3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <linux/atomic.h>
35 extern pgd_t swapper_pg_dir
[];
36 extern void paging_init(void);
37 extern void vmem_map_init(void);
38 pmd_t
*vmem_pmd_alloc(void);
39 pte_t
*vmem_pte_alloc(void);
48 extern atomic_long_t direct_pages_count
[PG_DIRECT_MAP_MAX
];
50 static inline void update_page_count(int level
, long count
)
52 if (IS_ENABLED(CONFIG_PROC_FS
))
53 atomic_long_add(count
, &direct_pages_count
[level
]);
57 void arch_report_meminfo(struct seq_file
*m
);
60 * The S390 doesn't have any external MMU info: the kernel page
61 * tables contain all the necessary information.
63 #define update_mmu_cache(vma, address, ptep) do { } while (0)
64 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
67 * ZERO_PAGE is a global shared page that is always zero; used
68 * for zero-mapped memory areas etc..
71 extern unsigned long empty_zero_page
;
72 extern unsigned long zero_page_mask
;
74 #define ZERO_PAGE(vaddr) \
75 (virt_to_page((void *)(empty_zero_page + \
76 (((unsigned long)(vaddr)) &zero_page_mask))))
77 #define __HAVE_COLOR_ZERO_PAGE
79 /* TODO: s390 cannot support io_remap_pfn_range... */
80 #endif /* !__ASSEMBLY__ */
83 * PMD_SHIFT determines the size of the area a second-level page
85 * PGDIR_SHIFT determines what a third-level page table entry can map
89 #define PGDIR_SHIFT 42
91 #define PMD_SIZE (1UL << PMD_SHIFT)
92 #define PMD_MASK (~(PMD_SIZE-1))
93 #define PUD_SIZE (1UL << PUD_SHIFT)
94 #define PUD_MASK (~(PUD_SIZE-1))
95 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK (~(PGDIR_SIZE-1))
99 * entries per page directory level: the S390 is two-level, so
100 * we don't really have any PMD directory physically.
101 * for S390 segment-table entries are combined to one PGD
102 * that leads to 1024 pte per pgd
104 #define PTRS_PER_PTE 256
105 #define PTRS_PER_PMD 2048
106 #define PTRS_PER_PUD 2048
107 #define PTRS_PER_PGD 2048
109 #define FIRST_USER_ADDRESS 0UL
111 #define pte_ERROR(e) \
112 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
113 #define pmd_ERROR(e) \
114 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
115 #define pud_ERROR(e) \
116 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
117 #define pgd_ERROR(e) \
118 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
122 * The vmalloc and module area will always be on the topmost area of the
123 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
124 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
125 * modules will reside. That makes sure that inter module branches always
126 * happen without trampolines and in addition the placement within a 2GB frame
127 * is branch prediction unit friendly.
129 extern unsigned long VMALLOC_START
;
130 extern unsigned long VMALLOC_END
;
131 extern struct page
*vmemmap
;
133 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
135 extern unsigned long MODULES_VADDR
;
136 extern unsigned long MODULES_END
;
137 #define MODULES_VADDR MODULES_VADDR
138 #define MODULES_END MODULES_END
139 #define MODULES_LEN (1UL << 31)
141 static inline int is_module_addr(void *addr
)
143 BUILD_BUG_ON(MODULES_LEN
> (1UL << 31));
144 if (addr
< (void *)MODULES_VADDR
)
146 if (addr
> (void *)MODULES_END
)
152 * A 64 bit pagetable entry of S390 has following format:
154 * 0000000000111111111122222222223333333333444444444455555555556666
155 * 0123456789012345678901234567890123456789012345678901234567890123
157 * I Page-Invalid Bit: Page is not available for address-translation
158 * P Page-Protection Bit: Store access not possible for page
159 * C Change-bit override: HW is not required to set change bit
161 * A 64 bit segmenttable entry of S390 has following format:
162 * | P-table origin | TT
163 * 0000000000111111111122222222223333333333444444444455555555556666
164 * 0123456789012345678901234567890123456789012345678901234567890123
166 * I Segment-Invalid Bit: Segment is not available for address-translation
167 * C Common-Segment Bit: Segment is not private (PoP 3-30)
168 * P Page-Protection Bit: Store access not possible for page
171 * A 64 bit region table entry of S390 has following format:
172 * | S-table origin | TF TTTL
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
176 * I Segment-Invalid Bit: Segment is not available for address-translation
181 * The 64 bit regiontable origin of S390 has following format:
182 * | region table origon | DTTL
183 * 0000000000111111111122222222223333333333444444444455555555556666
184 * 0123456789012345678901234567890123456789012345678901234567890123
186 * X Space-Switch event:
187 * G Segment-Invalid Bit:
188 * P Private-Space Bit:
189 * S Storage-Alteration:
193 * A storage key has the following format:
197 * F : fetch protection bit
202 /* Hardware bits in the page table entry */
203 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
204 #define _PAGE_INVALID 0x400 /* HW invalid bit */
205 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
207 /* Software bits in the page table entry */
208 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
209 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
210 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
211 #define _PAGE_READ 0x010 /* SW pte read bit */
212 #define _PAGE_WRITE 0x020 /* SW pte write bit */
213 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
214 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
215 #define __HAVE_ARCH_PTE_SPECIAL
217 #ifdef CONFIG_MEM_SOFT_DIRTY
218 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
220 #define _PAGE_SOFT_DIRTY 0x000
223 /* Set of bits not changed in pte_modify */
224 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
225 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
228 * handle_pte_fault uses pte_present and pte_none to find out the pte type
229 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
230 * distinguish present from not-present ptes. It is changed only with the page
233 * The following table gives the different possible bit combinations for
234 * the pte hardware and software bits in the last 12 bits of a pte
235 * (. unassigned bit, x don't care, t swap type):
243 * prot-none, clean, old .11.xx0000.1
244 * prot-none, clean, young .11.xx0001.1
245 * prot-none, dirty, old .11.xx0010.1
246 * prot-none, dirty, young .11.xx0011.1
247 * read-only, clean, old .11.xx0100.1
248 * read-only, clean, young .01.xx0101.1
249 * read-only, dirty, old .11.xx0110.1
250 * read-only, dirty, young .01.xx0111.1
251 * read-write, clean, old .11.xx1100.1
252 * read-write, clean, young .01.xx1101.1
253 * read-write, dirty, old .10.xx1110.1
254 * read-write, dirty, young .00.xx1111.1
