2 * linux/mm/memory_hotplug.c
7 #include <linux/stddef.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
40 #include <asm/tlbflush.h>
45 * online_page_callback contains pointer to current page onlining function.
46 * Initially it is generic_online_page(). If it is required it could be
47 * changed by calling set_online_page_callback() for callback registration
48 * and restore_online_page_callback() for generic callback restore.
51 static void generic_online_page(struct page
*page
);
53 static online_page_callback_t online_page_callback
= generic_online_page
;
54 static DEFINE_MUTEX(online_page_callback_lock
);
56 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock
);
58 void get_online_mems(void)
60 percpu_down_read(&mem_hotplug_lock
);
63 void put_online_mems(void)
65 percpu_up_read(&mem_hotplug_lock
);
68 bool movable_node_enabled
= false;
70 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
71 bool memhp_auto_online
;
73 bool memhp_auto_online
= true;
75 EXPORT_SYMBOL_GPL(memhp_auto_online
);
77 static int __init
setup_memhp_default_state(char *str
)
79 if (!strcmp(str
, "online"))
80 memhp_auto_online
= true;
81 else if (!strcmp(str
, "offline"))
82 memhp_auto_online
= false;
86 __setup("memhp_default_state=", setup_memhp_default_state
);
88 void mem_hotplug_begin(void)
91 percpu_down_write(&mem_hotplug_lock
);
94 void mem_hotplug_done(void)
96 percpu_up_write(&mem_hotplug_lock
);
100 /* add this memory to iomem resource */
101 static struct resource
*register_memory_resource(u64 start
, u64 size
)
103 struct resource
*res
, *conflict
;
104 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
106 return ERR_PTR(-ENOMEM
);
108 res
->name
= "System RAM";
110 res
->end
= start
+ size
- 1;
111 res
->flags
= IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
;
112 conflict
= request_resource_conflict(&iomem_resource
, res
);
114 if (conflict
->desc
== IORES_DESC_DEVICE_PRIVATE_MEMORY
) {
115 pr_debug("Device unaddressable memory block "
116 "memory hotplug at %#010llx !\n",
117 (unsigned long long)start
);
119 pr_debug("System RAM resource %pR cannot be added\n", res
);
121 return ERR_PTR(-EEXIST
);
126 static void release_memory_resource(struct resource
*res
)
130 release_resource(res
);
135 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
136 void get_page_bootmem(unsigned long info
, struct page
*page
,
139 page
->freelist
= (void *)type
;
140 SetPagePrivate(page
);
141 set_page_private(page
, info
);
145 void put_page_bootmem(struct page
*page
)
149 type
= (unsigned long) page
->freelist
;
150 BUG_ON(type
< MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE
||
151 type
> MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE
);
153 if (page_ref_dec_return(page
) == 1) {
154 page
->freelist
= NULL
;
155 ClearPagePrivate(page
);
156 set_page_private(page
, 0);
157 INIT_LIST_HEAD(&page
->lru
);
158 free_reserved_page(page
);
162 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
163 #ifndef CONFIG_SPARSEMEM_VMEMMAP
164 static void register_page_bootmem_info_section(unsigned long start_pfn
)
166 unsigned long *usemap
, mapsize
, section_nr
, i
;
167 struct mem_section
*ms
;
168 struct page
*page
, *memmap
;
170 section_nr
= pfn_to_section_nr(start_pfn
);
171 ms
= __nr_to_section(section_nr
);
173 /* Get section's memmap address */
174 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
177 * Get page for the memmap's phys address
178 * XXX: need more consideration for sparse_vmemmap...
180 page
= virt_to_page(memmap
);
181 mapsize
= sizeof(struct page
) * PAGES_PER_SECTION
;
182 mapsize
= PAGE_ALIGN(mapsize
) >> PAGE_SHIFT
;
184 /* remember memmap's page */
185 for (i
= 0; i
< mapsize
; i
++, page
++)
186 get_page_bootmem(section_nr
, page
, SECTION_INFO
);
188 usemap
= ms
->pageblock_flags
;
189 page
= virt_to_page(usemap
);
191 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
193 for (i
= 0; i
< mapsize
; i
++, page
++)
194 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
197 #else /* CONFIG_SPARSEMEM_VMEMMAP */
198 static void register_page_bootmem_info_section(unsigned long start_pfn
)
200 unsigned long *usemap
, mapsize
, section_nr
, i
;
201 struct mem_section
*ms
;
202 struct page
*page
, *memmap
;
204 section_nr
= pfn_to_section_nr(start_pfn
);
205 ms
= __nr_to_section(section_nr
);
207 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
209 register_page_bootmem_memmap(section_nr
, memmap
, PAGES_PER_SECTION
);
211 usemap
= ms
->pageblock_flags
;
212 page
= virt_to_page(usemap
);
214 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
216 for (i
= 0; i
< mapsize
; i
++, page
++)
217 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
219 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
221 void __init
register_page_bootmem_info_node(struct pglist_data
*pgdat
)
223 unsigned long i
, pfn
, end_pfn
, nr_pages
;
224 int node
= pgdat
->node_id
;
227 nr_pages
= PAGE_ALIGN(sizeof(struct pglist_data
)) >> PAGE_SHIFT
;
228 page
= virt_to_page(pgdat
);
230 for (i
= 0; i
< nr_pages
; i
++, page
++)
231 get_page_bootmem(node
, page
, NODE_INFO
);
233 pfn
= pgdat
->node_start_pfn
;
234 end_pfn
= pgdat_end_pfn(pgdat
);
236 /* register section info */
237 for (; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
239 * Some platforms can assign the same pfn to multiple nodes - on
240 * node0 as well as nodeN. To avoid registering a pfn against
241 * multiple nodes we check that this pfn does not already
242 * reside in some other nodes.
244 if (pfn_valid(pfn
) && (early_pfn_to_nid(pfn
) == node
))
245 register_page_bootmem_info_section(pfn
);
248 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
250 static int __meminit
__add_section(int nid
, unsigned long phys_start_pfn
,
251 struct vmem_altmap
*altmap
, bool want_memblock
)
255 if (pfn_valid(phys_start_pfn
))
258 ret
= sparse_add_one_section(NODE_DATA(nid
), phys_start_pfn
, altmap
);
265 return hotplug_memory_register(nid
, __pfn_to_section(phys_start_pfn
));
269 * Reasonably generic function for adding memory. It is
270 * expected that archs that support memory hotplug will
271 * call this function after deciding the zone to which to
274 int __ref
__add_pages(int nid
, unsigned long phys_start_pfn
,
275 unsigned long nr_pages
, struct vmem_altmap
*altmap
,
280 int start_sec
, end_sec
;
282 /* during initialize mem_map, align hot-added range to section */
283 start_sec
= pfn_to_section_nr(phys_start_pfn
);
284 end_sec
= pfn_to_section_nr(phys_start_pfn
+ nr_pages
- 1);
288 * Validate altmap is within bounds of the total request
290 if (altmap
->base_pfn
!= phys_start_pfn
291 || vmem_altmap_offset(altmap
) > nr_pages
) {
292 pr_warn_once("memory add fail, invalid altmap\n");
299 for (i
= start_sec
; i
<= end_sec
; i
++) {
300 err
= __add_section(nid
, section_nr_to_pfn(i
), altmap
,
304 * EEXIST is finally dealt with by ioresource collision
305 * check. see add_memory() => register_memory_resource()
306 * Warning will be printed if there is collision.
