4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
38 #define RPCDBG_FACILITY RPCDBG_CACHE
40 static bool cache_defer_req(struct cache_req
*req
, struct cache_head
*item
);
41 static void cache_revisit_request(struct cache_head
*item
);
43 static void cache_init(struct cache_head
*h
)
45 time_t now
= seconds_since_boot();
49 h
->expiry_time
= now
+ CACHE_NEW_EXPIRY
;
50 h
->last_refresh
= now
;
53 struct cache_head
*sunrpc_cache_lookup(struct cache_detail
*detail
,
54 struct cache_head
*key
, int hash
)
56 struct cache_head
**head
, **hp
;
57 struct cache_head
*new = NULL
, *freeme
= NULL
;
59 head
= &detail
->hash_table
[hash
];
61 read_lock(&detail
->hash_lock
);
63 for (hp
=head
; *hp
!= NULL
; hp
= &(*hp
)->next
) {
64 struct cache_head
*tmp
= *hp
;
65 if (detail
->match(tmp
, key
)) {
66 if (cache_is_expired(detail
, tmp
))
67 /* This entry is expired, we will discard it. */
70 read_unlock(&detail
->hash_lock
);
74 read_unlock(&detail
->hash_lock
);
75 /* Didn't find anything, insert an empty entry */
77 new = detail
->alloc();
80 /* must fully initialise 'new', else
81 * we might get lose if we need to
85 detail
->init(new, key
);
87 write_lock(&detail
->hash_lock
);
89 /* check if entry appeared while we slept */
90 for (hp
=head
; *hp
!= NULL
; hp
= &(*hp
)->next
) {
91 struct cache_head
*tmp
= *hp
;
92 if (detail
->match(tmp
, key
)) {
93 if (cache_is_expired(detail
, tmp
)) {
101 write_unlock(&detail
->hash_lock
);
102 cache_put(new, detail
);
110 write_unlock(&detail
->hash_lock
);
113 cache_put(freeme
, detail
);
116 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup
);
119 static void cache_dequeue(struct cache_detail
*detail
, struct cache_head
*ch
);
121 static void cache_fresh_locked(struct cache_head
*head
, time_t expiry
)
123 head
->expiry_time
= expiry
;
124 head
->last_refresh
= seconds_since_boot();
125 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
126 set_bit(CACHE_VALID
, &head
->flags
);
129 static void cache_fresh_unlocked(struct cache_head
*head
,
130 struct cache_detail
*detail
)
132 if (test_and_clear_bit(CACHE_PENDING
, &head
->flags
)) {
133 cache_revisit_request(head
);
134 cache_dequeue(detail
, head
);
138 struct cache_head
*sunrpc_cache_update(struct cache_detail
*detail
,
139 struct cache_head
*new, struct cache_head
*old
, int hash
)
141 /* The 'old' entry is to be replaced by 'new'.
142 * If 'old' is not VALID, we update it directly,
143 * otherwise we need to replace it
145 struct cache_head
**head
;
146 struct cache_head
*tmp
;
148 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
149 write_lock(&detail
->hash_lock
);
150 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
151 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
152 set_bit(CACHE_NEGATIVE
, &old
->flags
);
154 detail
->update(old
, new);
155 cache_fresh_locked(old
, new->expiry_time
);
156 write_unlock(&detail
->hash_lock
);
157 cache_fresh_unlocked(old
, detail
);
160 write_unlock(&detail
->hash_lock
);
162 /* We need to insert a new entry */
163 tmp
= detail
->alloc();
165 cache_put(old
, detail
);
169 detail
->init(tmp
, old
);
170 head
= &detail
->hash_table
[hash
];
172 write_lock(&detail
->hash_lock
);
173 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
174 set_bit(CACHE_NEGATIVE
, &tmp
->flags
);
176 detail
->update(tmp
, new);
181 cache_fresh_locked(tmp
, new->expiry_time
);
182 cache_fresh_locked(old
, 0);
183 write_unlock(&detail
->hash_lock
);
184 cache_fresh_unlocked(tmp
, detail
);
185 cache_fresh_unlocked(old
, detail
);
186 cache_put(old
, detail
);
189 EXPORT_SYMBOL_GPL(sunrpc_cache_update
);
191 static int cache_make_upcall(struct cache_detail
*cd
, struct cache_head
*h
)
193 if (cd
->cache_upcall
)
194 return cd
->cache_upcall(cd
, h
);
195 return sunrpc_cache_pipe_upcall(cd
, h
);
198 static inline int cache_is_valid(struct cache_head
*h
)
200 if (!test_bit(CACHE_VALID
, &h
->flags
))
204 if (test_bit(CACHE_NEGATIVE
, &h
->flags
))
208 * In combination with write barrier in
209 * sunrpc_cache_update, ensures that anyone
210 * using the cache entry after this sees the
219 static int try_to_negate_entry(struct cache_detail
*detail
, struct cache_head
*h
)
223 write_lock(&detail
->hash_lock
);
224 rv
= cache_is_valid(h
);
226 set_bit(CACHE_NEGATIVE
, &h
->flags
);
227 cache_fresh_locked(h
, seconds_since_boot()+CACHE_NEW_EXPIRY
);
230 write_unlock(&detail
->hash_lock
);
231 cache_fresh_unlocked(h
, detail
);
236 * This is the generic cache management routine for all
237 * the authentication caches.
238 * It checks the currency of a cache item and will (later)
239 * initiate an upcall to fill it if needed.
242 * Returns 0 if the cache_head can be used, or cache_puts it and returns
243 * -EAGAIN if upcall is pending and request has been queued
244 * -ETIMEDOUT if upcall failed or request could not be queue or
245 * upcall completed but item is still invalid (implying that
246 * the cache item has been replaced with a newer one).
