFBR:
1070 case SIOCBRADDBR:
1071 case SIOCBRDELBR:
1072 err = -ENOPKG;
1073 if (!br_ioctl_hook)
1074 request_module("bridge");
1076 mutex_lock(&br_ioctl_mutex);
1077 if (br_ioctl_hook)
1078 err = br_ioctl_hook(net, cmd, argp);
1079 mutex_unlock(&br_ioctl_mutex);
1080 break;
1081 case SIOCGIFVLAN:
1082 case SIOCSIFVLAN:
1083 err = -ENOPKG;
1084 if (!vlan_ioctl_hook)
1085 request_module("8021q");
1087 mutex_lock(&vlan_ioctl_mutex);
1088 if (vlan_ioctl_hook)
1089 err = vlan_ioctl_hook(net, argp);
1090 mutex_unlock(&vlan_ioctl_mutex);
1091 break;
1092 case SIOCADDDLCI:
1093 case SIOCDELDLCI:
1094 err = -ENOPKG;
1095 if (!dlci_ioctl_hook)
1096 request_module("dlci");
1098 mutex_lock(&dlci_ioctl_mutex);
1099 if (dlci_ioctl_hook)
1100 err = dlci_ioctl_hook(cmd, argp);
1101 mutex_unlock(&dlci_ioctl_mutex);
1102 break;
1103 default:
1104 err = sock_do_ioctl(net, sock, cmd, arg);
1105 break;
1107 return err;
1110 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1112 int err;
1113 struct socket *sock = NULL;
1115 err = security_socket_create(family, type, protocol, 1);
1116 if (err)
1117 goto out;
1119 sock = sock_alloc();
1120 if (!sock) {
1121 err = -ENOMEM;
1122 goto out;
1125 sock->type = type;
1126 err = security_socket_post_create(sock, family, type, protocol, 1);
1127 if (err)
1128 goto out_release;
1130 out:
1131 *res = sock;
1132 return err;
1133 out_release:
1134 sock_release(sock);
1135 sock = NULL;
1136 goto out;
1138 EXPORT_SYMBOL(sock_create_lite);
1140 /* No kernel lock held - perfect */
1141 static unsigned int sock_poll(struct file *file, poll_table *wait)
1143 unsigned int busy_flag = 0;
1144 struct socket *sock;
1147 * We can't return errors to poll, so it's either yes or no.
1149 sock = file->private_data;
1151 if (sk_can_busy_loop(sock->sk)) {
1152 /* this socket can poll_ll so tell the system call */
1153 busy_flag = POLL_BUSY_LOOP;
1155 /* once, only if requested by syscall */
1156 if (wait && (wait->_key & POLL_BUSY_LOOP))
1157 sk_busy_loop(sock->sk, 1);
1160 return busy_flag | sock->ops->poll(file, sock, wait);
1163 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1165 struct socket *sock = file->private_data;
1167 return sock->ops->mmap(file, sock, vma);
1170 static int sock_close(struct inode *inode, struct file *filp)
1172 sock_release(SOCKET_I(inode));
1173 return 0;
1177 * Update the socket async list
1179 * Fasync_list locking strategy.
1181 * 1. fasync_list is modified only under process context socket lock
1182 * i.e. under semaphore.
1183 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1184 * or under socket lock
1187 static int sock_fasync(int fd, struct file *filp, int on)
1189 struct socket *sock = filp->private_data;
1190 struct sock *sk = sock->sk;
1191 struct socket_wq *wq;
1193 if (sk == NULL)
1194 return -EINVAL;
1196 lock_sock(sk);
1197 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1198 fasync_helper(fd, filp, on, &wq->fasync_list);
1200 if (!wq->fasync_list)
1201 sock_reset_flag(sk, SOCK_FASYNC);
1202 else
1203 sock_set_flag(sk, SOCK_FASYNC);
1205 release_sock(sk);
1206 return 0;
1209 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1211 int sock_wake_async(struct socket *sock, int how, int band)
1213 struct socket_wq *wq;
1215 if (!sock)
1216 return -1;
1217 rcu_read_lock();
1218 wq = rcu_dereference(sock->wq);
1219 if (!wq || !wq->fasync_list) {
1220 rcu_read_unlock();
1221 return -1;
1223 switch (how) {
1224 case SOCK_WAKE_WAITD:
1225 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1226 break;
1227 goto call_kill;
1228 case SOCK_WAKE_SPACE:
1229 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1230 break;
1231 /* fall through */
1232 case SOCK_WAKE_IO:
1233 call_kill:
1234 kill_fasync(&wq->fasync_list, SIGIO, band);
1235 break;
1236 case SOCK_WAKE_URG:
1237 kill_fasync(&wq->fasync_list, SIGURG, band);
1239 rcu_read_unlock();
1240 return 0;
1242 EXPORT_SYMBOL(sock_wake_async);
1244 int __sock_create(struct net *net, int family, int type, int protocol,
1245 struct socket **res, int kern)
1247 int err;
1248 struct socket *sock;
1249 const struct net_proto_family *pf;
1252 * Check protocol is in range
1254 if (family < 0 || family >= NPROTO)
1255 return -EAFNOSUPPORT;
1256 if (type < 0 || type >= SOCK_MAX)
1257 return -EINVAL;
1259 /* Compatibility.
1261 This uglymoron is moved from INET layer to here to avoid
1262 deadlock in module load.
1264 if (family == PF_INET && type == SOCK_PACKET) {
1265 static int warned;
1266 if (!warned) {
1267 warned = 1;
1268 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1269 current->comm);
1271 family = PF_PACKET;
1274 err = security_socket_create(family, type, protocol, kern);
1275 if (err)
1276 return err;
1279 * Allocate the socket and allow the family to set things up. if
1280 * the protocol is 0, the family is instructed to select an appropriate
1281 * default.
1283 sock = sock_alloc();
1284 if (!sock) {
1285 net_warn_ratelimited("socket: no more sockets\n");
1286 return -ENFILE; /* Not exactly a match, but its the
1287 closest posix thing */
1290 sock->type = type;
1292 #ifdef CONFIG_MODULES
1293 /* Attempt to load a protocol module if the find failed.
1295 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1296 * requested real, full-featured networking support upon configuration.
1297 * Otherwise module support will break!
1299 if (rcu_access_pointer(net_families[family]) == NULL)
1300 request_module("net-pf-%d", family);
1301 #endif
1303 rcu_read_lock();
1304 pf = rcu_dereference(net_families[family]);
1305 err = -EAFNOSUPPORT;
1306 if (!pf)
1307 goto out_release;
1310 * We will call the ->create function, that possibly is in a loadable
1311 * module, so we have to bump that loadable module refcnt first.
1313 if (!try_module_get(pf->owner))
1314 goto out_release;
1316 /* Now protected by module ref count */
1317 rcu_read_unlock();
1319 err = pf->create(net, sock, protocol, kern);
1320 if (err < 0)
1321 goto out_module_put;
1324 * Now to bump the refcnt of the [loadable] module that owns this
1325 * socket at sock_release time we decrement its refcnt.
