2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 int selinux_policycap_netpeer
;
74 int selinux_policycap_openperm
;
76 static DEFINE_RWLOCK(policy_rwlock
);
78 static struct sidtab sidtab
;
79 struct policydb policydb
;
83 * The largest sequence number that has been used when
84 * providing an access decision to the access vector cache.
85 * The sequence number only changes when a policy change
88 static u32 latest_granting
;
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context
*context
, char **scontext
,
94 static void context_struct_compute_av(struct context
*scontext
,
95 struct context
*tcontext
,
97 struct av_decision
*avd
);
99 struct selinux_mapping
{
100 u16 value
; /* policy value */
102 u32 perms
[sizeof(u32
) * 8];
105 static struct selinux_mapping
*current_mapping
;
106 static u16 current_mapping_size
;
108 static int selinux_set_mapping(struct policydb
*pol
,
109 struct security_class_mapping
*map
,
110 struct selinux_mapping
**out_map_p
,
113 struct selinux_mapping
*out_map
= NULL
;
114 size_t size
= sizeof(struct selinux_mapping
);
117 bool print_unknown_handle
= false;
119 /* Find number of classes in the input mapping */
126 /* Allocate space for the class records, plus one for class zero */
127 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
131 /* Store the raw class and permission values */
133 while (map
[j
].name
) {
134 struct security_class_mapping
*p_in
= map
+ (j
++);
135 struct selinux_mapping
*p_out
= out_map
+ j
;
137 /* An empty class string skips ahead */
138 if (!strcmp(p_in
->name
, "")) {
139 p_out
->num_perms
= 0;
143 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
146 "SELinux: Class %s not defined in policy.\n",
148 if (pol
->reject_unknown
)
150 p_out
->num_perms
= 0;
151 print_unknown_handle
= true;
156 while (p_in
->perms
&& p_in
->perms
[k
]) {
157 /* An empty permission string skips ahead */
158 if (!*p_in
->perms
[k
]) {
162 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
164 if (!p_out
->perms
[k
]) {
166 "SELinux: Permission %s in class %s not defined in policy.\n",
167 p_in
->perms
[k
], p_in
->name
);
168 if (pol
->reject_unknown
)
170 print_unknown_handle
= true;
175 p_out
->num_perms
= k
;
178 if (print_unknown_handle
)
179 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
180 pol
->allow_unknown
? "allowed" : "denied");
182 *out_map_p
= out_map
;
191 * Get real, policy values from mapped values
194 static u16
unmap_class(u16 tclass
)
196 if (tclass
< current_mapping_size
)
197 return current_mapping
[tclass
].value
;
203 * Get kernel value for class from its policy value
205 static u16
map_class(u16 pol_value
)
209 for (i
= 1; i
< current_mapping_size
; i
++) {
210 if (current_mapping
[i
].value
== pol_value
)
214 return SECCLASS_NULL
;
217 static void map_decision(u16 tclass
, struct av_decision
*avd
,
220 if (tclass
< current_mapping_size
) {
221 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
224 for (i
= 0, result
= 0; i
< n
; i
++) {
225 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
227 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
230 avd
->allowed
= result
;
232 for (i
= 0, result
= 0; i
< n
; i
++)
233 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
235 avd
->auditallow
= result
;
237 for (i
= 0, result
= 0; i
< n
; i
++) {
238 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
240 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
244 * In case the kernel has a bug and requests a permission
245 * between num_perms and the maximum permission number, we
246 * should audit that denial
248 for (; i
< (sizeof(u32
)*8); i
++)
250 avd
->auditdeny
= result
;
254 int security_mls_enabled(void)
256 return policydb
.mls_enabled
;
260 * Return the boolean value of a constraint expression
261 * when it is applied to the specified source and target
264 * xcontext is a special beast... It is used by the validatetrans rules
265 * only. For these rules, scontext is the context before the transition,
266 * tcontext is the context after the transition, and xcontext is the context
267 * of the process performing the transition. All other callers of
268 * constraint_expr_eval should pass in NULL for xcontext.
270 static int constraint_expr_eval(struct context
*scontext
,
271 struct context
*tcontext
,
272 struct context
*xcontext
,
273 struct constraint_expr
*cexpr
)
277 struct role_datum
*r1
, *r2
;
278 struct mls_level
*l1
, *l2
;
279 struct constraint_expr
*e
;
280 int s
[CEXPR_MAXDEPTH
];
283 for (e
= cexpr
; e
; e
= e
->next
) {
284 switch (e
->expr_type
) {
300 if (sp
== (CEXPR_MAXDEPTH
- 1))
304 val1
= scontext
->user
;
305 val2
= tcontext
->user
;
308 val1
= scontext
->type
;
309 val2
= tcontext
->type
;
312 val1
= scontext
->role
;
313 val2
= tcontext
->role
;
314 r1
= policydb
.role_val_to_struct
[val1
- 1];
315 r2
= policydb
.role_val_to_struct
[val2
- 1];
318 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
322 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
326 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
328 !ebitmap_get_bit(&r2
->dominates
,
336 l1
= &(scontext
->range
.level
[0]);
337 l2
= &(tcontext
->range
.level
[0]);
340 l1
= &(scontext
->range
.level
[0]);
341 l2
= &(tcontext
->range
.level
[1]);
344 l1
= &(scontext
->range
.level
[1]);
345 l2
= &(tcontext
->range
.level
[0]);
348 l1
= &(scontext
->range
.level
[1]);
349 l2
= &(tcontext
->range
.level
[1]);
352 l1
= &(scontext
->range
.level
[0]);
353 l2
= &(scontext
->range
.level
[1]);
356 l1
= &(tcontext
->range
.level
[0]);
357 l2
= &(tcontext
->range
.level
[1]);
362 s
[++sp
] = mls_level_eq(l1
, l2
);
365 s
[++sp
] = !mls_level_eq(l1
, l2
);
368 s
[++sp
] = mls_level_dom(l1
, l2
);
371 s
[++sp
] = mls_level_dom(l2
, l1
);
374 s
[++sp
] = mls_level_incomp(l2
, l1
);
388 s
[++sp
] = (val1
== val2
);
391 s
[++sp
] = (val1
!= val2
);
399 if (sp
== (CEXPR_MAXDEPTH
-1))
402 if (e
->attr
& CEXPR_TARGET
)
404 else if (e
->attr
& CEXPR_XTARGET
) {
411 if (e
->attr
& CEXPR_USER
)
413 else if (e
->attr
& CEXPR_ROLE
)
415 else if (e
->attr
& CEXPR_TYPE
)
424 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
427 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
445 * security_dump_masked_av - dumps masked permissions during
446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
450 struct perm_datum
*pdatum
= d
;
451 char **permission_names
= args
;
453 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
455 permission_names
[pdatum
->value
- 1] = (char *)k
;
460 static void security_dump_masked_av(struct context
*scontext
,
461 struct context
*tcontext
,
466 struct common_datum
*common_dat
;
467 struct class_datum
*tclass_dat
;
468 struct audit_buffer
*ab
;
470 char *scontext_name
= NULL
;
471 char *tcontext_name
= NULL
;
472 char *permission_names
[32];
475 bool need_comma
= false;
480 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
481 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
482 common_dat
= tclass_dat
->comdatum
;
484 /* init permission_names */
486 hashtab_map(common_dat
->permissions
.table
,
487 dump_masked_av_helper
, permission_names
) < 0)
490 if (hashtab_map(tclass_dat
->permissions
.table
,
491 dump_masked_av_helper
, permission_names
) < 0)
494 /* get scontext/tcontext in text form */
495 if (context_struct_to_string(scontext
,
496 &scontext_name
, &length
) < 0)
499 if (context_struct_to_string(tcontext
,
500 &tcontext_name
, &length
) < 0)
503 /* audit a message */
504 ab
= audit_log_start(current
->audit_context
,
505 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
509 audit_log_format(ab
, "op=security_compute_av reason=%s "
510 "scontext=%s tcontext=%s tclass=%s perms=",
511 reason
, scontext_name
, tcontext_name
, tclass_name
);
513 for (index
= 0; index
< 32; index
++) {
514 u32 mask
= (1 << index
);
516 if ((mask
& permissions
) == 0)
519 audit_log_format(ab
, "%s%s",
520 need_comma
? "," : "",
521 permission_names
[index
]
522 ? permission_names
[index
] : "????");
527 /* release scontext/tcontext */
528 kfree(tcontext_name
);
529 kfree(scontext_name
);
535 * security_boundary_permission - drops violated permissions
536 * on boundary constraint.