255 * HW-bits: R read-only, I invalid
256 * SW-bits: p present, y young, d dirty, r read, w write, s special,
259 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
260 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
261 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
264 /* Bits in the segment/region table address-space-control-element */
265 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
266 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
267 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
268 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
269 #define _ASCE_REAL_SPACE 0x20 /* real space control */
270 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
271 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
272 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
273 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
274 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
275 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
277 /* Bits in the region table entry */
278 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
279 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
280 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
281 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
282 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
283 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
284 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
285 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
286 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
288 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
289 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
290 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
291 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
292 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
293 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
295 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
296 #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
298 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
299 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
300 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
301 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
302 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
304 #ifdef CONFIG_MEM_SOFT_DIRTY
305 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
307 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
310 #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
311 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
313 /* Bits in the segment table entry */
314 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
315 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
316 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
317 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
318 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
319 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
321 #define _SEGMENT_ENTRY (0)
322 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
324 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
325 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
326 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
327 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
328 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
330 #ifdef CONFIG_MEM_SOFT_DIRTY
331 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
333 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
337 * Segment table and region3 table entry encoding
338 * (R = read-only, I = invalid, y = young bit):
340 * prot-none, clean, old 00..1...1...00
341 * prot-none, clean, young 01..1...1...00
342 * prot-none, dirty, old 10..1...1...00
343 * prot-none, dirty, young 11..1...1...00
344 * read-only, clean, old 00..1...1...01
345 * read-only, clean, young 01..1...0...01
346 * read-only, dirty, old 10..1...1...01
347 * read-only, dirty, young 11..1...0...01
348 * read-write, clean, old 00..1...1...11
349 * read-write, clean, young 01..1...0...11
350 * read-write, dirty, old 10..0...1...11
351 * read-write, dirty, young 11..0...0...11
352 * The segment table origin is used to distinguish empty (origin==0) from
353 * read-write, old segment table entries (origin!=0)
354 * HW-bits: R read-only, I invalid
355 * SW-bits: y young, d dirty, r read, w write
358 /* Page status table bits for virtualization */
359 #define PGSTE_ACC_BITS 0xf000000000000000UL
360 #define PGSTE_FP_BIT 0x0800000000000000UL
361 #define PGSTE_PCL_BIT 0x0080000000000000UL
362 #define PGSTE_HR_BIT 0x0040000000000000UL
363 #define PGSTE_HC_BIT 0x0020000000000000UL
364 #define PGSTE_GR_BIT 0x0004000000000000UL
365 #define PGSTE_GC_BIT 0x0002000000000000UL
366 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
367 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
368 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
370 /* Guest Page State used for virtualization */
371 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
372 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
373 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
374 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
377 * A user page table pointer has the space-switch-event bit, the
378 * private-space-control bit and the storage-alteration-event-control
379 * bit set. A kernel page table pointer doesn't need them.
381 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
385 * Page protection definitions.
387 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
388 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
389 _PAGE_INVALID | _PAGE_PROTECT)
390 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
391 _PAGE_INVALID | _PAGE_PROTECT)
393 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
394 _PAGE_YOUNG | _PAGE_DIRTY)
395 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
396 _PAGE_YOUNG | _PAGE_DIRTY)
397 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
401 * On s390 the page table entry has an invalid bit and a read-only bit.
402 * Read permission implies execute permission and write permission
403 * implies read permission.
406 #define __P000 PAGE_NONE
407 #define __P001 PAGE_READ
408 #define __P010 PAGE_READ
409 #define __P011 PAGE_READ
410 #define __P100 PAGE_READ
411 #define __P101 PAGE_READ
412 #define __P110 PAGE_READ
413 #define __P111 PAGE_READ
415 #define __S000 PAGE_NONE
416 #define __S001 PAGE_READ
417 #define __S010 PAGE_WRITE
418 #define __S011 PAGE_WRITE
419 #define __S100 PAGE_READ
420 #define __S101 PAGE_READ
421 #define __S110 PAGE_WRITE
422 #define __S111 PAGE_WRITE
425 * Segment entry (large page) protection definitions.