247 * -ENOENT if cache entry was negative
249 int cache_check(struct cache_detail
*detail
,
250 struct cache_head
*h
, struct cache_req
*rqstp
)
253 long refresh_age
, age
;
255 /* First decide return status as best we can */
256 rv
= cache_is_valid(h
);
258 /* now see if we want to start an upcall */
259 refresh_age
= (h
->expiry_time
- h
->last_refresh
);
260 age
= seconds_since_boot() - h
->last_refresh
;
265 } else if (rv
== -EAGAIN
||
266 (h
->expiry_time
!= 0 && age
> refresh_age
/2)) {
267 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
269 if (!test_and_set_bit(CACHE_PENDING
, &h
->flags
)) {
270 switch (cache_make_upcall(detail
, h
)) {
272 rv
= try_to_negate_entry(detail
, h
);
275 cache_fresh_unlocked(h
, detail
);
282 if (!cache_defer_req(rqstp
, h
)) {
284 * Request was not deferred; handle it as best
287 rv
= cache_is_valid(h
);
293 cache_put(h
, detail
);
296 EXPORT_SYMBOL_GPL(cache_check
);
299 * caches need to be periodically cleaned.
300 * For this we maintain a list of cache_detail and
301 * a current pointer into that list and into the table
304 * Each time cache_clean is called it finds the next non-empty entry
305 * in the current table and walks the list in that entry
306 * looking for entries that can be removed.
308 * An entry gets removed if:
309 * - The expiry is before current time
310 * - The last_refresh time is before the flush_time for that cache
312 * later we might drop old entries with non-NEVER expiry if that table
313 * is getting 'full' for some definition of 'full'
315 * The question of "how often to scan a table" is an interesting one
316 * and is answered in part by the use of the "nextcheck" field in the
318 * When a scan of a table begins, the nextcheck field is set to a time
319 * that is well into the future.
320 * While scanning, if an expiry time is found that is earlier than the
321 * current nextcheck time, nextcheck is set to that expiry time.
322 * If the flush_time is ever set to a time earlier than the nextcheck
323 * time, the nextcheck time is then set to that flush_time.
325 * A table is then only scanned if the current time is at least
326 * the nextcheck time.
330 static LIST_HEAD(cache_list
);
331 static DEFINE_SPINLOCK(cache_list_lock
);
332 static struct cache_detail
*current_detail
;
333 static int current_index
;
335 static void do_cache_clean(struct work_struct
*work
);
336 static struct delayed_work cache_cleaner
;
338 void sunrpc_init_cache_detail(struct cache_detail
*cd
)
340 rwlock_init(&cd
->hash_lock
);
341 INIT_LIST_HEAD(&cd
->queue
);
342 spin_lock(&cache_list_lock
);
345 atomic_set(&cd
->readers
, 0);
348 list_add(&cd
->others
, &cache_list
);
349 spin_unlock(&cache_list_lock
);
351 /* start the cleaning process */
352 schedule_delayed_work(&cache_cleaner
, 0);
354 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail
);
356 void sunrpc_destroy_cache_detail(struct cache_detail
*cd
)
359 spin_lock(&cache_list_lock
);
360 write_lock(&cd
->hash_lock
);
361 if (cd
->entries
|| atomic_read(&cd
->inuse
)) {
362 write_unlock(&cd
->hash_lock
);
363 spin_unlock(&cache_list_lock
);
366 if (current_detail
== cd
)
367 current_detail
= NULL
;
368 list_del_init(&cd
->others
);
369 write_unlock(&cd
->hash_lock
);
370 spin_unlock(&cache_list_lock
);
371 if (list_empty(&cache_list
)) {
372 /* module must be being unloaded so its safe to kill the worker */
373 cancel_delayed_work_sync(&cache_cleaner
);
377 printk(KERN_ERR
"nfsd: failed to unregister %s cache\n", cd
->name
);
379 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail
);
381 /* clean cache tries to find something to clean
383 * It returns 1 if it cleaned something,
384 * 0 if it didn't find anything this time
385 * -1 if it fell off the end of the list.
387 static int cache_clean(void)
390 struct list_head
*next
;
392 spin_lock(&cache_list_lock
);
394 /* find a suitable table if we don't already have one */
395 while (current_detail
== NULL
||
396 current_index
>= current_detail
->hash_size
) {
398 next
= current_detail
->others
.next
;
400 next
= cache_list
.next
;
401 if (next
== &cache_list
) {
402 current_detail
= NULL
;
403 spin_unlock(&cache_list_lock
);
406 current_detail
= list_entry(next
, struct cache_detail
, others
);
407 if (current_detail
->nextcheck
> seconds_since_boot())
408 current_index
= current_detail
->hash_size
;
411 current_detail
->nextcheck
= seconds_since_boot()+30*60;
415 /* find a non-empty bucket in the table */
416 while (current_detail
&&
417 current_index
< current_detail
->hash_size
&&
418 current_detail
->hash_table
[current_index
] == NULL
)
421 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
423 if (current_detail
&& current_index
< current_detail
->hash_size
) {
424 struct cache_head
*ch
, **cp
;
425 struct cache_detail
*d
;
427 write_lock(¤t_detail
->hash_lock
);
429 /* Ok, now to clean this strand */
431 cp
= & current_detail
->hash_table
[current_index
];
432 for (ch
= *cp
; ch
; cp
= & ch
->next
, ch
= *cp
) {
433 if (current_detail
->nextcheck
> ch
->expiry_time
)
434 current_detail
->nextcheck
= ch
->expiry_time
+1;
435 if (!cache_is_expired(current_detail
, ch
))
440 current_detail
->entries
--;
445 write_unlock(¤t_detail
->hash_lock
);
449 spin_unlock(&cache_list_lock
);
451 set_bit(CACHE_CLEANED
, &ch
->flags
);
452 cache_fresh_unlocked(ch
, d
);
456 spin_unlock(&cache_list_lock
);
462 * We want to regularly clean the cache, so we need to schedule some work ...
