Linux 4.8-rc8
[linux/fpc-iii.git] / arch / s390 / include / asm / pgtable.h
blob72c7f60bfe83ec78e55d39ebb67fe14edf5e2f72
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
9 */
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <linux/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/page.h>
35 extern pgd_t swapper_pg_dir[];
36 extern void paging_init(void);
37 extern void vmem_map_init(void);
38 pmd_t *vmem_pmd_alloc(void);
39 pte_t *vmem_pte_alloc(void);
41 enum {
42 PG_DIRECT_MAP_4K = 0,
43 PG_DIRECT_MAP_1M,
44 PG_DIRECT_MAP_2G,
45 PG_DIRECT_MAP_MAX
48 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
50 static inline void update_page_count(int level, long count)
52 if (IS_ENABLED(CONFIG_PROC_FS))
53 atomic_long_add(count, &direct_pages_count[level]);
56 struct seq_file;
57 void arch_report_meminfo(struct seq_file *m);
60 * The S390 doesn't have any external MMU info: the kernel page
61 * tables contain all the necessary information.
63 #define update_mmu_cache(vma, address, ptep) do { } while (0)
64 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
67 * ZERO_PAGE is a global shared page that is always zero; used
68 * for zero-mapped memory areas etc..
71 extern unsigned long empty_zero_page;
72 extern unsigned long zero_page_mask;
74 #define ZERO_PAGE(vaddr) \
75 (virt_to_page((void *)(empty_zero_page + \
76 (((unsigned long)(vaddr)) &zero_page_mask))))
77 #define __HAVE_COLOR_ZERO_PAGE
79 /* TODO: s390 cannot support io_remap_pfn_range... */
80 #endif /* !__ASSEMBLY__ */
83 * PMD_SHIFT determines the size of the area a second-level page
84 * table can map
85 * PGDIR_SHIFT determines what a third-level page table entry can map
87 #define PMD_SHIFT 20
88 #define PUD_SHIFT 31
89 #define PGDIR_SHIFT 42
91 #define PMD_SIZE (1UL << PMD_SHIFT)
92 #define PMD_MASK (~(PMD_SIZE-1))
93 #define PUD_SIZE (1UL << PUD_SHIFT)
94 #define PUD_MASK (~(PUD_SIZE-1))
95 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK (~(PGDIR_SIZE-1))
99 * entries per page directory level: the S390 is two-level, so
100 * we don't really have any PMD directory physically.
101 * for S390 segment-table entries are combined to one PGD
102 * that leads to 1024 pte per pgd
104 #define PTRS_PER_PTE 256
105 #define PTRS_PER_PMD 2048
106 #define PTRS_PER_PUD 2048
107 #define PTRS_PER_PGD 2048
109 #define FIRST_USER_ADDRESS 0UL
111 #define pte_ERROR(e) \
112 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
113 #define pmd_ERROR(e) \
114 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
115 #define pud_ERROR(e) \
116 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
117 #define pgd_ERROR(e) \
118 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
120 #ifndef __ASSEMBLY__
122 * The vmalloc and module area will always be on the topmost area of the
123 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
124 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
125 * modules will reside. That makes sure that inter module branches always
126 * happen without trampolines and in addition the placement within a 2GB frame
127 * is branch prediction unit friendly.