427 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
428 _SEGMENT_ENTRY_PROTECT)
429 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
431 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
432 _SEGMENT_ENTRY_WRITE)
433 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
434 _SEGMENT_ENTRY_LARGE | \
435 _SEGMENT_ENTRY_READ | \
436 _SEGMENT_ENTRY_WRITE | \
437 _SEGMENT_ENTRY_YOUNG | \
438 _SEGMENT_ENTRY_DIRTY)
439 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
440 _SEGMENT_ENTRY_LARGE | \
441 _SEGMENT_ENTRY_READ | \
442 _SEGMENT_ENTRY_YOUNG | \
443 _SEGMENT_ENTRY_PROTECT)
446 * Region3 entry (large page) protection definitions.
449 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
450 _REGION3_ENTRY_LARGE | \
451 _REGION3_ENTRY_READ | \
452 _REGION3_ENTRY_WRITE | \
453 _REGION3_ENTRY_YOUNG | \
454 _REGION3_ENTRY_DIRTY)
455 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
456 _REGION3_ENTRY_LARGE | \
457 _REGION3_ENTRY_READ | \
458 _REGION3_ENTRY_YOUNG | \
459 _REGION_ENTRY_PROTECT)
461 static inline int mm_has_pgste(struct mm_struct
*mm
)
464 if (unlikely(mm
->context
.has_pgste
))
470 static inline int mm_alloc_pgste(struct mm_struct
*mm
)
473 if (unlikely(mm
->context
.alloc_pgste
))
480 * In the case that a guest uses storage keys
481 * faults should no longer be backed by zero pages
483 #define mm_forbids_zeropage mm_use_skey
484 static inline int mm_use_skey(struct mm_struct
*mm
)
487 if (mm
->context
.use_skey
)
493 static inline void csp(unsigned int *ptr
, unsigned int old
, unsigned int new)
495 register unsigned long reg2
asm("2") = old
;
496 register unsigned long reg3
asm("3") = new;
497 unsigned long address
= (unsigned long)ptr
| 1;
501 : "+d" (reg2
), "+m" (*ptr
)
502 : "d" (reg3
), "d" (address
)
506 static inline void cspg(unsigned long *ptr
, unsigned long old
, unsigned long new)
508 register unsigned long reg2
asm("2") = old
;
509 register unsigned long reg3
asm("3") = new;
510 unsigned long address
= (unsigned long)ptr
| 1;
513 " .insn rre,0xb98a0000,%0,%3"
514 : "+d" (reg2
), "+m" (*ptr
)
515 : "d" (reg3
), "d" (address
)
519 #define CRDTE_DTT_PAGE 0x00UL
520 #define CRDTE_DTT_SEGMENT 0x10UL
521 #define CRDTE_DTT_REGION3 0x14UL
522 #define CRDTE_DTT_REGION2 0x18UL
523 #define CRDTE_DTT_REGION1 0x1cUL
525 static inline void crdte(unsigned long old
, unsigned long new,
526 unsigned long table
, unsigned long dtt
,
527 unsigned long address
, unsigned long asce
)
529 register unsigned long reg2
asm("2") = old
;
530 register unsigned long reg3
asm("3") = new;
531 register unsigned long reg4
asm("4") = table
| dtt
;
532 register unsigned long reg5
asm("5") = address
;
534 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
536 : "d" (reg3
), "d" (reg4
), "d" (reg5
), "a" (asce
)
541 * pgd/pmd/pte query functions
543 static inline int pgd_present(pgd_t pgd
)
545 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
547 return (pgd_val(pgd
) & _REGION_ENTRY_ORIGIN
) != 0UL;
550 static inline int pgd_none(pgd_t pgd
)
552 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
554 return (pgd_val(pgd
) & _REGION_ENTRY_INVALID
) != 0UL;
557 static inline int pgd_bad(pgd_t pgd
)
560 * With dynamic page table levels the pgd can be a region table
561 * entry or a segment table entry. Check for the bit that are
562 * invalid for either table entry.