464 static void do_cache_clean(struct work_struct
*work
)
467 if (cache_clean() == -1)
468 delay
= round_jiffies_relative(30*HZ
);
470 if (list_empty(&cache_list
))
474 schedule_delayed_work(&cache_cleaner
, delay
);
479 * Clean all caches promptly. This just calls cache_clean
480 * repeatedly until we are sure that every cache has had a chance to
483 void cache_flush(void)
485 while (cache_clean() != -1)
487 while (cache_clean() != -1)
490 EXPORT_SYMBOL_GPL(cache_flush
);
492 void cache_purge(struct cache_detail
*detail
)
494 detail
->flush_time
= LONG_MAX
;
495 detail
->nextcheck
= seconds_since_boot();
497 detail
->flush_time
= 1;
499 EXPORT_SYMBOL_GPL(cache_purge
);
503 * Deferral and Revisiting of Requests.
505 * If a cache lookup finds a pending entry, we
506 * need to defer the request and revisit it later.
507 * All deferred requests are stored in a hash table,
508 * indexed by "struct cache_head *".
509 * As it may be wasteful to store a whole request
510 * structure, we allow the request to provide a
511 * deferred form, which must contain a
512 * 'struct cache_deferred_req'
513 * This cache_deferred_req contains a method to allow
514 * it to be revisited when cache info is available
517 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
518 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
520 #define DFR_MAX 300 /* ??? */
522 static DEFINE_SPINLOCK(cache_defer_lock
);
523 static LIST_HEAD(cache_defer_list
);
524 static struct hlist_head cache_defer_hash
[DFR_HASHSIZE
];
525 static int cache_defer_cnt
;
527 static void __unhash_deferred_req(struct cache_deferred_req
*dreq
)
529 hlist_del_init(&dreq
->hash
);
530 if (!list_empty(&dreq
->recent
)) {
531 list_del_init(&dreq
->recent
);
536 static void __hash_deferred_req(struct cache_deferred_req
*dreq
, struct cache_head
*item
)
538 int hash
= DFR_HASH(item
);
540 INIT_LIST_HEAD(&dreq
->recent
);
541 hlist_add_head(&dreq
->hash
, &cache_defer_hash
[hash
]);
544 static void setup_deferral(struct cache_deferred_req
*dreq
,
545 struct cache_head
*item
,
551 spin_lock(&cache_defer_lock
);
553 __hash_deferred_req(dreq
, item
);
557 list_add(&dreq
->recent
, &cache_defer_list
);
560 spin_unlock(&cache_defer_lock
);
564 struct thread_deferred_req
{
565 struct cache_deferred_req handle
;
566 struct completion completion
;
569 static void cache_restart_thread(struct cache_deferred_req
*dreq
, int too_many
)
571 struct thread_deferred_req
*dr
=
572 container_of(dreq
, struct thread_deferred_req
, handle
);
573 complete(&dr
->completion
);
576 static void cache_wait_req(struct cache_req
*req
, struct cache_head
*item
)
578 struct thread_deferred_req sleeper
;
579 struct cache_deferred_req
*dreq
= &sleeper
.handle
;
581 sleeper
.completion
= COMPLETION_INITIALIZER_ONSTACK(sleeper
.completion
);
582 dreq
->revisit
= cache_restart_thread
;
584 setup_deferral(dreq
, item
, 0);
586 if (!test_bit(CACHE_PENDING
, &item
->flags
) ||
587 wait_for_completion_interruptible_timeout(
588 &sleeper
.completion
, req
->thread_wait
) <= 0) {
589 /* The completion wasn't completed, so we need
592 spin_lock(&cache_defer_lock
);
593 if (!hlist_unhashed(&sleeper
.handle
.hash
)) {
594 __unhash_deferred_req(&sleeper
.handle
);
595 spin_unlock(&cache_defer_lock
);
597 /* cache_revisit_request already removed
598 * this from the hash table, but hasn't
599 * called ->revisit yet. It will very soon
600 * and we need to wait for it.
602 spin_unlock(&cache_defer_lock
);
603 wait_for_completion(&sleeper
.completion
);
608 static void cache_limit_defers(void)
610 /* Make sure we haven't exceed the limit of allowed deferred
613 struct cache_deferred_req
*discard
= NULL
;
615 if (cache_defer_cnt
<= DFR_MAX
)
618 spin_lock(&cache_defer_lock
);
620 /* Consider removing either the first or the last */
621 if (cache_defer_cnt
> DFR_MAX
) {
622 if (net_random() & 1)
623 discard
= list_entry(cache_defer_list
.next
,
624 struct cache_deferred_req
, recent
);
626 discard
= list_entry(cache_defer_list
.prev
,
627 struct cache_deferred_req
, recent
);
628 __unhash_deferred_req(discard
);
630 spin_unlock(&cache_defer_lock
);
632 discard
->revisit(discard
, 1);
635 /* Return true if and only if a deferred request is queued. */
636 static bool cache_defer_req(struct cache_req
*req
, struct cache_head
*item
)
638 struct cache_deferred_req
*dreq
;
640 if (req
->thread_wait
) {
641 cache_wait_req(req
, item
);
642 if (!test_bit(CACHE_PENDING
, &item
->flags
))
645 dreq
= req
->defer(req
);
648 setup_deferral(dreq
, item
, 1);
649 if (!test_bit(CACHE_PENDING
, &item
->flags
))
650 /* Bit could have been cleared before we managed to
651 * set up the deferral, so need to revisit just in case
653 cache_revisit_request(item
);
655 cache_limit_defers();
659 static void cache_revisit_request(struct cache_head
*item
)
661 struct cache_deferred_req
*dreq
;
662 struct list_head pending
;
663 struct hlist_node
*tmp
;
664 int hash
= DFR_HASH(item
);
666 INIT_LIST_HEAD(&pending
);
667 spin_lock(&cache_defer_lock
);
669 hlist_for_each_entry_safe(dreq
, tmp
, &cache_defer_hash
[hash
], hash
)
670 if (dreq
->item
== item
) {
671 __unhash_deferred_req(dreq
);
672 list_add(&dreq
->recent
, &pending
);
675 spin_unlock(&cache_defer_lock
);
677 while (!list_empty(&pending
)) {
678 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
679 list_del_init(&dreq
->recent
);
680 dreq
->revisit(dreq
, 0);
684 void cache_clean_deferred(void *owner
)
686 struct cache_deferred_req
*dreq
, *tmp
;
687 struct list_head pending
;
690 INIT_LIST_HEAD(&pending
);
691 spin_lock(&cache_defer_lock
);
693 list_for_each_entry_safe(dreq
, tmp
, &cache_defer_list
, recent
) {
694 if (dreq
->owner
== owner
) {
695 __unhash_deferred_req(dreq
);
696 list_add(&dreq
->recent
, &pending
);
699 spin_unlock(&cache_defer_lock
);
701 while (!list_empty(&pending
)) {
702 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
703 list_del_init(&dreq
->recent
);
704 dreq
->revisit(dreq
, 1);
709 * communicate with user-space
711 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
712 * On read, you get a full request, or block.