308 if (err
&& (err
!= -EEXIST
))
313 vmemmap_populate_print_last();
318 #ifdef CONFIG_MEMORY_HOTREMOVE
319 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
320 static unsigned long find_smallest_section_pfn(int nid
, struct zone
*zone
,
321 unsigned long start_pfn
,
322 unsigned long end_pfn
)
324 struct mem_section
*ms
;
326 for (; start_pfn
< end_pfn
; start_pfn
+= PAGES_PER_SECTION
) {
327 ms
= __pfn_to_section(start_pfn
);
329 if (unlikely(!valid_section(ms
)))
332 if (unlikely(pfn_to_nid(start_pfn
) != nid
))
335 if (zone
&& zone
!= page_zone(pfn_to_page(start_pfn
)))
344 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
345 static unsigned long find_biggest_section_pfn(int nid
, struct zone
*zone
,
346 unsigned long start_pfn
,
347 unsigned long end_pfn
)
349 struct mem_section
*ms
;
352 /* pfn is the end pfn of a memory section. */
354 for (; pfn
>= start_pfn
; pfn
-= PAGES_PER_SECTION
) {
355 ms
= __pfn_to_section(pfn
);
357 if (unlikely(!valid_section(ms
)))
360 if (unlikely(pfn_to_nid(pfn
) != nid
))
363 if (zone
&& zone
!= page_zone(pfn_to_page(pfn
)))
372 static void shrink_zone_span(struct zone
*zone
, unsigned long start_pfn
,
373 unsigned long end_pfn
)
375 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
376 unsigned long z
= zone_end_pfn(zone
); /* zone_end_pfn namespace clash */
377 unsigned long zone_end_pfn
= z
;
379 struct mem_section
*ms
;
380 int nid
= zone_to_nid(zone
);
382 zone_span_writelock(zone
);
383 if (zone_start_pfn
== start_pfn
) {
385 * If the section is smallest section in the zone, it need
386 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
387 * In this case, we find second smallest valid mem_section
388 * for shrinking zone.
390 pfn
= find_smallest_section_pfn(nid
, zone
, end_pfn
,
393 zone
->zone_start_pfn
= pfn
;
394 zone
->spanned_pages
= zone_end_pfn
- pfn
;
396 } else if (zone_end_pfn
== end_pfn
) {
398 * If the section is biggest section in the zone, it need
399 * shrink zone->spanned_pages.
400 * In this case, we find second biggest valid mem_section for
403 pfn
= find_biggest_section_pfn(nid
, zone
, zone_start_pfn
,
406 zone
->spanned_pages
= pfn
- zone_start_pfn
+ 1;
410 * The section is not biggest or smallest mem_section in the zone, it
411 * only creates a hole in the zone. So in this case, we need not
412 * change the zone. But perhaps, the zone has only hole data. Thus
413 * it check the zone has only hole or not.
415 pfn
= zone_start_pfn
;
416 for (; pfn
< zone_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
417 ms
= __pfn_to_section(pfn
);
419 if (unlikely(!valid_section(ms
)))
422 if (page_zone(pfn_to_page(pfn
)) != zone
)
425 /* If the section is current section, it continues the loop */
426 if (start_pfn
== pfn
)
429 /* If we find valid section, we have nothing to do */
430 zone_span_writeunlock(zone
);
434 /* The zone has no valid section */
435 zone
->zone_start_pfn
= 0;
436 zone
->spanned_pages
= 0;
437 zone_span_writeunlock(zone
);
440 static void shrink_pgdat_span(struct pglist_data
*pgdat
,
441 unsigned long start_pfn
, unsigned long end_pfn
)
443 unsigned long pgdat_start_pfn
= pgdat
->node_start_pfn
;
444 unsigned long p
= pgdat_end_pfn(pgdat
); /* pgdat_end_pfn namespace clash */
445 unsigned long pgdat_end_pfn
= p
;
447 struct mem_section
*ms
;
448 int nid
= pgdat
->node_id
;
450 if (pgdat_start_pfn
== start_pfn
) {
452 * If the section is smallest section in the pgdat, it need
453 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
454 * In this case, we find second smallest valid mem_section
455 * for shrinking zone.
457 pfn
= find_smallest_section_pfn(nid
, NULL
, end_pfn
,
460 pgdat
->node_start_pfn
= pfn
;
461 pgdat
->node_spanned_pages
= pgdat_end_pfn
- pfn
;
463 } else if (pgdat_end_pfn
== end_pfn
) {
465 * If the section is biggest section in the pgdat, it need
466 * shrink pgdat->node_spanned_pages.
467 * In this case, we find second biggest valid mem_section for
470 pfn
= find_biggest_section_pfn(nid
, NULL
, pgdat_start_pfn
,
473 pgdat
->node_spanned_pages
= pfn
- pgdat_start_pfn
+ 1;
477 * If the section is not biggest or smallest mem_section in the pgdat,
478 * it only creates a hole in the pgdat. So in this case, we need not
480 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
481 * has only hole or not.
483 pfn
= pgdat_start_pfn
;
484 for (; pfn
< pgdat_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
485 ms
= __pfn_to_section(pfn
);
487 if (unlikely(!valid_section(ms
)))
490 if (pfn_to_nid(pfn
) != nid
)
493 /* If the section is current section, it continues the loop */
494 if (start_pfn
== pfn
)
497 /* If we find valid section, we have nothing to do */
501 /* The pgdat has no valid section */
502 pgdat
->node_start_pfn
= 0;
503 pgdat
->node_spanned_pages
= 0;
506 static void __remove_zone(struct zone
*zone
, unsigned long start_pfn
)
508 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
509 int nr_pages
= PAGES_PER_SECTION
;
512 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
513 shrink_zone_span(zone
, start_pfn
, start_pfn
+ nr_pages
);
514 shrink_pgdat_span(pgdat
, start_pfn
, start_pfn
+ nr_pages
);
515 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
518 static int __remove_section(struct zone
*zone
, struct mem_section
*ms
,
519 unsigned long map_offset
, struct vmem_altmap
*altmap
)
521 unsigned long start_pfn
;
525 if (!valid_section(ms
))
528 ret
= unregister_memory_section(ms
);
532 scn_nr
= __section_nr(ms
);
533 start_pfn
= section_nr_to_pfn((unsigned long)scn_nr
);
534 __remove_zone(zone
, start_pfn
);
536 sparse_remove_one_section(zone
, ms
, map_offset
, altmap
);
541 * __remove_pages() - remove sections of pages from a zone
542 * @zone: zone from which pages need to be removed
543 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
544 * @nr_pages: number of pages to remove (must be multiple of section size)
545 * @altmap: alternative device page map or %NULL if default memmap is used
547 * Generic helper function to remove section mappings and sysfs entries
548 * for the section of the memory we are removing. Caller needs to make
549 * sure that pages are marked reserved and zones are adjust properly by
550 * calling offline_pages().