565 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INVALID
&
566 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
567 return (pgd_val(pgd
) & mask
) != 0;
570 static inline int pud_present(pud_t pud
)
572 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
574 return (pud_val(pud
) & _REGION_ENTRY_ORIGIN
) != 0UL;
577 static inline int pud_none(pud_t pud
)
579 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
581 return pud_val(pud
) == _REGION3_ENTRY_EMPTY
;
584 static inline int pud_large(pud_t pud
)
586 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) != _REGION_ENTRY_TYPE_R3
)
588 return !!(pud_val(pud
) & _REGION3_ENTRY_LARGE
);
591 static inline unsigned long pud_pfn(pud_t pud
)
593 unsigned long origin_mask
;
595 origin_mask
= _REGION3_ENTRY_ORIGIN
;
597 origin_mask
= _REGION3_ENTRY_ORIGIN_LARGE
;
598 return (pud_val(pud
) & origin_mask
) >> PAGE_SHIFT
;
601 static inline int pmd_large(pmd_t pmd
)
603 return (pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
) != 0;
606 static inline int pmd_bad(pmd_t pmd
)
609 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS_LARGE
) != 0;
610 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS
) != 0;
613 static inline int pud_bad(pud_t pud
)
615 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
616 return pmd_bad(__pmd(pud_val(pud
)));
618 return (pud_val(pud
) & ~_REGION_ENTRY_BITS_LARGE
) != 0;
619 return (pud_val(pud
) & ~_REGION_ENTRY_BITS
) != 0;
622 static inline int pmd_present(pmd_t pmd
)
624 return pmd_val(pmd
) != _SEGMENT_ENTRY_INVALID
;
627 static inline int pmd_none(pmd_t pmd
)
629 return pmd_val(pmd
) == _SEGMENT_ENTRY_INVALID
;
632 static inline unsigned long pmd_pfn(pmd_t pmd
)
634 unsigned long origin_mask
;
636 origin_mask
= _SEGMENT_ENTRY_ORIGIN
;
638 origin_mask
= _SEGMENT_ENTRY_ORIGIN_LARGE
;
639 return (pmd_val(pmd
) & origin_mask
) >> PAGE_SHIFT
;
642 #define __HAVE_ARCH_PMD_WRITE
643 static inline int pmd_write(pmd_t pmd
)
645 return (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
) != 0;
648 static inline int pmd_dirty(pmd_t pmd
)
652 dirty
= (pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
) != 0;
656 static inline int pmd_young(pmd_t pmd
)
660 young
= (pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
) != 0;
664 static inline int pte_present(pte_t pte
)
666 /* Bit pattern: (pte & 0x001) == 0x001 */
667 return (pte_val(pte
) & _PAGE_PRESENT
) != 0;
670 static inline int pte_none(pte_t pte
)
672 /* Bit pattern: pte == 0x400 */
673 return pte_val(pte
) == _PAGE_INVALID
;
676 static inline int pte_swap(pte_t pte
)
678 /* Bit pattern: (pte & 0x201) == 0x200 */
679 return (pte_val(pte
) & (_PAGE_PROTECT
| _PAGE_PRESENT
))
683 static inline int pte_special(pte_t pte
)
685 return (pte_val(pte
) & _PAGE_SPECIAL
);
688 #define __HAVE_ARCH_PTE_SAME
689 static inline int pte_same(pte_t a
, pte_t b
)
691 return pte_val(a
) == pte_val(b
);
694 #ifdef CONFIG_NUMA_BALANCING
695 static inline int pte_protnone(pte_t pte
)
697 return pte_present(pte
) && !(pte_val(pte
) & _PAGE_READ
);
700 static inline int pmd_protnone(pmd_t pmd
)
702 /* pmd_large(pmd) implies pmd_present(pmd) */
703 return pmd_large(pmd
) && !(pmd_val(pmd
) & _SEGMENT_ENTRY_READ
);
707 static inline int pte_soft_dirty(pte_t pte
)
709 return pte_val(pte
) & _PAGE_SOFT_DIRTY
;
711 #define pte_swp_soft_dirty pte_soft_dirty
713 static inline pte_t
pte_mksoft_dirty(pte_t pte
)
715 pte_val(pte
) |= _PAGE_SOFT_DIRTY
;
718 #define pte_swp_mksoft_dirty pte_mksoft_dirty
720 static inline pte_t
pte_clear_soft_dirty(pte_t pte
)
722 pte_val(pte
) &= ~_PAGE_SOFT_DIRTY
;
725 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
727 static inline int pmd_soft_dirty(pmd_t pmd
)
729 return pmd_val(pmd
) & _SEGMENT_ENTRY_SOFT_DIRTY
;
732 static inline pmd_t
pmd_mksoft_dirty(pmd_t pmd
)
734 pmd_val(pmd
) |= _SEGMENT_ENTRY_SOFT_DIRTY
;
738 static inline pmd_t
pmd_clear_soft_dirty(pmd_t pmd
)
740 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_SOFT_DIRTY
;
745 * query functions pte_write/pte_dirty/pte_young only work if
746 * pte_present() is true. Undefined behaviour if not..
748 static inline int pte_write(pte_t pte
)
750 return (pte_val(pte
) & _PAGE_WRITE
) != 0;
753 static inline int pte_dirty(pte_t pte
)
755 return (pte_val(pte
) & _PAGE_DIRTY
) != 0;
758 static inline int pte_young(pte_t pte
)
760 return (pte_val(pte
) & _PAGE_YOUNG
) != 0;
763 #define __HAVE_ARCH_PTE_UNUSED
764 static inline int pte_unused(pte_t pte
)
766 return pte_val(pte
) & _PAGE_UNUSED
;
770 * pgd/pmd/pte modification functions
773 static inline void pgd_clear(pgd_t
*pgd
)
775 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
776 pgd_val(*pgd
) = _REGION2_ENTRY_EMPTY
;
779 static inline void pud_clear(pud_t
*pud
)
781 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
782 pud_val(*pud
) = _REGION3_ENTRY_EMPTY
;
785 static inline void pmd_clear(pmd_t
*pmdp
)
787 pmd_val(*pmdp
) = _SEGMENT_ENTRY_INVALID
;
790 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
792 pte_val(*ptep
) = _PAGE_INVALID
;
796 * The following pte modification functions only work if
797 * pte_present() is true. Undefined behaviour if not..
