2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/jhash.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
29 /* Stochastic Fairness Queuing algorithm.
30 =======================================
33 Paul E. McKenney "Stochastic Fairness Queuing",
34 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
36 Paul E. McKenney "Stochastic Fairness Queuing",
37 "Interworking: Research and Experience", v.2, 1991, p.113-131.
41 M. Shreedhar and George Varghese "Efficient Fair
42 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
45 This is not the thing that is usually called (W)FQ nowadays.
46 It does not use any timestamp mechanism, but instead
47 processes queues in round-robin order.
51 - It is very cheap. Both CPU and memory requirements are minimal.
55 - "Stochastic" -> It is not 100% fair.
56 When hash collisions occur, several flows are considered as one.
58 - "Round-robin" -> It introduces larger delays than virtual clock
59 based schemes, and should not be used for isolating interactive
60 traffic from non-interactive. It means, that this scheduler
61 should be used as leaf of CBQ or P3, which put interactive traffic
62 to higher priority band.
64 We still need true WFQ for top level CSZ, but using WFQ
65 for the best effort traffic is absolutely pointless:
66 SFQ is superior for this purpose.
69 This implementation limits :
70 - maximal queue length per flow to 127 packets.
73 - number of hash buckets to 65536.
75 It is easy to increase these values, but not in flight. */
77 #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
78 #define SFQ_DEFAULT_FLOWS 128
79 #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
80 #define SFQ_EMPTY_SLOT 0xffff
81 #define SFQ_DEFAULT_HASH_DIVISOR 1024
83 /* We use 16 bits to store allot, and want to handle packets up to 64K
84 * Scale allot by 8 (1<<3) so that no overflow occurs.
86 #define SFQ_ALLOT_SHIFT 3
87 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
89 /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
90 typedef u16 sfq_index
;
93 * We dont use pointers to save space.
94 * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
95 * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
96 * are 'pointers' to dep[] array
104 struct sk_buff
*skblist_next
;
105 struct sk_buff
*skblist_prev
;
106 sfq_index qlen
; /* number of skbs in skblist */
107 sfq_index next
; /* next slot in sfq RR chain */
108 struct sfq_head dep
; /* anchor in dep[] chains */
109 unsigned short hash
; /* hash value (index in ht[]) */
110 short allot
; /* credit for this slot */
112 unsigned int backlog
;
113 struct red_vars vars
;
116 struct sfq_sched_data
{
117 /* frequently used fields */
118 int limit
; /* limit of total number of packets in this qdisc */
119 unsigned int divisor
; /* number of slots in hash table */
121 u8 maxdepth
; /* limit of packets per flow */
124 u8 cur_depth
; /* depth of longest slot */
126 unsigned short scaled_quantum
; /* SFQ_ALLOT_SIZE(quantum) */
127 struct tcf_proto __rcu
*filter_list
;
128 sfq_index
*ht
; /* Hash table ('divisor' slots) */
129 struct sfq_slot
*slots
; /* Flows table ('maxflows' entries) */
131 struct red_parms
*red_parms
;
132 struct tc_sfqred_stats stats
;
133 struct sfq_slot
*tail
; /* current slot in round */
135 struct sfq_head dep
[SFQ_MAX_DEPTH
+ 1];
136 /* Linked lists of slots, indexed by depth