129 extern unsigned long VMALLOC_START;
130 extern unsigned long VMALLOC_END;
131 extern struct page *vmemmap;
133 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
135 extern unsigned long MODULES_VADDR;
136 extern unsigned long MODULES_END;
137 #define MODULES_VADDR MODULES_VADDR
138 #define MODULES_END MODULES_END
139 #define MODULES_LEN (1UL << 31)
141 static inline int is_module_addr(void *addr)
143 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
144 if (addr < (void *)MODULES_VADDR)
145 return 0;
146 if (addr > (void *)MODULES_END)
147 return 0;
148 return 1;
152 * A 64 bit pagetable entry of S390 has following format:
153 * | PFRA |0IPC| OS |
154 * 0000000000111111111122222222223333333333444444444455555555556666
155 * 0123456789012345678901234567890123456789012345678901234567890123
157 * I Page-Invalid Bit: Page is not available for address-translation
158 * P Page-Protection Bit: Store access not possible for page
159 * C Change-bit override: HW is not required to set change bit
161 * A 64 bit segmenttable entry of S390 has following format:
162 * | P-table origin | TT
163 * 0000000000111111111122222222223333333333444444444455555555556666
164 * 0123456789012345678901234567890123456789012345678901234567890123
166 * I Segment-Invalid Bit: Segment is not available for address-translation
167 * C Common-Segment Bit: Segment is not private (PoP 3-30)
168 * P Page-Protection Bit: Store access not possible for page
169 * TT Type 00
171 * A 64 bit region table entry of S390 has following format:
172 * | S-table origin | TF TTTL
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
176 * I Segment-Invalid Bit: Segment is not available for address-translation
177 * TT Type 01
178 * TF
179 * TL Table length
181 * The 64 bit regiontable origin of S390 has following format:
182 * | region table origon | DTTL
183 * 0000000000111111111122222222223333333333444444444455555555556666
184 * 0123456789012345678901234567890123456789012345678901234567890123
186 * X Space-Switch event:
187 * G Segment-Invalid Bit:
188 * P Private-Space Bit:
189 * S Storage-Alteration:
190 * R Real space
191 * TL Table-Length:
193 * A storage key has the following format:
194 * | ACC |F|R|C|0|
195 * 0 3 4 5 6 7
196 * ACC: access key
197 * F : fetch protection bit
198 * R : referenced bit
199 * C : changed bit
202 /* Hardware bits in the page table entry */
203 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
204 #define _PAGE_INVALID 0x400 /* HW invalid bit */
205 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
207 /* Software bits in the page table entry */
208 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
209 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
210 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
211 #define _PAGE_READ 0x010 /* SW pte read bit */
212 #define _PAGE_WRITE 0x020 /* SW pte write bit */
213 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
214 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
215 #define __HAVE_ARCH_PTE_SPECIAL
217 #ifdef CONFIG_MEM_SOFT_DIRTY
218 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
219 #else
220 #define _PAGE_SOFT_DIRTY 0x000
221 #endif
223 /* Set of bits not changed in pte_modify */
224 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
225 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
228 * handle_pte_fault uses pte_present and pte_none to find out the pte type
229 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
230 * distinguish present from not-present ptes. It is changed only with the page
231 * table lock held.
233 * The following table gives the different possible bit combinations for
234 * the pte hardware and software bits in the last 12 bits of a pte
235 * (. unassigned bit, x don't care, t swap type):
237 * 842100000000
238 * 000084210000
239 * 000000008421
240 * .IR.uswrdy.p
241 * empty .10.00000000
242 * swap .11..ttttt.0
243 * prot-none, clean, old .11.xx0000.1
244 * prot-none, clean, young .11.xx0001.1
245 * prot-none, dirty, old .11.xx0010.1
246 * prot-none, dirty, young .11.xx0011.1
247 * read-only, clean, old .11.xx0100.1
248 * read-only, clean, young .01.xx0101.1
249 * read-only, dirty, old .11.xx0110.1
250 * read-only, dirty, young .01.xx0111.1
251 * read-write, clean, old .11.xx1100.1
252 * read-write, clean, young .01.xx1101.1
253 * read-write, dirty, old .10.xx1110.1
254 * read-write, dirty, young .00.xx1111.1
255 * HW-bits: R read-only, I invalid
256 * SW-bits: p present, y young, d dirty, r read, w write, s special,
257 * u unused, l large
259 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
260 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
261 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
264 /* Bits in the segment/region table address-space-control-element */
265 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
266 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
267 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
268 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
269 #define _ASCE_REAL_SPACE 0x20 /* real space control */
270 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
271 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
272 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
273 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
274 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
275 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
277 /* Bits in the region table entry */
278 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
279 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
280 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
281 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
282 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
283 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
284 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
285 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