713 * On write, an update request is processed.
714 * Poll works if anything to read, and always allows write.
716 * Implemented by linked list of requests. Each open file has
717 * a ->private that also exists in this list. New requests are added
718 * to the end and may wakeup and preceding readers.
719 * New readers are added to the head. If, on read, an item is found with
720 * CACHE_UPCALLING clear, we free it from the list.
724 static DEFINE_SPINLOCK(queue_lock
);
725 static DEFINE_MUTEX(queue_io_mutex
);
728 struct list_head list
;
729 int reader
; /* if 0, then request */
731 struct cache_request
{
732 struct cache_queue q
;
733 struct cache_head
*item
;
738 struct cache_reader
{
739 struct cache_queue q
;
740 int offset
; /* if non-0, we have a refcnt on next request */
743 static int cache_request(struct cache_detail
*detail
,
744 struct cache_request
*crq
)
749 detail
->cache_request(detail
, crq
->item
, &bp
, &len
);
752 return PAGE_SIZE
- len
;
755 static ssize_t
cache_read(struct file
*filp
, char __user
*buf
, size_t count
,
756 loff_t
*ppos
, struct cache_detail
*cd
)
758 struct cache_reader
*rp
= filp
->private_data
;
759 struct cache_request
*rq
;
760 struct inode
*inode
= file_inode(filp
);
766 mutex_lock(&inode
->i_mutex
); /* protect against multiple concurrent
767 * readers on this file */
769 spin_lock(&queue_lock
);
770 /* need to find next request */
771 while (rp
->q
.list
.next
!= &cd
->queue
&&
772 list_entry(rp
->q
.list
.next
, struct cache_queue
, list
)
774 struct list_head
*next
= rp
->q
.list
.next
;
775 list_move(&rp
->q
.list
, next
);
777 if (rp
->q
.list
.next
== &cd
->queue
) {
778 spin_unlock(&queue_lock
);
779 mutex_unlock(&inode
->i_mutex
);
780 WARN_ON_ONCE(rp
->offset
);
783 rq
= container_of(rp
->q
.list
.next
, struct cache_request
, q
.list
);
784 WARN_ON_ONCE(rq
->q
.reader
);
787 spin_unlock(&queue_lock
);
790 err
= cache_request(cd
, rq
);
796 if (rp
->offset
== 0 && !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
798 spin_lock(&queue_lock
);
799 list_move(&rp
->q
.list
, &rq
->q
.list
);
800 spin_unlock(&queue_lock
);
802 if (rp
->offset
+ count
> rq
->len
)
803 count
= rq
->len
- rp
->offset
;
805 if (copy_to_user(buf
, rq
->buf
+ rp
->offset
, count
))
808 if (rp
->offset
>= rq
->len
) {
810 spin_lock(&queue_lock
);
811 list_move(&rp
->q
.list
, &rq
->q
.list
);
812 spin_unlock(&queue_lock
);
817 if (rp
->offset
== 0) {
818 /* need to release rq */
819 spin_lock(&queue_lock
);
821 if (rq
->readers
== 0 &&
822 !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
823 list_del(&rq
->q
.list
);
824 spin_unlock(&queue_lock
);
825 cache_put(rq
->item
, cd
);
829 spin_unlock(&queue_lock
);
833 mutex_unlock(&inode
->i_mutex
);
834 return err
? err
: count
;
837 static ssize_t
cache_do_downcall(char *kaddr
, const char __user
*buf
,
838 size_t count
, struct cache_detail
*cd
)
844 if (copy_from_user(kaddr
, buf
, count
))
847 ret
= cd
->cache_parse(cd
, kaddr
, count
);
853 static ssize_t
cache_slow_downcall(const char __user
*buf
,
854 size_t count
, struct cache_detail
*cd
)
856 static char write_buf
[8192]; /* protected by queue_io_mutex */
857 ssize_t ret
= -EINVAL
;
859 if (count
>= sizeof(write_buf
))
861 mutex_lock(&queue_io_mutex
);
862 ret
= cache_do_downcall(write_buf
, buf
, count
, cd
);
863 mutex_unlock(&queue_io_mutex
);
868 static ssize_t
cache_downcall(struct address_space
*mapping
,
869 const char __user
*buf
,
870 size_t count
, struct cache_detail
*cd
)
874 ssize_t ret
= -ENOMEM
;
876 if (count
>= PAGE_CACHE_SIZE
)
879 page
= find_or_create_page(mapping
, 0, GFP_KERNEL
);
884 ret
= cache_do_downcall(kaddr
, buf
, count
, cd
);
887 page_cache_release(page
);
890 return cache_slow_downcall(buf
, count
, cd
);
893 static ssize_t
cache_write(struct file
*filp
, const char __user
*buf
,
894 size_t count
, loff_t
*ppos
,
895 struct cache_detail
*cd
)
897 struct address_space
*mapping
= filp
->f_mapping
;
898 struct inode
*inode
= file_inode(filp
);
899 ssize_t ret
= -EINVAL
;
901 if (!cd
->cache_parse
)
904 mutex_lock(&inode
->i_mutex
);
905 ret
= cache_downcall(mapping
, buf
, count
, cd
);
906 mutex_unlock(&inode
->i_mutex
);
911 static DECLARE_WAIT_QUEUE_HEAD(queue_wait
);
913 static unsigned int cache_poll(struct file
*filp
, poll_table
*wait
,
914 struct cache_detail
*cd
)
917 struct cache_reader
*rp
= filp
->private_data
;
918 struct cache_queue
*cq
;
920 poll_wait(filp
, &queue_wait
, wait
);
922 /* alway allow write */