1327 if (!try_module_get(sock->ops->owner))
1328 goto out_module_busy;
1331 * Now that we're done with the ->create function, the [loadable]
1332 * module can have its refcnt decremented
1334 module_put(pf->owner);
1335 err = security_socket_post_create(sock, family, type, protocol, kern);
1336 if (err)
1337 goto out_sock_release;
1338 *res = sock;
1340 return 0;
1342 out_module_busy:
1343 err = -EAFNOSUPPORT;
1344 out_module_put:
1345 sock->ops = NULL;
1346 module_put(pf->owner);
1347 out_sock_release:
1348 sock_release(sock);
1349 return err;
1351 out_release:
1352 rcu_read_unlock();
1353 goto out_sock_release;
1355 EXPORT_SYMBOL(__sock_create);
1357 int sock_create(int family, int type, int protocol, struct socket **res)
1359 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1361 EXPORT_SYMBOL(sock_create);
1363 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1365 return __sock_create(&init_net, family, type, protocol, res, 1);
1367 EXPORT_SYMBOL(sock_create_kern);
1369 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1371 int retval;
1372 struct socket *sock;
1373 int flags;
1375 /* Check the SOCK_* constants for consistency. */
1376 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1377 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1378 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1379 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1381 flags = type & ~SOCK_TYPE_MASK;
1382 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1383 return -EINVAL;
1384 type &= SOCK_TYPE_MASK;
1386 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1387 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1389 retval = sock_create(family, type, protocol, &sock);
1390 if (retval < 0)
1391 goto out;
1393 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1394 if (retval < 0)
1395 goto out_release;
1397 out:
1398 /* It may be already another descriptor 8) Not kernel problem. */
1399 return retval;
1401 out_release:
1402 sock_release(sock);
1403 return retval;
1407 * Create a pair of connected sockets.
1410 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1411 int __user *, usockvec)
1413 struct socket *sock1, *sock2;
1414 int fd1, fd2, err;
1415 struct file *newfile1, *newfile2;
1416 int flags;
1418 flags = type & ~SOCK_TYPE_MASK;
1419 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1420 return -EINVAL;
1421 type &= SOCK_TYPE_MASK;
1423 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1424 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427 * Obtain the first socket and check if the underlying protocol
1428 * supports the socketpair call.
1431 err = sock_create(family, type, protocol, &sock1);
1432 if (err < 0)
1433 goto out;
1435 err = sock_create(family, type, protocol, &sock2);
1436 if (err < 0)
1437 goto out_release_1;
1439 err = sock1->ops->socketpair(sock1, sock2);
1440 if (err < 0)
1441 goto out_release_both;
1443 fd1 = get_unused_fd_flags(flags);
1444 if (unlikely(fd1 < 0)) {
1445 err = fd1;
1446 goto out_release_both;
1448 fd2 = get_unused_fd_flags(flags);
1449 if (unlikely(fd2 < 0)) {
1450 err = fd2;
1451 put_unused_fd(fd1);
1452 goto out_release_both;
1455 newfile1 = sock_alloc_file(sock1, flags, NULL);
1456 if (unlikely(IS_ERR(newfile1))) {
1457 err = PTR_ERR(newfile1);
1458 put_unused_fd(fd1);
1459 put_unused_fd(fd2);
1460 goto out_release_both;
1463 newfile2 = sock_alloc_file(sock2, flags, NULL);
1464 if (IS_ERR(newfile2)) {
1465 err = PTR_ERR(newfile2);
1466 fput(newfile1);
1467 put_unused_fd(fd1);
1468 put_unused_fd(fd2);
1469 sock_release(sock2);
1470 goto out;
1473 audit_fd_pair(fd1, fd2);
1474 fd_install(fd1, newfile1);
1475 fd_install(fd2, newfile2);
1476 /* fd1 and fd2 may be already another descriptors.
1477 * Not kernel problem.
1480 err = put_user(fd1, &usockvec[0]);
1481 if (!err)
1482 err = put_user(fd2, &usockvec[1]);
1483 if (!err)
1484 return 0;
1486 sys_close(fd2);
1487 sys_close(fd1);
1488 return err;
1490 out_release_both:
1491 sock_release(sock2);
1492 out_release_1:
1493 sock_release(sock1);
1494 out:
1495 return err;
1499 * Bind a name to a socket. Nothing much to do here since it's
1500 * the protocol's responsibility to handle the local address.
1502 * We move the socket address to kernel space before we call
1503 * the protocol layer (having also checked the address is ok).
1506 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1508 struct socket *sock;
1509 struct sockaddr_storage address;
1510 int err, fput_needed;
1512 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1513 if (sock) {
1514 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1515 if (err >= 0) {
1516 err = security_socket_bind(sock,
1517 (struct sockaddr *)&address,
1518 addrlen);
1519 if (!err)
1520 err = sock->ops->bind(sock,
1521 (struct sockaddr *)
1522 &address, addrlen);
1524 fput_light(sock->file, fput_needed);
1526 return err;
1530 * Perform a listen. Basically, we allow the protocol to do anything
1531 * necessary for a listen, and if that works, we mark the socket as
1532 * ready for listening.
1535 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1537 struct socket *sock;
1538 int err, fput_needed;
1539 int somaxconn;
1541 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1542 if (sock) {
1543 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1544 if ((unsigned int)backlog > somaxconn)
1545 backlog = somaxconn;
1547 err = security_socket_listen(sock, backlog);
1548 if (!err)
1549 err = sock->ops->listen(sock, backlog);
1551 fput_light(sock->file, fput_needed);
1553 return err;
1557 * For accept, we attempt to create a new socket, set up the link
1558 * with the client, wake up the client, then return the new
1559 * connected fd. We collect the address of the connector in kernel
1560 * space and move it to user at the very end. This is unclean because
1561 * we open the socket then return an error.
1563 * 1003.1g adds the ability to recvmsg() to query connection pending
1564 * status to recvmsg. We need to add that support in a way thats
1565 * clean when we restucture accept also.
1568 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1569 int __user *, upeer_addrlen, int, flags)
1571 struct socket *sock, *newsock;
1572 struct file *newfile;
1573 int err, len, newfd, fput_needed;
1574 struct sockaddr_storage address;
1576 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1577 return -EINVAL;
1579 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1580 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1582 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1583 if (!sock)
1584 goto out;
1586 err = -ENFILE;
1587 newsock = sock_alloc();
1588 if (!newsock)
1589 goto out_put;
1591 newsock->type = sock->type;
1592 newsock->ops = sock->ops;
1595 * We don't need try_module_get here, as the listening socket (sock)
1596 * has the protocol module (sock->ops->owner) held.
1598 __module_get(newsock->ops->owner);
1600 newfd = get_unused_fd_flags(flags);
1601 if (unlikely(newfd < 0)) {
1602 err = newfd;
1603 sock_release(newsock);
1604 goto out_put;
1606 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1607 if (unlikely(IS_ERR(newfile))) {
1608 err = PTR_ERR(newfile);
1609 put_unused_fd(newfd);
1610 sock_release(newsock);
1611 goto out_put;
1614 err = security_socket_accept(sock, newsock);
1615 if (err)
1616 goto out_fd;
1618 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1619 if (err < 0)
1620 goto out_fd;
1622 if (upeer_sockaddr) {
1623 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1624 &len, 2) < 0) {
1625 err = -ECONNABORTED;
1626 goto out_fd;
1628 err = move_addr_to_user(&address,
1629 len, upeer_sockaddr, upeer_addrlen);
1630 if (err < 0)
1631 goto out_fd;
1634 /* File flags are not inherited via accept() unlike another OSes. */
1636 fd_install(newfd, newfile);
1637 err = newfd;
1639 out_put:
1640 fput_light(sock->file, fput_needed);
1641 out:
1642 return err;
1643 out_fd:
1644 fput(newfile);
1645 put_unused_fd(newfd);
1646 goto out_put;
1649 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1650 int __user *, upeer_addrlen)
1652 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1656 * Attempt to connect to a socket with the server address. The address
1657 * is in user space so we verify it is OK and move it to kernel space.
1659 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1660 * break bindings
1662 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1663 * other SEQPACKET protocols that take time to connect() as it doesn't
1664 * include the -EINPROGRESS status for such sockets.
