4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
8 * OpenRISC implementation:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
19 /* or32 pgtable.h - macros and functions to manipulate page tables
22 * include/asm-cris/pgtable.h
25 #ifndef __ASM_OPENRISC_PGTABLE_H
26 #define __ASM_OPENRISC_PGTABLE_H
28 #include <asm-generic/pgtable-nopmd.h>
32 #include <asm/fixmap.h>
35 * The Linux memory management assumes a three-level page table setup. On
36 * or32, we use that, but "fold" the mid level into the top-level page
37 * table. Since the MMU TLB is software loaded through an interrupt, it
38 * supports any page table structure, so we could have used a three-level
39 * setup, but for the amounts of memory we normally use, a two-level is
40 * probably more efficient.
42 * This file contains the functions and defines necessary to modify and use
43 * the or32 page table tree.
46 extern void paging_init(void);
48 /* Certain architectures need to do special things when pte's
49 * within a page table are directly modified. Thus, the following
50 * hook is made available.
52 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
53 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
55 * (pmds are folded into pgds so this doesn't get actually called,
56 * but the define is needed for a generic inline function.)
58 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
60 #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
61 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
62 #define PGDIR_MASK (~(PGDIR_SIZE-1))
65 * entries per page directory level: we use a two-level, so
66 * we don't really have any PMD directory physically.
67 * pointers are 4 bytes so we can use the page size and
68 * divide it by 4 (shift by 2).
70 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
72 #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2))
74 /* calculate how many PGD entries a user-level program can use
75 * the first mappable virtual address is 0
76 * (TASK_SIZE is the maximum virtual address space)
79 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
80 #define FIRST_USER_ADDRESS 0UL
83 * Kernels own virtual memory area.
87 * The size and location of the vmalloc area are chosen so that modules
88 * placed in this area aren't more than a 28-bit signed offset from any
89 * kernel functions that they may need. This greatly simplifies handling
90 * of the relocations for l.j and l.jal instructions as we don't need to
91 * introduce any trampolines for reaching "distant" code.
93 * 64 MB of vmalloc area is comparable to what's available on other arches.
96 #define VMALLOC_START (PAGE_OFFSET-0x04000000)
97 #define VMALLOC_END (PAGE_OFFSET)
98 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
100 /* Define some higher level generic page attributes.
102 * If you change _PAGE_CI definition be sure to change it in
103 * io.h for ioremap_nocache() too.
107 * An OR32 PTE looks like this:
109 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
110 * Phys pg.num L PP Index D A WOM WBC CI CC
113 * PPI: Page protection index
116 * WOM: Weakly ordered memory
117 * WBC: Write-back cache
119 * CC : Cache coherent
121 * The protection bits below should correspond to the layout of the actual
125 #define _PAGE_CC 0x001 /* software: pte contains a translation */
126 #define _PAGE_CI 0x002 /* cache inhibit */
127 #define _PAGE_WBC 0x004 /* write back cache */
128 #define _PAGE_WOM 0x008 /* weakly ordered memory */
130 #define _PAGE_A 0x010 /* accessed */
131 #define _PAGE_D 0x020 /* dirty */
132 #define _PAGE_URE 0x040 /* user read enable */
133 #define _PAGE_UWE 0x080 /* user write enable */
135 #define _PAGE_SRE 0x100 /* superuser read enable */
136 #define _PAGE_SWE 0x200 /* superuser write enable */
137 #define _PAGE_EXEC 0x400 /* software: page is executable */
138 #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
140 /* 0x001 is cache coherency bit, which should always be set to
141 * 1 - for SMP (when we support it)
144 * we just reuse this bit in software for _PAGE_PRESENT and
145 * force it to 0 when loading it into TLB.