923 mask
= POLL_OUT
| POLLWRNORM
;
928 spin_lock(&queue_lock
);
930 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
931 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
933 mask
|= POLLIN
| POLLRDNORM
;
936 spin_unlock(&queue_lock
);
940 static int cache_ioctl(struct inode
*ino
, struct file
*filp
,
941 unsigned int cmd
, unsigned long arg
,
942 struct cache_detail
*cd
)
945 struct cache_reader
*rp
= filp
->private_data
;
946 struct cache_queue
*cq
;
948 if (cmd
!= FIONREAD
|| !rp
)
951 spin_lock(&queue_lock
);
953 /* only find the length remaining in current request,
954 * or the length of the next request
956 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
957 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
959 struct cache_request
*cr
=
960 container_of(cq
, struct cache_request
, q
);
961 len
= cr
->len
- rp
->offset
;
964 spin_unlock(&queue_lock
);
966 return put_user(len
, (int __user
*)arg
);
969 static int cache_open(struct inode
*inode
, struct file
*filp
,
970 struct cache_detail
*cd
)
972 struct cache_reader
*rp
= NULL
;
974 if (!cd
|| !try_module_get(cd
->owner
))
976 nonseekable_open(inode
, filp
);
977 if (filp
->f_mode
& FMODE_READ
) {
978 rp
= kmalloc(sizeof(*rp
), GFP_KERNEL
);
980 module_put(cd
->owner
);
985 atomic_inc(&cd
->readers
);
986 spin_lock(&queue_lock
);
987 list_add(&rp
->q
.list
, &cd
->queue
);
988 spin_unlock(&queue_lock
);
990 filp
->private_data
= rp
;
994 static int cache_release(struct inode
*inode
, struct file
*filp
,
995 struct cache_detail
*cd
)
997 struct cache_reader
*rp
= filp
->private_data
;
1000 spin_lock(&queue_lock
);
1002 struct cache_queue
*cq
;
1003 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
1004 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
1006 container_of(cq
, struct cache_request
, q
)
1012 list_del(&rp
->q
.list
);
1013 spin_unlock(&queue_lock
);
1015 filp
->private_data
= NULL
;
1018 cd
->last_close
= seconds_since_boot();
1019 atomic_dec(&cd
->readers
);
1021 module_put(cd
->owner
);
1027 static void cache_dequeue(struct cache_detail
*detail
, struct cache_head
*ch
)
1029 struct cache_queue
*cq
, *tmp
;
1030 struct cache_request
*cr
;
1031 struct list_head dequeued
;
1033 INIT_LIST_HEAD(&dequeued
);
1034 spin_lock(&queue_lock
);
1035 list_for_each_entry_safe(cq
, tmp
, &detail
->queue
, list
)
1037 cr
= container_of(cq
, struct cache_request
, q
);
1040 if (test_bit(CACHE_PENDING
, &ch
->flags
))
1041 /* Lost a race and it is pending again */
1043 if (cr
->readers
!= 0)
1045 list_move(&cr
->q
.list
, &dequeued
);
1047 spin_unlock(&queue_lock
);
1048 while (!list_empty(&dequeued
)) {
1049 cr
= list_entry(dequeued
.next
, struct cache_request
, q
.list
);
1050 list_del(&cr
->q
.list
);
1051 cache_put(cr
->item
, detail
);
1058 * Support routines for text-based upcalls.
1059 * Fields are separated by spaces.
1060 * Fields are either mangled to quote space tab newline slosh with slosh
1061 * or a hexified with a leading \x
1062 * Record is terminated with newline.
1066 void qword_add(char **bpp
, int *lp
, char *str
)
1072 if (len
< 0) return;
1074 while ((c
=*str
++) && len
)
1082 *bp
++ = '0' + ((c
& 0300)>>6);
1083 *bp
++ = '0' + ((c
& 0070)>>3);
1084 *bp
++ = '0' + ((c
& 0007)>>0);
1092 if (c
|| len
<1) len
= -1;
1100 EXPORT_SYMBOL_GPL(qword_add
);
1102 void qword_addhex(char **bpp
, int *lp
, char *buf
, int blen
)
1107 if (len
< 0) return;
1113 while (blen
&& len
>= 2) {
1114 unsigned char c
= *buf
++;
1115 *bp
++ = '0' + ((c
&0xf0)>>4) + (c
>=0xa0)*('a'-'9'-1);
1116 *bp
++ = '0' + (c
&0x0f) + ((c
&0x0f)>=0x0a)*('a'-'9'-1);
1121 if (blen
|| len
<1) len
= -1;
1129 EXPORT_SYMBOL_GPL(qword_addhex
);
1131 static void warn_no_listener(struct cache_detail
*detail
)
1133 if (detail
->last_warn
!= detail
->last_close
) {
1134 detail
->last_warn
= detail
->last_close
;
1135 if (detail
->warn_no_listener
)
1136 detail
->warn_no_listener(detail
, detail
->last_close
!= 0);
1140 static bool cache_listeners_exist(struct cache_detail
*detail
)
1142 if (atomic_read(&detail
->readers
))
1144 if (detail
->last_close
== 0)
1145 /* This cache was never opened */
1147 if (detail
->last_close
< seconds_since_boot() - 30)
1149 * We allow for the possibility that someone might
1150 * restart a userspace daemon without restarting the
1151 * server; but after 30 seconds, we give up.
1158 * register an upcall request to user-space and queue it up for read() by the
1161 * Each request is at most one page long.