538 static void type_attribute_bounds_av(struct context
*scontext
,
539 struct context
*tcontext
,
541 struct av_decision
*avd
)
543 struct context lo_scontext
;
544 struct context lo_tcontext
;
545 struct av_decision lo_avd
;
546 struct type_datum
*source
;
547 struct type_datum
*target
;
550 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
554 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
558 if (source
->bounds
) {
559 memset(&lo_avd
, 0, sizeof(lo_avd
));
561 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
562 lo_scontext
.type
= source
->bounds
;
564 context_struct_compute_av(&lo_scontext
,
568 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
569 return; /* no masked permission */
570 masked
= ~lo_avd
.allowed
& avd
->allowed
;
573 if (target
->bounds
) {
574 memset(&lo_avd
, 0, sizeof(lo_avd
));
576 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
577 lo_tcontext
.type
= target
->bounds
;
579 context_struct_compute_av(scontext
,
583 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
584 return; /* no masked permission */
585 masked
= ~lo_avd
.allowed
& avd
->allowed
;
588 if (source
->bounds
&& target
->bounds
) {
589 memset(&lo_avd
, 0, sizeof(lo_avd
));
591 * lo_scontext and lo_tcontext are already
595 context_struct_compute_av(&lo_scontext
,
599 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
600 return; /* no masked permission */
601 masked
= ~lo_avd
.allowed
& avd
->allowed
;
605 /* mask violated permissions */
606 avd
->allowed
&= ~masked
;
608 /* audit masked permissions */
609 security_dump_masked_av(scontext
, tcontext
,
610 tclass
, masked
, "bounds");
615 * Compute access vectors based on a context structure pair for
616 * the permissions in a particular class.
618 static void context_struct_compute_av(struct context
*scontext
,
619 struct context
*tcontext
,
621 struct av_decision
*avd
)
623 struct constraint_node
*constraint
;
624 struct role_allow
*ra
;
625 struct avtab_key avkey
;
626 struct avtab_node
*node
;
627 struct class_datum
*tclass_datum
;
628 struct ebitmap
*sattr
, *tattr
;
629 struct ebitmap_node
*snode
, *tnode
;
634 avd
->auditdeny
= 0xffffffff;
636 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
637 if (printk_ratelimit())
638 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
642 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
645 * If a specific type enforcement rule was defined for
646 * this permission check, then use it.
648 avkey
.target_class
= tclass
;
649 avkey
.specified
= AVTAB_AV
;
650 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
652 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
654 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
655 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
656 avkey
.source_type
= i
+ 1;
657 avkey
.target_type
= j
+ 1;
658 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
660 node
= avtab_search_node_next(node
, avkey
.specified
)) {
661 if (node
->key
.specified
== AVTAB_ALLOWED
)
662 avd
->allowed
|= node
->datum
.data
;
663 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
664 avd
->auditallow
|= node
->datum
.data
;
665 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
666 avd
->auditdeny
&= node
->datum
.data
;
669 /* Check conditional av table for additional permissions */
670 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
676 * Remove any permissions prohibited by a constraint (this includes
679 constraint
= tclass_datum
->constraints
;
681 if ((constraint
->permissions
& (avd
->allowed
)) &&
682 !constraint_expr_eval(scontext
, tcontext
, NULL
,
684 avd
->allowed
&= ~(constraint
->permissions
);
686 constraint
= constraint
->next
;
690 * If checking process transition permission and the
691 * role is changing, then check the (current_role, new_role)
694 if (tclass
== policydb
.process_class
&&
695 (avd
->allowed
& policydb
.process_trans_perms
) &&
696 scontext
->role
!= tcontext
->role
) {
697 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
698 if (scontext
->role
== ra
->role
&&
699 tcontext
->role
== ra
->new_role
)
703 avd
->allowed
&= ~policydb
.process_trans_perms
;
707 * If the given source and target types have boundary
708 * constraint, lazy checks have to mask any violated
709 * permission and notice it to userspace via audit.
711 type_attribute_bounds_av(scontext
, tcontext
,
715 static int security_validtrans_handle_fail(struct context
*ocontext
,
716 struct context
*ncontext
,
717 struct context
*tcontext
,
720 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
721 u32 olen
, nlen
, tlen
;
723 if (context_struct_to_string(ocontext
, &o
, &olen
))
725 if (context_struct_to_string(ncontext
, &n
, &nlen
))
727 if (context_struct_to_string(tcontext
, &t
, &tlen
))
729 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
730 "security_validate_transition: denied for"
731 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
732 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
738 if (!selinux_enforcing
)
743 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
746 struct context
*ocontext
;
747 struct context
*ncontext
;
748 struct context
*tcontext
;
749 struct class_datum
*tclass_datum
;
750 struct constraint_node
*constraint
;
757 read_lock(&policy_rwlock
);
759 tclass
= unmap_class(orig_tclass
);
761 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
762 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
767 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
769 ocontext
= sidtab_search(&sidtab
, oldsid
);
771 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
777 ncontext
= sidtab_search(&sidtab
, newsid
);
779 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
785 tcontext
= sidtab_search(&sidtab
, tasksid
);
787 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
793 constraint
= tclass_datum
->validatetrans
;
795 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
797 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
801 constraint
= constraint
->next
;
805 read_unlock(&policy_rwlock
);
810 * security_bounded_transition - check whether the given
811 * transition is directed to bounded, or not.
812 * It returns 0, if @newsid is bounded by @oldsid.
813 * Otherwise, it returns error code.