1667 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1668 int, addrlen)
1670 struct socket *sock;
1671 struct sockaddr_storage address;
1672 int err, fput_needed;
1674 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1675 if (!sock)
1676 goto out;
1677 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1678 if (err < 0)
1679 goto out_put;
1681 err =
1682 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1683 if (err)
1684 goto out_put;
1686 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1687 sock->file->f_flags);
1688 out_put:
1689 fput_light(sock->file, fput_needed);
1690 out:
1691 return err;
1695 * Get the local address ('name') of a socket object. Move the obtained
1696 * name to user space.
1699 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1700 int __user *, usockaddr_len)
1702 struct socket *sock;
1703 struct sockaddr_storage address;
1704 int len, err, fput_needed;
1706 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707 if (!sock)
1708 goto out;
1710 err = security_socket_getsockname(sock);
1711 if (err)
1712 goto out_put;
1714 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1715 if (err)
1716 goto out_put;
1717 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1719 out_put:
1720 fput_light(sock->file, fput_needed);
1721 out:
1722 return err;
1726 * Get the remote address ('name') of a socket object. Move the obtained
1727 * name to user space.
1730 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1731 int __user *, usockaddr_len)
1733 struct socket *sock;
1734 struct sockaddr_storage address;
1735 int len, err, fput_needed;
1737 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738 if (sock != NULL) {
1739 err = security_socket_getpeername(sock);
1740 if (err) {
1741 fput_light(sock->file, fput_needed);
1742 return err;
1745 err =
1746 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1748 if (!err)
1749 err = move_addr_to_user(&address, len, usockaddr,
1750 usockaddr_len);
1751 fput_light(sock->file, fput_needed);
1753 return err;
1757 * Send a datagram to a given address. We move the address into kernel
1758 * space and check the user space data area is readable before invoking
1759 * the protocol.
1762 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1763 unsigned int, flags, struct sockaddr __user *, addr,
1764 int, addr_len)
1766 struct socket *sock;
1767 struct sockaddr_storage address;
1768 int err;
1769 struct msghdr msg;
1770 struct iovec iov;
1771 int fput_needed;
1773 if (len > INT_MAX)
1774 len = INT_MAX;
1775 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1776 if (!sock)
1777 goto out;
1779 iov.iov_base = buff;
1780 iov.iov_len = len;
1781 msg.msg_name = NULL;
1782 msg.msg_iov = &iov;
1783 msg.msg_iovlen = 1;
1784 msg.msg_control = NULL;
1785 msg.msg_controllen = 0;
1786 msg.msg_namelen = 0;
1787 if (addr) {
1788 err = move_addr_to_kernel(addr, addr_len, &address);
1789 if (err < 0)
1790 goto out_put;
1791 msg.msg_name = (struct sockaddr *)&address;
1792 msg.msg_namelen = addr_len;
1794 if (sock->file->f_flags & O_NONBLOCK)
1795 flags |= MSG_DONTWAIT;
1796 msg.msg_flags = flags;
1797 err = sock_sendmsg(sock, &msg, len);
1799 out_put:
1800 fput_light(sock->file, fput_needed);
1801 out:
1802 return err;
1806 * Send a datagram down a socket.
1809 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1810 unsigned int, flags)
1812 return sys_sendto(fd, buff, len, flags, NULL, 0);
1816 * Receive a frame from the socket and optionally record the address of the
1817 * sender. We verify the buffers are writable and if needed move the
1818 * sender address from kernel to user space.
1821 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1822 unsigned int, flags, struct sockaddr __user *, addr,
1823 int __user *, addr_len)
1825 struct socket *sock;
1826 struct iovec iov;
1827 struct msghdr msg;
1828 struct sockaddr_storage address;
1829 int err, err2;
1830 int fput_needed;
1832 if (size > INT_MAX)
1833 size = INT_MAX;
1834 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835 if (!sock)
1836 goto out;
1838 msg.msg_control = NULL;
1839 msg.msg_controllen = 0;
1840 msg.msg_iovlen = 1;
1841 msg.msg_iov = &iov;
1842 iov.iov_len = size;
1843 iov.iov_base = ubuf;
1844 /* Save some cycles and don't copy the address if not needed */
1845 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1846 /* We assume all kernel code knows the size of sockaddr_storage */
1847 msg.msg_namelen = 0;
1848 if (sock->file->f_flags & O_NONBLOCK)
1849 flags |= MSG_DONTWAIT;
1850 err = sock_recvmsg(sock, &msg, size, flags);
1852 if (err >= 0 && addr != NULL) {
1853 err2 = move_addr_to_user(&address,
1854 msg.msg_namelen, addr, addr_len);
1855 if (err2 < 0)
1856 err = err2;
1859 fput_light(sock->file, fput_needed);
1860 out:
1861 return err;
1865 * Receive a datagram from a socket.
1868 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1869 unsigned int flags)
1871 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1875 * Set a socket option. Because we don't know the option lengths we have
1876 * to pass the user mode parameter for the protocols to sort out.
1879 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1880 char __user *, optval, int, optlen)
1882 int err, fput_needed;
1883 struct socket *sock;
1885 if (optlen < 0)
1886 return -EINVAL;
1888 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1889 if (sock != NULL) {
1890 err = security_socket_setsockopt(sock, level, optname);
1891 if (err)
1892 goto out_put;
1894 if (level == SOL_SOCKET)
1895 err =
1896 sock_setsockopt(sock, level, optname, optval,
1897 optlen);
1898 else
1899 err =
1900 sock->ops->setsockopt(sock, level, optname, optval,
1901 optlen);
1902 out_put:
1903 fput_light(sock->file, fput_needed);
1905 return err;
1909 * Get a socket option. Because we don't know the option lengths we have
1910 * to pass a user mode parameter for the protocols to sort out.
1913 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1914 char __user *, optval, int __user *, optlen)
1916 int err, fput_needed;
1917 struct socket *sock;
1919 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1920 if (sock != NULL) {
1921 err = security_socket_getsockopt(sock, level, optname);
1922 if (err)
1923 goto out_put;
1925 if (level == SOL_SOCKET)
1926 err =
1927 sock_getsockopt(sock, level, optname, optval,
1928 optlen);
1929 else
1930 err =
1931 sock->ops->getsockopt(sock, level, optname, optval,
1932 optlen);
1933 out_put:
1934 fput_light(sock->file, fput_needed);
1936 return err;
1940 * Shutdown a socket.
1943 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1945 int err, fput_needed;
1946 struct socket *sock;
1948 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1949 if (sock != NULL) {
1950 err = security_socket_shutdown(sock, how);
1951 if (!err)
1952 err = sock->ops->shutdown(sock, how);
1953 fput_light(sock->file, fput_needed);
1955 return err;
1958 /* A couple of helpful macros for getting the address of the 32/64 bit
1959 * fields which are the same type (int / unsigned) on our platforms.
