2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/profile.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
28 #include <asm/irq_regs.h>
33 #define PROFILE_GRPSHIFT 3
34 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
35 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
36 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
38 /* Oprofile timer tick hook */
39 int (*timer_hook
)(struct pt_regs
*) __read_mostly
;
41 static atomic_t
*prof_buffer
;
42 static unsigned long prof_len
, prof_shift
;
44 int prof_on __read_mostly
;
45 EXPORT_SYMBOL_GPL(prof_on
);
47 static cpumask_t prof_cpu_mask
= CPU_MASK_ALL
;
49 static DEFINE_PER_CPU(struct profile_hit
*[2], cpu_profile_hits
);
50 static DEFINE_PER_CPU(int, cpu_profile_flip
);
51 static DEFINE_MUTEX(profile_flip_mutex
);
52 #endif /* CONFIG_SMP */
54 static int __init
profile_setup(char * str
)
56 static char __initdata schedstr
[] = "schedule";
57 static char __initdata sleepstr
[] = "sleep";
58 static char __initdata kvmstr
[] = "kvm";
61 if (!strncmp(str
, sleepstr
, strlen(sleepstr
))) {
62 prof_on
= SLEEP_PROFILING
;
63 if (str
[strlen(sleepstr
)] == ',')
64 str
+= strlen(sleepstr
) + 1;
65 if (get_option(&str
, &par
))
68 "kernel sleep profiling enabled (shift: %ld)\n",
70 } else if (!strncmp(str
, schedstr
, strlen(schedstr
))) {
71 prof_on
= SCHED_PROFILING
;
72 if (str
[strlen(schedstr
)] == ',')
73 str
+= strlen(schedstr
) + 1;
74 if (get_option(&str
, &par
))
77 "kernel schedule profiling enabled (shift: %ld)\n",
79 } else if (!strncmp(str
, kvmstr
, strlen(kvmstr
))) {
80 prof_on
= KVM_PROFILING
;
81 if (str
[strlen(kvmstr
)] == ',')
82 str
+= strlen(kvmstr
) + 1;
83 if (get_option(&str
, &par
))
86 "kernel KVM profiling enabled (shift: %ld)\n",
88 } else if (get_option(&str
, &par
)) {
90 prof_on
= CPU_PROFILING
;
91 printk(KERN_INFO
"kernel profiling enabled (shift: %ld)\n",
96 __setup("profile=", profile_setup
);
99 void __init
profile_init(void)
104 /* only text is profiled */
105 prof_len
= (_etext
- _stext
) >> prof_shift
;
106 prof_buffer
= alloc_bootmem(prof_len
*sizeof(atomic_t
));
109 /* Profile event notifications */
111 #ifdef CONFIG_PROFILING
113 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier
);
114 static ATOMIC_NOTIFIER_HEAD(task_free_notifier
);
115 static BLOCKING_NOTIFIER_HEAD(munmap_notifier
);
117 void profile_task_exit(struct task_struct
* task
)
119 blocking_notifier_call_chain(&task_exit_notifier
, 0, task
);
122 int profile_handoff_task(struct task_struct
* task
)
125 ret
= atomic_notifier_call_chain(&task_free_notifier
, 0, task
);
126 return (ret
== NOTIFY_OK
) ? 1 : 0;
129 void profile_munmap(unsigned long addr
)
131 blocking_notifier_call_chain(&munmap_notifier
, 0, (void *)addr
);
134 int task_handoff_register(struct notifier_block
* n
)
136 return atomic_notifier_chain_register(&task_free_notifier
, n
);
139 int task_handoff_unregister(struct notifier_block
* n
)
141 return atomic_notifier_chain_unregister(&task_free_notifier
, n
);
144 int profile_event_register(enum profile_type type
, struct notifier_block
* n
)
149 case PROFILE_TASK_EXIT
:
150 err
= blocking_notifier_chain_register(
151 &task_exit_notifier
, n
);
154 err
= blocking_notifier_chain_register(
155 &munmap_notifier
, n
);
163 int profile_event_unregister(enum profile_type type
, struct notifier_block
* n
)
168 case PROFILE_TASK_EXIT
:
169 err
= blocking_notifier_chain_unregister(
170 &task_exit_notifier
, n
);
173 err
= blocking_notifier_chain_unregister(
174 &munmap_notifier
, n
);
181 int register_timer_hook(int (*hook
)(struct pt_regs
*))
189 void unregister_timer_hook(int (*hook
)(struct pt_regs
*))
191 WARN_ON(hook
!= timer_hook
);
193 /* make sure all CPUs see the NULL hook */
194 synchronize_sched(); /* Allow ongoing interrupts to complete. */