552 int __remove_pages(struct zone
*zone
, unsigned long phys_start_pfn
,
553 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
556 unsigned long map_offset
= 0;
557 int sections_to_remove
, ret
= 0;
559 /* In the ZONE_DEVICE case device driver owns the memory region */
560 if (is_dev_zone(zone
)) {
562 map_offset
= vmem_altmap_offset(altmap
);
564 resource_size_t start
, size
;
566 start
= phys_start_pfn
<< PAGE_SHIFT
;
567 size
= nr_pages
* PAGE_SIZE
;
569 ret
= release_mem_region_adjustable(&iomem_resource
, start
,
572 resource_size_t endres
= start
+ size
- 1;
574 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
575 &start
, &endres
, ret
);
579 clear_zone_contiguous(zone
);
582 * We can only remove entire sections
584 BUG_ON(phys_start_pfn
& ~PAGE_SECTION_MASK
);
585 BUG_ON(nr_pages
% PAGES_PER_SECTION
);
587 sections_to_remove
= nr_pages
/ PAGES_PER_SECTION
;
588 for (i
= 0; i
< sections_to_remove
; i
++) {
589 unsigned long pfn
= phys_start_pfn
+ i
*PAGES_PER_SECTION
;
592 ret
= __remove_section(zone
, __pfn_to_section(pfn
), map_offset
,
599 set_zone_contiguous(zone
);
603 #endif /* CONFIG_MEMORY_HOTREMOVE */
605 int set_online_page_callback(online_page_callback_t callback
)
610 mutex_lock(&online_page_callback_lock
);
612 if (online_page_callback
== generic_online_page
) {
613 online_page_callback
= callback
;
617 mutex_unlock(&online_page_callback_lock
);
622 EXPORT_SYMBOL_GPL(set_online_page_callback
);
624 int restore_online_page_callback(online_page_callback_t callback
)
629 mutex_lock(&online_page_callback_lock
);
631 if (online_page_callback
== callback
) {
632 online_page_callback
= generic_online_page
;
636 mutex_unlock(&online_page_callback_lock
);
641 EXPORT_SYMBOL_GPL(restore_online_page_callback
);
643 void __online_page_set_limits(struct page
*page
)
646 EXPORT_SYMBOL_GPL(__online_page_set_limits
);
648 void __online_page_increment_counters(struct page
*page
)
650 adjust_managed_page_count(page
, 1);
652 EXPORT_SYMBOL_GPL(__online_page_increment_counters
);
654 void __online_page_free(struct page
*page
)
656 __free_reserved_page(page
);
658 EXPORT_SYMBOL_GPL(__online_page_free
);
660 static void generic_online_page(struct page
*page
)
662 __online_page_set_limits(page
);
663 __online_page_increment_counters(page
);
664 __online_page_free(page
);
667 static int online_pages_range(unsigned long start_pfn
, unsigned long nr_pages
,
671 unsigned long onlined_pages
= *(unsigned long *)arg
;
674 if (PageReserved(pfn_to_page(start_pfn
)))
675 for (i
= 0; i
< nr_pages
; i
++) {
676 page
= pfn_to_page(start_pfn
+ i
);
677 (*online_page_callback
)(page
);
681 online_mem_sections(start_pfn
, start_pfn
+ nr_pages
);
683 *(unsigned long *)arg
= onlined_pages
;
687 /* check which state of node_states will be changed when online memory */
688 static void node_states_check_changes_online(unsigned long nr_pages
,
689 struct zone
*zone
, struct memory_notify
*arg
)
691 int nid
= zone_to_nid(zone
);
692 enum zone_type zone_last
= ZONE_NORMAL
;
695 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
696 * contains nodes which have zones of 0...ZONE_NORMAL,
697 * set zone_last to ZONE_NORMAL.
699 * If we don't have HIGHMEM nor movable node,
700 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
701 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
703 if (N_MEMORY
== N_NORMAL_MEMORY
)
704 zone_last
= ZONE_MOVABLE
;
707 * if the memory to be online is in a zone of 0...zone_last, and
708 * the zones of 0...zone_last don't have memory before online, we will
709 * need to set the node to node_states[N_NORMAL_MEMORY] after
710 * the memory is online.
712 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_NORMAL_MEMORY
))
713 arg
->status_change_nid_normal
= nid
;
715 arg
->status_change_nid_normal
= -1;
717 #ifdef CONFIG_HIGHMEM
719 * If we have movable node, node_states[N_HIGH_MEMORY]
720 * contains nodes which have zones of 0...ZONE_HIGHMEM,
721 * set zone_last to ZONE_HIGHMEM.
723 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
724 * contains nodes which have zones of 0...ZONE_MOVABLE,
725 * set zone_last to ZONE_MOVABLE.