1961 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1962 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1963 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1965 struct used_address {
1966 struct sockaddr_storage name;
1967 unsigned int name_len;
1970 static int copy_msghdr_from_user(struct msghdr *kmsg,
1971 struct msghdr __user *umsg)
1973 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1974 return -EFAULT;
1976 if (kmsg->msg_namelen < 0)
1977 return -EINVAL;
1979 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1980 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1981 return 0;
1984 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1985 struct msghdr *msg_sys, unsigned int flags,
1986 struct used_address *used_address)
1988 struct compat_msghdr __user *msg_compat =
1989 (struct compat_msghdr __user *)msg;
1990 struct sockaddr_storage address;
1991 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1992 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1993 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1994 /* 20 is size of ipv6_pktinfo */
1995 unsigned char *ctl_buf = ctl;
1996 int err, ctl_len, total_len;
1998 err = -EFAULT;
1999 if (MSG_CMSG_COMPAT & flags) {
2000 if (get_compat_msghdr(msg_sys, msg_compat))
2001 return -EFAULT;
2002 } else {
2003 err = copy_msghdr_from_user(msg_sys, msg);
2004 if (err)
2005 return err;
2008 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2009 err = -EMSGSIZE;
2010 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2011 goto out;
2012 err = -ENOMEM;
2013 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2014 GFP_KERNEL);
2015 if (!iov)
2016 goto out;
2019 /* This will also move the address data into kernel space */
2020 if (MSG_CMSG_COMPAT & flags) {
2021 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2022 } else
2023 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2024 if (err < 0)
2025 goto out_freeiov;
2026 total_len = err;
2028 err = -ENOBUFS;
2030 if (msg_sys->msg_controllen > INT_MAX)
2031 goto out_freeiov;
2032 ctl_len = msg_sys->msg_controllen;
2033 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2034 err =
2035 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2036 sizeof(ctl));
2037 if (err)
2038 goto out_freeiov;
2039 ctl_buf = msg_sys->msg_control;
2040 ctl_len = msg_sys->msg_controllen;
2041 } else if (ctl_len) {
2042 if (ctl_len > sizeof(ctl)) {
2043 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2044 if (ctl_buf == NULL)
2045 goto out_freeiov;
2047 err = -EFAULT;
2049 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2050 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2051 * checking falls down on this.
2053 if (copy_from_user(ctl_buf,
2054 (void __user __force *)msg_sys->msg_control,
2055 ctl_len))
2056 goto out_freectl;
2057 msg_sys->msg_control = ctl_buf;
2059 msg_sys->msg_flags = flags;
2061 if (sock->file->f_flags & O_NONBLOCK)
2062 msg_sys->msg_flags |= MSG_DONTWAIT;
2064 * If this is sendmmsg() and current destination address is same as
2065 * previously succeeded address, omit asking LSM's decision.
2066 * used_address->name_len is initialized to UINT_MAX so that the first
2067 * destination address never matches.
2069 if (used_address && msg_sys->msg_name &&
2070 used_address->name_len == msg_sys->msg_namelen &&
2071 !memcmp(&used_address->name, msg_sys->msg_name,
2072 used_address->name_len)) {
2073 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2074 goto out_freectl;
2076 err = sock_sendmsg(sock, msg_sys, total_len);
2078 * If this is sendmmsg() and sending to current destination address was
2079 * successful, remember it.
2081 if (used_address && err >= 0) {
2082 used_address->name_len = msg_sys->msg_namelen;
2083 if (msg_sys->msg_name)
2084 memcpy(&used_address->name, msg_sys->msg_name,
2085 used_address->name_len);
2088 out_freectl:
2089 if (ctl_buf != ctl)
2090 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2091 out_freeiov:
2092 if (iov != iovstack)
2093 kfree(iov);
2094 out:
2095 return err;
2099 * BSD sendmsg interface
2102 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2104 int fput_needed, err;
2105 struct msghdr msg_sys;
2106 struct socket *sock;
2108 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109 if (!sock)
2110 goto out;
2112 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2114 fput_light(sock->file, fput_needed);
2115 out:
2116 return err;
2119 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2121 if (flags & MSG_CMSG_COMPAT)
2122 return -EINVAL;
2123 return __sys_sendmsg(fd, msg, flags);
2127 * Linux sendmmsg interface
2130 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2131 unsigned int flags)
2133 int fput_needed, err, datagrams;
2134 struct socket *sock;
2135 struct mmsghdr __user *entry;
2136 struct compat_mmsghdr __user *compat_entry;
2137 struct msghdr msg_sys;
2138 struct used_address used_address;
2140 if (vlen > UIO_MAXIOV)
2141 vlen = UIO_MAXIOV;
2143 datagrams = 0;
2145 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2146 if (!sock)
2147 return err;
2149 used_address.name_len = UINT_MAX;
2150 entry = mmsg;
2151 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2152 err = 0;
2154 while (datagrams < vlen) {
2155 if (MSG_CMSG_COMPAT & flags) {
2156 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2157 &msg_sys, flags, &used_address);
2158 if (err < 0)
2159 break;
2160 err = __put_user(err, &compat_entry->msg_len);
2161 ++compat_entry;
2162 } else {
2163 err = ___sys_sendmsg(sock,
2164 (struct msghdr __user *)entry,
2165 &msg_sys, flags, &used_address);
2166 if (err < 0)
2167 break;
2168 err = put_user(err, &entry->msg_len);
2169 ++entry;
2172 if (err)
2173 break;
2174 ++datagrams;
2177 fput_light(sock->file, fput_needed);
2179 /* We only return an error if no datagrams were able to be sent */
2180 if (datagrams != 0)
2181 return datagrams;
2183 return err;
2186 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2187 unsigned int, vlen, unsigned int, flags)
2189 if (flags & MSG_CMSG_COMPAT)
2190 return -EINVAL;
2191 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2194 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2195 struct msghdr *msg_sys, unsigned int flags, int nosec)
2197 struct compat_msghdr __user *msg_compat =
2198 (struct compat_msghdr __user *)msg;
2199 struct iovec iovstack[UIO_FASTIOV];
2200 struct iovec *iov = iovstack;
2201 unsigned long cmsg_ptr;
2202 int err, total_len, len;
2204 /* kernel mode address */
2205 struct sockaddr_storage addr;
2207 /* user mode address pointers */
2208 struct sockaddr __user *uaddr;
2209 int __user *uaddr_len;
2211 if (MSG_CMSG_COMPAT & flags) {
2212 if (get_compat_msghdr(msg_sys, msg_compat))
2213 return -EFAULT;
2214 } else {
2215 err = copy_msghdr_from_user(msg_sys, msg);
2216 if (err)
2217 return err;
2220 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2221 err = -EMSGSIZE;
2222 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2223 goto out;
2224 err = -ENOMEM;
2225 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2226 GFP_KERNEL);
2227 if (!iov)
2228 goto out;
2231 /* Save the user-mode address (verify_iovec will change the
2232 * kernel msghdr to use the kernel address space)
2234 uaddr = (__force void __user *)msg_sys->msg_name;
2235 uaddr_len = COMPAT_NAMELEN(msg);
2236 if (MSG_CMSG_COMPAT & flags)
2237 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2238 else
2239 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2240 if (err < 0)
2241 goto out_freeiov;
2242 total_len = err;
2244 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2245 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2247 /* We assume all kernel code knows the size of sockaddr_storage */
2248 msg_sys->msg_namelen = 0;
2250 if (sock->file->f_flags & O_NONBLOCK)
2251 flags |= MSG_DONTWAIT;
2252 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2253 total_len, flags);
2254 if (err < 0)
2255 goto out_freeiov;
2256 len = err;
2258 if (uaddr != NULL) {
2259 err = move_addr_to_user(&addr,
2260 msg_sys->msg_namelen, uaddr,
2261 uaddr_len);
2262 if (err < 0)
2263 goto out_freeiov;
2265 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2266 COMPAT_FLAGS(msg));
2267 if (err)
2268 goto out_freeiov;
2269 if (MSG_CMSG_COMPAT & flags)
2270 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2271 &msg_compat->msg_controllen);
2272 else
2273 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2274 &msg->msg_controllen);
2275 if (err)
2276 goto out_freeiov;
2277 err = len;
2279 out_freeiov:
2280 if (iov != iovstack)
2281 kfree(iov);
2282 out:
2283 return err;
2287 * BSD recvmsg interface
2290 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2292 int fput_needed, err;
2293 struct msghdr msg_sys;
2294 struct socket *sock;
2296 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2297 if (!sock)
2298 goto out;
2300 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2302 fput_light(sock->file, fput_needed);
2303 out:
2304 return err;
2307 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2308 unsigned int, flags)
2310 if (flags & MSG_CMSG_COMPAT)
2311 return -EINVAL;
2312 return __sys_recvmsg(fd, msg, flags);
2316 * Linux recvmmsg interface
2319 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2320 unsigned int flags, struct timespec *timeout)
2322 int fput_needed, err, datagrams;
2323 struct socket *sock;
2324 struct mmsghdr __user *entry;
2325 struct compat_mmsghdr __user *compat_entry;
2326 struct msghdr msg_sys;
2327 struct timespec end_time;
2329 if (timeout &&
2330 poll_select_set_timeout(&end_time, timeout->tv_sec,
2331 timeout->tv_nsec))
2332 return -EINVAL;
2334 datagrams = 0;
2336 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2337 if (!sock)
2338 return err;
2340 err = sock_error(sock->sk);
2341 if (err)
2342 goto out_put;
2344 entry = mmsg;
2345 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2347 while (datagrams < vlen) {
2349 * No need to ask LSM for more than the first datagram.