286 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
288 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
289 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
290 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
291 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
292 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
293 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
295 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
296 #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
298 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
299 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
300 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
301 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
302 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
304 #ifdef CONFIG_MEM_SOFT_DIRTY
305 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
306 #else
307 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
308 #endif
310 #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
311 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
313 /* Bits in the segment table entry */
314 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
315 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
316 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
317 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
318 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
319 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
321 #define _SEGMENT_ENTRY (0)
322 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
324 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
325 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
326 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
327 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
328 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
330 #ifdef CONFIG_MEM_SOFT_DIRTY
331 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
332 #else
333 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
334 #endif
337 * Segment table and region3 table entry encoding
338 * (R = read-only, I = invalid, y = young bit):
339 * dy..R...I...wr
340 * prot-none, clean, old 00..1...1...00
341 * prot-none, clean, young 01..1...1...00
342 * prot-none, dirty, old 10..1...1...00
343 * prot-none, dirty, young 11..1...1...00
344 * read-only, clean, old 00..1...1...01
345 * read-only, clean, young 01..1...0...01
346 * read-only, dirty, old 10..1...1...01
347 * read-only, dirty, young 11..1...0...01
348 * read-write, clean, old 00..1...1...11
349 * read-write, clean, young 01..1...0...11
350 * read-write, dirty, old 10..0...1...11
351 * read-write, dirty, young 11..0...0...11
352 * The segment table origin is used to distinguish empty (origin==0) from
353 * read-write, old segment table entries (origin!=0)
354 * HW-bits: R read-only, I invalid
355 * SW-bits: y young, d dirty, r read, w write
358 /* Page status table bits for virtualization */
359 #define PGSTE_ACC_BITS 0xf000000000000000UL
360 #define PGSTE_FP_BIT 0x0800000000000000UL
361 #define PGSTE_PCL_BIT 0x0080000000000000UL
362 #define PGSTE_HR_BIT 0x0040000000000000UL
363 #define PGSTE_HC_BIT 0x0020000000000000UL
364 #define PGSTE_GR_BIT 0x0004000000000000UL
365 #define PGSTE_GC_BIT 0x0002000000000000UL
366 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
367 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
368 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
370 /* Guest Page State used for virtualization */
371 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
372 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
373 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
374 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
377 * A user page table pointer has the space-switch-event bit, the
378 * private-space-control bit and the storage-alteration-event-control
379 * bit set. A kernel page table pointer doesn't need them.
381 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
382 _ASCE_ALT_EVENT)
385 * Page protection definitions.
387 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
388 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
389 _PAGE_INVALID | _PAGE_PROTECT)
390 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
391 _PAGE_INVALID | _PAGE_PROTECT)
393 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
394 _PAGE_YOUNG | _PAGE_DIRTY)
395 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
396 _PAGE_YOUNG | _PAGE_DIRTY)
397 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
398 _PAGE_PROTECT)
401 * On s390 the page table entry has an invalid bit and a read-only bit.
402 * Read permission implies execute permission and write permission
403 * implies read permission.
405 /*xwr*/
406 #define __P000 PAGE_NONE
407 #define __P001 PAGE_READ
408 #define __P010 PAGE_READ
409 #define __P011 PAGE_READ
410 #define __P100 PAGE_READ
411 #define __P101 PAGE_READ
412 #define __P110 PAGE_READ
413 #define __P111 PAGE_READ
415 #define __S000 PAGE_NONE
416 #define __S001 PAGE_READ
417 #define __S010 PAGE_WRITE
418 #define __S011 PAGE_WRITE
419 #define __S100 PAGE_READ
420 #define __S101 PAGE_READ
421 #define __S110 PAGE_WRITE
422 #define __S111 PAGE_WRITE
425 * Segment entry (large page) protection definitions.
427 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
428 _SEGMENT_ENTRY_PROTECT)
429 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
430 _SEGMENT_ENTRY_READ)
431 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
432 _SEGMENT_ENTRY_WRITE)
433 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
434 _SEGMENT_ENTRY_LARGE | \
435 _SEGMENT_ENTRY_READ | \
436 _SEGMENT_ENTRY_WRITE | \
437 _SEGMENT_ENTRY_YOUNG | \
438 _SEGMENT_ENTRY_DIRTY)
439 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
440 _SEGMENT_ENTRY_LARGE | \
441 _SEGMENT_ENTRY_READ | \
442 _SEGMENT_ENTRY_YOUNG | \
443 _SEGMENT_ENTRY_PROTECT)
446 * Region3 entry (large page) protection definitions.