727 zone_last
= ZONE_HIGHMEM
;
728 if (N_MEMORY
== N_HIGH_MEMORY
)
729 zone_last
= ZONE_MOVABLE
;
731 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_HIGH_MEMORY
))
732 arg
->status_change_nid_high
= nid
;
734 arg
->status_change_nid_high
= -1;
736 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
740 * if the node don't have memory befor online, we will need to
741 * set the node to node_states[N_MEMORY] after the memory
744 if (!node_state(nid
, N_MEMORY
))
745 arg
->status_change_nid
= nid
;
747 arg
->status_change_nid
= -1;
750 static void node_states_set_node(int node
, struct memory_notify
*arg
)
752 if (arg
->status_change_nid_normal
>= 0)
753 node_set_state(node
, N_NORMAL_MEMORY
);
755 if (arg
->status_change_nid_high
>= 0)
756 node_set_state(node
, N_HIGH_MEMORY
);
758 node_set_state(node
, N_MEMORY
);
761 static void __meminit
resize_zone_range(struct zone
*zone
, unsigned long start_pfn
,
762 unsigned long nr_pages
)
764 unsigned long old_end_pfn
= zone_end_pfn(zone
);
766 if (zone_is_empty(zone
) || start_pfn
< zone
->zone_start_pfn
)
767 zone
->zone_start_pfn
= start_pfn
;
769 zone
->spanned_pages
= max(start_pfn
+ nr_pages
, old_end_pfn
) - zone
->zone_start_pfn
;
772 static void __meminit
resize_pgdat_range(struct pglist_data
*pgdat
, unsigned long start_pfn
,
773 unsigned long nr_pages
)
775 unsigned long old_end_pfn
= pgdat_end_pfn(pgdat
);
777 if (!pgdat
->node_spanned_pages
|| start_pfn
< pgdat
->node_start_pfn
)
778 pgdat
->node_start_pfn
= start_pfn
;
780 pgdat
->node_spanned_pages
= max(start_pfn
+ nr_pages
, old_end_pfn
) - pgdat
->node_start_pfn
;
783 void __ref
move_pfn_range_to_zone(struct zone
*zone
, unsigned long start_pfn
,
784 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
786 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
787 int nid
= pgdat
->node_id
;
790 if (zone_is_empty(zone
))
791 init_currently_empty_zone(zone
, start_pfn
, nr_pages
);
793 clear_zone_contiguous(zone
);
795 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
796 pgdat_resize_lock(pgdat
, &flags
);
797 zone_span_writelock(zone
);
798 resize_zone_range(zone
, start_pfn
, nr_pages
);
799 zone_span_writeunlock(zone
);
800 resize_pgdat_range(pgdat
, start_pfn
, nr_pages
);
801 pgdat_resize_unlock(pgdat
, &flags
);
804 * TODO now we have a visible range of pages which are not associated
805 * with their zone properly. Not nice but set_pfnblock_flags_mask
806 * expects the zone spans the pfn range. All the pages in the range
807 * are reserved so nobody should be touching them so we should be safe
809 memmap_init_zone(nr_pages
, nid
, zone_idx(zone
), start_pfn
,
810 MEMMAP_HOTPLUG
, altmap
);
812 set_zone_contiguous(zone
);
816 * Returns a default kernel memory zone for the given pfn range.
817 * If no kernel zone covers this pfn range it will automatically go
818 * to the ZONE_NORMAL.
820 static struct zone
*default_kernel_zone_for_pfn(int nid
, unsigned long start_pfn
,
821 unsigned long nr_pages
)
823 struct pglist_data
*pgdat
= NODE_DATA(nid
);
826 for (zid
= 0; zid
<= ZONE_NORMAL
; zid
++) {
827 struct zone
*zone
= &pgdat
->node_zones
[zid
];
829 if (zone_intersects(zone
, start_pfn
, nr_pages
))
833 return &pgdat
->node_zones
[ZONE_NORMAL
];
836 static inline struct zone
*default_zone_for_pfn(int nid
, unsigned long start_pfn
,
837 unsigned long nr_pages
)
839 struct zone
*kernel_zone
= default_kernel_zone_for_pfn(nid
, start_pfn
,
841 struct zone
*movable_zone
= &NODE_DATA(nid
)->node_zones
[ZONE_MOVABLE
];
842 bool in_kernel
= zone_intersects(kernel_zone
, start_pfn
, nr_pages
);
843 bool in_movable
= zone_intersects(movable_zone
, start_pfn
, nr_pages
);
846 * We inherit the existing zone in a simple case where zones do not
847 * overlap in the given range
849 if (in_kernel
^ in_movable
)
850 return (in_kernel
) ? kernel_zone
: movable_zone
;
853 * If the range doesn't belong to any zone or two zones overlap in the
854 * given range then we use movable zone only if movable_node is
855 * enabled because we always online to a kernel zone by default.
857 return movable_node_enabled
? movable_zone
: kernel_zone
;
860 struct zone
* zone_for_pfn_range(int online_type
, int nid
, unsigned start_pfn
,
861 unsigned long nr_pages
)
863 if (online_type
== MMOP_ONLINE_KERNEL
)
864 return default_kernel_zone_for_pfn(nid
, start_pfn
, nr_pages
);
866 if (online_type
== MMOP_ONLINE_MOVABLE
)
867 return &NODE_DATA(nid
)->node_zones
[ZONE_MOVABLE
];
869 return default_zone_for_pfn(nid
, start_pfn
, nr_pages
);
873 * Associates the given pfn range with the given node and the zone appropriate
874 * for the given online type.
876 static struct zone
* __meminit
move_pfn_range(int online_type
, int nid
,
877 unsigned long start_pfn
, unsigned long nr_pages
)
881 zone
= zone_for_pfn_range(online_type
, nid
, start_pfn
, nr_pages
);
882 move_pfn_range_to_zone(zone
, start_pfn
, nr_pages
, NULL
);
886 /* Must be protected by mem_hotplug_begin() or a device_lock */
887 int __ref
online_pages(unsigned long pfn
, unsigned long nr_pages
, int online_type
)
890 unsigned long onlined_pages
= 0;
892 int need_zonelists_rebuild
= 0;
895 struct memory_notify arg
;
896 struct memory_block
*mem
;
899 * We can't use pfn_to_nid() because nid might be stored in struct page
900 * which is not yet initialized. Instead, we find nid from memory block.
902 mem
= find_memory_block(__pfn_to_section(pfn
));
905 /* associate pfn range with the zone */
906 zone
= move_pfn_range(online_type
, nid
, pfn
, nr_pages
);
909 arg
.nr_pages
= nr_pages
;
910 node_states_check_changes_online(nr_pages
, zone
, &arg
);
912 ret
= memory_notify(MEM_GOING_ONLINE
, &arg
);
913 ret
= notifier_to_errno(ret
);
915 goto failed_addition
;
918 * If this zone is not populated, then it is not in zonelist.
919 * This means the page allocator ignores this zone.
920 * So, zonelist must be updated after online.