137 * dep[0] : list of unused flows
138 * dep[1] : list of flows with 1 packet
139 * dep[X] : list of flows with X packets
142 unsigned int maxflows
; /* number of flows in flows array */
144 unsigned int quantum
; /* Allotment per round: MUST BE >= MTU */
145 struct timer_list perturb_timer
;
149 * sfq_head are either in a sfq_slot or in dep[] array
151 static inline struct sfq_head
*sfq_dep_head(struct sfq_sched_data
*q
, sfq_index val
)
153 if (val
< SFQ_MAX_FLOWS
)
154 return &q
->slots
[val
].dep
;
155 return &q
->dep
[val
- SFQ_MAX_FLOWS
];
158 static unsigned int sfq_hash(const struct sfq_sched_data
*q
,
159 const struct sk_buff
*skb
)
161 return skb_get_hash_perturb(skb
, q
->perturbation
) & (q
->divisor
- 1);
164 static unsigned int sfq_classify(struct sk_buff
*skb
, struct Qdisc
*sch
,
167 struct sfq_sched_data
*q
= qdisc_priv(sch
);
168 struct tcf_result res
;
169 struct tcf_proto
*fl
;
172 if (TC_H_MAJ(skb
->priority
) == sch
->handle
&&
173 TC_H_MIN(skb
->priority
) > 0 &&
174 TC_H_MIN(skb
->priority
) <= q
->divisor
)
175 return TC_H_MIN(skb
->priority
);
177 fl
= rcu_dereference_bh(q
->filter_list
);
179 return sfq_hash(q
, skb
) + 1;
181 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
182 result
= tc_classify(skb
, fl
, &res
, false);
184 #ifdef CONFIG_NET_CLS_ACT
188 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
193 if (TC_H_MIN(res
.classid
) <= q
->divisor
)
194 return TC_H_MIN(res
.classid
);
200 * x : slot number [0 .. SFQ_MAX_FLOWS - 1]
202 static inline void sfq_link(struct sfq_sched_data
*q
, sfq_index x
)
205 struct sfq_slot
*slot
= &q
->slots
[x
];
206 int qlen
= slot
->qlen
;
208 p
= qlen
+ SFQ_MAX_FLOWS
;
209 n
= q
->dep
[qlen
].next
;
214 q
->dep
[qlen
].next
= x
; /* sfq_dep_head(q, p)->next = x */
215 sfq_dep_head(q
, n
)->prev
= x
;
218 #define sfq_unlink(q, x, n, p) \
220 n = q->slots[x].dep.next; \
221 p = q->slots[x].dep.prev; \
222 sfq_dep_head(q, p)->next = n; \
223 sfq_dep_head(q, n)->prev = p; \
227 static inline void sfq_dec(struct sfq_sched_data
*q
, sfq_index x
)
232 sfq_unlink(q
, x
, n
, p
);
234 d
= q
->slots
[x
].qlen
--;
235 if (n
== p
&& q
->cur_depth
== d
)
240 static inline void sfq_inc(struct sfq_sched_data
*q
, sfq_index x
)
245 sfq_unlink(q
, x
, n
, p
);
247 d
= ++q
->slots
[x
].qlen
;
248 if (q
->cur_depth
< d
)
253 /* helper functions : might be changed when/if skb use a standard list_head */
255 /* remove one skb from tail of slot queue */
256 static inline struct sk_buff
*slot_dequeue_tail(struct sfq_slot
*slot
)
258 struct sk_buff
*skb
= slot
->skblist_prev
;
260 slot
->skblist_prev
= skb
->prev
;
261 skb
->prev
->next
= (struct sk_buff
*)slot
;
262 skb
->next
= skb
->prev
= NULL
;
266 /* remove one skb from head of slot queue */
267 static inline struct sk_buff
*slot_dequeue_head(struct sfq_slot
*slot
)
269 struct sk_buff
*skb
= slot
->skblist_next
;
271 slot
->skblist_next
= skb
->next
;
272 skb
->next
->prev
= (struct sk_buff
*)slot
;
273 skb
->next
= skb
->prev
= NULL
;
277 static inline void slot_queue_init(struct sfq_slot
*slot
)
279 memset(slot
, 0, sizeof(*slot
));
280 slot
->skblist_prev
= slot
->skblist_next
= (struct sk_buff
*)slot
;
283 /* add skb to slot queue (tail add) */
284 static inline void slot_queue_add(struct sfq_slot
*slot
, struct sk_buff
*skb
)
286 skb