197 EXPORT_SYMBOL_GPL(register_timer_hook
);
198 EXPORT_SYMBOL_GPL(unregister_timer_hook
);
199 EXPORT_SYMBOL_GPL(task_handoff_register
);
200 EXPORT_SYMBOL_GPL(task_handoff_unregister
);
202 #endif /* CONFIG_PROFILING */
204 EXPORT_SYMBOL_GPL(profile_event_register
);
205 EXPORT_SYMBOL_GPL(profile_event_unregister
);
209 * Each cpu has a pair of open-addressed hashtables for pending
210 * profile hits. read_profile() IPI's all cpus to request them
211 * to flip buffers and flushes their contents to prof_buffer itself.
212 * Flip requests are serialized by the profile_flip_mutex. The sole
213 * use of having a second hashtable is for avoiding cacheline
214 * contention that would otherwise happen during flushes of pending
215 * profile hits required for the accuracy of reported profile hits
216 * and so resurrect the interrupt livelock issue.
218 * The open-addressed hashtables are indexed by profile buffer slot
219 * and hold the number of pending hits to that profile buffer slot on
220 * a cpu in an entry. When the hashtable overflows, all pending hits
221 * are accounted to their corresponding profile buffer slots with
222 * atomic_add() and the hashtable emptied. As numerous pending hits
223 * may be accounted to a profile buffer slot in a hashtable entry,
224 * this amortizes a number of atomic profile buffer increments likely
225 * to be far larger than the number of entries in the hashtable,
226 * particularly given that the number of distinct profile buffer
227 * positions to which hits are accounted during short intervals (e.g.
228 * several seconds) is usually very small. Exclusion from buffer
229 * flipping is provided by interrupt disablement (note that for
230 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
232 * The hash function is meant to be lightweight as opposed to strong,
233 * and was vaguely inspired by ppc64 firmware-supported inverted
234 * pagetable hash functions, but uses a full hashtable full of finite
235 * collision chains, not just pairs of them.
239 static void __profile_flip_buffers(void *unused
)
241 int cpu
= smp_processor_id();
243 per_cpu(cpu_profile_flip
, cpu
) = !per_cpu(cpu_profile_flip
, cpu
);
246 static void profile_flip_buffers(void)
250 mutex_lock(&profile_flip_mutex
);
251 j
= per_cpu(cpu_profile_flip
, get_cpu());
253 on_each_cpu(__profile_flip_buffers
, NULL
, 0, 1);
254 for_each_online_cpu(cpu
) {
255 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[j
];
256 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
262 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
263 hits
[i
].hits
= hits
[i
].pc
= 0;
266 mutex_unlock(&profile_flip_mutex
);
269 static void profile_discard_flip_buffers(void)
273 mutex_lock(&profile_flip_mutex
);
274 i
= per_cpu(cpu_profile_flip
, get_cpu());
276 on_each_cpu(__profile_flip_buffers
, NULL
, 0, 1);
277 for_each_online_cpu(cpu
) {
278 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[i
];
279 memset(hits
, 0, NR_PROFILE_HIT
*sizeof(struct profile_hit
));
281 mutex_unlock(&profile_flip_mutex
);
284 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
286 unsigned long primary
, secondary
, flags
, pc
= (unsigned long)__pc
;
288 struct profile_hit
*hits
;
290 if (prof_on
!= type
|| !prof_buffer
)
292 pc
= min((pc
- (unsigned long)_stext
) >> prof_shift
, prof_len
- 1);
293 i
= primary
= (pc
& (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
294 secondary
= (~(pc
<< 1) & (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
296 hits
= per_cpu(cpu_profile_hits
, cpu
)[per_cpu(cpu_profile_flip
, cpu
)];
302 * We buffer the global profiler buffer into a per-CPU
303 * queue and thus reduce the number of global (and possibly
304 * NUMA-alien) accesses. The write-queue is self-coalescing:
