3 * Copyright IBM Corp. 1999
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (uweigand@de.ibm.com)
7 * Derived from "arch/i386/mm/fault.c"
8 * Copyright (C) 1995 Linus Torvalds
11 #include <linux/kernel_stat.h>
12 #include <linux/perf_event.h>
13 #include <linux/signal.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/errno.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 #include <linux/ptrace.h>
20 #include <linux/mman.h>
22 #include <linux/compat.h>
23 #include <linux/smp.h>
24 #include <linux/kdebug.h>
25 #include <linux/init.h>
26 #include <linux/console.h>
27 #include <linux/module.h>
28 #include <linux/hardirq.h>
29 #include <linux/kprobes.h>
30 #include <linux/uaccess.h>
31 #include <linux/hugetlb.h>
32 #include <asm/asm-offsets.h>
34 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/facility.h>
39 #include "../kernel/entry.h"
41 #define __FAIL_ADDR_MASK -4096L
42 #define __SUBCODE_MASK 0x0600
43 #define __PF_RES_FIELD 0x8000000000000000ULL
45 #define VM_FAULT_BADCONTEXT 0x010000
46 #define VM_FAULT_BADMAP 0x020000
47 #define VM_FAULT_BADACCESS 0x040000
48 #define VM_FAULT_SIGNAL 0x080000
49 #define VM_FAULT_PFAULT 0x100000
51 static unsigned long store_indication __read_mostly
;
53 static int __init
fault_init(void)
55 if (test_facility(75))
56 store_indication
= 0xc00;
59 early_initcall(fault_init
);
61 static inline int notify_page_fault(struct pt_regs
*regs
)
65 /* kprobe_running() needs smp_processor_id() */
66 if (kprobes_built_in() && !user_mode(regs
)) {
68 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
77 * Unlock any spinlocks which will prevent us from getting the
80 void bust_spinlocks(int yes
)
85 int loglevel_save
= console_loglevel
;
89 * OK, the message is on the console. Now we call printk()
90 * without oops_in_progress set so that printk will give klogd
91 * a poke. Hold onto your hats...
93 console_loglevel
= 15;
95 console_loglevel
= loglevel_save
;
100 * Returns the address space associated with the fault.
101 * Returns 0 for kernel space and 1 for user space.
103 static inline int user_space_fault(struct pt_regs
*regs
)
105 unsigned long trans_exc_code
;
108 * The lowest two bits of the translation exception
109 * identification indicate which paging table was used.
111 trans_exc_code
= regs
->int_parm_long
& 3;
112 if (trans_exc_code
== 3) /* home space -> kernel */
116 if (trans_exc_code
== 2) /* secondary space -> set_fs */
117 return current
->thread
.mm_segment
.ar4
;
118 if (current
->flags
& PF_VCPU
)
123 static int bad_address(void *p
)
127 return probe_kernel_address((unsigned long *)p
, dummy
);
130 static void dump_pagetable(unsigned long asce
, unsigned long address
)
132 unsigned long *table
= __va(asce
& PAGE_MASK
);
134 pr_alert("AS:%016lx ", asce
);
135 switch (asce
& _ASCE_TYPE_MASK
) {
136 case _ASCE_TYPE_REGION1
:
137 table
= table
+ ((address
>> 53) & 0x7ff);
138 if (bad_address(table
))
140 pr_cont("R1:%016lx ", *table
);
141 if (*table
& _REGION_ENTRY_INVALID
)
143 table
= (unsigned long *)(*table
& _REGION_ENTRY_ORIGIN
);
145 case _ASCE_TYPE_REGION2
:
146 table
= table
+ ((address
>> 42) & 0x7ff);
147 if (bad_address(table
))
149 pr_cont("R2:%016lx ", *table
);
150 if (*table
& _REGION_ENTRY_INVALID
)
152 table
= (unsigned long *)(*table
& _REGION_ENTRY_ORIGIN
);
154 case _ASCE_TYPE_REGION3
:
155 table
= table
+ ((address
>> 31) & 0x7ff);
156 if (bad_address(table
))
158 pr_cont("R3:%016lx ", *table
);
159 if (*table
& (_REGION_ENTRY_INVALID
| _REGION3_ENTRY_LARGE
))
161 table
= (unsigned long *)(*table
& _REGION_ENTRY_ORIGIN
);
163 case _ASCE_TYPE_SEGMENT
:
164 table
= table
+ ((address
>> 20) & 0x7ff);
165 if (bad_address(table
))
167 pr_cont("S:%016lx ", *table
);
168 if (*table
& (_SEGMENT_ENTRY_INVALID
| _SEGMENT_ENTRY_LARGE
))
170 table
= (unsigned long *)(*table
& _SEGMENT_ENTRY_ORIGIN
);
172 table
= table
+ ((address
>> 12) & 0xff);