799 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
801 pte_val(pte
) &= _PAGE_CHG_MASK
;
802 pte_val(pte
) |= pgprot_val(newprot
);
804 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
805 * invalid bit set, clear it again for readable, young pages
807 if ((pte_val(pte
) & _PAGE_YOUNG
) && (pte_val(pte
) & _PAGE_READ
))
808 pte_val(pte
) &= ~_PAGE_INVALID
;
810 * newprot for PAGE_READ and PAGE_WRITE has the page protection
811 * bit set, clear it again for writable, dirty pages
813 if ((pte_val(pte
) & _PAGE_DIRTY
) && (pte_val(pte
) & _PAGE_WRITE
))
814 pte_val(pte
) &= ~_PAGE_PROTECT
;
818 static inline pte_t
pte_wrprotect(pte_t pte
)
820 pte_val(pte
) &= ~_PAGE_WRITE
;
821 pte_val(pte
) |= _PAGE_PROTECT
;
825 static inline pte_t
pte_mkwrite(pte_t pte
)
827 pte_val(pte
) |= _PAGE_WRITE
;
828 if (pte_val(pte
) & _PAGE_DIRTY
)
829 pte_val(pte
) &= ~_PAGE_PROTECT
;
833 static inline pte_t
pte_mkclean(pte_t pte
)
835 pte_val(pte
) &= ~_PAGE_DIRTY
;
836 pte_val(pte
) |= _PAGE_PROTECT
;
840 static inline pte_t
pte_mkdirty(pte_t pte
)
842 pte_val(pte
) |= _PAGE_DIRTY
| _PAGE_SOFT_DIRTY
;
843 if (pte_val(pte
) & _PAGE_WRITE
)
844 pte_val(pte
) &= ~_PAGE_PROTECT
;
848 static inline pte_t
pte_mkold(pte_t pte
)
850 pte_val(pte
) &= ~_PAGE_YOUNG
;
851 pte_val(pte
) |= _PAGE_INVALID
;
855 static inline pte_t
pte_mkyoung(pte_t pte
)
857 pte_val(pte
) |= _PAGE_YOUNG
;
858 if (pte_val(pte
) & _PAGE_READ
)
859 pte_val(pte
) &= ~_PAGE_INVALID
;
863 static inline pte_t
pte_mkspecial(pte_t pte
)
865 pte_val(pte
) |= _PAGE_SPECIAL
;
869 #ifdef CONFIG_HUGETLB_PAGE
870 static inline pte_t
pte_mkhuge(pte_t pte
)
872 pte_val(pte
) |= _PAGE_LARGE
;
877 static inline void __ptep_ipte(unsigned long address
, pte_t
*ptep
)
879 unsigned long pto
= (unsigned long) ptep
;
881 /* Invalidation + global TLB flush for the pte */
884 : "=m" (*ptep
) : "m" (*ptep
), "a" (pto
), "a" (address
));
887 static inline void __ptep_ipte_local(unsigned long address
, pte_t
*ptep
)
889 unsigned long pto
= (unsigned long) ptep
;
891 /* Invalidation + local TLB flush for the pte */
893 " .insn rrf,0xb2210000,%2,%3,0,1"
894 : "=m" (*ptep
) : "m" (*ptep
), "a" (pto
), "a" (address
));
897 static inline void __ptep_ipte_range(unsigned long address
, int nr
, pte_t
*ptep
)
899 unsigned long pto
= (unsigned long) ptep
;
901 /* Invalidate a range of ptes + global TLB flush of the ptes */
904 " .insn rrf,0xb2210000,%2,%0,%1,0"
905 : "+a" (address
), "+a" (nr
) : "a" (pto
) : "memory");
910 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
911 * both clear the TLB for the unmapped pte. The reason is that
912 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
913 * to modify an active pte. The sequence is
914 * 1) ptep_get_and_clear
917 * On s390 the tlb needs to get flushed with the modification of the pte
918 * if the pte is active. The only way how this can be implemented is to
919 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
922 pte_t
ptep_xchg_direct(struct mm_struct
*, unsigned long, pte_t
*, pte_t
);
923 pte_t
ptep_xchg_lazy(struct mm_struct
*, unsigned long, pte_t
*, pte_t
);
925 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
926 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
927 unsigned long addr
, pte_t
*ptep
)
931 pte
= ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, pte_mkold(pte
));
932 return pte_young(pte
);
935 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
936 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
937 unsigned long address
, pte_t
*ptep
)
939 return ptep_test_and_clear_young(vma
, address
, ptep
);
942 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
943 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
944 unsigned long addr
, pte_t
*ptep
)
946 return ptep_xchg_lazy(mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
949 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
950 pte_t
ptep_modify_prot_start(struct mm_struct
*, unsigned long, pte_t
*);
951 void ptep_modify_prot_commit(struct mm_struct
*, unsigned long, pte_t
*, pte_t
);
953 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
954 static inline pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
955 unsigned long addr
, pte_t
*ptep
)
957 return ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
961 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
962 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
963 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
964 * cannot be accessed while the batched unmap is running. In this case
965 * full==1 and a simple pte_clear is enough. See tlb.h.