1163 int sunrpc_cache_pipe_upcall(struct cache_detail
*detail
, struct cache_head
*h
)
1167 struct cache_request
*crq
;
1170 if (!detail
->cache_request
)
1173 if (!cache_listeners_exist(detail
)) {
1174 warn_no_listener(detail
);
1177 if (test_bit(CACHE_CLEANED
, &h
->flags
))
1178 /* Too late to make an upcall */
1181 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1185 crq
= kmalloc(sizeof (*crq
), GFP_KERNEL
);
1192 crq
->item
= cache_get(h
);
1196 spin_lock(&queue_lock
);
1197 if (test_bit(CACHE_PENDING
, &h
->flags
))
1198 list_add_tail(&crq
->q
.list
, &detail
->queue
);
1200 /* Lost a race, no longer PENDING, so don't enqueue */
1202 spin_unlock(&queue_lock
);
1203 wake_up(&queue_wait
);
1204 if (ret
== -EAGAIN
) {
1210 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall
);
1213 * parse a message from user-space and pass it
1214 * to an appropriate cache
1215 * Messages are, like requests, separated into fields by
1216 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1219 * reply cachename expiry key ... content....
1221 * key and content are both parsed by cache
1224 int qword_get(char **bpp
, char *dest
, int bufsize
)
1226 /* return bytes copied, or -1 on error */
1230 while (*bp
== ' ') bp
++;
1232 if (bp
[0] == '\\' && bp
[1] == 'x') {
1235 while (len
< bufsize
) {
1238 h
= hex_to_bin(bp
[0]);
1242 l
= hex_to_bin(bp
[1]);
1246 *dest
++ = (h
<< 4) | l
;
1251 /* text with \nnn octal quoting */
1252 while (*bp
!= ' ' && *bp
!= '\n' && *bp
&& len
< bufsize
-1) {
1254 isodigit(bp
[1]) && (bp
[1] <= '3') &&
1257 int byte
= (*++bp
-'0');
1259 byte
= (byte
<< 3) | (*bp
++ - '0');
1260 byte
= (byte
<< 3) | (*bp
++ - '0');
1270 if (*bp
!= ' ' && *bp
!= '\n' && *bp
!= '\0')
1272 while (*bp
== ' ') bp
++;
1277 EXPORT_SYMBOL_GPL(qword_get
);
1281 * support /proc/sunrpc/cache/$CACHENAME/content
1283 * We call ->cache_show passing NULL for the item to
1284 * get a header, then pass each real item in the cache
1288 struct cache_detail
*cd
;
1291 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1292 __acquires(cd
->hash_lock
)
1295 unsigned int hash
, entry
;
1296 struct cache_head
*ch
;
1297 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1300 read_lock(&cd
->hash_lock
);
1302 return SEQ_START_TOKEN
;
1304 entry
= n
& ((1LL<<32) - 1);
1306 for (ch
=cd
->hash_table
[hash
]; ch
; ch
=ch
->next
)
1309 n
&= ~((1LL<<32) - 1);
1313 } while(hash
< cd
->hash_size
&&
1314 cd
->hash_table
[hash
]==NULL
);
1315 if (hash
>= cd
->hash_size
)
1318 return cd
->hash_table
[hash
];
1321 static void *c_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1323 struct cache_head
*ch
= p
;
1324 int hash
= (*pos
>> 32);
1325 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1327 if (p
== SEQ_START_TOKEN
)
1329 else if (ch
->next
== NULL
) {
1336 *pos
&= ~((1LL<<32) - 1);
1337 while (hash
< cd
->hash_size
&&
1338 cd
->hash_table
[hash
] == NULL
) {
1342 if (hash
>= cd
->hash_size
)
1345 return cd
->hash_table
[hash
];
1348 static void c_stop(struct seq_file
*m
, void *p
)
1349 __releases(cd
->hash_lock
)
1351 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1352 read_unlock(&cd
->hash_lock
);
1355 static int c_show(struct seq_file
*m
, void *p
)
1357 struct cache_head
*cp
= p
;
1358 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1360 if (p
== SEQ_START_TOKEN
)
1361 return cd
->cache_show(m
, cd
, NULL
);
1364 seq_printf(m
, "# expiry=%ld refcnt=%d flags=%lx\n",
1365 convert_to_wallclock(cp
->expiry_time
),
1366 atomic_read(&cp
->ref
.refcount
), cp
->flags
);
1368 if (cache_check(cd
, cp
, NULL
))
1369 /* cache_check does a cache_put on failure */
1370 seq_printf(m
, "# ");
1372 if (cache_is_expired(cd
, cp
))
1373 seq_printf(m
, "# ");
1377 return cd
->cache_show(m
, cd
, cp
);
1380 static const struct seq_operations cache_content_op
= {
1387 static int content_open(struct inode
*inode
, struct file
*file
,
1388 struct cache_detail
*cd
)
1392 if (!cd
|| !try_module_get(cd
->owner
))
1394 han
= __seq_open_private(file
, &cache_content_op
, sizeof(*han
));
1396 module_put(cd
->owner
);
1404 static int content_release(struct inode
*inode
, struct file
*file
,
1405 struct cache_detail
*cd
)
1407 int ret
= seq_release_private(inode
, file
);
1408 module_put(cd
->owner
);
1412 static int open_flush(struct inode
*inode
, struct file
*file
,
1413 struct cache_detail
*cd
)
1415 if (!cd
|| !try_module_get(cd
->owner
))
1417 return nonseekable_open(inode
, file
);
1420 static int release_flush(struct inode
*inode
, struct file
*file
,
1421 struct cache_detail
*cd
)
1423 module_put(cd
->owner
);
1427 static ssize_t
read_flush(struct file
*file
, char __user
*buf
,
1428 size_t count
, loff_t
*ppos
,
1429 struct cache_detail
*cd
)
1432 unsigned long p
= *ppos
;
1435 snprintf(tbuf
, sizeof(tbuf
), "%lu\n", convert_to_wallclock(cd
->flush_time
));
1442 if (copy_to_user(buf
, (void*)(tbuf
+p
), len
))
1448 static ssize_t
write_flush(struct file
*file
, const char __user
*buf
,
1449 size_t count
, loff_t
*ppos
,
1450 struct cache_detail