147 #define _PAGE_PRESENT _PAGE_CC
148 #define _PAGE_USER _PAGE_URE
149 #define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
150 #define _PAGE_DIRTY _PAGE_D
151 #define _PAGE_ACCESSED _PAGE_A
152 #define _PAGE_NO_CACHE _PAGE_CI
153 #define _PAGE_SHARED _PAGE_U_SHARED
154 #define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
156 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
157 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
158 #define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
159 #define _KERNPG_TABLE \
160 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
162 #define PAGE_NONE __pgprot(_PAGE_ALL)
163 #define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
164 #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
165 #define PAGE_SHARED \
166 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
168 #define PAGE_SHARED_X \
169 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
170 | _PAGE_SHARED | _PAGE_EXEC)
171 #define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
172 #define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
174 #define PAGE_KERNEL \
175 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
176 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
177 #define PAGE_KERNEL_RO \
178 __pgprot(_PAGE_ALL | _PAGE_SRE \
179 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
180 #define PAGE_KERNEL_NOCACHE \
181 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
182 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
184 #define __P000 PAGE_NONE
185 #define __P001 PAGE_READONLY_X
186 #define __P010 PAGE_COPY
187 #define __P011 PAGE_COPY_X
188 #define __P100 PAGE_READONLY
189 #define __P101 PAGE_READONLY_X
190 #define __P110 PAGE_COPY
191 #define __P111 PAGE_COPY_X
193 #define __S000 PAGE_NONE
194 #define __S001 PAGE_READONLY_X
195 #define __S010 PAGE_SHARED
196 #define __S011 PAGE_SHARED_X
197 #define __S100 PAGE_READONLY
198 #define __S101 PAGE_READONLY_X
199 #define __S110 PAGE_SHARED
200 #define __S111 PAGE_SHARED_X
202 /* zero page used for uninitialized stuff */
203 extern unsigned long empty_zero_page
[2048];
204 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
206 /* number of bits that fit into a memory pointer */
207 #define BITS_PER_PTR (8*sizeof(unsigned long))
209 /* to align the pointer to a pointer address */
210 #define PTR_MASK (~(sizeof(void *)-1))
212 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
213 /* 64-bit machines, beware! SRB. */
214 #define SIZEOF_PTR_LOG2 2
216 /* to find an entry in a page-table */
217 #define PAGE_PTR(address) \
218 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
220 /* to set the page-dir */
221 #define SET_PAGE_DIR(tsk, pgdir)
223 #define pte_none(x) (!pte_val(x))
224 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
225 #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
227 #define pmd_none(x) (!pmd_val(x))
228 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
229 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
230 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
233 * The following only work if pte_present() is true.
234 * Undefined behaviour if not..
237 static inline int pte_read(pte_t pte
) { return pte_val(pte
) & _PAGE_READ
; }
238 static inline int pte_write(pte_t pte
) { return pte_val(pte
) & _PAGE_WRITE
; }
239 static inline int pte_exec(pte_t pte
) { return pte_val(pte
) & _PAGE_EXEC
; }
240 static inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
241 static inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
242 static inline int pte_special(pte_t pte
) { return 0; }
243 static inline pte_t
pte_mkspecial(pte_t pte
) { return pte
; }
245 static inline pte_t
pte_wrprotect(pte_t pte
)
247 pte_val(pte
) &= ~(_PAGE_WRITE
);
251 static inline pte_t
pte_rdprotect(pte_t pte
)
253 pte_val(pte
) &= ~(_PAGE_READ
);
257 static inline pte_t
pte_exprotect(pte_t pte
)
259 pte_val(pte
) &= ~(_PAGE_EXEC
);
263 static inline pte_t
pte_mkclean(pte_t pte
)
265 pte_val(pte
) &= ~(_PAGE_DIRTY
);
269 static inline pte_t
pte_mkold(pte_t pte
)
271 pte_val(pte
) &= ~(_PAGE_ACCESSED
);
275 static inline pte_t
pte_mkwrite(pte_t pte
)
277 pte_val(pte
) |= _PAGE_WRITE
;
281 static inline pte_t
pte_mkread(pte_t pte
)
283 pte_val(pte
) |= _PAGE_READ
;
287 static inline pte_t
pte_mkexec(pte_t pte
)
289 pte_val(pte
) |= _PAGE_EXEC
;
293 static inline pte_t
pte_mkdirty(pte_t pte
)
295 pte_val(pte
) |= _PAGE_DIRTY
;
299 static inline pte_t
pte_mkyoung(pte_t pte
)
301 pte_val(pte
) |= _PAGE_ACCESSED
;
306 * Conversion functions: convert a page and protection to a page entry,
307 * and a page entry and page directory to the page they refer to.