967 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
968 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
970 pte_t
*ptep
, int full
)
974 *ptep
= __pte(_PAGE_INVALID
);
977 return ptep_xchg_lazy(mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
980 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
981 static inline void ptep_set_wrprotect(struct mm_struct
*mm
,
982 unsigned long addr
, pte_t
*ptep
)
987 ptep_xchg_lazy(mm
, addr
, ptep
, pte_wrprotect(pte
));
990 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
991 static inline int ptep_set_access_flags(struct vm_area_struct
*vma
,
992 unsigned long addr
, pte_t
*ptep
,
993 pte_t entry
, int dirty
)
995 if (pte_same(*ptep
, entry
))
997 ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, entry
);
1002 * Additional functions to handle KVM guest page tables
1004 void ptep_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
1005 pte_t
*ptep
, pte_t entry
);
1006 void ptep_set_notify(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
);
1007 void ptep_notify(struct mm_struct
*mm
, unsigned long addr
,
1008 pte_t
*ptep
, unsigned long bits
);
1009 int ptep_force_prot(struct mm_struct
*mm
, unsigned long gaddr
,
1010 pte_t
*ptep
, int prot
, unsigned long bit
);
1011 void ptep_zap_unused(struct mm_struct
*mm
, unsigned long addr
,
1012 pte_t
*ptep
, int reset
);
1013 void ptep_zap_key(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
);
1014 int ptep_shadow_pte(struct mm_struct
*mm
, unsigned long saddr
,
1015 pte_t
*sptep
, pte_t
*tptep
, pte_t pte
);
1016 void ptep_unshadow_pte(struct mm_struct
*mm
, unsigned long saddr
, pte_t
*ptep
);
1018 bool test_and_clear_guest_dirty(struct mm_struct
*mm
, unsigned long address
);
1019 int set_guest_storage_key(struct mm_struct
*mm
, unsigned long addr
,
1020 unsigned char key
, bool nq
);
1021 int cond_set_guest_storage_key(struct mm_struct
*mm
, unsigned long addr
,
1022 unsigned char key
, unsigned char *oldkey
,
1023 bool nq
, bool mr
, bool mc
);
1024 int reset_guest_reference_bit(struct mm_struct
*mm
, unsigned long addr
);
1025 int get_guest_storage_key(struct mm_struct
*mm
, unsigned long addr
,
1026 unsigned char *key
);
1029 * Certain architectures need to do special things when PTEs
1030 * within a page table are directly modified. Thus, the following
1031 * hook is made available.
1033 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
1034 pte_t
*ptep
, pte_t entry
)
1036 if (mm_has_pgste(mm
))
1037 ptep_set_pte_at(mm
, addr
, ptep
, entry
);
1043 * Conversion functions: convert a page and protection to a page entry,
1044 * and a page entry and page directory to the page they refer to.
1046 static inline pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
1049 pte_val(__pte
) = physpage
+ pgprot_val(pgprot
);
1050 return pte_mkyoung(__pte
);
1053 static inline pte_t
mk_pte(struct page
*page
, pgprot_t pgprot
)
1055 unsigned long physpage
= page_to_phys(page
);
1056 pte_t __pte
= mk_pte_phys(physpage
, pgprot
);
1058 if (pte_write(__pte
) && PageDirty(page
))
1059 __pte
= pte_mkdirty(__pte
);
1063 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1064 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1065 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1066 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1068 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1069 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1071 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1072 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1073 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1075 static inline pud_t
*pud_offset(pgd_t
*pgd
, unsigned long address
)
1077 pud_t
*pud
= (pud_t
*) pgd
;
1078 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
1079 pud
= (pud_t
*) pgd_deref(*pgd
);
1080 return pud
+ pud_index(address
);
1083 static inline pmd_t
*pmd_offset(pud_t
*pud
, unsigned long address
)
1085 pmd_t
*pmd
= (pmd_t
*) pud
;
1086 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
1087 pmd
= (pmd_t
*) pud_deref(*pud
);
1088 return pmd
+ pmd_index(address
);
1091 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1092 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1093 #define pte_page(x) pfn_to_page(pte_pfn(x))
1095 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1096 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1098 /* Find an entry in the lowest level page table.. */
1099 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1100 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1101 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1102 #define pte_unmap(pte) do { } while (0)
1104 static inline pmd_t
pmd_wrprotect(pmd_t pmd
)
1106 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_WRITE
;
1107 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1111 static inline pmd_t
pmd_mkwrite(pmd_t pmd
)
1113 pmd_val(pmd
) |= _SEGMENT_ENTRY_WRITE
;
1114 if (pmd_large(pmd
) && !(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
1116 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1120 static inline pmd_t
pmd_mkclean(pmd_t pmd
)
1122 if (pmd_large(pmd
)) {
1123 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_DIRTY
;
1124 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1129 static inline pmd_t
pmd_mkdirty(pmd_t pmd
)
1131 if (pmd_large(pmd
)) {
1132 pmd_val(pmd
) |= _SEGMENT_ENTRY_DIRTY
|
1133 _SEGMENT_ENTRY_SOFT_DIRTY
;
1134 if (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
)
1135 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1140 static inline pud_t
pud_wrprotect(pud_t pud
)
1142 pud_val(pud
) &= ~_REGION3_ENTRY_WRITE
;
1143 pud_val(pud
) |= _REGION_ENTRY_PROTECT
;
1147 static inline pud_t
pud_mkwrite(pud_t pud
)
1149 pud_val(pud
) |= _REGION3_ENTRY_WRITE
;
1150 if (pud_large(pud
) && !(pud_val(pud
) & _REGION3_ENTRY_DIRTY
))
1152 pud_val(pud
) &= ~_REGION_ENTRY_PROTECT
;
1156 static inline pud_t
pud_mkclean(pud_t pud
)
1158 if (pud_large(pud
)) {
1159 pud_val(pud
) &= ~_REGION3_ENTRY_DIRTY
;
1160 pud_val(pud
) |= _REGION_ENTRY_PROTECT
;
1165 static inline pud_t
pud_mkdirty(pud_t pud
)
1167 if (pud_large(pud
)) {
1168 pud_val(pud
) |= _REGION3_ENTRY_DIRTY
|
1169 _REGION3_ENTRY_SOFT_DIRTY
;
1170 if (pud_val(pud
) & _REGION3_ENTRY_WRITE
)
1171 pud_val(pud
) &= ~_REGION_ENTRY_PROTECT
;
1176 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1177 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot
)
1180 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1181 * Convert to segment table entry format.