*cd
)
1455 if (*ppos
|| count
> sizeof(tbuf
)-1)
1457 if (copy_from_user(tbuf
, buf
, count
))
1460 simple_strtoul(tbuf
, &ep
, 0);
1461 if (*ep
&& *ep
!= '\n')
1465 cd
->flush_time
= get_expiry(&bp
);
1466 cd
->nextcheck
= seconds_since_boot();
1473 static ssize_t
cache_read_procfs(struct file
*filp
, char __user
*buf
,
1474 size_t count
, loff_t
*ppos
)
1476 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1478 return cache_read(filp
, buf
, count
, ppos
, cd
);
1481 static ssize_t
cache_write_procfs(struct file
*filp
, const char __user
*buf
,
1482 size_t count
, loff_t
*ppos
)
1484 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1486 return cache_write(filp
, buf
, count
, ppos
, cd
);
1489 static unsigned int cache_poll_procfs(struct file
*filp
, poll_table
*wait
)
1491 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1493 return cache_poll(filp
, wait
, cd
);
1496 static long cache_ioctl_procfs(struct file
*filp
,
1497 unsigned int cmd
, unsigned long arg
)
1499 struct inode
*inode
= file_inode(filp
);
1500 struct cache_detail
*cd
= PDE_DATA(inode
);
1502 return cache_ioctl(inode
, filp
, cmd
, arg
, cd
);
1505 static int cache_open_procfs(struct inode
*inode
, struct file
*filp
)
1507 struct cache_detail
*cd
= PDE_DATA(inode
);
1509 return cache_open(inode
, filp
, cd
);
1512 static int cache_release_procfs(struct inode
*inode
, struct file
*filp
)
1514 struct cache_detail
*cd
= PDE_DATA(inode
);
1516 return cache_release(inode
, filp
, cd
);
1519 static const struct file_operations cache_file_operations_procfs
= {
1520 .owner
= THIS_MODULE
,
1521 .llseek
= no_llseek
,
1522 .read
= cache_read_procfs
,
1523 .write
= cache_write_procfs
,
1524 .poll
= cache_poll_procfs
,
1525 .unlocked_ioctl
= cache_ioctl_procfs
, /* for FIONREAD */
1526 .open
= cache_open_procfs
,
1527 .release
= cache_release_procfs
,
1530 static int content_open_procfs(struct inode
*inode
, struct file
*filp
)
1532 struct cache_detail
*cd
= PDE_DATA(inode
);
1534 return content_open(inode
, filp
, cd
);
1537 static int content_release_procfs(struct inode
*inode
, struct file
*filp
)
1539 struct cache_detail
*cd
= PDE_DATA(inode
);
1541 return content_release(inode
, filp
, cd
);
1544 static const struct file_operations content_file_operations_procfs
= {
1545 .open
= content_open_procfs
,
1547 .llseek
= seq_lseek
,
1548 .release
= content_release_procfs
,
1551 static int open_flush_procfs(struct inode
*inode
, struct file
*filp
)
1553 struct cache_detail
*cd
= PDE_DATA(inode
);
1555 return open_flush(inode
, filp
, cd
);
1558 static int release_flush_procfs(struct inode
*inode
, struct file
*filp
)
1560 struct cache_detail
*cd
= PDE_DATA(inode
);
1562 return release_flush(inode
, filp
, cd
);
1565 static ssize_t
read_flush_procfs(struct file
*filp
, char __user
*buf
,
1566 size_t count
, loff_t
*ppos
)
1568 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1570 return read_flush(filp
, buf
, count
, ppos
, cd
);
1573 static ssize_t
write_flush_procfs(struct file
*filp
,
1574 const char __user
*buf
,
1575 size_t count
, loff_t
*ppos
)
1577 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1579 return write_flush(filp
, buf
, count
, ppos
, cd
);
1582 static const struct file_operations cache_flush_operations_procfs
= {
1583 .open
= open_flush_procfs
,
1584 .read
= read_flush_procfs
,
1585 .write
= write_flush_procfs
,
1586 .release
= release_flush_procfs
,
1587 .llseek
= no_llseek
,
1590 static void remove_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1592 struct sunrpc_net
*sn
;
1594 if (cd
->u
.procfs
.proc_ent
== NULL
)
1596 if (cd
->u
.procfs
.flush_ent
)
1597 remove_proc_entry("flush", cd
->u
.procfs
.proc_ent
);
1598 if (cd
->u
.procfs
.channel_ent
)
1599 remove_proc_entry("channel", cd
->u
.procfs
.proc_ent
);
1600 if (cd
->u
.procfs
.content_ent
)
1601 remove_proc_entry("content", cd
->u
.procfs
.proc_ent
);
1602 cd
->u
.procfs
.proc_ent
= NULL
;
1603 sn
= net_generic(net
, sunrpc_net_id
);
1604 remove_proc_entry(cd
->name
, sn
->proc_net_rpc
);
1607 #ifdef CONFIG_PROC_FS
1608 static int create_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1610 struct proc_dir_entry
*p
;
1611 struct sunrpc_net
*sn
;
1613 sn
= net_generic(net
, sunrpc_net_id
);
1614 cd
->u
.procfs
.proc_ent
= proc_mkdir(cd
->name
, sn
->proc_net_rpc
);
1615 if (cd
->u
.procfs
.proc_ent
== NULL
)
1617 cd
->u
.procfs
.channel_ent
= NULL
;
1618 cd
->u
.procfs
.content_ent
= NULL
;
1620 p
= proc_create_data("flush", S_IFREG
|S_IRUSR
|S_IWUSR
,
1621 cd
->u
.procfs
.proc_ent
,
1622 &cache_flush_operations_procfs
, cd
);
1623 cd
->u
.procfs
.flush_ent
= p
;
1627 if (cd
->cache_request
|| cd
->cache_parse
) {
1628 p
= proc_create_data("channel", S_IFREG
|S_IRUSR
|S_IWUSR
,
1629 cd
->u
.procfs
.proc_ent
,
1630 &cache_file_operations_procfs
, cd
);
1631 cd
->u
.procfs
.channel_ent
= p
;
1635 if (cd
->cache_show
) {
1636 p
= proc_create_data("content", S_IFREG
|S_IRUSR
,
1637 cd
->u
.procfs
.proc_ent
,
1638 &content_file_operations_procfs
, cd
);
1639 cd
->u
.procfs