310 /* What actually goes as arguments to the various functions is less than
311 * obvious, but a rule of thumb is that struct page's goes as struct page *,
312 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
313 * addresses (the 0xc0xxxxxx's) goes as void *'s.
316 static inline pte_t
__mk_pte(void *page
, pgprot_t pgprot
)
319 /* the PTE needs a physical address */
320 pte_val(pte
) = __pa(page
) | pgprot_val(pgprot
);
324 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
326 #define mk_pte_phys(physpage, pgprot) \
330 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
334 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
336 pte_val(pte
) = (pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
);
342 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
343 * __pte_page(pte_val) refers to the "virtual" DRAM interval
344 * pte_pagenr refers to the page-number counted starting from the virtual
348 static inline unsigned long __pte_page(pte_t pte
)
350 /* the PTE contains a physical address */
351 return (unsigned long)__va(pte_val(pte
) & PAGE_MASK
);
354 #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
356 /* permanent address of a page */
358 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
359 #define pte_page(pte) (mem_map+pte_pagenr(pte))
362 * only the pte's themselves need to point to physical DRAM (see above)
363 * the pagetable links are purely handled within the kernel SW and thus
364 * don't need the __pa and __va transformations.
366 static inline void pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
368 pmd_val(*pmdp
) = _KERNPG_TABLE
| (unsigned long) ptep
;
371 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
372 #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
374 /* to find an entry in a page-table-directory. */
375 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
377 #define __pgd_offset(address) pgd_index(address)
379 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
381 /* to find an entry in a kernel page-table-directory */
382 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
384 #define __pmd_offset(address) \
385 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
388 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
390 * this macro returns the index of the entry in the pte page which would
391 * control the given virtual address
393 #define __pte_offset(address) \
394 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
395 #define pte_offset_kernel(dir, address) \
396 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
397 #define pte_offset_map(dir, address) \
398 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
399 #define pte_offset_map_nested(dir, address) \
400 pte_offset_map(dir, address)
402 #define pte_unmap(pte) do { } while (0)
403 #define pte_unmap_nested(pte) do { } while (0)
404 #define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
405 #define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
407 #define pte_ERROR(e) \
408 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
409 __FILE__, __LINE__, &(e), pte_val(e))
410 #define pgd_ERROR(e) \
411 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
412 __FILE__, __LINE__, &(e), pgd_val(e))
414 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
]; /* defined in head.S */
417 * or32 doesn't have any external MMU info: the kernel page
418 * tables contain all the necessary information.
420 * Actually I am not sure on what this could be used for.
422 static inline void update_mmu_cache(struct vm_area_struct
*vma
,
423 unsigned long address
, pte_t
*pte
)
427 /* __PHX__ FIXME, SWAP, this probably doesn't work */
429 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
430 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
432 #define __swp_type(x) (((x).val >> 5) & 0x7f)
433 #define __swp_offset(x) ((x).val >> 12)
434 #define __swp_entry(type, offset) \
435 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
436 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
437 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
439 #define kern_addr_valid(addr) (1)
441 #include <asm-generic/pgtable.h>
444 * No page table caches to initialise
446 #define pgtable_cache_init() do { } while (0)
448 typedef pte_t
*pte_addr_t
;
450 #endif /* __ASSEMBLY__ */
451 #endif /* __ASM_OPENRISC_PGTABLE_H */