815 * @oldsid : current security identifier
816 * @newsid : destinated security identifier
818 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
820 struct context
*old_context
, *new_context
;
821 struct type_datum
*type
;
825 read_lock(&policy_rwlock
);
828 old_context
= sidtab_search(&sidtab
, old_sid
);
830 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
836 new_context
= sidtab_search(&sidtab
, new_sid
);
838 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
844 /* type/domain unchanged */
845 if (old_context
->type
== new_context
->type
)
848 index
= new_context
->type
;
850 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
854 /* not bounded anymore */
859 /* @newsid is bounded by @oldsid */
861 if (type
->bounds
== old_context
->type
)
864 index
= type
->bounds
;
868 char *old_name
= NULL
;
869 char *new_name
= NULL
;
872 if (!context_struct_to_string(old_context
,
873 &old_name
, &length
) &&
874 !context_struct_to_string(new_context
,
875 &new_name
, &length
)) {
876 audit_log(current
->audit_context
,
877 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
878 "op=security_bounded_transition "
880 "oldcontext=%s newcontext=%s",
887 read_unlock(&policy_rwlock
);
892 static void avd_init(struct av_decision
*avd
)
896 avd
->auditdeny
= 0xffffffff;
897 avd
->seqno
= latest_granting
;
903 * security_compute_av - Compute access vector decisions.
904 * @ssid: source security identifier
905 * @tsid: target security identifier
906 * @tclass: target security class
907 * @avd: access vector decisions
909 * Compute a set of access vector decisions based on the
910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
912 void security_compute_av(u32 ssid
,
915 struct av_decision
*avd
)
918 struct context
*scontext
= NULL
, *tcontext
= NULL
;
920 read_lock(&policy_rwlock
);
925 scontext
= sidtab_search(&sidtab
, ssid
);
927 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
932 /* permissive domain? */
933 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
934 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
936 tcontext
= sidtab_search(&sidtab
, tsid
);
938 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
943 tclass
= unmap_class(orig_tclass
);
944 if (unlikely(orig_tclass
&& !tclass
)) {
945 if (policydb
.allow_unknown
)
949 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
950 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
952 read_unlock(&policy_rwlock
);
955 avd
->allowed
= 0xffffffff;
959 void security_compute_av_user(u32 ssid
,
962 struct av_decision
*avd
)
964 struct context
*scontext
= NULL
, *tcontext
= NULL
;
966 read_lock(&policy_rwlock
);
971 scontext
= sidtab_search(&sidtab
, ssid
);
973 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
978 /* permissive domain? */
979 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
980 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
982 tcontext
= sidtab_search(&sidtab
, tsid
);
984 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
989 if (unlikely(!tclass
)) {
990 if (policydb
.allow_unknown
)
995 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
997 read_unlock(&policy_rwlock
);
1000 avd
->allowed
= 0xffffffff;
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size. Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1011 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1020 *scontext_len
= context
->len
;
1022 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1029 /* Compute the size of the context. */
1030 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1031 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1032 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1033 *scontext_len
+= mls_compute_context_len(context
);
1038 /* Allocate space for the context; caller must free this space. */
1039 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1042 *scontext
= scontextp
;
1045 * Copy the user name, role name and type name into the context.
1047 sprintf(scontextp
, "%s:%s:%s",
1048 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1049 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1050 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1051 scontextp
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) +
1052 1 + strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) +
1053 1 + strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1055 mls_sid_to_context(context
, &scontextp
);
1062 #include "initial_sid_to_string.h"
1064 const char *security_get_initial_sid_context(u32 sid
)
1066 if (unlikely(sid
> SECINITSID_NUM
))
1068 return initial_sid_to_string
[sid
];
1071 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1072 u32
*scontext_len
, int force
)
1074 struct context
*context
;
1081 if (!ss_initialized
) {
1082 if (sid
<= SECINITSID_NUM
) {
1085 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1088 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1093 strcpy(scontextp
, initial_sid_to_string
[sid
]);
1094 *scontext
= scontextp
;
1097 printk(KERN_ERR
"SELinux: %s: called before initial "
1098 "load_policy on unknown SID %d\n", __func__
, sid
);
1102 read_lock(&policy_rwlock
);
1104 context
= sidtab_search_force(&sidtab
, sid
);
1106 context
= sidtab_search(&sidtab
, sid
);
1108 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1113 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1115 read_unlock(&policy_rwlock
);
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size. Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1131 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1133 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1136 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1138 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1142 * Caveat: Mutates scontext.
1144 static int string_to_context_struct(struct policydb
*pol
,
1145 struct sidtab
*sidtabp
,
1148 struct context
*ctx
,
1151 struct role_datum
*role
;
1152 struct type_datum
*typdatum
;
1153 struct user_datum
*usrdatum
;
1154 char *scontextp
, *p
, oldc
;
1159 /* Parse the security context. */
1162 scontextp
= (char *) scontext
;
1164 /* Extract the user. */
1166 while (*p
&& *p
!= ':')
1174 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1178 ctx
->user
= usrdatum
->value
;
1182 while (*p
&& *p
!= ':')
1190 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1193 ctx
->role
= role
->value
;
1197 while (*p
&& *p
!= ':')
1202 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1203 if (!typdatum
|| typdatum
->attribute
)
1206 ctx
->type
= typdatum
->value
;
1208 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1213 if ((p
- scontext
) < scontext_len
)
1216 /* Check the validity of the new context. */
1217 if (!policydb_context_isvalid(pol
, ctx
))
1222 context_destroy(ctx
);
1226 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1227 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1230 char *scontext2
, *str
= NULL
;
1231 struct context context
;
1234 /* An empty security context is never valid. */
1238 if (!ss_initialized
) {
1241 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1242 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1247 *sid
= SECINITSID_KERNEL
;
1252 /* Copy the string so that we can modify the copy as we parse it. */
1253 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1256 memcpy(scontext2
, scontext
, scontext_len
);
1257 scontext2
[scontext_len
] = 0;
1260 /* Save another copy for storing in uninterpreted form */
1262 str
= kstrdup(scontext2
, gfp_flags
);
1267 read_lock(&policy_rwlock
);
1268 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1269 scontext_len
, &context
, def_sid
);
1270 if (rc
== -EINVAL
&& force
) {
1272 context
.len
= scontext_len
;
1276 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1277 context_destroy(&context
);
1279 read_unlock(&policy_rwlock
);
1287 * security_context_to_sid - Obtain a SID for a given security context.
1288 * @scontext: security context
1289 * @scontext_len: length in bytes
1290 * @sid: security identifier, SID
1292 * Obtains a SID associated with the security context that
1293 * has the string representation specified by @scontext.
1294 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1295 * memory is available, or 0 on success.
1297 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
1299 return security_context_to_sid_core(scontext
, scontext_len
,
1300 sid
, SECSID_NULL
, GFP_KERNEL
, 0);
1304 * security_context_to_sid_default - Obtain a SID for a given security context,
1305 * falling back to specified default if needed.
1307 * @scontext: security context
1308 * @scontext_len: length in bytes
1309 * @sid: security identifier, SID
1310 * @def_sid: default SID to assign on error
1312 * Obtains a SID associated with the security context that
1313 * has the string representation specified by @scontext.
1314 * The default SID is passed to the MLS layer to be used to allow
1315 * kernel labeling of the MLS field if the MLS field is not present
1316 * (for upgrading to MLS without full relabel).
1317 * Implicitly forces adding of the context even if it cannot be mapped yet.
1318 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1319 * memory is available, or 0 on success.