922 if (!populated_zone(zone
)) {
923 need_zonelists_rebuild
= 1;
924 setup_zone_pageset(zone
);
927 ret
= walk_system_ram_range(pfn
, nr_pages
, &onlined_pages
,
930 if (need_zonelists_rebuild
)
931 zone_pcp_reset(zone
);
932 goto failed_addition
;
935 zone
->present_pages
+= onlined_pages
;
937 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
938 zone
->zone_pgdat
->node_present_pages
+= onlined_pages
;
939 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
942 node_states_set_node(nid
, &arg
);
943 if (need_zonelists_rebuild
)
944 build_all_zonelists(NULL
);
946 zone_pcp_update(zone
);
949 init_per_zone_wmark_min();
956 vm_total_pages
= nr_free_pagecache_pages();
958 writeback_set_ratelimit();
961 memory_notify(MEM_ONLINE
, &arg
);
965 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
966 (unsigned long long) pfn
<< PAGE_SHIFT
,
967 (((unsigned long long) pfn
+ nr_pages
) << PAGE_SHIFT
) - 1);
968 memory_notify(MEM_CANCEL_ONLINE
, &arg
);
971 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
973 static void reset_node_present_pages(pg_data_t
*pgdat
)
977 for (z
= pgdat
->node_zones
; z
< pgdat
->node_zones
+ MAX_NR_ZONES
; z
++)
978 z
->present_pages
= 0;
980 pgdat
->node_present_pages
= 0;
983 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
984 static pg_data_t __ref
*hotadd_new_pgdat(int nid
, u64 start
)
986 struct pglist_data
*pgdat
;
987 unsigned long start_pfn
= PFN_DOWN(start
);
989 pgdat
= NODE_DATA(nid
);
991 pgdat
= arch_alloc_nodedata(nid
);
995 arch_refresh_nodedata(nid
, pgdat
);
998 * Reset the nr_zones, order and classzone_idx before reuse.
999 * Note that kswapd will init kswapd_classzone_idx properly
1000 * when it starts in the near future.
1002 pgdat
->nr_zones
= 0;
1003 pgdat
->kswapd_order
= 0;
1004 pgdat
->kswapd_classzone_idx
= 0;
1007 /* we can use NODE_DATA(nid) from here */
1009 pgdat
->node_id
= nid
;
1010 pgdat
->node_start_pfn
= start_pfn
;
1012 /* init node's zones as empty zones, we don't have any present pages.*/
1013 free_area_init_core_hotplug(nid
);
1014 pgdat
->per_cpu_nodestats
= alloc_percpu(struct per_cpu_nodestat
);
1017 * The node we allocated has no zone fallback lists. For avoiding
1018 * to access not-initialized zonelist, build here.
1020 build_all_zonelists(pgdat
);
1023 * When memory is hot-added, all the memory is in offline state. So
1024 * clear all zones' present_pages because they will be updated in
1025 * online_pages() and offline_pages().
1027 reset_node_managed_pages(pgdat
);
1028 reset_node_present_pages(pgdat
);
1033 static void rollback_node_hotadd(int nid
)
1035 pg_data_t
*pgdat
= NODE_DATA(nid
);
1037 arch_refresh_nodedata(nid
, NULL
);
1038 free_percpu(pgdat
->per_cpu_nodestats
);
1039 arch_free_nodedata(pgdat
);
1045 * try_online_node - online a node if offlined
1047 * @start: start addr of the node
1048 * @set_node_online: Whether we want to online the node
1049 * called by cpu_up() to online a node without onlined memory.
1052 * 1 -> a new node has been allocated
1053 * 0 -> the node is already online
1054 * -ENOMEM -> the node could not be allocated
1056 static int __try_online_node(int nid
, u64 start
, bool set_node_online
)
1061 if (node_online(nid
))
1064 pgdat
= hotadd_new_pgdat(nid
, start
);
1066 pr_err("Cannot online node %d due to NULL pgdat\n", nid
);
1071 if (set_node_online
) {
1072 node_set_online(nid
);
1073 ret
= register_one_node(nid
);
1081 * Users of this function always want to online/register the node
1083 int try_online_node(int nid
)
1087 mem_hotplug_begin();
1088 ret
= __try_online_node(nid
, 0, true);
1093 static int check_hotplug_memory_range(u64 start
, u64 size
)
1095 unsigned long block_sz
= memory_block_size_bytes();
1096 u64 block_nr_pages
= block_sz
>> PAGE_SHIFT
;
1097 u64 nr_pages
= size
>> PAGE_SHIFT
;
1098 u64 start_pfn
= PFN_DOWN(start
);
1100 /* memory range must be block size aligned */
1101 if (!nr_pages
|| !IS_ALIGNED(start_pfn
, block_nr_pages
) ||
1102 !IS_ALIGNED(nr_pages
, block_nr_pages
)) {
1103 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1104 block_sz
, start
, size
);
1111 static int online_memory_block(struct memory_block
*mem
, void *arg
)
1113 return device_online(&mem
->dev
);
1116 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1117 int __ref
add_memory_resource(int nid
, struct resource
*res
, bool online
)
1120 bool new_node
= false;
1124 size
= resource_size(res
);
1126 ret
= check_hotplug_memory_range(start
, size
);
1130 mem_hotplug_begin();
1133 * Add new range to memblock so that when hotadd_new_pgdat() is called
1134 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1135 * this new range and calculate total pages correctly. The range will
1136 * be removed at hot-remove time.
1138 memblock_add_node(start
, size
, nid
);
1140 ret
= __try_online_node(nid
, start
, false);
1145 /* call arch's memory hotadd */
1146 ret
= arch_add_memory(nid
, start
, size
, NULL
, true);
1151 /* If sysfs file of new node can't be created, cpu on the node
1152 * can't be hot-added. There is no rollback way now.
1153 * So, check by BUG_ON() to catch it reluctantly..
1154 * We online node here. We can't roll back from here.
1156 node_set_online(nid
);
1157 ret
= __register_one_node(nid
);
1161 /* link memory sections under this node.*/
1162 ret
= link_mem_sections(nid
, PFN_DOWN(start
), PFN_UP(start
+ size
- 1));
1165 /* create new memmap entry */
1166 firmware_map_add_hotplug(start
, start
+ size
, "System RAM");
1168 /* online pages if requested */
1170 walk_memory_range(PFN_DOWN(start
), PFN_UP(start
+ size
- 1),
1171 NULL
, online_memory_block
);
1176 /* rollback pgdat allocation and others */
1178 rollback_node_hotadd(nid
);
1179 memblock_remove(start
, size
);
1185 EXPORT_SYMBOL_GPL(add_memory_resource
);
1187 int __ref
add_memory(int nid
, u64 start
, u64 size
)
1189 struct resource
*res
;
1192 res
= register_memory_resource(start
, size
);
1194 return PTR_ERR(res
);
1196 ret
= add_memory_resource(nid
, res
, memhp_auto_online
);
1198 release_memory_resource(res
);
1201 EXPORT_SYMBOL_GPL(add_memory
);
1203 #ifdef CONFIG_MEMORY_HOTREMOVE
1205 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1206 * set and the size of the free page is given by page_order(). Using this,
1207 * the function determines if the pageblock contains only free pages.