449 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
450 _REGION3_ENTRY_LARGE | \
451 _REGION3_ENTRY_READ | \
452 _REGION3_ENTRY_WRITE | \
453 _REGION3_ENTRY_YOUNG | \
454 _REGION3_ENTRY_DIRTY)
455 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
456 _REGION3_ENTRY_LARGE | \
457 _REGION3_ENTRY_READ | \
458 _REGION3_ENTRY_YOUNG | \
459 _REGION_ENTRY_PROTECT)
461 static inline int mm_has_pgste(struct mm_struct *mm)
463 #ifdef CONFIG_PGSTE
464 if (unlikely(mm->context.has_pgste))
465 return 1;
466 #endif
467 return 0;
470 static inline int mm_alloc_pgste(struct mm_struct *mm)
472 #ifdef CONFIG_PGSTE
473 if (unlikely(mm->context.alloc_pgste))
474 return 1;
475 #endif
476 return 0;
480 * In the case that a guest uses storage keys
481 * faults should no longer be backed by zero pages
483 #define mm_forbids_zeropage mm_use_skey
484 static inline int mm_use_skey(struct mm_struct *mm)
486 #ifdef CONFIG_PGSTE
487 if (mm->context.use_skey)
488 return 1;
489 #endif
490 return 0;
493 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
495 register unsigned long reg2 asm("2") = old;
496 register unsigned long reg3 asm("3") = new;
497 unsigned long address = (unsigned long)ptr | 1;
499 asm volatile(
500 " csp %0,%3"
501 : "+d" (reg2), "+m" (*ptr)
502 : "d" (reg3), "d" (address)
503 : "cc");
506 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
508 register unsigned long reg2 asm("2") = old;
509 register unsigned long reg3 asm("3") = new;
510 unsigned long address = (unsigned long)ptr | 1;
512 asm volatile(
513 " .insn rre,0xb98a0000,%0,%3"
514 : "+d" (reg2), "+m" (*ptr)
515 : "d" (reg3), "d" (address)
516 : "cc");
519 #define CRDTE_DTT_PAGE 0x00UL
520 #define CRDTE_DTT_SEGMENT 0x10UL
521 #define CRDTE_DTT_REGION3 0x14UL
522 #define CRDTE_DTT_REGION2 0x18UL
523 #define CRDTE_DTT_REGION1 0x1cUL
525 static inline void crdte(unsigned long old, unsigned long new,
526 unsigned long table, unsigned long dtt,
527 unsigned long address, unsigned long asce)
529 register unsigned long reg2 asm("2") = old;
530 register unsigned long reg3 asm("3") = new;
531 register unsigned long reg4 asm("4") = table | dtt;
532 register unsigned long reg5 asm("5") = address;
534 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
535 : "+d" (reg2)
536 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
537 : "memory", "cc");
541 * pgd/pmd/pte query functions
543 static inline int pgd_present(pgd_t pgd)
545 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
546 return 1;
547 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
550 static inline int pgd_none(pgd_t pgd)
552 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
553 return 0;
554 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
557 static inline int pgd_bad(pgd_t pgd)
560 * With dynamic page table levels the pgd can be a region table
561 * entry or a segment table entry. Check for the bit that are
562 * invalid for either table entry.
564 unsigned long mask =
565 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
566 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
567 return (pgd_val(pgd) & mask) != 0;
570 static inline int pud_present(pud_t pud)
572 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
573 return 1;
574 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
577 static inline int pud_none(pud_t pud)
579 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
580 return 0;
581 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
584 static inline int pud_large(pud_t pud)
586 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
587 return 0;
588 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
591 static inline unsigned long pud_pfn(pud_t pud)
593 unsigned long origin_mask;
595 origin_mask = _REGION3_ENTRY_ORIGIN;
596 if (pud_large(pud))
597 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
598 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
601 static inline int pmd_large(pmd_t pmd)
603 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
606 static inline int pmd_bad(pmd_t pmd)
608 if (pmd_large(pmd))
609 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
610 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