->prev
= slot
->skblist_prev
;
287 skb
->next
= (struct sk_buff
*)slot
;
288 slot
->skblist_prev
->next
= skb
;
289 slot
->skblist_prev
= skb
;
292 static unsigned int sfq_drop(struct Qdisc
*sch
)
294 struct sfq_sched_data
*q
= qdisc_priv(sch
);
295 sfq_index x
, d
= q
->cur_depth
;
298 struct sfq_slot
*slot
;
300 /* Queue is full! Find the longest slot and drop tail packet from it */
305 skb
= q
->headdrop
? slot_dequeue_head(slot
) : slot_dequeue_tail(slot
);
306 len
= qdisc_pkt_len(skb
);
307 slot
->backlog
-= len
;
310 qdisc_qstats_drop(sch
);
311 qdisc_qstats_backlog_dec(sch
, skb
);
317 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
320 q
->tail
->next
= slot
->next
;
321 q
->ht
[slot
->hash
] = SFQ_EMPTY_SLOT
;
328 /* Is ECN parameter configured */
329 static int sfq_prob_mark(const struct sfq_sched_data
*q
)
331 return q
->flags
& TC_RED_ECN
;
334 /* Should packets over max threshold just be marked */
335 static int sfq_hard_mark(const struct sfq_sched_data
*q
)
337 return (q
->flags
& (TC_RED_ECN
| TC_RED_HARDDROP
)) == TC_RED_ECN
;
340 static int sfq_headdrop(const struct sfq_sched_data
*q
)
346 sfq_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
348 struct sfq_sched_data
*q
= qdisc_priv(sch
);
349 unsigned int hash
, dropped
;
351 struct sfq_slot
*slot
;
352 int uninitialized_var(ret
);
353 struct sk_buff
*head
;
356 hash
= sfq_classify(skb
, sch
, &ret
);
358 if (ret
& __NET_XMIT_BYPASS
)
359 qdisc_qstats_drop(sch
);
367 if (x
== SFQ_EMPTY_SLOT
) {
368 x
= q
->dep
[0].next
; /* get a free slot */
369 if (x
>= SFQ_MAX_FLOWS
)
370 return qdisc_drop(skb
, sch
);
374 slot
->backlog
= 0; /* should already be 0 anyway... */
375 red_set_vars(&slot
->vars
);
379 slot
->vars
.qavg
= red_calc_qavg_no_idle_time(q
->red_parms
,
382 switch (red_action(q
->red_parms
,
389 qdisc_qstats_overlimit(sch
);
390 if (sfq_prob_mark(q
)) {
391 /* We know we have at least one packet in queue */
392 if (sfq_headdrop(q
) &&
393 INET_ECN_set_ce(slot
->skblist_next
)) {
394 q
->stats
.prob_mark_head
++;
397 if (INET_ECN_set_ce(skb
)) {
398 q
->stats
.prob_mark
++;
402 q
->stats
.prob_drop
++;
403 goto congestion_drop
;
406 qdisc_qstats_overlimit(sch
);
407 if (sfq_hard_mark(q
)) {
408 /* We know we have at least one packet in queue */
409 if (sfq_headdrop(q
) &&
410 INET_ECN_set_ce(slot
->skblist_next
)) {
411 q
->stats
.forced_mark_head
++;
414 if (INET_ECN_set_ce(skb
)) {
415 q
->stats
.forced_mark
++;
419 q
->stats
.forced_drop
++;
420 goto congestion_drop
;
424 if (slot
->qlen
>= q
->maxdepth
) {
426 if (!sfq_headdrop(q
))
427 return qdisc_drop(skb
, sch
);
429 /* We know we have at least one packet in queue */
430 head
= slot_dequeue_head(slot
);
431 delta
= qdisc_pkt_len(head
) - qdisc_pkt_len(skb
);
432 sch
->qstats
.backlog
-= delta
;
433 slot
->backlog
-= delta
;
434 qdisc_drop(head
, sch
);
436 slot_queue_add(slot
, skb
);
441 qdisc_qstats_backlog_inc(sch
, skb
);
442 slot
->backlog
+= qdisc_pkt_len(skb
);
443 slot_queue_add(slot
, skb
);
445 if (slot
->qlen
== 1) { /* The flow is new */
446 if (q
->tail
== NULL
) { /* It is the first flow */
449 slot
->next
= q
->tail
->next
;
452 /* We put this flow at the end of our flow list.
453 * This might sound unfair for a new flow to wait after old ones,
454 * but we could endup servicing new flows only, and freeze old ones.