1208 * Due to buddy contraints, a free page at least the size of a pageblock will
1209 * be located at the start of the pageblock
1211 static inline int pageblock_free(struct page
*page
)
1213 return PageBuddy(page
) && page_order(page
) >= pageblock_order
;
1216 /* Return the start of the next active pageblock after a given page */
1217 static struct page
*next_active_pageblock(struct page
*page
)
1219 /* Ensure the starting page is pageblock-aligned */
1220 BUG_ON(page_to_pfn(page
) & (pageblock_nr_pages
- 1));
1222 /* If the entire pageblock is free, move to the end of free page */
1223 if (pageblock_free(page
)) {
1225 /* be careful. we don't have locks, page_order can be changed.*/
1226 order
= page_order(page
);
1227 if ((order
< MAX_ORDER
) && (order
>= pageblock_order
))
1228 return page
+ (1 << order
);
1231 return page
+ pageblock_nr_pages
;
1234 static bool is_pageblock_removable_nolock(struct page
*page
)
1240 * We have to be careful here because we are iterating over memory
1241 * sections which are not zone aware so we might end up outside of
1242 * the zone but still within the section.
1243 * We have to take care about the node as well. If the node is offline
1244 * its NODE_DATA will be NULL - see page_zone.
1246 if (!node_online(page_to_nid(page
)))
1249 zone
= page_zone(page
);
1250 pfn
= page_to_pfn(page
);
1251 if (!zone_spans_pfn(zone
, pfn
))
1254 return !has_unmovable_pages(zone
, page
, 0, MIGRATE_MOVABLE
, true);
1257 /* Checks if this range of memory is likely to be hot-removable. */
1258 bool is_mem_section_removable(unsigned long start_pfn
, unsigned long nr_pages
)
1260 struct page
*page
= pfn_to_page(start_pfn
);
1261 struct page
*end_page
= page
+ nr_pages
;
1263 /* Check the starting page of each pageblock within the range */
1264 for (; page
< end_page
; page
= next_active_pageblock(page
)) {
1265 if (!is_pageblock_removable_nolock(page
))
1270 /* All pageblocks in the memory block are likely to be hot-removable */
1275 * Confirm all pages in a range [start, end) belong to the same zone.
1276 * When true, return its valid [start, end).
1278 int test_pages_in_a_zone(unsigned long start_pfn
, unsigned long end_pfn
,
1279 unsigned long *valid_start
, unsigned long *valid_end
)
1281 unsigned long pfn
, sec_end_pfn
;
1282 unsigned long start
, end
;
1283 struct zone
*zone
= NULL
;
1286 for (pfn
= start_pfn
, sec_end_pfn
= SECTION_ALIGN_UP(start_pfn
+ 1);
1288 pfn
= sec_end_pfn
, sec_end_pfn
+= PAGES_PER_SECTION
) {
1289 /* Make sure the memory section is present first */
1290 if (!present_section_nr(pfn_to_section_nr(pfn
)))
1292 for (; pfn
< sec_end_pfn
&& pfn
< end_pfn
;
1293 pfn
+= MAX_ORDER_NR_PAGES
) {
1295 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1296 while ((i
< MAX_ORDER_NR_PAGES
) &&
1297 !pfn_valid_within(pfn
+ i
))
1299 if (i
== MAX_ORDER_NR_PAGES
|| pfn
+ i
>= end_pfn
)
1301 page
= pfn_to_page(pfn
+ i
);
1302 if (zone
&& page_zone(page
) != zone
)
1306 zone
= page_zone(page
);
1307 end
= pfn
+ MAX_ORDER_NR_PAGES
;
1312 *valid_start
= start
;
1313 *valid_end
= min(end
, end_pfn
);
1321 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1322 * non-lru movable pages and hugepages). We scan pfn because it's much
1323 * easier than scanning over linked list. This function returns the pfn
1324 * of the first found movable page if it's found, otherwise 0.
1326 static unsigned long scan_movable_pages(unsigned long start
, unsigned long end
)
1330 for (pfn
= start
; pfn
< end
; pfn
++) {
1331 struct page
*page
, *head
;
1334 if (!pfn_valid(pfn
))
1336 page
= pfn_to_page(pfn
);
1339 if (__PageMovable(page
))
1342 if (!PageHuge(page
))
1344 head
= compound_head(page
);
1345 if (hugepage_migration_supported(page_hstate(head
)) &&
1346 page_huge_active(head
))
1348 skip
= (1 << compound_order(head
)) - (page
- head
);
1354 static struct page
*new_node_page(struct page
*page
, unsigned long private)
1356 int nid
= page_to_nid(page
);
1357 nodemask_t nmask
= node_states
[N_MEMORY
];
1360 * try to allocate from a different node but reuse this node if there
1361 * are no other online nodes to be used (e.g. we are offlining a part
1362 * of the only existing node)
1364 node_clear(nid
, nmask
);
1365 if (nodes_empty(nmask
))
1366 node_set(nid
, nmask
);
1368 return new_page_nodemask(page
, nid
, &nmask
);
1371 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1373 do_migrate_range(unsigned long start_pfn
, unsigned long end_pfn
)
1377 int move_pages
= NR_OFFLINE_AT_ONCE_PAGES
;
1378 int not_managed
= 0;
1382 for (pfn
= start_pfn
; pfn
< end_pfn
&& move_pages
> 0; pfn
++) {
1383 if (!pfn_valid(pfn
))
1385 page
= pfn_to_page(pfn
);
1387 if (PageHuge(page
)) {
1388 struct page
*head
= compound_head(page
);
1389 pfn
= page_to_pfn(head
) + (1<<compound_order(head
)) - 1;
1390 if (compound_order(head
) > PFN_SECTION_SHIFT
) {
1394 if (isolate_huge_page(page
, &source
))
1395 move_pages
-= 1 << compound_order(head
);
1397 } else if (PageTransHuge(page
))
1398 pfn
= page_to_pfn(compound_head(page
))
1399 + hpage_nr_pages(page
) - 1;
1402 * HWPoison pages have elevated reference counts so the migration would
1403 * fail on them. It also doesn't make any sense to migrate them in the
1404 * first place. Still try to unmap such a page in case it is still mapped
1405 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1406 * the unmap as the catch all safety net).
1408 if (PageHWPoison(page
)) {
1409 if (WARN_ON(PageLRU(page
)))
1410 isolate_lru_page(page
);
1411 if (page_mapped(page
))
1412 try_to_unmap(page
, TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
);
1416 if (!get_page_unless_zero(page
))
1419 * We can skip free pages. And we can deal with pages on
1420 * LRU and non-lru movable pages.
