3 * linux/arch/cris/kernel/setup.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (c) 2001 Axis Communications AB
10 * This file handles the architecture-dependent parts of initialization
13 #include <linux/init.h>
15 #include <linux/bootmem.h>
16 #include <asm/pgtable.h>
17 #include <linux/seq_file.h>
18 #include <linux/screen_info.h>
19 #include <linux/utsname.h>
20 #include <linux/pfn.h>
21 #include <linux/cpu.h>
23 #include <linux/of_fdt.h>
24 #include <asm/setup.h>
25 #include <arch/system.h>
30 struct screen_info screen_info
;
32 extern int root_mountflags
;
33 extern char _etext
, _edata
, _end
;
35 char __initdata cris_command_line
[COMMAND_LINE_SIZE
] = { 0, };
37 extern const unsigned long text_start
, edata
; /* set by the linker script */
38 extern unsigned long dram_start
, dram_end
;
40 extern unsigned long romfs_start
, romfs_length
, romfs_in_flash
; /* from head.S */
42 static struct cpu cpu_devices
[NR_CPUS
];
44 extern void show_etrax_copyright(void); /* arch-vX/kernel/setup.c */
46 /* This mainly sets up the memory area, and can be really confusing.
48 * The physical DRAM is virtually mapped into dram_start to dram_end
49 * (usually c0000000 to c0000000 + DRAM size). The physical address is
50 * given by the macro __pa().
52 * In this DRAM, the kernel code and data is loaded, in the beginning.
53 * It really starts at c0004000 to make room for some special pages -
54 * the start address is text_start. The kernel data ends at _end. After
55 * this the ROM filesystem is appended (if there is any).
57 * Between this address and dram_end, we have RAM pages usable to the
58 * boot code and the system.
62 void __init
setup_arch(char **cmdline_p
)
64 extern void init_etrax_debug(void);
65 unsigned long bootmap_size
;
66 unsigned long start_pfn
, max_pfn
;
67 unsigned long memory_start
;
70 early_init_dt_scan(__dtb_start
);
73 /* register an initial console printing routine for printk's */
77 /* we should really poll for DRAM size! */
79 high_memory
= &dram_end
;
81 if(romfs_in_flash
|| !romfs_length
) {
82 /* if we have the romfs in flash, or if there is no rom filesystem,
83 * our free area starts directly after the BSS
85 memory_start
= (unsigned long) &_end
;
87 /* otherwise the free area starts after the ROM filesystem */
88 printk("ROM fs in RAM, size %lu bytes\n", romfs_length
);
89 memory_start
= romfs_start
+ romfs_length
;
92 /* process 1's initial memory region is the kernel code/data */
94 init_mm
.start_code
= (unsigned long) &text_start
;
95 init_mm
.end_code
= (unsigned long) &_etext
;
96 init_mm
.end_data
= (unsigned long) &_edata
;
97 init_mm
.brk
= (unsigned long) &_end
;
99 /* min_low_pfn points to the start of DRAM, start_pfn points
100 * to the first DRAM pages after the kernel, and max_low_pfn
101 * to the end of DRAM.
105 * partially used pages are not usable - thus
106 * we are rounding upwards:
109 start_pfn
= PFN_UP(memory_start
); /* usually c0000000 + kernel + romfs */
110 max_pfn
= PFN_DOWN((unsigned long)high_memory
); /* usually c0000000 + dram size */
113 * Initialize the boot-time allocator (start, end)
115 * We give it access to all our DRAM, but we could as well just have
116 * given it a small slice. No point in doing that though, unless we
117 * have non-contiguous memory and want the boot-stuff to be in, say,
120 * It will put a bitmap of the allocated pages in the beginning
121 * of the range we give it, but it won't mark the bitmaps pages
122 * as reserved. We have to do that ourselves below.
124 * We need to use init_bootmem_node instead of init_bootmem
125 * because our map starts at a quite high address (min_low_pfn).
128 max_low_pfn
= max_pfn
;
129 min_low_pfn
= PAGE_OFFSET
>> PAGE_SHIFT
;
131 bootmap_size
= init_bootmem_node(NODE_DATA(0), start_pfn
,
135 /* And free all memory not belonging to the kernel (addr, size) */
137 free_bootmem(PFN_PHYS(start_pfn
), PFN_PHYS(max_pfn
- start_pfn
));
140 * Reserve the bootmem bitmap itself as well. We do this in two
141 * steps (first step was init_bootmem()) because this catches
142 * the (very unlikely) case of us accidentally initializing the
143 * bootmem allocator with an invalid RAM area.
145 * Arguments are start, size
148 reserve_bootmem(PFN_PHYS(start_pfn
), bootmap_size
, BOOTMEM_DEFAULT
);
150 unflatten_and_copy_device_tree();
152 /* paging_init() sets up the MMU and marks all pages as reserved */
156 *cmdline_p
= cris_command_line
;
158 #ifdef CONFIG_ETRAX_CMDLINE
159 if (!strcmp(cris_command_line
, "")) {
160 strlcpy(cris_command_line
, CONFIG_ETRAX_CMDLINE
, COMMAND_LINE_SIZE
);
161 cris_command_line
[COMMAND_LINE_SIZE
- 1] = '\0';
165 /* Save command line for future references. */
166 memcpy(boot_command_line
, cris_command_line
, COMMAND_LINE_SIZE
);
167 boot_command_line
[COMMAND_LINE_SIZE
- 1] = '\0';
169 /* give credit for the CRIS port */
170 show_etrax_copyright();
173 strcpy(init_utsname()->machine
, cris_machine_name
);
176 #ifdef CONFIG_PROC_FS
177 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
179 return *pos
< nr_cpu_ids
? (void *)(int)(*pos
+ 1) : NULL
;
182 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
185 return c_start(m
, pos
);
188 static void c_stop(struct seq_file
*m
, void *v
)
192 extern int show_cpuinfo(struct seq_file
*m
, void *v
);
194 const struct seq_operations cpuinfo_op
= {
198 .show
= show_cpuinfo
,
200 #endif /* CONFIG_PROC_FS */
202 static int __init
topology_init(void)
206 for_each_possible_cpu(i
) {
207 return register_cpu(&cpu_devices
[i
], i
);
213 subsys_initcall(topology_init
);