1321 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1322 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1324 return security_context_to_sid_core(scontext
, scontext_len
,
1325 sid
, def_sid
, gfp_flags
, 1);
1328 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1331 return security_context_to_sid_core(scontext
, scontext_len
,
1332 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1335 static int compute_sid_handle_invalid_context(
1336 struct context
*scontext
,
1337 struct context
*tcontext
,
1339 struct context
*newcontext
)
1341 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1342 u32 slen
, tlen
, nlen
;
1344 if (context_struct_to_string(scontext
, &s
, &slen
))
1346 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1348 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1350 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1351 "security_compute_sid: invalid context %s"
1355 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1360 if (!selinux_enforcing
)
1365 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1366 u32 stype
, u32 ttype
, u16 tclass
,
1367 const char *objname
)
1369 struct filename_trans ft
;
1370 struct filename_trans_datum
*otype
;
1373 * Most filename trans rules are going to live in specific directories
1374 * like /dev or /var/run. This bitmap will quickly skip rule searches
1375 * if the ttype does not contain any rules.
1377 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1385 otype
= hashtab_search(p
->filename_trans
, &ft
);
1387 newcontext
->type
= otype
->otype
;
1390 static int security_compute_sid(u32 ssid
,
1394 const char *objname
,
1398 struct class_datum
*cladatum
= NULL
;
1399 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1400 struct role_trans
*roletr
= NULL
;
1401 struct avtab_key avkey
;
1402 struct avtab_datum
*avdatum
;
1403 struct avtab_node
*node
;
1408 if (!ss_initialized
) {
1409 switch (orig_tclass
) {
1410 case SECCLASS_PROCESS
: /* kernel value */
1420 context_init(&newcontext
);
1422 read_lock(&policy_rwlock
);
1425 tclass
= unmap_class(orig_tclass
);
1426 sock
= security_is_socket_class(orig_tclass
);
1428 tclass
= orig_tclass
;
1429 sock
= security_is_socket_class(map_class(tclass
));
1432 scontext
= sidtab_search(&sidtab
, ssid
);
1434 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1439 tcontext
= sidtab_search(&sidtab
, tsid
);
1441 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1447 if (tclass
&& tclass
<= policydb
.p_classes
.nprim
)
1448 cladatum
= policydb
.class_val_to_struct
[tclass
- 1];
1450 /* Set the user identity. */
1451 switch (specified
) {
1452 case AVTAB_TRANSITION
:
1454 if (cladatum
&& cladatum
->default_user
== DEFAULT_TARGET
) {
1455 newcontext
.user
= tcontext
->user
;
1457 /* notice this gets both DEFAULT_SOURCE and unset */
1458 /* Use the process user identity. */
1459 newcontext
.user
= scontext
->user
;
1463 /* Use the related object owner. */
1464 newcontext
.user
= tcontext
->user
;
1468 /* Set the role to default values. */
1469 if (cladatum
&& cladatum
->default_role
== DEFAULT_SOURCE
) {
1470 newcontext
.role
= scontext
->role
;
1471 } else if (cladatum
&& cladatum
->default_role
== DEFAULT_TARGET
) {
1472 newcontext
.role
= tcontext
->role
;
1474 if ((tclass
== policydb
.process_class
) || (sock
== true))
1475 newcontext
.role
= scontext
->role
;
1477 newcontext
.role
= OBJECT_R_VAL
;
1480 /* Set the type to default values. */
1481 if (cladatum
&& cladatum
->default_type
== DEFAULT_SOURCE
) {
1482 newcontext
.type
= scontext
->type
;
1483 } else if (cladatum
&& cladatum
->default_type
== DEFAULT_TARGET
) {
1484 newcontext
.type
= tcontext
->type
;
1486 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1487 /* Use the type of process. */
1488 newcontext
.type
= scontext
->type
;
1490 /* Use the type of the related object. */
1491 newcontext
.type
= tcontext
->type
;
1495 /* Look for a type transition/member/change rule. */
1496 avkey
.source_type
= scontext
->type
;
1497 avkey
.target_type
= tcontext
->type
;
1498 avkey
.target_class
= tclass
;
1499 avkey
.specified
= specified
;
1500 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1502 /* If no permanent rule, also check for enabled conditional rules */
1504 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1505 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1506 if (node
->key
.specified
& AVTAB_ENABLED
) {
1507 avdatum
= &node
->datum
;
1514 /* Use the type from the type transition/member/change rule. */
1515 newcontext
.type
= avdatum
->data
;
1518 /* if we have a objname this is a file trans check so check those rules */
1520 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1521 tcontext
->type
, tclass
, objname
);
1523 /* Check for class-specific changes. */
1524 if (specified
& AVTAB_TRANSITION
) {
1525 /* Look for a role transition rule. */
1526 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1527 if ((roletr
->role
== scontext
->role
) &&
1528 (roletr
->type
== tcontext
->type
) &&
1529 (roletr
->tclass
== tclass
)) {
1530 /* Use the role transition rule. */
1531 newcontext
.role
= roletr
->new_role
;
1537 /* Set the MLS attributes.
1538 This is done last because it may allocate memory. */
1539 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1544 /* Check the validity of the context. */
1545 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1546 rc
= compute_sid_handle_invalid_context(scontext
,
1553 /* Obtain the sid for the context. */
1554 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1556 read_unlock(&policy_rwlock
);
1557 context_destroy(&newcontext
);
1563 * security_transition_sid - Compute the SID for a new subject/object.
1564 * @ssid: source security identifier
1565 * @tsid: target security identifier
1566 * @tclass: target security class
1567 * @out_sid: security identifier for new subject/object
1569 * Compute a SID to use for labeling a new subject or object in the
1570 * class @tclass based on a SID pair (@ssid, @tsid).
1571 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1572 * if insufficient memory is available, or %0 if the new SID was
1573 * computed successfully.
1575 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1576 const struct qstr
*qstr
, u32
*out_sid
)
1578 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1579 qstr
? qstr
->name
: NULL
, out_sid
, true);
1582 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1583 const char *objname
, u32
*out_sid
)
1585 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1586 objname
, out_sid
, false);
1590 * security_member_sid - Compute the SID for member selection.
1591 * @ssid: source security identifier
1592 * @tsid: target security identifier
1593 * @tclass: target security class
1594 * @out_sid: security identifier for selected member
1596 * Compute a SID to use when selecting a member of a polyinstantiated
1597 * object of class @tclass based on a SID pair (@ssid, @tsid).
1598 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1599 * if insufficient memory is available, or %0 if the SID was
1600 * computed successfully.
1602 int security_member_sid(u32 ssid
,
1607 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1612 * security_change_sid - Compute the SID for object relabeling.
1613 * @ssid: source security identifier
1614 * @tsid: target security identifier
1615 * @tclass: target security class
1616 * @out_sid: security identifier for selected member
1618 * Compute a SID to use for relabeling an object of class @tclass
1619 * based on a SID pair (@ssid, @tsid).
1620 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1621 * if insufficient memory is available, or %0 if the SID was
1622 * computed successfully.