1423 ret
= isolate_lru_page(page
);
1425 ret
= isolate_movable_page(page
, ISOLATE_UNEVICTABLE
);
1426 if (!ret
) { /* Success */
1428 list_add_tail(&page
->lru
, &source
);
1430 if (!__PageMovable(page
))
1431 inc_node_page_state(page
, NR_ISOLATED_ANON
+
1432 page_is_file_cache(page
));
1435 #ifdef CONFIG_DEBUG_VM
1436 pr_alert("failed to isolate pfn %lx\n", pfn
);
1437 dump_page(page
, "isolation failed");
1440 /* Because we don't have big zone->lock. we should
1441 check this again here. */
1442 if (page_count(page
)) {
1449 if (!list_empty(&source
)) {
1451 putback_movable_pages(&source
);
1455 /* Allocate a new page from the nearest neighbor node */
1456 ret
= migrate_pages(&source
, new_node_page
, NULL
, 0,
1457 MIGRATE_SYNC
, MR_MEMORY_HOTPLUG
);
1459 putback_movable_pages(&source
);
1466 * remove from free_area[] and mark all as Reserved.
1469 offline_isolated_pages_cb(unsigned long start
, unsigned long nr_pages
,
1472 __offline_isolated_pages(start
, start
+ nr_pages
);
1477 offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1479 walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, NULL
,
1480 offline_isolated_pages_cb
);
1484 * Check all pages in range, recoreded as memory resource, are isolated.
1487 check_pages_isolated_cb(unsigned long start_pfn
, unsigned long nr_pages
,
1491 long offlined
= *(long *)data
;
1492 ret
= test_pages_isolated(start_pfn
, start_pfn
+ nr_pages
, true);
1493 offlined
= nr_pages
;
1495 *(long *)data
+= offlined
;
1500 check_pages_isolated(unsigned long start_pfn
, unsigned long end_pfn
)
1505 ret
= walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, &offlined
,
1506 check_pages_isolated_cb
);
1508 offlined
= (long)ret
;
1512 static int __init
cmdline_parse_movable_node(char *p
)
1514 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1515 movable_node_enabled
= true;
1517 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1521 early_param("movable_node", cmdline_parse_movable_node
);
1523 /* check which state of node_states will be changed when offline memory */
1524 static void node_states_check_changes_offline(unsigned long nr_pages
,
1525 struct zone
*zone
, struct memory_notify
*arg
)
1527 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1528 unsigned long present_pages
= 0;
1529 enum zone_type zt
, zone_last
= ZONE_NORMAL
;
1532 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1533 * contains nodes which have zones of 0...ZONE_NORMAL,
1534 * set zone_last to ZONE_NORMAL.
1536 * If we don't have HIGHMEM nor movable node,
1537 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1538 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1540 if (N_MEMORY
== N_NORMAL_MEMORY
)
1541 zone_last
= ZONE_MOVABLE
;
1544 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1545 * If the memory to be offline is in a zone of 0...zone_last,
1546 * and it is the last present memory, 0...zone_last will
1547 * become empty after offline , thus we can determind we will
1548 * need to clear the node from node_states[N_NORMAL_MEMORY].
1550 for (zt
= 0; zt
<= zone_last
; zt
++)
1551 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1552 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1553 arg
->status_change_nid_normal
= zone_to_nid(zone
);
1555 arg
->status_change_nid_normal
= -1;
1557 #ifdef CONFIG_HIGHMEM
1559 * If we have movable node, node_states[N_HIGH_MEMORY]
1560 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1561 * set zone_last to ZONE_HIGHMEM.
1563 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1564 * contains nodes which have zones of 0...ZONE_MOVABLE,
1565 * set zone_last to ZONE_MOVABLE.
1567 zone_last
= ZONE_HIGHMEM
;
1568 if (N_MEMORY
== N_HIGH_MEMORY
)
1569 zone_last
= ZONE_MOVABLE
;
1571 for (; zt
<= zone_last
; zt
++)
1572 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1573 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1574 arg
->status_change_nid_high
= zone_to_nid(zone
);
1576 arg
->status_change_nid_high
= -1;
1578 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
1582 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1584 zone_last
= ZONE_MOVABLE
;
1587 * check whether node_states[N_HIGH_MEMORY] will be changed
1588 * If we try to offline the last present @nr_pages from the node,
1589 * we can determind we will need to clear the node from
1590 * node_states[N_HIGH_MEMORY].
1592 for (; zt
<= zone_last
; zt
++)
1593 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1594 if (nr_pages
>= present_pages
)
1595 arg
->status_change_nid
= zone_to_nid(zone
);
1597 arg
->status_change_nid
= -1;
1600 static void node_states_clear_node(int node
, struct memory_notify
*arg
)
1602 if (arg
->status_change_nid_normal
>= 0)
1603 node_clear_state(node
, N_NORMAL_MEMORY
);
1605 if ((N_MEMORY
!= N_NORMAL_MEMORY
) &&
1606 (arg
->status_change_nid_high
>= 0))
1607 node_clear_state(node
, N_HIGH_MEMORY
);
1609 if ((N_MEMORY
!= N_HIGH_MEMORY
) &&
1610 (arg
->status_change_nid
>= 0))
1611 node_clear_state(node
, N_MEMORY
);
1614 static int __ref
__offline_pages(unsigned long start_pfn
,
1615 unsigned long end_pfn
)
1617 unsigned long pfn
, nr_pages
;
1618 long offlined_pages
;
1620 unsigned long flags
;
1621 unsigned long valid_start
, valid_end
;
1623 struct memory_notify arg
;
1625 /* at least, alignment against pageblock is necessary */
1626 if (!IS_ALIGNED(start_pfn
, pageblock_nr_pages
))
1628 if (!IS_ALIGNED(end_pfn
, pageblock_nr_pages
))
1630 /* This makes hotplug much easier...and readable.
1631 we assume this for now. .*/
1632 if (!test_pages_in_a_zone(start_pfn
, end_pfn
, &valid_start
, &valid_end
))
1635 zone
= page_zone(pfn_to_page(valid_start
));
1636 node
= zone_to_nid(zone
);
1637 nr_pages
= end_pfn
- start_pfn
;
1639 /* set above range as isolated */
1640 ret
= start_isolate_page_range(start_pfn
, end_pfn
,
1641 MIGRATE_MOVABLE
, true);
1645 arg
.start_pfn
= start_pfn
;
1646 arg
.nr_pages
= nr_pages
;
1647 node_states_check_changes_offline(nr_pages
, zone
, &arg
);
1649 ret
= memory_notify(MEM_GOING_OFFLINE
, &arg
);
1650 ret
= notifier_to_errno(ret
);
1652 goto failed_removal
;
1656 /* start memory hot removal */
1658 if (signal_pending(current
))
1659 goto failed_removal
;
1662 lru_add_drain_all();
1663 drain_all_pages(zone
);
1665 pfn
= scan_movable_pages(start_pfn
, end_pfn
);
1666 if (pfn
) { /* We have movable pages */
1667 ret
= do_migrate_range(pfn
, end_pfn
);
1672 * dissolve free hugepages in the memory block before doing offlining
1673 * actually in order to make hugetlbfs's object counting consistent.