457 /* We could use a bigger initial quantum for new flows */
458 slot
->allot
= q
->scaled_quantum
;
460 if (++sch
->q
.qlen
<= q
->limit
)
461 return NET_XMIT_SUCCESS
;
464 dropped
= sfq_drop(sch
);
465 /* Return Congestion Notification only if we dropped a packet
468 if (qlen
!= slot
->qlen
)
471 /* As we dropped a packet, better let upper stack know this */
472 qdisc_tree_reduce_backlog(sch
, 1, dropped
);
473 return NET_XMIT_SUCCESS
;
476 static struct sk_buff
*
477 sfq_dequeue(struct Qdisc
*sch
)
479 struct sfq_sched_data
*q
= qdisc_priv(sch
);
482 struct sfq_slot
*slot
;
484 /* No active slots */
491 if (slot
->allot
<= 0) {
493 slot
->allot
+= q
->scaled_quantum
;
496 skb
= slot_dequeue_head(slot
);
498 qdisc_bstats_update(sch
, skb
);
500 qdisc_qstats_backlog_dec(sch
, skb
);
501 slot
->backlog
-= qdisc_pkt_len(skb
);
502 /* Is the slot empty? */
503 if (slot
->qlen
== 0) {
504 q
->ht
[slot
->hash
] = SFQ_EMPTY_SLOT
;
507 q
->tail
= NULL
; /* no more active slots */
510 q
->tail
->next
= next_a
;
512 slot
->allot
-= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb
));
518 sfq_reset(struct Qdisc
*sch
)
522 while ((skb
= sfq_dequeue(sch
)) != NULL
)
527 * When q->perturbation is changed, we rehash all queued skbs
528 * to avoid OOO (Out Of Order) effects.
529 * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
532 static void sfq_rehash(struct Qdisc
*sch
)
534 struct sfq_sched_data
*q
= qdisc_priv(sch
);
537 struct sfq_slot
*slot
;
538 struct sk_buff_head list
;
540 unsigned int drop_len
= 0;
542 __skb_queue_head_init(&list
);
544 for (i
= 0; i
< q
->maxflows
; i
++) {
549 skb
= slot_dequeue_head(slot
);
551 __skb_queue_tail(&list
, skb
);
554 red_set_vars(&slot
->vars
);
555 q
->ht
[slot
->hash
] = SFQ_EMPTY_SLOT
;
559 while ((skb
= __skb_dequeue(&list
)) != NULL
) {
560 unsigned int hash
= sfq_hash(q
, skb
);
561 sfq_index x
= q
->ht
[hash
];
564 if (x
== SFQ_EMPTY_SLOT
) {
565 x
= q
->dep
[0].next
; /* get a free slot */
566 if (x
>= SFQ_MAX_FLOWS
) {
568 qdisc_qstats_backlog_dec(sch
, skb
);
569 drop_len
+= qdisc_pkt_len(skb
);
578 if (slot
->qlen
>= q
->maxdepth
)
580 slot_queue_add(slot
, skb
);
582 slot
->vars
.qavg
= red_calc_qavg(q
->red_parms
,
585 slot
->backlog
+= qdisc_pkt_len(skb
);
587 if (slot
->qlen
== 1) { /* The flow is new */
588 if (q
->tail
== NULL
) { /* It is the first flow */
591 slot
->next
= q
->tail
->next
;
595 slot
->allot
= q
->scaled_quantum
;
598 sch
->q
.qlen
-= dropped
;
599 qdisc_tree_reduce_backlog(sch
, dropped
, drop_len
);
602 static void sfq_perturbation(unsigned long arg
)
604 struct Qdisc
*sch
= (struct Qdisc
*)arg
;
605 struct sfq_sched_data
*q
= qdisc_priv(sch
);
606 spinlock_t
*root_lock
= qdisc_lock(qdisc_root_sleeping(sch
));
608 spin_lock(root_lock
);
609 q
->perturbation
= prandom_u32();
610 if (!q
->filter_list
&& q
->tail
)
612 spin_unlock(root_lock
);
614 if (q
->perturb_period
)
615 mod_timer(&q
->perturb_timer
, jiffies
+ q
->perturb_period
);
618 static int sfq_change(struct Qdisc
*sch
, struct nlattr
*opt
)
620 struct sfq_sched_data
*q
= qdisc_priv(sch
);