1183 if (pgprot_val(pgprot
) == pgprot_val(PAGE_NONE
))
1184 return pgprot_val(SEGMENT_NONE
);
1185 if (pgprot_val(pgprot
) == pgprot_val(PAGE_READ
))
1186 return pgprot_val(SEGMENT_READ
);
1187 return pgprot_val(SEGMENT_WRITE
);
1190 static inline pmd_t
pmd_mkyoung(pmd_t pmd
)
1192 if (pmd_large(pmd
)) {
1193 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1194 if (pmd_val(pmd
) & _SEGMENT_ENTRY_READ
)
1195 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_INVALID
;
1200 static inline pmd_t
pmd_mkold(pmd_t pmd
)
1202 if (pmd_large(pmd
)) {
1203 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_YOUNG
;
1204 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1209 static inline pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
1211 if (pmd_large(pmd
)) {
1212 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN_LARGE
|
1213 _SEGMENT_ENTRY_DIRTY
| _SEGMENT_ENTRY_YOUNG
|
1214 _SEGMENT_ENTRY_LARGE
| _SEGMENT_ENTRY_SOFT_DIRTY
;
1215 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1216 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
1217 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1218 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
))
1219 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1222 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN
;
1223 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1227 static inline pmd_t
mk_pmd_phys(unsigned long physpage
, pgprot_t pgprot
)
1230 pmd_val(__pmd
) = physpage
+ massage_pgprot_pmd(pgprot
);
1234 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1236 static inline void __pmdp_csp(pmd_t
*pmdp
)
1238 csp((unsigned int *)pmdp
+ 1, pmd_val(*pmdp
),
1239 pmd_val(*pmdp
) | _SEGMENT_ENTRY_INVALID
);
1242 static inline void __pmdp_idte(unsigned long address
, pmd_t
*pmdp
)
1246 sto
= (unsigned long) pmdp
- pmd_index(address
) * sizeof(pmd_t
);
1248 " .insn rrf,0xb98e0000,%2,%3,0,0"
1250 : "m" (*pmdp
), "a" (sto
), "a" ((address
& HPAGE_MASK
))
1254 static inline void __pudp_idte(unsigned long address
, pud_t
*pudp
)
1258 r3o
= (unsigned long) pudp
- pud_index(address
) * sizeof(pud_t
);
1259 r3o
|= _ASCE_TYPE_REGION3
;
1261 " .insn rrf,0xb98e0000,%2,%3,0,0"
1263 : "m" (*pudp
), "a" (r3o
), "a" ((address
& PUD_MASK
))
1267 static inline void __pmdp_idte_local(unsigned long address
, pmd_t
*pmdp
)
1271 sto
= (unsigned long) pmdp
- pmd_index(address
) * sizeof(pmd_t
);
1273 " .insn rrf,0xb98e0000,%2,%3,0,1"
1275 : "m" (*pmdp
), "a" (sto
), "a" ((address
& HPAGE_MASK
))
1279 static inline void __pudp_idte_local(unsigned long address
, pud_t
*pudp
)
1283 r3o
= (unsigned long) pudp
- pud_index(address
) * sizeof(pud_t
);
1284 r3o
|= _ASCE_TYPE_REGION3
;
1286 " .insn rrf,0xb98e0000,%2,%3,0,1"
1288 : "m" (*pudp
), "a" (r3o
), "a" ((address
& PUD_MASK
))
1292 pmd_t
pmdp_xchg_direct(struct mm_struct
*, unsigned long, pmd_t
*, pmd_t
);
1293 pmd_t
pmdp_xchg_lazy(struct mm_struct
*, unsigned long, pmd_t
*, pmd_t
);
1294 pud_t
pudp_xchg_direct(struct mm_struct
*, unsigned long, pud_t
*, pud_t
);
1296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1299 void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
1302 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1303 pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
);
1305 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1306 static inline int pmdp_set_access_flags(struct vm_area_struct
*vma
,
1307 unsigned long addr
, pmd_t
*pmdp
,
1308 pmd_t entry
, int dirty
)
1310 VM_BUG_ON(addr
& ~HPAGE_MASK
);
1312 entry
= pmd_mkyoung(entry
);
1314 entry
= pmd_mkdirty(entry
);
1315 if (pmd_val(*pmdp
) == pmd_val(entry
))
1317 pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, entry
);
1321 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1322 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
1323 unsigned long addr
, pmd_t
*pmdp
)
1327 pmd
= pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, pmd_mkold(pmd
));
1328 return pmd_young(pmd
);
1331 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1332 static inline int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
1333 unsigned long addr
, pmd_t
*pmdp
)
1335 VM_BUG_ON(addr
& ~HPAGE_MASK
);
1336 return pmdp_test_and_clear_young(vma
, addr
, pmdp
);
1339 static inline void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
1340 pmd_t
*pmdp
, pmd_t entry
)
1345 static inline pmd_t
pmd_mkhuge(pmd_t pmd
)
1347 pmd_val(pmd
) |= _SEGMENT_ENTRY_LARGE
;