2351 if (MSG_CMSG_COMPAT & flags) {
2352 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2353 &msg_sys, flags & ~MSG_WAITFORONE,
2354 datagrams);
2355 if (err < 0)
2356 break;
2357 err = __put_user(err, &compat_entry->msg_len);
2358 ++compat_entry;
2359 } else {
2360 err = ___sys_recvmsg(sock,
2361 (struct msghdr __user *)entry,
2362 &msg_sys, flags & ~MSG_WAITFORONE,
2363 datagrams);
2364 if (err < 0)
2365 break;
2366 err = put_user(err, &entry->msg_len);
2367 ++entry;
2370 if (err)
2371 break;
2372 ++datagrams;
2374 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2375 if (flags & MSG_WAITFORONE)
2376 flags |= MSG_DONTWAIT;
2378 if (timeout) {
2379 ktime_get_ts(timeout);
2380 *timeout = timespec_sub(end_time, *timeout);
2381 if (timeout->tv_sec < 0) {
2382 timeout->tv_sec = timeout->tv_nsec = 0;
2383 break;
2386 /* Timeout, return less than vlen datagrams */
2387 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2388 break;
2391 /* Out of band data, return right away */
2392 if (msg_sys.msg_flags & MSG_OOB)
2393 break;
2396 out_put:
2397 fput_light(sock->file, fput_needed);
2399 if (err == 0)
2400 return datagrams;
2402 if (datagrams != 0) {
2404 * We may return less entries than requested (vlen) if the
2405 * sock is non block and there aren't enough datagrams...
2407 if (err != -EAGAIN) {
2409 * ... or if recvmsg returns an error after we
2410 * received some datagrams, where we record the
2411 * error to return on the next call or if the
2412 * app asks about it using getsockopt(SO_ERROR).
2414 sock->sk->sk_err = -err;
2417 return datagrams;
2420 return err;
2423 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2424 unsigned int, vlen, unsigned int, flags,
2425 struct timespec __user *, timeout)
2427 int datagrams;
2428 struct timespec timeout_sys;
2430 if (flags & MSG_CMSG_COMPAT)
2431 return -EINVAL;
2433 if (!timeout)
2434 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2436 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2437 return -EFAULT;
2439 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2441 if (datagrams > 0 &&
2442 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2443 datagrams = -EFAULT;
2445 return datagrams;
2448 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2449 /* Argument list sizes for sys_socketcall */
2450 #define AL(x) ((x) * sizeof(unsigned long))
2451 static const unsigned char nargs[21] = {
2452 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2453 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2454 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2455 AL(4), AL(5), AL(4)
2458 #undef AL
2461 * System call vectors.
2463 * Argument checking cleaned up. Saved 20% in size.
2464 * This function doesn't need to set the kernel lock because
2465 * it is set by the callees.
2468 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2470 unsigned long a[AUDITSC_ARGS];
2471 unsigned long a0, a1;
2472 int err;
2473 unsigned int len;
2475 if (call < 1 || call > SYS_SENDMMSG)
2476 return -EINVAL;
2478 len = nargs[call];
2479 if (len > sizeof(a))
2480 return -EINVAL;
2482 /* copy_from_user should be SMP safe. */
2483 if (copy_from_user(a, args, len))
2484 return -EFAULT;
2486 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2487 if (err)
2488 return err;
2490 a0 = a[0];
2491 a1 = a[1];
2493 switch (call) {
2494 case SYS_SOCKET:
2495 err = sys_socket(a0, a1, a[2]);
2496 break;
2497 case SYS_BIND:
2498 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2499 break;
2500 case SYS_CONNECT:
2501 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2502 break;
2503 case SYS_LISTEN:
2504 err = sys_listen(a0, a1);
2505 break;
2506 case SYS_ACCEPT:
2507 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2508 (int __user *)a[2], 0);
2509 break;
2510 case SYS_GETSOCKNAME:
2511 err =
2512 sys_getsockname(a0, (struct sockaddr __user *)a1,
2513 (int __user *)a[2]);
2514 break;
2515 case SYS_GETPEERNAME:
2516 err =
2517 sys_getpeername(a0, (struct sockaddr __user *)a1,
2518 (int __user *)a[2]);
2519 break;
2520 case SYS_SOCKETPAIR:
2521 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2522 break;
2523 case SYS_SEND:
2524 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2525 break;
2526 case SYS_SENDTO:
2527 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2528 (struct sockaddr __user *)a[4], a[5]);
2529 break;
2530 case SYS_RECV:
2531 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2532 break;
2533 case SYS_RECVFROM:
2534 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2535 (struct sockaddr __user *)a[4],
2536 (int __user *)a[5]);
2537 break;
2538 case SYS_SHUTDOWN:
2539 err = sys_shutdown(a0, a1);
2540 break;
2541 case SYS_SETSOCKOPT:
2542 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2543 break;
2544 case SYS_GETSOCKOPT:
2545 err =
2546 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2547 (int __user *)a[4]);
2548 break;
2549 case SYS_SENDMSG:
2550 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2551 break;
2552 case SYS_SENDMMSG:
2553 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2554 break;
2555 case SYS_RECVMSG:
2556 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2557 break;
2558 case SYS_RECVMMSG:
2559 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2560 (struct timespec __user *)a[4]);
2561 break;
2562 case SYS_ACCEPT4:
2563 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2564 (int __user *)a[2], a[3]);
2565 break;
2566 default:
2567 err = -EINVAL;
2568 break;
2570 return err;
2573 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2576 * sock_register - add a socket protocol handler
2577 * @ops: description of protocol
2579 * This function is called by a protocol handler that wants to
2580 * advertise its address family, and have it linked into the
2581 * socket interface. The value ops->family coresponds to the
2582 * socket system call protocol family.
2584 int sock_register(const struct net_proto_family *ops)
2586 int err;
2588 if (ops->family >= NPROTO) {
2589 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2590 NPROTO);
2591 return -ENOBUFS;
2594 spin_lock(&net_family_lock);
2595 if (rcu_dereference_protected(net_families[ops->family],
2596 lockdep_is_held(&net_family_lock)))
2597 err = -EEXIST;
2598 else {
2599 rcu_assign_pointer(net_families[ops->family], ops);
2600 err = 0;
2602 spin_unlock(&net_family_lock);
2604 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2605 return err;
2607 EXPORT_SYMBOL(sock_register);
2610 * sock_unregister - remove a protocol handler
2611 * @family: protocol family to remove
2613 * This function is called by a protocol handler that wants to
2614 * remove its address family, and have it unlinked from the
2615 * new socket creation.
2617 * If protocol handler is a module, then it can use module reference
2618 * counts to protect against new references. If protocol handler is not
2619 * a module then it needs to provide its own protection in
2620 * the ops->create routine.