613 static inline int pud_bad(pud_t pud)
615 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
616 return pmd_bad(__pmd(pud_val(pud)));
617 if (pud_large(pud))
618 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
619 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
622 static inline int pmd_present(pmd_t pmd)
624 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
627 static inline int pmd_none(pmd_t pmd)
629 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
632 static inline unsigned long pmd_pfn(pmd_t pmd)
634 unsigned long origin_mask;
636 origin_mask = _SEGMENT_ENTRY_ORIGIN;
637 if (pmd_large(pmd))
638 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
639 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
642 #define __HAVE_ARCH_PMD_WRITE
643 static inline int pmd_write(pmd_t pmd)
645 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
648 static inline int pmd_dirty(pmd_t pmd)
650 int dirty = 1;
651 if (pmd_large(pmd))
652 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
653 return dirty;
656 static inline int pmd_young(pmd_t pmd)
658 int young = 1;
659 if (pmd_large(pmd))
660 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
661 return young;
664 static inline int pte_present(pte_t pte)
666 /* Bit pattern: (pte & 0x001) == 0x001 */
667 return (pte_val(pte) & _PAGE_PRESENT) != 0;
670 static inline int pte_none(pte_t pte)
672 /* Bit pattern: pte == 0x400 */
673 return pte_val(pte) == _PAGE_INVALID;
676 static inline int pte_swap(pte_t pte)
678 /* Bit pattern: (pte & 0x201) == 0x200 */
679 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
680 == _PAGE_PROTECT;
683 static inline int pte_special(pte_t pte)
685 return (pte_val(pte) & _PAGE_SPECIAL);
688 #define __HAVE_ARCH_PTE_SAME
689 static inline int pte_same(pte_t a, pte_t b)
691 return pte_val(a) == pte_val(b);
694 #ifdef CONFIG_NUMA_BALANCING
695 static inline int pte_protnone(pte_t pte)
697 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
700 static inline int pmd_protnone(pmd_t pmd)
702 /* pmd_large(pmd) implies pmd_present(pmd) */
703 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
705 #endif
707 static inline int pte_soft_dirty(pte_t pte)
709 return pte_val(pte) & _PAGE_SOFT_DIRTY;
711 #define pte_swp_soft_dirty pte_soft_dirty
713 static inline pte_t pte_mksoft_dirty(pte_t pte)
715 pte_val(pte) |= _PAGE_SOFT_DIRTY;
716 return pte;
718 #define pte_swp_mksoft_dirty pte_mksoft_dirty
720 static inline pte_t pte_clear_soft_dirty(pte_t pte)
722 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
723 return pte;
725 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
727 static inline int pmd_soft_dirty(pmd_t pmd)
729 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
732 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
734 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
735 return pmd;
738 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
740 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
741 return pmd;
745 * query functions pte_write/pte_dirty/pte_young only work if
746 * pte_present() is true. Undefined behaviour if not..
748 static inline int pte_write(pte_t pte)
750 return (pte_val(pte) & _PAGE_WRITE) != 0;
753 static inline int pte_dirty(pte_t pte)
755 return (pte_val(pte) & _PAGE_DIRTY) != 0;
758 static inline int pte_young(pte_t pte)
760 return (pte_val(pte) & _PAGE_YOUNG) != 0;
763 #define __HAVE_ARCH_PTE_UNUSED
764 static inline int pte_unused(pte_t pte)
766 return pte_val(pte) & _PAGE_UNUSED;
770 * pgd/pmd/pte modification functions
773 static inline void pgd_clear(pgd_t *pgd)
775 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
776 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
779 static inline void pud_clear(pud_t *pud)
781 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
782 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
785 static inline void pmd_clear(pmd_t *pmdp)
787 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
790 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
792 pte_val(*ptep) = _PAGE_INVALID;
796 * The following pte modification functions only work if
797 * pte_present() is true. Undefined behaviour if not..