1624 int security_change_sid(u32 ssid
,
1629 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1633 /* Clone the SID into the new SID table. */
1634 static int clone_sid(u32 sid
,
1635 struct context
*context
,
1638 struct sidtab
*s
= arg
;
1640 if (sid
> SECINITSID_NUM
)
1641 return sidtab_insert(s
, sid
, context
);
1646 static inline int convert_context_handle_invalid_context(struct context
*context
)
1651 if (selinux_enforcing
)
1654 if (!context_struct_to_string(context
, &s
, &len
)) {
1655 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1661 struct convert_context_args
{
1662 struct policydb
*oldp
;
1663 struct policydb
*newp
;
1667 * Convert the values in the security context
1668 * structure `c' from the values specified
1669 * in the policy `p->oldp' to the values specified
1670 * in the policy `p->newp'. Verify that the
1671 * context is valid under the new policy.
1673 static int convert_context(u32 key
,
1677 struct convert_context_args
*args
;
1678 struct context oldc
;
1679 struct ocontext
*oc
;
1680 struct mls_range
*range
;
1681 struct role_datum
*role
;
1682 struct type_datum
*typdatum
;
1683 struct user_datum
*usrdatum
;
1688 if (key
<= SECINITSID_NUM
)
1697 s
= kstrdup(c
->str
, GFP_KERNEL
);
1701 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1702 c
->len
, &ctx
, SECSID_NULL
);
1705 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1707 /* Replace string with mapped representation. */
1709 memcpy(c
, &ctx
, sizeof(*c
));
1711 } else if (rc
== -EINVAL
) {
1712 /* Retain string representation for later mapping. */
1716 /* Other error condition, e.g. ENOMEM. */
1717 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1723 rc
= context_cpy(&oldc
, c
);
1727 /* Convert the user. */
1729 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1730 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1733 c
->user
= usrdatum
->value
;
1735 /* Convert the role. */
1737 role
= hashtab_search(args
->newp
->p_roles
.table
,
1738 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1741 c
->role
= role
->value
;
1743 /* Convert the type. */
1745 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1746 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1749 c
->type
= typdatum
->value
;
1751 /* Convert the MLS fields if dealing with MLS policies */
1752 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1753 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1756 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1758 * Switching between MLS and non-MLS policy:
1759 * free any storage used by the MLS fields in the
1760 * context for all existing entries in the sidtab.
1762 mls_context_destroy(c
);
1763 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1765 * Switching between non-MLS and MLS policy:
1766 * ensure that the MLS fields of the context for all
1767 * existing entries in the sidtab are filled in with a
1768 * suitable default value, likely taken from one of the
1771 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1772 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1776 printk(KERN_ERR
"SELinux: unable to look up"
1777 " the initial SIDs list\n");
1780 range
= &oc
->context
[0].range
;
1781 rc
= mls_range_set(c
, range
);
1786 /* Check the validity of the new context. */
1787 if (!policydb_context_isvalid(args
->newp
, c
)) {
1788 rc
= convert_context_handle_invalid_context(&oldc
);
1793 context_destroy(&oldc
);
1799 /* Map old representation to string and save it. */
1800 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1803 context_destroy(&oldc
);
1807 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1813 static void security_load_policycaps(void)
1815 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1816 POLICYDB_CAPABILITY_NETPEER
);
1817 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1818 POLICYDB_CAPABILITY_OPENPERM
);
1821 static int security_preserve_bools(struct policydb
*p
);
1824 * security_load_policy - Load a security policy configuration.
1825 * @data: binary policy data
1826 * @len: length of data in bytes
1828 * Load a new set of security policy configuration data,
1829 * validate it and convert the SID table as necessary.
1830 * This function will flush the access vector cache after
1831 * loading the new policy.
1833 int security_load_policy(void *data
, size_t len
)
1835 struct policydb oldpolicydb
, newpolicydb
;
1836 struct sidtab oldsidtab
, newsidtab
;
1837 struct selinux_mapping
*oldmap
, *map
= NULL
;
1838 struct convert_context_args args
;
1842 struct policy_file file
= { data
, len
}, *fp
= &file
;
1844 if (!ss_initialized
) {
1846 rc
= policydb_read(&policydb
, fp
);
1848 avtab_cache_destroy();
1853 rc
= selinux_set_mapping(&policydb
, secclass_map
,
1855 ¤t_mapping_size
);
1857 policydb_destroy(&policydb
);
1858 avtab_cache_destroy();
1862 rc
= policydb_load_isids(&policydb
, &sidtab
);
1864 policydb_destroy(&policydb
);
1865 avtab_cache_destroy();
1869 security_load_policycaps();
1871 seqno
= ++latest_granting
;
1872 selinux_complete_init();
1873 avc_ss_reset(seqno
);
1874 selnl_notify_policyload(seqno
);
1875 selinux_status_update_policyload(seqno
);
1876 selinux_netlbl_cache_invalidate();
1877 selinux_xfrm_notify_policyload();
1882 sidtab_hash_eval(&sidtab
, "sids");
1885 rc
= policydb_read(&newpolicydb
, fp
);
1889 newpolicydb
.len
= len
;
1890 /* If switching between different policy types, log MLS status */
1891 if (policydb
.mls_enabled
&& !newpolicydb
.mls_enabled
)
1892 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
1893 else if (!policydb
.mls_enabled
&& newpolicydb
.mls_enabled
)
1894 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
1896 rc
= policydb_load_isids(&newpolicydb
, &newsidtab
);
1898 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
1899 policydb_destroy(&newpolicydb
);
1903 rc
= selinux_set_mapping(&newpolicydb
, secclass_map
, &map
, &map_size
);
1907 rc
= security_preserve_bools(&newpolicydb
);
1909 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1913 /* Clone the SID table. */
1914 sidtab_shutdown(&sidtab
);
1916 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
1921 * Convert the internal representations of contexts
1922 * in the new SID table.
1924 args
.oldp
= &policydb
;
1925 args
.newp
= &newpolicydb
;
1926 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1928 printk(KERN_ERR
"SELinux: unable to convert the internal"
1929 " representation of contexts in the new SID"
1934 /* Save the old policydb and SID table to free later. */
1935 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1936 sidtab_set(&oldsidtab
, &sidtab
);
1938 /* Install the new policydb and SID table. */
1939 write_lock_irq(&policy_rwlock
);
1940 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1941 sidtab_set(&sidtab
, &newsidtab
);
1942 security_load_policycaps();
1943 oldmap
= current_mapping
;
1944 current_mapping
= map
;
1945 current_mapping_size
= map_size
;
1946 seqno
= ++latest_granting
;
1947 write_unlock_irq(&policy_rwlock
);
1949 /* Free the old policydb and SID table. */
1950 policydb_destroy(&oldpolicydb
);
1951 sidtab_destroy(&oldsidtab
);
1954 avc_ss_reset(seqno
);
1955 selnl_notify_policyload(seqno
);
1956 selinux_status_update_policyload(seqno
);
1957 selinux_netlbl_cache_invalidate();
1958 selinux_xfrm_notify_policyload();
1964 sidtab_destroy(&newsidtab
);
1965 policydb_destroy(&newpolicydb
);
1970 size_t security_policydb_len(void)
1974 read_lock(&policy_rwlock
);
1976 read_unlock(&policy_rwlock
);
1982 * security_port_sid - Obtain the SID for a port.