1348 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1349 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1353 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1354 static inline pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
1355 unsigned long addr
, pmd_t
*pmdp
)
1357 return pmdp_xchg_direct(mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_INVALID
));
1360 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1361 static inline pmd_t
pmdp_huge_get_and_clear_full(struct mm_struct
*mm
,
1363 pmd_t
*pmdp
, int full
)
1367 *pmdp
= __pmd(_SEGMENT_ENTRY_INVALID
);
1370 return pmdp_xchg_lazy(mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_INVALID
));
1373 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1374 static inline pmd_t
pmdp_huge_clear_flush(struct vm_area_struct
*vma
,
1375 unsigned long addr
, pmd_t
*pmdp
)
1377 return pmdp_huge_get_and_clear(vma
->vm_mm
, addr
, pmdp
);
1380 #define __HAVE_ARCH_PMDP_INVALIDATE
1381 static inline void pmdp_invalidate(struct vm_area_struct
*vma
,
1382 unsigned long addr
, pmd_t
*pmdp
)
1384 pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_INVALID
));
1387 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1388 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
1389 unsigned long addr
, pmd_t
*pmdp
)
1394 pmd
= pmdp_xchg_lazy(mm
, addr
, pmdp
, pmd_wrprotect(pmd
));
1397 static inline pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
1398 unsigned long address
,
1401 return pmdp_huge_get_and_clear(vma
->vm_mm
, address
, pmdp
);
1403 #define pmdp_collapse_flush pmdp_collapse_flush
1405 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1406 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1408 static inline int pmd_trans_huge(pmd_t pmd
)
1410 return pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
;
1413 #define has_transparent_hugepage has_transparent_hugepage
1414 static inline int has_transparent_hugepage(void)
1416 return MACHINE_HAS_HPAGE
? 1 : 0;
1418 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1421 * 64 bit swap entry format:
1422 * A page-table entry has some bits we have to treat in a special way.
1423 * Bits 52 and bit 55 have to be zero, otherwise a specification
1424 * exception will occur instead of a page translation exception. The
1425 * specification exception has the bad habit not to store necessary
1426 * information in the lowcore.
1427 * Bits 54 and 63 are used to indicate the page type.
1428 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1429 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1430 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1432 * | offset |01100|type |00|
1433 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1434 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1437 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1438 #define __SWP_OFFSET_SHIFT 12
1439 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1440 #define __SWP_TYPE_SHIFT 2
1442 static inline pte_t
mk_swap_pte(unsigned long type
, unsigned long offset
)
1446 pte_val(pte
) = _PAGE_INVALID
| _PAGE_PROTECT
;
1447 pte_val(pte
) |= (offset
& __SWP_OFFSET_MASK
) << __SWP_OFFSET_SHIFT
;
1448 pte_val(pte
) |= (type
& __SWP_TYPE_MASK
) << __SWP_TYPE_SHIFT
;
1452 static inline unsigned long __swp_type(swp_entry_t entry
)
1454 return (entry
.val
>> __SWP_TYPE_SHIFT
) & __SWP_TYPE_MASK
;
1457 static inline unsigned long __swp_offset(swp_entry_t entry
)
1459 return (entry
.val
>> __SWP_OFFSET_SHIFT
) & __SWP_OFFSET_MASK
;
1462 static inline swp_entry_t
__swp_entry(unsigned long type
, unsigned long offset
)
1464 return (swp_entry_t
) { pte_val(mk_swap_pte(type
, offset
)) };
1467 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1468 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1470 #endif /* !__ASSEMBLY__ */
1472 #define kern_addr_valid(addr) (1)
1474 extern int vmem_add_mapping(unsigned long start
, unsigned long size
);
1475 extern int vmem_remove_mapping(unsigned long start
, unsigned long size
);
1476 extern int s390_enable_sie(void);
1477 extern int s390_enable_skey(void);
1478 extern void s390_reset_cmma(struct mm_struct
*mm
);
1480 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1481 #define HAVE_ARCH_UNMAPPED_AREA
1482 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1485 * No page table caches to initialise
1487 static inline void pgtable_cache_init(void) { }
1488 static inline void check_pgt_cache(void) { }
1490 #include <asm-generic/pgtable.h>
1492 #endif /* _S390_PAGE_H */