799 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
801 pte_val(pte) &= _PAGE_CHG_MASK;
802 pte_val(pte) |= pgprot_val(newprot);
804 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
805 * invalid bit set, clear it again for readable, young pages
807 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
808 pte_val(pte) &= ~_PAGE_INVALID;
810 * newprot for PAGE_READ and PAGE_WRITE has the page protection
811 * bit set, clear it again for writable, dirty pages
813 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
814 pte_val(pte) &= ~_PAGE_PROTECT;
815 return pte;
818 static inline pte_t pte_wrprotect(pte_t pte)
820 pte_val(pte) &= ~_PAGE_WRITE;
821 pte_val(pte) |= _PAGE_PROTECT;
822 return pte;
825 static inline pte_t pte_mkwrite(pte_t pte)
827 pte_val(pte) |= _PAGE_WRITE;
828 if (pte_val(pte) & _PAGE_DIRTY)
829 pte_val(pte) &= ~_PAGE_PROTECT;
830 return pte;
833 static inline pte_t pte_mkclean(pte_t pte)
835 pte_val(pte) &= ~_PAGE_DIRTY;
836 pte_val(pte) |= _PAGE_PROTECT;
837 return pte;
840 static inline pte_t pte_mkdirty(pte_t pte)
842 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
843 if (pte_val(pte) & _PAGE_WRITE)
844 pte_val(pte) &= ~_PAGE_PROTECT;
845 return pte;
848 static inline pte_t pte_mkold(pte_t pte)
850 pte_val(pte) &= ~_PAGE_YOUNG;
851 pte_val(pte) |= _PAGE_INVALID;
852 return pte;
855 static inline pte_t pte_mkyoung(pte_t pte)
857 pte_val(pte) |= _PAGE_YOUNG;
858 if (pte_val(pte) & _PAGE_READ)
859 pte_val(pte) &= ~_PAGE_INVALID;
860 return pte;
863 static inline pte_t pte_mkspecial(pte_t pte)
865 pte_val(pte) |= _PAGE_SPECIAL;
866 return pte;
869 #ifdef CONFIG_HUGETLB_PAGE
870 static inline pte_t pte_mkhuge(pte_t pte)
872 pte_val(pte) |= _PAGE_LARGE;
873 return pte;
875 #endif
877 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
879 unsigned long pto = (unsigned long) ptep;
881 /* Invalidation + global TLB flush for the pte */
882 asm volatile(
883 " ipte %2,%3"
884 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
887 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
889 unsigned long pto = (unsigned long) ptep;
891 /* Invalidation + local TLB flush for the pte */
892 asm volatile(
893 " .insn rrf,0xb2210000,%2,%3,0,1"
894 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
897 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
899 unsigned long pto = (unsigned long) ptep;
901 /* Invalidate a range of ptes + global TLB flush of the ptes */
902 do {
903 asm volatile(
904 " .insn rrf,0xb2210000,%2,%0,%1,0"
905 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
906 } while (nr != 255);
910 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
911 * both clear the TLB for the unmapped pte. The reason is that
912 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
913 * to modify an active pte. The sequence is
914 * 1) ptep_get_and_clear
915 * 2) set_pte_at
916 * 3) flush_tlb_range
917 * On s390 the tlb needs to get flushed with the modification of the pte
918 * if the pte is active. The only way how this can be implemented is to
919 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
920 * is a nop.
922 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
923 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
925 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
926 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
927 unsigned long addr, pte_t *ptep)
929 pte_t pte = *ptep;
931 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
932 return pte_young(pte);
935 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
936 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
937 unsigned long address, pte_t *ptep)
939 return ptep_test_and_clear_young(vma, address, ptep);
942 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
943 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
944 unsigned long addr, pte_t *ptep)
946 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
949 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
950 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
951 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
953 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
954 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
955 unsigned long addr, pte_t *ptep)
957 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
961 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
962 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
963 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
964 * cannot be accessed while the batched unmap is running. In this case
965 * full==1 and a simple pte_clear is enough. See tlb.h.
967 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
968 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
969 unsigned long addr,
970 pte_t *ptep, int full)
972 if (full) {
973 pte_t pte = *ptep;
974 *ptep = __pte(_PAGE_INVALID);
975 return pte;
977 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
980 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
981 static inline void ptep_set_wrprotect(struct mm_struct *mm,
982 unsigned long addr, pte_t *ptep)
984 pte_t pte = *ptep;
986 if (pte_write(pte))
987 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
990 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
991 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
992 unsigned long addr, pte_t *ptep,
993 pte_t entry, int dirty)
995 if (pte_same(*ptep, entry))
996 return 0;
997 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
998 return 1;
1002 * Additional functions to handle KVM guest page tables
1004 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1005 pte_t *ptep, pte_t entry);
1006 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1007 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1008 pte_t *ptep, unsigned long bits);
1009 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1010 pte_t *ptep, int prot, unsigned long bit);
1011 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1012 pte_t *ptep , int reset);
1013 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1014 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1015 pte_t *sptep, pte_t *tptep, pte_t pte);
1016 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1018 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1019 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1020 unsigned char key, bool nq);
1021 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1022 unsigned char key, unsigned char *oldkey,
1023 bool nq, bool mr, bool mc);
1024 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1025 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1026 unsigned char *key);
1029 * Certain architectures need to do special things when PTEs
1030 * within a page table are directly modified. Thus, the following
1031 * hook is made available.