306 local_irq_save(flags
);
308 for (j
= 0; j
< PROFILE_GRPSZ
; ++j
) {
309 if (hits
[i
+ j
].pc
== pc
) {
310 hits
[i
+ j
].hits
+= nr_hits
;
312 } else if (!hits
[i
+ j
].hits
) {
314 hits
[i
+ j
].hits
= nr_hits
;
318 i
= (i
+ secondary
) & (NR_PROFILE_HIT
- 1);
319 } while (i
!= primary
);
322 * Add the current hit(s) and flush the write-queue out
323 * to the global buffer:
325 atomic_add(nr_hits
, &prof_buffer
[pc
]);
326 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
327 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
328 hits
[i
].pc
= hits
[i
].hits
= 0;
331 local_irq_restore(flags
);
335 static int __devinit
profile_cpu_callback(struct notifier_block
*info
,
336 unsigned long action
, void *__cpu
)
338 int node
, cpu
= (unsigned long)__cpu
;
343 node
= cpu_to_node(cpu
);
344 per_cpu(cpu_profile_flip
, cpu
) = 0;
345 if (!per_cpu(cpu_profile_hits
, cpu
)[1]) {
346 page
= alloc_pages_node(node
,
347 GFP_KERNEL
| __GFP_ZERO
| GFP_THISNODE
,
351 per_cpu(cpu_profile_hits
, cpu
)[1] = page_address(page
);
353 if (!per_cpu(cpu_profile_hits
, cpu
)[0]) {
354 page
= alloc_pages_node(node
,
355 GFP_KERNEL
| __GFP_ZERO
| GFP_THISNODE
,
359 per_cpu(cpu_profile_hits
, cpu
)[0] = page_address(page
);
363 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
364 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
368 cpu_set(cpu
, prof_cpu_mask
);
370 case CPU_UP_CANCELED
:
372 cpu_clear(cpu
, prof_cpu_mask
);
373 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
374 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
375 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
378 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
379 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
380 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
387 #else /* !CONFIG_SMP */
388 #define profile_flip_buffers() do { } while (0)
389 #define profile_discard_flip_buffers() do { } while (0)
390 #define profile_cpu_callback NULL
392 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
396 if (prof_on
!= type
|| !prof_buffer
)
398 pc
= ((unsigned long)__pc
- (unsigned long)_stext
) >> prof_shift
;
399 atomic_add(nr_hits
, &prof_buffer
[min(pc
, prof_len
- 1)]);
401 #endif /* !CONFIG_SMP */
403 EXPORT_SYMBOL_GPL(profile_hits
);
405 void profile_tick(int type
)
407 struct pt_regs
*regs
= get_irq_regs();
409 if (type
== CPU_PROFILING
&& timer_hook
)
411 if (!user_mode(regs
) && cpu_isset(smp_processor_id(), prof_cpu_mask
))
412 profile_hit(type
, (void *)profile_pc(regs
));
415 #ifdef CONFIG_PROC_FS
416 #include <linux/proc_fs.h>
417 #include <asm/uaccess.h>
418 #include <asm/ptrace.h>
420 static int prof_cpu_mask_read_proc (char *page
, char **start
, off_t off
,
421 int count
, int *eof
, void *data
)
423 int len
= cpumask_scnprintf(page
, count
, *(cpumask_t
*)data
);
426 len
+= sprintf(page
+ len
, "\n");
430 static int prof_cpu_mask_write_proc (struct file
*file
, const char __user
*buffer
,
431 unsigned long count
, void *data
)
433 cpumask_t
*mask
= (cpumask_t
*)data
;
434 unsigned long full_count
= count
, err
;
437 err
= cpumask_parse_user(buffer
, count
, new_value
);
445 void create_prof_cpu_mask(struct proc_dir_entry
*root_irq_dir
)
447 struct proc_dir_entry
*entry
;
449 /* create /proc/irq/prof_cpu_mask */
450 if (!(entry
= create_proc_entry("prof_cpu_mask", 0600, root_irq_dir
)))
453 entry
->data
= (void *)&prof_cpu_mask
;
454 entry
->read_proc
= prof_cpu_mask_read_proc
;
455 entry
->write_proc
= prof_cpu_mask_write_proc
;
459 * This function accesses profiling information. The returned data is
460 * binary: the sampling step and the actual contents of the profile
461 * buffer. Use of the program readprofile is recommended in order to
462 * get meaningful info out of these data.