2622 void sock_unregister(int family)
2624 BUG_ON(family < 0 || family >= NPROTO);
2626 spin_lock(&net_family_lock);
2627 RCU_INIT_POINTER(net_families[family], NULL);
2628 spin_unlock(&net_family_lock);
2630 synchronize_rcu();
2632 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2634 EXPORT_SYMBOL(sock_unregister);
2636 static int __init sock_init(void)
2638 int err;
2640 * Initialize the network sysctl infrastructure.
2642 err = net_sysctl_init();
2643 if (err)
2644 goto out;
2647 * Initialize skbuff SLAB cache
2649 skb_init();
2652 * Initialize the protocols module.
2655 init_inodecache();
2657 err = register_filesystem(&sock_fs_type);
2658 if (err)
2659 goto out_fs;
2660 sock_mnt = kern_mount(&sock_fs_type);
2661 if (IS_ERR(sock_mnt)) {
2662 err = PTR_ERR(sock_mnt);
2663 goto out_mount;
2666 /* The real protocol initialization is performed in later initcalls.
2669 #ifdef CONFIG_NETFILTER
2670 err = netfilter_init();
2671 if (err)
2672 goto out;
2673 #endif
2675 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2676 skb_timestamping_init();
2677 #endif
2679 out:
2680 return err;
2682 out_mount:
2683 unregister_filesystem(&sock_fs_type);
2684 out_fs:
2685 goto out;
2688 core_initcall(sock_init); /* early initcall */
2690 #ifdef CONFIG_PROC_FS
2691 void socket_seq_show(struct seq_file *seq)
2693 int cpu;
2694 int counter = 0;
2696 for_each_possible_cpu(cpu)
2697 counter += per_cpu(sockets_in_use, cpu);
2699 /* It can be negative, by the way. 8) */
2700 if (counter < 0)
2701 counter = 0;
2703 seq_printf(seq, "sockets: used %d\n", counter);
2705 #endif /* CONFIG_PROC_FS */
2707 #ifdef CONFIG_COMPAT
2708 static int do_siocgstamp(struct net *net, struct socket *sock,
2709 unsigned int cmd, void __user *up)
2711 mm_segment_t old_fs = get_fs();
2712 struct timeval ktv;
2713 int err;
2715 set_fs(KERNEL_DS);
2716 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2717 set_fs(old_fs);
2718 if (!err)
2719 err = compat_put_timeval(&ktv, up);
2721 return err;
2724 static int do_siocgstampns(struct net *net, struct socket *sock,
2725 unsigned int cmd, void __user *up)
2727 mm_segment_t old_fs = get_fs();
2728 struct timespec kts;
2729 int err;
2731 set_fs(KERNEL_DS);
2732 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2733 set_fs(old_fs);
2734 if (!err)
2735 err = compat_put_timespec(&kts, up);
2737 return err;
2740 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2742 struct ifreq __user *uifr;
2743 int err;
2745 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2746 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2747 return -EFAULT;
2749 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2750 if (err)
2751 return err;
2753 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2754 return -EFAULT;
2756 return 0;
2759 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2761 struct compat_ifconf ifc32;
2762 struct ifconf ifc;
2763 struct ifconf __user *uifc;
2764 struct compat_ifreq __user *ifr32;
2765 struct ifreq __user *ifr;
2766 unsigned int i, j;
2767 int err;
2769 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2770 return -EFAULT;
2772 memset(&ifc, 0, sizeof(ifc));
2773 if (ifc32.ifcbuf == 0) {
2774 ifc32.ifc_len = 0;
2775 ifc.ifc_len = 0;
2776 ifc.ifc_req = NULL;
2777 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2778 } else {
2779 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2780 sizeof(struct ifreq);
2781 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2782 ifc.ifc_len = len;
2783 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2784 ifr32 = compat_ptr(ifc32.ifcbuf);
2785 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2786 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2787 return -EFAULT;
2788 ifr++;
2789 ifr32++;
2792 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2793 return -EFAULT;
2795 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2796 if (err)
2797 return err;
2799 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2800 return -EFAULT;
2802 ifr = ifc.ifc_req;
2803 ifr32 = compat_ptr(ifc32.ifcbuf);
2804 for (i = 0, j = 0;
2805 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2806 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2807 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2808 return -EFAULT;
2809 ifr32++;
2810 ifr++;
2813 if (ifc32.ifcbuf == 0) {
2814 /* Translate from 64-bit structure multiple to
2815 * a 32-bit one.
2817 i = ifc.ifc_len;
2818 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2819 ifc32.ifc_len = i;
2820 } else {
2821 ifc32.ifc_len = i;
2823 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2824 return -EFAULT;
2826 return 0;
2829 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2831 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2832 bool convert_in = false, convert_out = false;
2833 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2834 struct ethtool_rxnfc __user *rxnfc;
2835 struct ifreq __user *ifr;
2836 u32 rule_cnt = 0, actual_rule_cnt;
2837 u32 ethcmd;
2838 u32 data;
2839 int ret;
2841 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2842 return -EFAULT;
2844 compat_rxnfc = compat_ptr(data);
2846 if (get_user(ethcmd, &compat_rxnfc->cmd))
2847 return -EFAULT;
2849 /* Most ethtool structures are defined without padding.
2850 * Unfortunately struct ethtool_rxnfc is an exception.
2852 switch (ethcmd) {
2853 default:
2854 break;
2855 case ETHTOOL_GRXCLSRLALL:
2856 /* Buffer size is variable */
2857 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2858 return -EFAULT;
2859 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2860 return -ENOMEM;
2861 buf_size += rule_cnt * sizeof(u32);
2862 /* fall through */
2863 case ETHTOOL_GRXRINGS:
2864 case ETHTOOL_GRXCLSRLCNT:
2865 case ETHTOOL_GRXCLSRULE:
2866 case ETHTOOL_SRXCLSRLINS:
2867 convert_out = true;
2868 /* fall through */
2869 case ETHTOOL_SRXCLSRLDEL:
2870 buf_size += sizeof(struct ethtool_rxnfc);
2871 convert_in = true;
2872 break;
2875 ifr = compat_alloc_user_space(buf_size);
2876 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2878 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2879 return -EFAULT;
2881 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2882 &ifr->ifr_ifru.ifru_data))
2883 return -EFAULT;
2885 if (convert_in) {
2886 /* We expect there to be holes between fs.m_ext and
2887 * fs.ring_cookie and at the end of fs, but nowhere else.
2889 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2890 sizeof(compat_rxnfc->fs.m_ext) !=
2891 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2892 sizeof(rxnfc->fs.m_ext));
2893 BUILD_BUG_ON(
2894 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2895 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2896 offsetof(struct ethtool_rxnfc, fs.location) -
2897 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2899 if (copy_in_user(rxnfc, compat_rxnfc,
2900 (void __user *)(&rxnfc->fs.m_ext + 1) -
2901 (void __user *)rxnfc) ||
2902 copy_in_user(&rxnfc->fs.ring_cookie,
2903 &compat_rxnfc->fs.ring_cookie,
2904 (void __user *)(&rxnfc->fs.location + 1) -
2905 (void __user *)&rxnfc->fs.ring_cookie) ||
2906 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2907 sizeof(rxnfc->rule_cnt)))
2908 return -EFAULT;
2911 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2912 if (ret)
2913 return ret;
2915 if (convert_out) {
2916 if (copy_in_user(compat_rxnfc, rxnfc,
2917 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2918 (const void __user *)rxnfc) ||
2919 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2920 &rxnfc->fs.ring_cookie,
2921 (const void __user *)(&rxnfc->fs.location + 1) -
2922 (const void __user *)&rxnfc->fs.ring_cookie) ||
2923 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2924 sizeof(rxnfc->rule_cnt)))
2925 return -EFAULT;
2927 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2928 /* As an optimisation, we only copy the actual
2929 * number of rules that the underlying
2930 * function returned. Since Mallory might
2931 * change the rule count in user memory, we
2932 * check that it is less than the rule count
2933 * originally given (as the user buffer size),
2934 * which has been range-checked.