1033 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1034 pte_t *ptep, pte_t entry)
1036 if (mm_has_pgste(mm))
1037 ptep_set_pte_at(mm, addr, ptep, entry);
1038 else
1039 *ptep = entry;
1043 * Conversion functions: convert a page and protection to a page entry,
1044 * and a page entry and page directory to the page they refer to.
1046 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1048 pte_t __pte;
1049 pte_val(__pte) = physpage + pgprot_val(pgprot);
1050 return pte_mkyoung(__pte);
1053 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1055 unsigned long physpage = page_to_phys(page);
1056 pte_t __pte = mk_pte_phys(physpage, pgprot);
1058 if (pte_write(__pte) && PageDirty(page))
1059 __pte = pte_mkdirty(__pte);
1060 return __pte;
1063 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1064 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1065 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1066 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1068 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1069 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1071 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1072 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1073 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1075 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1077 pud_t *pud = (pud_t *) pgd;
1078 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1079 pud = (pud_t *) pgd_deref(*pgd);
1080 return pud + pud_index(address);
1083 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1085 pmd_t *pmd = (pmd_t *) pud;
1086 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1087 pmd = (pmd_t *) pud_deref(*pud);
1088 return pmd + pmd_index(address);
1091 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1092 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1093 #define pte_page(x) pfn_to_page(pte_pfn(x))
1095 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1096 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1098 /* Find an entry in the lowest level page table.. */
1099 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1100 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1101 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1102 #define pte_unmap(pte) do { } while (0)
1104 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1106 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1107 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1108 return pmd;
1111 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1113 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1114 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1115 return pmd;
1116 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1117 return pmd;
1120 static inline pmd_t pmd_mkclean(pmd_t pmd)
1122 if (pmd_large(pmd)) {
1123 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1124 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1126 return pmd;
1129 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1131 if (pmd_large(pmd)) {
1132 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1133 _SEGMENT_ENTRY_SOFT_DIRTY;
1134 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1135 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1137 return pmd;
1140 static inline pud_t pud_wrprotect(pud_t pud)
1142 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1143 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1144 return pud;
1147 static inline pud_t pud_mkwrite(pud_t pud)
1149 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1150 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1151 return pud;
1152 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1153 return pud;
1156 static inline pud_t pud_mkclean(pud_t pud)
1158 if (pud_large(pud)) {
1159 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1160 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1162 return pud;
1165 static inline pud_t pud_mkdirty(pud_t pud)
1167 if (pud_large(pud)) {
1168 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1169 _REGION3_ENTRY_SOFT_DIRTY;
1170 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1171 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1173 return pud;
1176 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1177 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1180 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1181 * Convert to segment table entry format.
1183 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1184 return pgprot_val(SEGMENT_NONE);
1185 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1186 return pgprot_val(SEGMENT_READ);
1187 return pgprot_val(SEGMENT_WRITE);
1190 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1192 if (pmd_large(pmd)) {
1193 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1194 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1195 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1197 return pmd;
1200 static inline pmd_t pmd_mkold(pmd_t pmd)
1202 if (pmd_large(pmd)) {
1203 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1204 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1206 return pmd;
1209 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1211 if (pmd_large(pmd)) {
1212 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1213 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1214 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1215 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1216 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1217 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1218 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1219 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1220 return pmd;
1222 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1223 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1224 return pmd;
1227 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1229 pmd_t __pmd;
1230 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1231 return __pmd;
1234 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1236 static inline void __pmdp_csp(pmd_t *pmdp)
1238 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1239 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1242 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1244 unsigned long sto;
1246 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1247 asm volatile(
1248 " .insn rrf,0xb98e0000,%2,%3,0,0"
1249 : "=m" (*pmdp)
1250 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1251 : "cc" );
1254 static inline void __pudp_idte(unsigned long address, pud_t *pudp)
1256 unsigned long r3o;
1258 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1259 r3o |= _ASCE_TYPE_REGION3;
1260 asm volatile(