465 read_profile(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
467 unsigned long p
= *ppos
;
470 unsigned int sample_step
= 1 << prof_shift
;
472 profile_flip_buffers();
473 if (p
>= (prof_len
+1)*sizeof(unsigned int))
475 if (count
> (prof_len
+1)*sizeof(unsigned int) - p
)
476 count
= (prof_len
+1)*sizeof(unsigned int) - p
;
479 while (p
< sizeof(unsigned int) && count
> 0) {
480 if (put_user(*((char *)(&sample_step
)+p
),buf
))
482 buf
++; p
++; count
--; read
++;
484 pnt
= (char *)prof_buffer
+ p
- sizeof(atomic_t
);
485 if (copy_to_user(buf
,(void *)pnt
,count
))
493 * Writing to /proc/profile resets the counters
495 * Writing a 'profiling multiplier' value into it also re-sets the profiling
496 * interrupt frequency, on architectures that support this.
498 static ssize_t
write_profile(struct file
*file
, const char __user
*buf
,
499 size_t count
, loff_t
*ppos
)
502 extern int setup_profiling_timer (unsigned int multiplier
);
504 if (count
== sizeof(int)) {
505 unsigned int multiplier
;
507 if (copy_from_user(&multiplier
, buf
, sizeof(int)))
510 if (setup_profiling_timer(multiplier
))
514 profile_discard_flip_buffers();
515 memset(prof_buffer
, 0, prof_len
* sizeof(atomic_t
));
519 static const struct file_operations proc_profile_operations
= {
520 .read
= read_profile
,
521 .write
= write_profile
,
525 static void __init
profile_nop(void *unused
)
529 static int __init
create_hash_tables(void)
533 for_each_online_cpu(cpu
) {
534 int node
= cpu_to_node(cpu
);
537 page
= alloc_pages_node(node
,
538 GFP_KERNEL
| __GFP_ZERO
| GFP_THISNODE
,
542 per_cpu(cpu_profile_hits
, cpu
)[1]
543 = (struct profile_hit
*)page_address(page
);
544 page
= alloc_pages_node(node
,
545 GFP_KERNEL
| __GFP_ZERO
| GFP_THISNODE
,
549 per_cpu(cpu_profile_hits
, cpu
)[0]
550 = (struct profile_hit
*)page_address(page
);
556 on_each_cpu(profile_nop
, NULL
, 0, 1);
557 for_each_online_cpu(cpu
) {
560 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
561 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
562 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
565 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
566 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
567 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
574 #define create_hash_tables() ({ 0; })
577 static int __init
create_proc_profile(void)
579 struct proc_dir_entry
*entry
;
583 if (create_hash_tables())
585 if (!(entry
= create_proc_entry("profile", S_IWUSR
| S_IRUGO
, NULL
)))
587 entry
->proc_fops
= &proc_profile_operations
;
588 entry
->size
= (1+prof_len
) * sizeof(atomic_t
);
589 hotcpu_notifier(profile_cpu_callback
, 0);
592 module_init(create_proc_profile
);
593 #endif /* CONFIG_PROC_FS */