621 struct tc_sfq_qopt
*ctl
= nla_data(opt
);
622 struct tc_sfq_qopt_v1
*ctl_v1
= NULL
;
623 unsigned int qlen
, dropped
= 0;
624 struct red_parms
*p
= NULL
;
626 if (opt
->nla_len
< nla_attr_size(sizeof(*ctl
)))
628 if (opt
->nla_len
>= nla_attr_size(sizeof(*ctl_v1
)))
629 ctl_v1
= nla_data(opt
);
631 (!is_power_of_2(ctl
->divisor
) || ctl
->divisor
> 65536))
633 if (ctl_v1
&& ctl_v1
->qth_min
) {
634 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
640 q
->quantum
= ctl
->quantum
;
641 q
->scaled_quantum
= SFQ_ALLOT_SIZE(q
->quantum
);
643 q
->perturb_period
= ctl
->perturb_period
* HZ
;
645 q
->maxflows
= min_t(u32
, ctl
->flows
, SFQ_MAX_FLOWS
);
647 q
->divisor
= ctl
->divisor
;
648 q
->maxflows
= min_t(u32
, q
->maxflows
, q
->divisor
);
652 q
->maxdepth
= min_t(u32
, ctl_v1
->depth
, SFQ_MAX_DEPTH
);
654 swap(q
->red_parms
, p
);
655 red_set_parms(q
->red_parms
,
656 ctl_v1
->qth_min
, ctl_v1
->qth_max
,
658 ctl_v1
->Plog
, ctl_v1
->Scell_log
,
662 q
->flags
= ctl_v1
->flags
;
663 q
->headdrop
= ctl_v1
->headdrop
;
666 q
->limit
= min_t(u32
, ctl
->limit
, q
->maxdepth
* q
->maxflows
);
667 q
->maxflows
= min_t(u32
, q
->maxflows
, q
->limit
);
671 while (sch
->q
.qlen
> q
->limit
)
672 dropped
+= sfq_drop(sch
);
673 qdisc_tree_reduce_backlog(sch
, qlen
- sch
->q
.qlen
, dropped
);
675 del_timer(&q
->perturb_timer
);
676 if (q
->perturb_period
) {
677 mod_timer(&q
->perturb_timer
, jiffies
+ q
->perturb_period
);
678 q
->perturbation
= prandom_u32();
680 sch_tree_unlock(sch
);
685 static void *sfq_alloc(size_t sz
)
687 void *ptr
= kmalloc(sz
, GFP_KERNEL
| __GFP_NOWARN
);
694 static void sfq_free(void *addr
)
699 static void sfq_destroy(struct Qdisc
*sch
)
701 struct sfq_sched_data
*q
= qdisc_priv(sch
);
703 tcf_destroy_chain(&q
->filter_list
);
704 q
->perturb_period
= 0;
705 del_timer_sync(&q
->perturb_timer
);
711 static int sfq_init(struct Qdisc
*sch
, struct nlattr
*opt
)
713 struct sfq_sched_data
*q
= qdisc_priv(sch
);
716 q
->perturb_timer
.function
= sfq_perturbation
;
717 q
->perturb_timer
.data
= (unsigned long)sch
;
718 init_timer_deferrable(&q
->perturb_timer
);
720 for (i
= 0; i
< SFQ_MAX_DEPTH
+ 1; i
++) {
721 q
->dep
[i
].next
= i
+ SFQ_MAX_FLOWS
;
722 q
->dep
[i
].prev
= i
+ SFQ_MAX_FLOWS
;
725 q
->limit
= SFQ_MAX_DEPTH
;
726 q
->maxdepth
= SFQ_MAX_DEPTH
;
729 q
->divisor
= SFQ_DEFAULT_HASH_DIVISOR
;
730 q
->maxflows
= SFQ_DEFAULT_FLOWS
;
731 q
->quantum
= psched_mtu(qdisc_dev(sch
));
732 q
->scaled_quantum
= SFQ_ALLOT_SIZE(q
->quantum
);
733 q
->perturb_period
= 0;
734 q
->perturbation
= prandom_u32();
737 int err
= sfq_change(sch
, opt
);
742 q
->ht
= sfq_alloc(sizeof(q
->ht
[0]) * q
->divisor
);
743 q
->slots
= sfq_alloc(sizeof(q
->slots
[0]) * q
->maxflows
);
744 if (!q
->ht
|| !q
->slots
) {
748 for (i
= 0; i
< q
->divisor
; i
++)
749 q
->ht
[i
] = SFQ_EMPTY_SLOT
;
751 for (i
= 0; i
< q
->maxflows
; i
++) {
752 slot_queue_init(&q
->slots
[i
]);
756 sch
->flags
|= TCQ_F_CAN_BYPASS
;
758 sch
->flags
&= ~TCQ_F_CAN_BYPASS
;
762 static int sfq_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