1675 ret
= dissolve_free_huge_pages(start_pfn
, end_pfn
);
1677 goto failed_removal
;
1679 offlined_pages
= check_pages_isolated(start_pfn
, end_pfn
);
1680 if (offlined_pages
< 0)
1682 pr_info("Offlined Pages %ld\n", offlined_pages
);
1683 /* Ok, all of our target is isolated.
1684 We cannot do rollback at this point. */
1685 offline_isolated_pages(start_pfn
, end_pfn
);
1686 /* reset pagetype flags and makes migrate type to be MOVABLE */
1687 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1688 /* removal success */
1689 adjust_managed_page_count(pfn_to_page(start_pfn
), -offlined_pages
);
1690 zone
->present_pages
-= offlined_pages
;
1692 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
1693 zone
->zone_pgdat
->node_present_pages
-= offlined_pages
;
1694 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
1696 init_per_zone_wmark_min();
1698 if (!populated_zone(zone
)) {
1699 zone_pcp_reset(zone
);
1700 build_all_zonelists(NULL
);
1702 zone_pcp_update(zone
);
1704 node_states_clear_node(node
, &arg
);
1705 if (arg
.status_change_nid
>= 0) {
1707 kcompactd_stop(node
);
1710 vm_total_pages
= nr_free_pagecache_pages();
1711 writeback_set_ratelimit();
1713 memory_notify(MEM_OFFLINE
, &arg
);
1717 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1718 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
1719 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
1720 memory_notify(MEM_CANCEL_OFFLINE
, &arg
);
1721 /* pushback to free area */
1722 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1726 /* Must be protected by mem_hotplug_begin() or a device_lock */
1727 int offline_pages(unsigned long start_pfn
, unsigned long nr_pages
)
1729 return __offline_pages(start_pfn
, start_pfn
+ nr_pages
);
1731 #endif /* CONFIG_MEMORY_HOTREMOVE */
1734 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1735 * @start_pfn: start pfn of the memory range
1736 * @end_pfn: end pfn of the memory range
1737 * @arg: argument passed to func
1738 * @func: callback for each memory section walked
1740 * This function walks through all present mem sections in range
1741 * [start_pfn, end_pfn) and call func on each mem section.
1743 * Returns the return value of func.
1745 int walk_memory_range(unsigned long start_pfn
, unsigned long end_pfn
,
1746 void *arg
, int (*func
)(struct memory_block
*, void *))
1748 struct memory_block
*mem
= NULL
;
1749 struct mem_section
*section
;
1750 unsigned long pfn
, section_nr
;
1753 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1754 section_nr
= pfn_to_section_nr(pfn
);
1755 if (!present_section_nr(section_nr
))
1758 section
= __nr_to_section(section_nr
);
1759 /* same memblock? */
1761 if ((section_nr
>= mem
->start_section_nr
) &&
1762 (section_nr
<= mem
->end_section_nr
))
1765 mem
= find_memory_block_hinted(section
, mem
);
1769 ret
= func(mem
, arg
);
1771 kobject_put(&mem
->dev
.kobj
);
1777 kobject_put(&mem
->dev
.kobj
);
1782 #ifdef CONFIG_MEMORY_HOTREMOVE
1783 static int check_memblock_offlined_cb(struct memory_block
*mem
, void *arg
)
1785 int ret
= !is_memblock_offlined(mem
);
1787 if (unlikely(ret
)) {
1788 phys_addr_t beginpa
, endpa
;
1790 beginpa
= PFN_PHYS(section_nr_to_pfn(mem
->start_section_nr
));
1791 endpa
= PFN_PHYS(section_nr_to_pfn(mem
->end_section_nr
+ 1))-1;
1792 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1799 static int check_cpu_on_node(pg_data_t
*pgdat
)
1803 for_each_present_cpu(cpu
) {
1804 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1806 * the cpu on this node isn't removed, and we can't
1807 * offline this node.
1815 static void unmap_cpu_on_node(pg_data_t
*pgdat
)
1817 #ifdef CONFIG_ACPI_NUMA
1820 for_each_possible_cpu(cpu
)
1821 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1822 numa_clear_node(cpu
);
1826 static int check_and_unmap_cpu_on_node(pg_data_t
*pgdat
)
1830 ret
= check_cpu_on_node(pgdat
);
1835 * the node will be offlined when we come here, so we can clear
1836 * the cpu_to_node() now.
1839 unmap_cpu_on_node(pgdat
);
1847 * Offline a node if all memory sections and cpus of the node are removed.
1849 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1850 * and online/offline operations before this call.
1852 void try_offline_node(int nid
)
1854 pg_data_t
*pgdat
= NODE_DATA(nid
);
1855 unsigned long start_pfn
= pgdat
->node_start_pfn
;
1856 unsigned long end_pfn
= start_pfn
+ pgdat
->node_spanned_pages
;
1859 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1860 unsigned long section_nr
= pfn_to_section_nr(pfn
);
1862 if (!present_section_nr(section_nr
))
1865 if (pfn_to_nid(pfn
) != nid
)
1869 * some memory sections of this node are not removed, and we
1870 * can't offline node now.
1875 if (check_and_unmap_cpu_on_node(pgdat
))
1879 * all memory/cpu of this node are removed, we can offline this
1882 node_set_offline(nid
);
1883 unregister_one_node(nid
);
1885 EXPORT_SYMBOL(try_offline_node
);
1890 * @start: physical address of the region to remove
1891 * @size: size of the region to remove
1893 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1894 * and online/offline operations before this call, as required by
1895 * try_offline_node().
1897 void __ref
remove_memory(int nid
, u64 start
, u64 size
)
1901 BUG_ON(check_hotplug_memory_range(start
, size
));
1903 mem_hotplug_begin();
1906 * All memory blocks must be offlined before removing memory. Check
1907 * whether all memory blocks in question are offline and trigger a BUG()
1908 * if this is not the case.
1910 ret
= walk_memory_range(PFN_DOWN(start
), PFN_UP(start
+ size
- 1), NULL
,
1911 check_memblock_offlined_cb
);
1915 /* remove memmap entry */
1916 firmware_map_remove(start
, start
+ size
, "System RAM");
1917 memblock_free(start
, size
);
1918 memblock_remove(start
, size
);
1920 arch_remove_memory(start
, size
, NULL
);
1922 try_offline_node(nid
);
1926 EXPORT_SYMBOL_GPL(remove_memory
);
1927 #endif /* CONFIG_MEMORY_HOTREMOVE */