2936 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2937 return -EFAULT;
2938 if (actual_rule_cnt < rule_cnt)
2939 rule_cnt = actual_rule_cnt;
2940 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2941 &rxnfc->rule_locs[0],
2942 rule_cnt * sizeof(u32)))
2943 return -EFAULT;
2947 return 0;
2950 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2952 void __user *uptr;
2953 compat_uptr_t uptr32;
2954 struct ifreq __user *uifr;
2956 uifr = compat_alloc_user_space(sizeof(*uifr));
2957 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2958 return -EFAULT;
2960 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2961 return -EFAULT;
2963 uptr = compat_ptr(uptr32);
2965 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2966 return -EFAULT;
2968 return dev_ioctl(net, SIOCWANDEV, uifr);
2971 static int bond_ioctl(struct net *net, unsigned int cmd,
2972 struct compat_ifreq __user *ifr32)
2974 struct ifreq kifr;
2975 struct ifreq __user *uifr;
2976 mm_segment_t old_fs;
2977 int err;
2978 u32 data;
2979 void __user *datap;
2981 switch (cmd) {
2982 case SIOCBONDENSLAVE:
2983 case SIOCBONDRELEASE:
2984 case SIOCBONDSETHWADDR:
2985 case SIOCBONDCHANGEACTIVE:
2986 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2987 return -EFAULT;
2989 old_fs = get_fs();
2990 set_fs(KERNEL_DS);
2991 err = dev_ioctl(net, cmd,
2992 (struct ifreq __user __force *) &kifr);
2993 set_fs(old_fs);
2995 return err;
2996 case SIOCBONDSLAVEINFOQUERY:
2997 case SIOCBONDINFOQUERY:
2998 uifr = compat_alloc_user_space(sizeof(*uifr));
2999 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3000 return -EFAULT;
3002 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3003 return -EFAULT;
3005 datap = compat_ptr(data);
3006 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
3007 return -EFAULT;
3009 return dev_ioctl(net, cmd, uifr);
3010 default:
3011 return -ENOIOCTLCMD;
3015 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3016 struct compat_ifreq __user *u_ifreq32)
3018 struct ifreq __user *u_ifreq64;
3019 char tmp_buf[IFNAMSIZ];
3020 void __user *data64;
3021 u32 data32;
3023 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3024 IFNAMSIZ))
3025 return -EFAULT;
3026 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3027 return -EFAULT;
3028 data64 = compat_ptr(data32);
3030 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3032 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3033 IFNAMSIZ))
3034 return -EFAULT;
3035 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3036 return -EFAULT;
3038 return dev_ioctl(net, cmd, u_ifreq64);
3041 static int dev_ifsioc(struct net *net, struct socket *sock,
3042 unsigned int cmd, struct compat_ifreq __user *uifr32)
3044 struct ifreq __user *uifr;
3045 int err;
3047 uifr = compat_alloc_user_space(sizeof(*uifr));
3048 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3049 return -EFAULT;
3051 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3053 if (!err) {
3054 switch (cmd) {
3055 case SIOCGIFFLAGS:
3056 case SIOCGIFMETRIC:
3057 case SIOCGIFMTU:
3058 case SIOCGIFMEM:
3059 case SIOCGIFHWADDR:
3060 case SIOCGIFINDEX:
3061 case SIOCGIFADDR:
3062 case SIOCGIFBRDADDR:
3063 case SIOCGIFDSTADDR:
3064 case SIOCGIFNETMASK:
3065 case SIOCGIFPFLAGS:
3066 case SIOCGIFTXQLEN:
3067 case SIOCGMIIPHY:
3068 case SIOCGMIIREG:
3069 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3070 err = -EFAULT;
3071 break;
3074 return err;
3077 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3078 struct compat_ifreq __user *uifr32)
3080 struct ifreq ifr;
3081 struct compat_ifmap __user *uifmap32;
3082 mm_segment_t old_fs;
3083 int err;
3085 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3086 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3087 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3088 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3089 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3090 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3091 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3092 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3093 if (err)
3094 return -EFAULT;
3096 old_fs = get_fs();
3097 set_fs(KERNEL_DS);
3098 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3099 set_fs(old_fs);
3101 if (cmd == SIOCGIFMAP && !err) {
3102 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3103 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3104 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3105 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3106 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3107 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3108 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3109 if (err)
3110 err = -EFAULT;
3112 return err;
3115 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3117 void __user *uptr;
3118 compat_uptr_t uptr32;
3119 struct ifreq __user *uifr;
3121 uifr = compat_alloc_user_space(sizeof(*uifr));
3122 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3123 return -EFAULT;
3125 if (get_user(uptr32, &uifr32->ifr_data))
3126 return -EFAULT;
3128 uptr = compat_ptr(uptr32);
3130 if (put_user(uptr, &uifr->ifr_data))
3131 return -EFAULT;
3133 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3136 struct rtentry32 {
3137 u32 rt_pad1;
3138 struct sockaddr rt_dst; /* target address */
3139 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3140 struct sockaddr rt_genmask; /* target network mask (IP) */
3141 unsigned short rt_flags;
3142 short rt_pad2;
3143 u32 rt_pad3;
3144 unsigned char rt_tos;
3145 unsigned char rt_class;
3146 short rt_pad4;
3147 short rt_metric; /* +1 for binary compatibility! */
3148 /* char * */ u32 rt_dev; /* forcing the device at add */
3149 u32 rt_mtu; /* per route MTU/Window */
3150 u32 rt_window; /* Window clamping */
3151 unsigned short rt_irtt; /* Initial RTT */
3154 struct in6_rtmsg32 {
3155 struct in6_addr rtmsg_dst;
3156 struct in6_addr rtmsg_src;
3157 struct in6_addr rtmsg_gateway;
3158 u32 rtmsg_type;
3159 u16 rtmsg_dst_len;
3160 u16 rtmsg_src_len;
3161 u32 rtmsg_metric;
3162 u32 rtmsg_info;
3163 u32 rtmsg_flags;
3164 s32 rtmsg_ifindex;
3167 static int routing_ioctl(struct net *net, struct socket *sock,
3168 unsigned int cmd, void __user *argp)
3170 int ret;
3171 void *r = NULL;
3172 struct in6_rtmsg r6;
3173 struct rtentry r4;
3174 char devname[16];
3175 u32 rtdev;
3176 mm_segment_t old_fs = get_fs();
3178 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3179 struct in6_rtmsg32 __user *ur6 = argp;
3180 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3181 3 * sizeof(struct in6_addr));
3182 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3183 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3184 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3185 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3186 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3187 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3188 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3190 r = (void *) &r6;
3191 } else { /* ipv4 */
3192 struct rtentry32 __user *ur4 = argp;
3193 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3194 3 * sizeof(struct sockaddr));