1261 " .insn rrf,0xb98e0000,%2,%3,0,0"
1262 : "=m" (*pudp)
1263 : "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK))
1264 : "cc");
1267 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1269 unsigned long sto;
1271 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1272 asm volatile(
1273 " .insn rrf,0xb98e0000,%2,%3,0,1"
1274 : "=m" (*pmdp)
1275 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1276 : "cc" );
1279 static inline void __pudp_idte_local(unsigned long address, pud_t *pudp)
1281 unsigned long r3o;
1283 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1284 r3o |= _ASCE_TYPE_REGION3;
1285 asm volatile(
1286 " .insn rrf,0xb98e0000,%2,%3,0,1"
1287 : "=m" (*pudp)
1288 : "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK))
1289 : "cc");
1292 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1293 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1294 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1299 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1300 pgtable_t pgtable);
1302 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1303 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1305 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1306 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1307 unsigned long addr, pmd_t *pmdp,
1308 pmd_t entry, int dirty)
1310 VM_BUG_ON(addr & ~HPAGE_MASK);
1312 entry = pmd_mkyoung(entry);
1313 if (dirty)
1314 entry = pmd_mkdirty(entry);
1315 if (pmd_val(*pmdp) == pmd_val(entry))
1316 return 0;
1317 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1318 return 1;
1321 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1322 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1323 unsigned long addr, pmd_t *pmdp)
1325 pmd_t pmd = *pmdp;
1327 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1328 return pmd_young(pmd);
1331 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1332 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1333 unsigned long addr, pmd_t *pmdp)
1335 VM_BUG_ON(addr & ~HPAGE_MASK);
1336 return pmdp_test_and_clear_young(vma, addr, pmdp);
1339 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1340 pmd_t *pmdp, pmd_t entry)
1342 *pmdp = entry;
1345 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1347 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1348 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1349 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1350 return pmd;
1353 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1354 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1355 unsigned long addr, pmd_t *pmdp)
1357 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1360 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1361 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1362 unsigned long addr,
1363 pmd_t *pmdp, int full)
1365 if (full) {
1366 pmd_t pmd = *pmdp;
1367 *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
1368 return pmd;
1370 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1373 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1374 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1375 unsigned long addr, pmd_t *pmdp)
1377 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1380 #define __HAVE_ARCH_PMDP_INVALIDATE
1381 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1382 unsigned long addr, pmd_t *pmdp)
1384 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1387 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1388 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1389 unsigned long addr, pmd_t *pmdp)
1391 pmd_t pmd = *pmdp;
1393 if (pmd_write(pmd))
1394 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1397 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1398 unsigned long address,
1399 pmd_t *pmdp)
1401 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1403 #define pmdp_collapse_flush pmdp_collapse_flush
1405 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1406 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1408 static inline int pmd_trans_huge(pmd_t pmd)
1410 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1413 #define has_transparent_hugepage has_transparent_hugepage
1414 static inline int has_transparent_hugepage(void)
1416 return MACHINE_HAS_HPAGE ? 1 : 0;
1418 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1421 * 64 bit swap entry format:
1422 * A page-table entry has some bits we have to treat in a special way.
1423 * Bits 52 and bit 55 have to be zero, otherwise a specification
1424 * exception will occur instead of a page translation exception. The
1425 * specification exception has the bad habit not to store necessary
1426 * information in the lowcore.
1427 * Bits 54 and 63 are used to indicate the page type.
1428 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1429 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1430 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1431 * for the offset.
1432 * | offset |01100|type |00|
1433 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1434 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1437 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1438 #define __SWP_OFFSET_SHIFT 12
1439 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1440 #define __SWP_TYPE_SHIFT 2
1442 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1444 pte_t pte;
1446 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1447 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1448 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1449 return pte;
1452 static inline unsigned long __swp_type(swp_entry_t entry)
1454 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1457 static inline unsigned long __swp_offset(swp_entry_t entry)
1459 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1462 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1464 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1467 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1468 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1470 #endif /* !__ASSEMBLY__ */
1472 #define kern_addr_valid(addr) (1)
1474 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1475 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1476 extern int s390_enable_sie(void);
1477 extern int s390_enable_skey(void);
1478 extern void s390_reset_cmma(struct mm_struct *mm);
1480 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1481 #define HAVE_ARCH_UNMAPPED_AREA
1482 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1485 * No page table caches to initialise
1487 static inline void pgtable_cache_init(void) { }
1488 static inline void check_pgt_cache(void) { }
1490 #include <asm-generic/pgtable.h>
1492 #endif /* _S390_PAGE_H */