.content_ent
= p
;
1645 remove_cache_proc_entries(cd
, net
);
1648 #else /* CONFIG_PROC_FS */
1649 static int create_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1655 void __init
cache_initialize(void)
1657 INIT_DEFERRABLE_WORK(&cache_cleaner
, do_cache_clean
);
1660 int cache_register_net(struct cache_detail
*cd
, struct net
*net
)
1664 sunrpc_init_cache_detail(cd
);
1665 ret
= create_cache_proc_entries(cd
, net
);
1667 sunrpc_destroy_cache_detail(cd
);
1670 EXPORT_SYMBOL_GPL(cache_register_net
);
1672 void cache_unregister_net(struct cache_detail
*cd
, struct net
*net
)
1674 remove_cache_proc_entries(cd
, net
);
1675 sunrpc_destroy_cache_detail(cd
);
1677 EXPORT_SYMBOL_GPL(cache_unregister_net
);
1679 struct cache_detail
*cache_create_net(struct cache_detail
*tmpl
, struct net
*net
)
1681 struct cache_detail
*cd
;
1683 cd
= kmemdup(tmpl
, sizeof(struct cache_detail
), GFP_KERNEL
);
1685 return ERR_PTR(-ENOMEM
);
1687 cd
->hash_table
= kzalloc(cd
->hash_size
* sizeof(struct cache_head
*),
1689 if (cd
->hash_table
== NULL
) {
1691 return ERR_PTR(-ENOMEM
);
1696 EXPORT_SYMBOL_GPL(cache_create_net
);
1698 void cache_destroy_net(struct cache_detail
*cd
, struct net
*net
)
1700 kfree(cd
->hash_table
);
1703 EXPORT_SYMBOL_GPL(cache_destroy_net
);
1705 static ssize_t
cache_read_pipefs(struct file
*filp
, char __user
*buf
,
1706 size_t count
, loff_t
*ppos
)
1708 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1710 return cache_read(filp
, buf
, count
, ppos
, cd
);
1713 static ssize_t
cache_write_pipefs(struct file
*filp
, const char __user
*buf
,
1714 size_t count
, loff_t
*ppos
)
1716 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1718 return cache_write(filp
, buf
, count
, ppos
, cd
);
1721 static unsigned int cache_poll_pipefs(struct file
*filp
, poll_table
*wait
)
1723 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1725 return cache_poll(filp
, wait
, cd
);
1728 static long cache_ioctl_pipefs(struct file
*filp
,
1729 unsigned int cmd
, unsigned long arg
)
1731 struct inode
*inode
= file_inode(filp
);
1732 struct cache_detail
*cd
= RPC_I(inode
)->private;
1734 return cache_ioctl(inode
, filp
, cmd
, arg
, cd
);
1737 static int cache_open_pipefs(struct inode
*inode
, struct file
*filp
)
1739 struct cache_detail
*cd
= RPC_I(inode
)->private;
1741 return cache_open(inode
, filp
, cd
);
1744 static int cache_release_pipefs(struct inode
*inode
, struct file
*filp
)
1746 struct cache_detail
*cd
= RPC_I(inode
)->private;
1748 return cache_release(inode
, filp
, cd
);
1751 const struct file_operations cache_file_operations_pipefs
= {
1752 .owner
= THIS_MODULE
,
1753 .llseek
= no_llseek
,
1754 .read
= cache_read_pipefs
,
1755 .write
= cache_write_pipefs
,
1756 .poll
= cache_poll_pipefs
,
1757 .unlocked_ioctl
= cache_ioctl_pipefs
, /* for FIONREAD */
1758 .open
= cache_open_pipefs
,
1759 .release
= cache_release_pipefs
,
1762 static int content_open_pipefs(struct inode
*inode
, struct file
*filp
)
1764 struct cache_detail
*cd
= RPC_I(inode
)->private;
1766 return content_open(inode
, filp
, cd
);
1769 static int content_release_pipefs(struct inode
*inode
, struct file
*filp
)
1771 struct cache_detail
*cd
= RPC_I(inode
)->private;
1773 return content_release(inode
, filp
, cd
);
1776 const struct file_operations content_file_operations_pipefs
= {
1777 .open
= content_open_pipefs
,
1779 .llseek
= seq_lseek
,
1780 .release
= content_release_pipefs
,
1783 static int open_flush_pipefs(struct inode
*inode
, struct file
*filp
)
1785 struct cache_detail
*cd
= RPC_I(inode
)->private;
1787 return open_flush(inode
, filp
, cd
);
1790 static int release_flush_pipefs(struct inode
*inode
, struct file
*filp
)
1792 struct cache_detail
*cd
= RPC_I(inode
)->private;
1794 return release_flush(inode
, filp
, cd
);
1797 static ssize_t
read_flush_pipefs(struct file
*filp
, char __user
*buf
,
1798 size_t count
, loff_t
*ppos
)
1800 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1802 return read_flush(filp
, buf
, count
, ppos
, cd
);
1805 static ssize_t
write_flush_pipefs(struct file
*filp
,
1806 const char __user
*buf
,
1807 size_t count
, loff_t
*ppos
)
1809 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1811 return write_flush(filp
, buf
, count
, ppos
, cd
);
1814 const struct file_operations cache_flush_operations_pipefs
= {
1815 .open
= open_flush_pipefs
,
1816 .read
= read_flush_pipefs
,
1817 .write
= write_flush_pipefs
,
1818 .release
= release_flush_pipefs
,
1819 .llseek
= no_llseek
,
1822 int sunrpc_cache_register_pipefs(struct dentry
*parent
,
1823 const char *name
, umode_t umode
,
1824 struct cache_detail
*cd
)
1826 struct dentry
*dir
= rpc_create_cache_dir(parent
, name
, umode
, cd
);
1828 return PTR_ERR(dir
);
1829 cd
->u
.pipefs
.dir
= dir
;
1832 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs
);
1834 void sunrpc_cache_unregister_pipefs(struct cache_detail
*cd
)
1836 rpc_remove_cache_dir(cd
->u
.pipefs
.dir
);
1837 cd
->u
.pipefs
.dir
= NULL
;
1839 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs
);