3195 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3196 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3197 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3198 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3199 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3200 ret |= get_user(rtdev, &(ur4->rt_dev));
3201 if (rtdev) {
3202 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3203 r4.rt_dev = (char __user __force *)devname;
3204 devname[15] = 0;
3205 } else
3206 r4.rt_dev = NULL;
3208 r = (void *) &r4;
3211 if (ret) {
3212 ret = -EFAULT;
3213 goto out;
3216 set_fs(KERNEL_DS);
3217 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3218 set_fs(old_fs);
3220 out:
3221 return ret;
3224 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3225 * for some operations; this forces use of the newer bridge-utils that
3226 * use compatible ioctls
3228 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3230 compat_ulong_t tmp;
3232 if (get_user(tmp, argp))
3233 return -EFAULT;
3234 if (tmp == BRCTL_GET_VERSION)
3235 return BRCTL_VERSION + 1;
3236 return -EINVAL;
3239 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3240 unsigned int cmd, unsigned long arg)
3242 void __user *argp = compat_ptr(arg);
3243 struct sock *sk = sock->sk;
3244 struct net *net = sock_net(sk);
3246 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3247 return siocdevprivate_ioctl(net, cmd, argp);
3249 switch (cmd) {
3250 case SIOCSIFBR:
3251 case SIOCGIFBR:
3252 return old_bridge_ioctl(argp);
3253 case SIOCGIFNAME:
3254 return dev_ifname32(net, argp);
3255 case SIOCGIFCONF:
3256 return dev_ifconf(net, argp);
3257 case SIOCETHTOOL:
3258 return ethtool_ioctl(net, argp);
3259 case SIOCWANDEV:
3260 return compat_siocwandev(net, argp);
3261 case SIOCGIFMAP:
3262 case SIOCSIFMAP:
3263 return compat_sioc_ifmap(net, cmd, argp);
3264 case SIOCBONDENSLAVE:
3265 case SIOCBONDRELEASE:
3266 case SIOCBONDSETHWADDR:
3267 case SIOCBONDSLAVEINFOQUERY:
3268 case SIOCBONDINFOQUERY:
3269 case SIOCBONDCHANGEACTIVE:
3270 return bond_ioctl(net, cmd, argp);
3271 case SIOCADDRT:
3272 case SIOCDELRT:
3273 return routing_ioctl(net, sock, cmd, argp);
3274 case SIOCGSTAMP:
3275 return do_siocgstamp(net, sock, cmd, argp);
3276 case SIOCGSTAMPNS:
3277 return do_siocgstampns(net, sock, cmd, argp);
3278 case SIOCSHWTSTAMP:
3279 return compat_siocshwtstamp(net, argp);
3281 case FIOSETOWN:
3282 case SIOCSPGRP:
3283 case FIOGETOWN:
3284 case SIOCGPGRP:
3285 case SIOCBRADDBR:
3286 case SIOCBRDELBR:
3287 case SIOCGIFVLAN:
3288 case SIOCSIFVLAN:
3289 case SIOCADDDLCI:
3290 case SIOCDELDLCI:
3291 return sock_ioctl(file, cmd, arg);
3293 case SIOCGIFFLAGS:
3294 case SIOCSIFFLAGS:
3295 case SIOCGIFMETRIC:
3296 case SIOCSIFMETRIC:
3297 case SIOCGIFMTU:
3298 case SIOCSIFMTU:
3299 case SIOCGIFMEM:
3300 case SIOCSIFMEM:
3301 case SIOCGIFHWADDR:
3302 case SIOCSIFHWADDR:
3303 case SIOCADDMULTI:
3304 case SIOCDELMULTI:
3305 case SIOCGIFINDEX:
3306 case SIOCGIFADDR:
3307 case SIOCSIFADDR:
3308 case SIOCSIFHWBROADCAST:
3309 case SIOCDIFADDR:
3310 case SIOCGIFBRDADDR:
3311 case SIOCSIFBRDADDR:
3312 case SIOCGIFDSTADDR:
3313 case SIOCSIFDSTADDR:
3314 case SIOCGIFNETMASK:
3315 case SIOCSIFNETMASK:
3316 case SIOCSIFPFLAGS:
3317 case SIOCGIFPFLAGS:
3318 case SIOCGIFTXQLEN:
3319 case SIOCSIFTXQLEN:
3320 case SIOCBRADDIF:
3321 case SIOCBRDELIF:
3322 case SIOCSIFNAME:
3323 case SIOCGMIIPHY:
3324 case SIOCGMIIREG:
3325 case SIOCSMIIREG:
3326 return dev_ifsioc(net, sock, cmd, argp);
3328 case SIOCSARP:
3329 case SIOCGARP:
3330 case SIOCDARP:
3331 case SIOCATMARK:
3332 return sock_do_ioctl(net, sock, cmd, arg);
3335 return -ENOIOCTLCMD;
3338 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3339 unsigned long arg)
3341 struct socket *sock = file->private_data;
3342 int ret = -ENOIOCTLCMD;
3343 struct sock *sk;
3344 struct net *net;
3346 sk = sock->sk;
3347 net = sock_net(sk);
3349 if (sock->ops->compat_ioctl)
3350 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3352 if (ret == -ENOIOCTLCMD &&
3353 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3354 ret = compat_wext_handle_ioctl(net, cmd, arg);
3356 if (ret == -ENOIOCTLCMD)
3357 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3359 return ret;
3361 #endif
3363 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3365 return sock->ops->bind(sock, addr, addrlen);
3367 EXPORT_SYMBOL(kernel_bind);
3369 int kernel_listen(struct socket *sock, int backlog)
3371 return sock->ops->listen(sock, backlog);
3373 EXPORT_SYMBOL(kernel_listen);
3375 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3377 struct sock *sk = sock->sk;
3378 int err;
3380 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3381 newsock);
3382 if (err < 0)
3383 goto done;
3385 err = sock->ops->accept(sock, *newsock, flags);
3386 if (err < 0) {
3387 sock_release(*newsock);
3388 *newsock = NULL;
3389 goto done;
3392 (*newsock)->ops = sock->ops;
3393 __module_get((*newsock)->ops->owner);
3395 done:
3396 return err;
3398 EXPORT_SYMBOL(kernel_accept);
3400 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3401 int flags)
3403 return sock->ops->connect(sock, addr, addrlen, flags);
3405 EXPORT_SYMBOL(kernel_connect);
3407 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3408 int *addrlen)
3410 return sock->ops->getname(sock, addr, addrlen, 0);
3412 EXPORT_SYMBOL(kernel_getsockname);
3414 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3415 int *addrlen)
3417 return sock->ops->getname(sock, addr, addrlen, 1);
3419 EXPORT_SYMBOL(kernel_getpeername);
3421 int kernel_getsockopt(struct socket *sock, int level, int optname,
3422 char *optval, int *optlen)
3424 mm_segment_t oldfs = get_fs();
3425 char __user *uoptval;
3426 int __user *uoptlen;
3427 int err;
3429 uoptval = (char __user __force *) optval;
3430 uoptlen = (int __user __force *) optlen;
3432 set_fs(KERNEL_DS);
3433 if (level == SOL_SOCKET)
3434 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3435 else
3436 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3437 uoptlen);
3438 set_fs(oldfs);
3439 return err;
3441 EXPORT_SYMBOL(kernel_getsockopt);
3443 int kernel_setsockopt(struct socket *sock, int level, int optname,
3444 char *optval, unsigned int optlen)
3446 mm_segment_t oldfs = get_fs();
3447 char __user *uoptval;
3448 int err;
3450 uoptval = (char __user __force *) optval;
3452 set_fs(KERNEL_DS);
3453 if (level == SOL_SOCKET)
3454 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3455 else
3456 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3457 optlen);
3458 set_fs(oldfs);
3459 return err;
3461 EXPORT_SYMBOL(kernel_setsockopt);
3463 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3464 size_t size, int flags)
3466 if (sock->ops->sendpage)
3467 return sock->ops->sendpage(sock, page, offset, size, flags);
3469 return sock_no_sendpage(sock, page, offset, size, flags);
3471 EXPORT_SYMBOL(kernel_sendpage);
3473 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3475 mm_segment_t oldfs = get_fs();
3476 int err;
3478 set_fs(KERNEL_DS);
3479 err = sock->ops->ioctl(sock, cmd, arg);
3480 set_fs(oldfs);
3482 return err;
3484 EXPORT_SYMBOL(kernel_sock_ioctl);
3486 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3488 return sock->ops->shutdown(sock, how);
3490 EXPORT_SYMBOL(kernel_sock_shutdown);