1983 * @protocol: protocol number
1984 * @port: port number
1985 * @out_sid: security identifier
1987 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
1992 read_lock(&policy_rwlock
);
1994 c
= policydb
.ocontexts
[OCON_PORT
];
1996 if (c
->u
.port
.protocol
== protocol
&&
1997 c
->u
.port
.low_port
<= port
&&
1998 c
->u
.port
.high_port
>= port
)
2005 rc
= sidtab_context_to_sid(&sidtab
,
2011 *out_sid
= c
->sid
[0];
2013 *out_sid
= SECINITSID_PORT
;
2017 read_unlock(&policy_rwlock
);
2022 * security_netif_sid - Obtain the SID for a network interface.
2023 * @name: interface name
2024 * @if_sid: interface SID
2026 int security_netif_sid(char *name
, u32
*if_sid
)
2031 read_lock(&policy_rwlock
);
2033 c
= policydb
.ocontexts
[OCON_NETIF
];
2035 if (strcmp(name
, c
->u
.name
) == 0)
2041 if (!c
->sid
[0] || !c
->sid
[1]) {
2042 rc
= sidtab_context_to_sid(&sidtab
,
2047 rc
= sidtab_context_to_sid(&sidtab
,
2053 *if_sid
= c
->sid
[0];
2055 *if_sid
= SECINITSID_NETIF
;
2058 read_unlock(&policy_rwlock
);
2062 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2066 for (i
= 0; i
< 4; i
++)
2067 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2076 * security_node_sid - Obtain the SID for a node (host).
2077 * @domain: communication domain aka address family
2079 * @addrlen: address length in bytes
2080 * @out_sid: security identifier
2082 int security_node_sid(u16 domain
,
2090 read_lock(&policy_rwlock
);
2097 if (addrlen
!= sizeof(u32
))
2100 addr
= *((u32
*)addrp
);
2102 c
= policydb
.ocontexts
[OCON_NODE
];
2104 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2113 if (addrlen
!= sizeof(u64
) * 2)
2115 c
= policydb
.ocontexts
[OCON_NODE6
];
2117 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2126 *out_sid
= SECINITSID_NODE
;
2132 rc
= sidtab_context_to_sid(&sidtab
,
2138 *out_sid
= c
->sid
[0];
2140 *out_sid
= SECINITSID_NODE
;
2145 read_unlock(&policy_rwlock
);
2152 * security_get_user_sids - Obtain reachable SIDs for a user.
2153 * @fromsid: starting SID
2154 * @username: username
2155 * @sids: array of reachable SIDs for user
2156 * @nel: number of elements in @sids
2158 * Generate the set of SIDs for legal security contexts
2159 * for a given user that can be reached by @fromsid.
2160 * Set *@sids to point to a dynamically allocated
2161 * array containing the set of SIDs. Set *@nel to the
2162 * number of elements in the array.
2165 int security_get_user_sids(u32 fromsid
,
2170 struct context
*fromcon
, usercon
;
2171 u32
*mysids
= NULL
, *mysids2
, sid
;
2172 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2173 struct user_datum
*user
;
2174 struct role_datum
*role
;
2175 struct ebitmap_node
*rnode
, *tnode
;
2181 if (!ss_initialized
)
2184 read_lock(&policy_rwlock
);
2186 context_init(&usercon
);
2189 fromcon
= sidtab_search(&sidtab
, fromsid
);
2194 user
= hashtab_search(policydb
.p_users
.table
, username
);
2198 usercon
.user
= user
->value
;
2201 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2205 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2206 role
= policydb
.role_val_to_struct
[i
];
2207 usercon
.role
= i
+ 1;
2208 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2209 usercon
.type
= j
+ 1;
2211 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2214 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2217 if (mynel
< maxnel
) {
2218 mysids
[mynel
++] = sid
;
2222 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2225 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2228 mysids
[mynel
++] = sid
;
2234 read_unlock(&policy_rwlock
);
2241 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2246 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2247 struct av_decision dummy_avd
;
2248 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2249 SECCLASS_PROCESS
, /* kernel value */
2250 PROCESS__TRANSITION
, AVC_STRICT
,
2253 mysids2
[j
++] = mysids
[i
];
2265 * security_genfs_sid - Obtain a SID for a file in a filesystem
2266 * @fstype: filesystem type
2267 * @path: path from root of mount
2268 * @sclass: file security class
2269 * @sid: SID for path
2271 * Obtain a SID to use for a file in a filesystem that
2272 * cannot support xattr or use a fixed labeling behavior like
2273 * transition SIDs or task SIDs.
2275 int security_genfs_sid(const char *fstype
,
2282 struct genfs
*genfs
;
2286 while (path
[0] == '/' && path
[1] == '/')
2289 read_lock(&policy_rwlock
);
2291 sclass
= unmap_class(orig_sclass
);
2292 *sid
= SECINITSID_UNLABELED
;
2294 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2295 cmp
= strcmp(fstype
, genfs
->fstype
);
2304 for (c
= genfs
->head
; c
; c
= c
->next
) {
2305 len
= strlen(c
->u
.name
);
2306 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2307 (strncmp(c
->u
.name
, path
, len
) == 0))
2316 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2324 read_unlock(&policy_rwlock
);
2329 * security_fs_use - Determine how to handle labeling for a filesystem.
2330 * @fstype: filesystem type
2331 * @behavior: labeling behavior
2332 * @sid: SID for filesystem (superblock)
2334 int security_fs_use(
2336 unsigned int *behavior
,
2342 read_lock(&policy_rwlock
);
2344 c
= policydb
.ocontexts
[OCON_FSUSE
];
2346 if (strcmp(fstype
, c
->u
.name
) == 0)
2352 *behavior
= c
->v
.behavior
;
2354 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2361 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
2363 *behavior
= SECURITY_FS_USE_NONE
;
2366 *behavior
= SECURITY_FS_USE_GENFS
;
2371 read_unlock(&policy_rwlock
);
2375 int security_get_bools(int *len
, char ***names
, int **values
)
2379 read_lock(&policy_rwlock
);
2384 *len
= policydb
.p_bools
.nprim
;
2389 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2394 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2398 for (i
= 0; i
< *len
; i
++) {
2401 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2402 name_len
= strlen(sym_name(&policydb
, SYM_BOOLS
, i
)) + 1;
2405 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2409 strncpy((*names
)[i
], sym_name(&policydb
, SYM_BOOLS
, i
), name_len
);
2410 (*names
)[i
][name_len
- 1] = 0;
2414 read_unlock(&policy_rwlock
);
2418 for (i
= 0; i
< *len
; i
++)
2426 int security_set_bools(int len
, int *values
)
2429 int lenp
, seqno
= 0;
2430 struct cond_node
*cur
;
2432 write_lock_irq(&policy_rwlock
);
2435 lenp
= policydb
.p_bools
.nprim
;
2439 for (i
= 0; i
< len
; i
++) {
2440 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2441 audit_log(current
->audit_context
, GFP_ATOMIC
,
2442 AUDIT_MAC_CONFIG_CHANGE
,
2443 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2444 sym_name(&policydb
, SYM_BOOLS
, i
),
2446 policydb
.bool_val_to_struct
[i
]->state
,
2447 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
2448 audit_get_sessionid(current
));
2451 policydb
.bool_val_to_struct
[i
]->state
= 1;
2453 policydb
.bool_val_to_struct
[i
]->state
= 0;
2456 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2457 rc
= evaluate_cond_node(&policydb
, cur
);
2462 seqno
= ++latest_granting
;
2465 write_unlock_irq(&policy_rwlock
);
2467 avc_ss_reset(seqno
);
2468 selnl_notify_policyload(seqno
);
2469 selinux_status_update_policyload(seqno
);
2470 selinux_xfrm_notify_policyload();
2475 int security_get_bool_value(int bool)
2480 read_lock(&policy_rwlock
);
2483 len
= policydb
.p_bools
.nprim
;
2487 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2489 read_unlock(&policy_rwlock
);
2493 static int security_preserve_bools(struct policydb
*p
)
2495 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2496 char **bnames
= NULL
;
2497 struct cond_bool_datum
*booldatum
;
2498 struct cond_node
*cur
;
2500 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2503 for (i
= 0; i
< nbools
; i
++) {
2504 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2506 booldatum
->state
= bvalues
[i
];
2508 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2509 rc
= evaluate_cond_node(p
, cur
);
2516 for (i
= 0; i
< nbools
; i
++)
2525 * security_sid_mls_copy() - computes a new sid based on the given
2526 * sid and the mls portion of mls_sid.