764 struct sfq_sched_data
*q
= qdisc_priv(sch
);
765 unsigned char *b
= skb_tail_pointer(skb
);
766 struct tc_sfq_qopt_v1 opt
;
767 struct red_parms
*p
= q
->red_parms
;
769 memset(&opt
, 0, sizeof(opt
));
770 opt
.v0
.quantum
= q
->quantum
;
771 opt
.v0
.perturb_period
= q
->perturb_period
/ HZ
;
772 opt
.v0
.limit
= q
->limit
;
773 opt
.v0
.divisor
= q
->divisor
;
774 opt
.v0
.flows
= q
->maxflows
;
775 opt
.depth
= q
->maxdepth
;
776 opt
.headdrop
= q
->headdrop
;
779 opt
.qth_min
= p
->qth_min
>> p
->Wlog
;
780 opt
.qth_max
= p
->qth_max
>> p
->Wlog
;
783 opt
.Scell_log
= p
->Scell_log
;
784 opt
.max_P
= p
->max_P
;
786 memcpy(&opt
.stats
, &q
->stats
, sizeof(opt
.stats
));
787 opt
.flags
= q
->flags
;
789 if (nla_put(skb
, TCA_OPTIONS
, sizeof(opt
), &opt
))
790 goto nla_put_failure
;
799 static struct Qdisc
*sfq_leaf(struct Qdisc
*sch
, unsigned long arg
)
804 static unsigned long sfq_get(struct Qdisc
*sch
, u32 classid
)
809 static unsigned long sfq_bind(struct Qdisc
*sch
, unsigned long parent
,
812 /* we cannot bypass queue discipline anymore */
813 sch
->flags
&= ~TCQ_F_CAN_BYPASS
;
817 static void sfq_put(struct Qdisc
*q
, unsigned long cl
)
821 static struct tcf_proto __rcu
**sfq_find_tcf(struct Qdisc
*sch
,
824 struct sfq_sched_data
*q
= qdisc_priv(sch
);
828 return &q
->filter_list
;
831 static int sfq_dump_class(struct Qdisc
*sch
, unsigned long cl
,
832 struct sk_buff
*skb
, struct tcmsg
*tcm
)
834 tcm
->tcm_handle
|= TC_H_MIN(cl
);
838 static int sfq_dump_class_stats(struct Qdisc
*sch
, unsigned long cl
,
841 struct sfq_sched_data
*q
= qdisc_priv(sch
);
842 sfq_index idx
= q
->ht
[cl
- 1];
843 struct gnet_stats_queue qs
= { 0 };
844 struct tc_sfq_xstats xstats
= { 0 };
846 if (idx
!= SFQ_EMPTY_SLOT
) {
847 const struct sfq_slot
*slot
= &q
->slots
[idx
];
849 xstats
.allot
= slot
->allot
<< SFQ_ALLOT_SHIFT
;
850 qs
.qlen
= slot
->qlen
;
851 qs
.backlog
= slot
->backlog
;
853 if (gnet_stats_copy_queue(d
, NULL
, &qs
, qs
.qlen
) < 0)
855 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
858 static void sfq_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
860 struct sfq_sched_data
*q
= qdisc_priv(sch
);
866 for (i
= 0; i
< q
->divisor
; i
++) {
867 if (q
->ht
[i
] == SFQ_EMPTY_SLOT
||
868 arg
->count
< arg
->skip
) {
872 if (arg
->fn(sch
, i
+ 1, arg
) < 0) {
880 static const struct Qdisc_class_ops sfq_class_ops
= {
884 .tcf_chain
= sfq_find_tcf
,
885 .bind_tcf
= sfq_bind
,
886 .unbind_tcf
= sfq_put
,
887 .dump
= sfq_dump_class
,
888 .dump_stats
= sfq_dump_class_stats
,
892 static struct Qdisc_ops sfq_qdisc_ops __read_mostly
= {
893 .cl_ops
= &sfq_class_ops
,
895 .priv_size
= sizeof(struct sfq_sched_data
),
896 .enqueue
= sfq_enqueue
,
897 .dequeue
= sfq_dequeue
,
898 .peek
= qdisc_peek_dequeued
,
902 .destroy
= sfq_destroy
,
905 .owner
= THIS_MODULE
,
908 static int __init
sfq_module_init(void)
910 return register_qdisc(&sfq_qdisc_ops
);
912 static void __exit
sfq_module_exit(void)
914 unregister_qdisc(&sfq_qdisc_ops
);
916 module_init(sfq_module_init
)
917 module_exit(sfq_module_exit
)
918 MODULE_LICENSE("GPL");