2528 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2530 struct context
*context1
;
2531 struct context
*context2
;
2532 struct context newcon
;
2538 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2543 context_init(&newcon
);
2545 read_lock(&policy_rwlock
);
2548 context1
= sidtab_search(&sidtab
, sid
);
2550 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2556 context2
= sidtab_search(&sidtab
, mls_sid
);
2558 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2563 newcon
.user
= context1
->user
;
2564 newcon
.role
= context1
->role
;
2565 newcon
.type
= context1
->type
;
2566 rc
= mls_context_cpy(&newcon
, context2
);
2570 /* Check the validity of the new context. */
2571 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2572 rc
= convert_context_handle_invalid_context(&newcon
);
2574 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2575 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2576 "security_sid_mls_copy: invalid context %s", s
);
2583 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2585 read_unlock(&policy_rwlock
);
2586 context_destroy(&newcon
);
2592 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2593 * @nlbl_sid: NetLabel SID
2594 * @nlbl_type: NetLabel labeling protocol type
2595 * @xfrm_sid: XFRM SID
2598 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2599 * resolved into a single SID it is returned via @peer_sid and the function
2600 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2601 * returns a negative value. A table summarizing the behavior is below:
2603 * | function return | @sid
2604 * ------------------------------+-----------------+-----------------
2605 * no peer labels | 0 | SECSID_NULL
2606 * single peer label | 0 | <peer_label>
2607 * multiple, consistent labels | 0 | <peer_label>
2608 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2611 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2616 struct context
*nlbl_ctx
;
2617 struct context
*xfrm_ctx
;
2619 *peer_sid
= SECSID_NULL
;
2621 /* handle the common (which also happens to be the set of easy) cases
2622 * right away, these two if statements catch everything involving a
2623 * single or absent peer SID/label */
2624 if (xfrm_sid
== SECSID_NULL
) {
2625 *peer_sid
= nlbl_sid
;
2628 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2629 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2631 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2632 *peer_sid
= xfrm_sid
;
2636 /* we don't need to check ss_initialized here since the only way both
2637 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2638 * security server was initialized and ss_initialized was true */
2639 if (!policydb
.mls_enabled
)
2642 read_lock(&policy_rwlock
);
2645 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2647 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2648 __func__
, nlbl_sid
);
2652 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2654 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2655 __func__
, xfrm_sid
);
2658 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2662 /* at present NetLabel SIDs/labels really only carry MLS
2663 * information so if the MLS portion of the NetLabel SID
2664 * matches the MLS portion of the labeled XFRM SID/label
2665 * then pass along the XFRM SID as it is the most
2667 *peer_sid
= xfrm_sid
;
2669 read_unlock(&policy_rwlock
);
2673 static int get_classes_callback(void *k
, void *d
, void *args
)
2675 struct class_datum
*datum
= d
;
2676 char *name
= k
, **classes
= args
;
2677 int value
= datum
->value
- 1;
2679 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2680 if (!classes
[value
])
2686 int security_get_classes(char ***classes
, int *nclasses
)
2690 read_lock(&policy_rwlock
);
2693 *nclasses
= policydb
.p_classes
.nprim
;
2694 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2698 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2702 for (i
= 0; i
< *nclasses
; i
++)
2703 kfree((*classes
)[i
]);
2708 read_unlock(&policy_rwlock
);
2712 static int get_permissions_callback(void *k
, void *d
, void *args
)
2714 struct perm_datum
*datum
= d
;
2715 char *name
= k
, **perms
= args
;
2716 int value
= datum
->value
- 1;
2718 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2725 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2728 struct class_datum
*match
;
2730 read_lock(&policy_rwlock
);
2733 match
= hashtab_search(policydb
.p_classes
.table
, class);
2735 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2741 *nperms
= match
->permissions
.nprim
;
2742 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2746 if (match
->comdatum
) {
2747 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2748 get_permissions_callback
, *perms
);
2753 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2759 read_unlock(&policy_rwlock
);
2763 read_unlock(&policy_rwlock
);
2764 for (i
= 0; i
< *nperms
; i
++)
2770 int security_get_reject_unknown(void)
2772 return policydb
.reject_unknown
;
2775 int security_get_allow_unknown(void)
2777 return policydb
.allow_unknown
;
2781 * security_policycap_supported - Check for a specific policy capability
2782 * @req_cap: capability
2785 * This function queries the currently loaded policy to see if it supports the
2786 * capability specified by @req_cap. Returns true (1) if the capability is
2787 * supported, false (0) if it isn't supported.
2790 int security_policycap_supported(unsigned int req_cap
)
2794 read_lock(&policy_rwlock
);
2795 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2796 read_unlock(&policy_rwlock
);
2801 struct selinux_audit_rule
{
2803 struct context au_ctxt
;
2806 void selinux_audit_rule_free(void *vrule
)
2808 struct selinux_audit_rule
*rule
= vrule
;
2811 context_destroy(&rule
->au_ctxt
);
2816 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2818 struct selinux_audit_rule
*tmprule
;
2819 struct role_datum
*roledatum
;
2820 struct type_datum
*typedatum
;
2821 struct user_datum
*userdatum
;
2822 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2827 if (!ss_initialized
)
2831 case AUDIT_SUBJ_USER
:
2832 case AUDIT_SUBJ_ROLE
:
2833 case AUDIT_SUBJ_TYPE
:
2834 case AUDIT_OBJ_USER
:
2835 case AUDIT_OBJ_ROLE
:
2836 case AUDIT_OBJ_TYPE
:
2837 /* only 'equals' and 'not equals' fit user, role, and type */
2838 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
2841 case AUDIT_SUBJ_SEN
:
2842 case AUDIT_SUBJ_CLR
:
2843 case AUDIT_OBJ_LEV_LOW
:
2844 case AUDIT_OBJ_LEV_HIGH
:
2845 /* we do not allow a range, indicated by the presence of '-' */
2846 if (strchr(rulestr
, '-'))
2850 /* only the above fields are valid */
2854 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2858 context_init(&tmprule
->au_ctxt
);
2860 read_lock(&policy_rwlock
);
2862 tmprule
->au_seqno
= latest_granting
;
2865 case AUDIT_SUBJ_USER
:
2866 case AUDIT_OBJ_USER
:
2868 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2871 tmprule
->au_ctxt
.user
= userdatum
->value
;
2873 case AUDIT_SUBJ_ROLE
:
2874 case AUDIT_OBJ_ROLE
:
2876 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2879 tmprule
->au_ctxt
.role
= roledatum
->value
;
2881 case AUDIT_SUBJ_TYPE
:
2882 case AUDIT_OBJ_TYPE
:
2884 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2887 tmprule
->au_ctxt
.type
= typedatum
->value
;
2889 case AUDIT_SUBJ_SEN
:
2890 case AUDIT_SUBJ_CLR
:
2891 case AUDIT_OBJ_LEV_LOW
:
2892 case AUDIT_OBJ_LEV_HIGH
:
2893 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2900 read_unlock(&policy_rwlock
);
2903 selinux_audit_rule_free(tmprule
);
2912 /* Check to see if the rule contains any selinux fields */
2913 int selinux_audit_rule_known(struct audit_krule
*rule
)
2917 for (i
= 0; i
< rule
->field_count
; i
++) {
2918 struct audit_field
*f
= &rule
->fields
[i
];
2920 case AUDIT_SUBJ_USER
:
2921 case AUDIT_SUBJ_ROLE
:
2922 case AUDIT_SUBJ_TYPE
:
2923 case AUDIT_SUBJ_SEN
:
2924 case AUDIT_SUBJ_CLR
:
2925 case AUDIT_OBJ_USER
:
2926 case AUDIT_OBJ_ROLE
:
2927 case AUDIT_OBJ_TYPE
:
2928 case AUDIT_OBJ_LEV_LOW
:
2929 case AUDIT_OBJ_LEV_HIGH
:
2937 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2938 struct audit_context
*actx
)
2940 struct context
*ctxt
;
2941 struct mls_level
*level
;
2942 struct selinux_audit_rule
*rule
= vrule
;
2946 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2947 "selinux_audit_rule_match: missing rule\n");
2951 read_lock(&policy_rwlock
);
2953 if (rule
->au_seqno
< latest_granting
) {
2954 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2955 "selinux_audit_rule_match: stale rule\n");
2960 ctxt
= sidtab_search(&sidtab
, sid
);
2962 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2963 "selinux_audit_rule_match: unrecognized SID %d\n",
2969 /* a field/op pair that is not caught here will simply fall through
2972 case AUDIT_SUBJ_USER
:
2973 case AUDIT_OBJ_USER
:
2976 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2978 case Audit_not_equal
:
2979 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2983 case AUDIT_SUBJ_ROLE
:
2984 case AUDIT_OBJ_ROLE
:
2987 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2989 case Audit_not_equal
:
2990 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2994 case AUDIT_SUBJ_TYPE
:
2995 case AUDIT_OBJ_TYPE
:
2998 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
3000 case Audit_not_equal
:
3001 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
3005 case AUDIT_SUBJ_SEN
:
3006 case AUDIT_SUBJ_CLR
:
3007 case AUDIT_OBJ_LEV_LOW
:
3008 case AUDIT_OBJ_LEV_HIGH
:
3009 level
= ((field
== AUDIT_SUBJ_SEN
||
3010 field
== AUDIT_OBJ_LEV_LOW
) ?
3011 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
3014 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3017 case Audit_not_equal
:
3018 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3022 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3024 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3028 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3032 match
= (mls_level_dom(level
,
3033 &rule
->au_ctxt
.range
.level
[0]) &&
3034 !mls_level_eq(level
,
3035 &rule
->au_ctxt
.range
.level
[0]));
3038 match
= mls_level_dom(level
,
3039 &rule
->au_ctxt
.range
.level
[0]);
3045 read_unlock(&policy_rwlock
);
3049 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3051 static int aurule_avc_callback(u32 event
)
3055 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3056 err
= aurule_callback();
3060 static int __init
aurule_init(void)
3064 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
);
3066 panic("avc_add_callback() failed, error %d\n", err
);
3070 __initcall(aurule_init
);
3072 #ifdef CONFIG_NETLABEL
3074 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3075 * @secattr: the NetLabel packet security attributes
3076 * @sid: the SELinux SID
3079 * Attempt to cache the context in @ctx, which was derived from the packet in
3080 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3081 * already been initialized.
3084 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3089 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3090 if (sid_cache
== NULL
)
3092 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3093 if (secattr
->cache
== NULL
) {
3099 secattr
->cache
->free
= kfree
;
3100 secattr
->cache
->data
= sid_cache
;
3101 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3105 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3106 * @secattr: the NetLabel packet security attributes
3107 * @sid: the SELinux SID
3110 * Convert the given NetLabel security attributes in @secattr into a
3111 * SELinux SID. If the @secattr field does not contain a full SELinux
3112 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3113 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3114 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3115 * conversion for future lookups. Returns zero on success, negative values on
3119 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3123 struct context
*ctx
;
3124 struct context ctx_new
;
3126 if (!ss_initialized
) {
3131 read_lock(&policy_rwlock
);
3133 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3134 *sid
= *(u32
*)secattr
->cache
->data
;
3135 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3136 *sid
= secattr
->attr
.secid
;
3137 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3139 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3143 context_init(&ctx_new
);
3144 ctx_new
.user
= ctx
->user
;
3145 ctx_new
.role
= ctx
->role
;
3146 ctx_new
.type
= ctx
->type
;
3147 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3148 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3149 rc
= ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
3150 secattr
->attr
.mls
.cat
);
3153 memcpy(&ctx_new
.range
.level
[1].cat
,
3154 &ctx_new
.range
.level
[0].cat
,
3155 sizeof(ctx_new
.range
.level
[0].cat
));
3158 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3161 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3165 security_netlbl_cache_add(secattr
, *sid
);
3167 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3171 read_unlock(&policy_rwlock
);
3174 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3176 read_unlock(&policy_rwlock
);
3181 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3182 * @sid: the SELinux SID
3183 * @secattr: the NetLabel packet security attributes
3186 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3187 * Returns zero on success, negative values on failure.
3190 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3193 struct context
*ctx
;
3195 if (!ss_initialized
)
3198 read_lock(&policy_rwlock
);
3201 ctx
= sidtab_search(&sidtab
, sid
);
3206 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3208 if (secattr
->domain
== NULL
)
3211 secattr
->attr
.secid
= sid
;
3212 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3213 mls_export_netlbl_lvl(ctx
, secattr
);
3214 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3216 read_unlock(&policy_rwlock
);
3219 #endif /* CONFIG_NETLABEL */
3222 * security_read_policy - read the policy.
3223 * @data: binary policy data
3224 * @len: length of data in bytes
3227 int security_read_policy(void **data
, size_t *len
)
3230 struct policy_file fp
;
3232 if (!ss_initialized
)
3235 *len
= security_policydb_len();
3237 *data
= vmalloc_user(*len
);
3244 read_lock(&policy_rwlock
);
3245 rc
= policydb_write(&policydb
, &fp
);
3246 read_unlock(&policy_rwlock
);
3251 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;