173 if (bad_address(table
))
175 pr_cont("P:%016lx ", *table
);
183 static void dump_fault_info(struct pt_regs
*regs
)
187 pr_alert("Failing address: %016lx TEID: %016lx\n",
188 regs
->int_parm_long
& __FAIL_ADDR_MASK
, regs
->int_parm_long
);
189 pr_alert("Fault in ");
190 switch (regs
->int_parm_long
& 3) {
192 pr_cont("home space ");
195 pr_cont("secondary space ");
198 pr_cont("access register ");
201 pr_cont("primary space ");
204 pr_cont("mode while using ");
205 if (!user_space_fault(regs
)) {
206 asce
= S390_lowcore
.kernel_asce
;
210 else if ((current
->flags
& PF_VCPU
) && S390_lowcore
.gmap
) {
211 struct gmap
*gmap
= (struct gmap
*)S390_lowcore
.gmap
;
217 asce
= S390_lowcore
.user_asce
;
221 dump_pagetable(asce
, regs
->int_parm_long
& __FAIL_ADDR_MASK
);
224 int show_unhandled_signals
= 1;
226 void report_user_fault(struct pt_regs
*regs
, long signr
, int is_mm_fault
)
228 if ((task_pid_nr(current
) > 1) && !show_unhandled_signals
)
230 if (!unhandled_signal(current
, signr
))
232 if (!printk_ratelimit())
234 printk(KERN_ALERT
"User process fault: interruption code %04x ilc:%d ",
235 regs
->int_code
& 0xffff, regs
->int_code
>> 17);
236 print_vma_addr(KERN_CONT
"in ", regs
->psw
.addr
);
237 printk(KERN_CONT
"\n");
239 dump_fault_info(regs
);
244 * Send SIGSEGV to task. This is an external routine
245 * to keep the stack usage of do_page_fault small.
247 static noinline
void do_sigsegv(struct pt_regs
*regs
, int si_code
)
251 report_user_fault(regs
, SIGSEGV
, 1);
252 si
.si_signo
= SIGSEGV
;
254 si
.si_code
= si_code
;
255 si
.si_addr
= (void __user
*)(regs
->int_parm_long
& __FAIL_ADDR_MASK
);
256 force_sig_info(SIGSEGV
, &si
, current
);
259 static noinline
void do_no_context(struct pt_regs
*regs
)
261 const struct exception_table_entry
*fixup
;
263 /* Are we prepared to handle this kernel fault? */
264 fixup
= search_exception_tables(regs
->psw
.addr
);
266 regs
->psw
.addr
= extable_fixup(fixup
);
271 * Oops. The kernel tried to access some bad page. We'll have to
272 * terminate things with extreme prejudice.
274 if (!user_space_fault(regs
))
275 printk(KERN_ALERT
"Unable to handle kernel pointer dereference"
276 " in virtual kernel address space\n");
278 printk(KERN_ALERT
"Unable to handle kernel paging request"
279 " in virtual user address space\n");
280 dump_fault_info(regs
);
285 static noinline
void do_low_address(struct pt_regs
*regs
)
287 /* Low-address protection hit in kernel mode means
288 NULL pointer write access in kernel mode. */
289 if (regs
->psw
.mask
& PSW_MASK_PSTATE
) {
290 /* Low-address protection hit in user mode 'cannot happen'. */
291 die (regs
, "Low-address protection");
298 static noinline
void do_sigbus(struct pt_regs
*regs
)
300 struct task_struct
*tsk
= current
;
304 * Send a sigbus, regardless of whether we were in kernel
307 si
.si_signo
= SIGBUS
;
309 si
.si_code
= BUS_ADRERR
;
310 si
.si_addr
= (void __user
*)(regs
->int_parm_long
& __FAIL_ADDR_MASK
);
311 force_sig_info(SIGBUS
, &si
, tsk
);
314 static noinline
void do_fault_error(struct pt_regs
*regs
, int fault
)
319 case VM_FAULT_BADACCESS
:
320 case VM_FAULT_BADMAP
:
321 /* Bad memory access. Check if it is kernel or user space. */
322 if (user_mode(regs
)) {
323 /* User mode accesses just cause a SIGSEGV */
324 si_code
= (fault
== VM_FAULT_BADMAP
) ?
325 SEGV_MAPERR
: SEGV_ACCERR
;
326 do_sigsegv(regs
, si_code
);
329 case VM_FAULT_BADCONTEXT
:
330 case VM_FAULT_PFAULT
:
333 case VM_FAULT_SIGNAL
:
334 if (!user_mode(regs
))
337 default: /* fault & VM_FAULT_ERROR */
338 if (fault
& VM_FAULT_OOM
) {
339 if (!user_mode(regs
))
342 pagefault_out_of_memory();
343 } else if (fault
& VM_FAULT_SIGSEGV
) {
344 /* Kernel mode? Handle exceptions or die */
345 if (!user_mode(regs
))
348 do_sigsegv(regs
, SEGV_MAPERR
);
349 } else if (fault
& VM_FAULT_SIGBUS
) {
350 /* Kernel mode? Handle exceptions or die */
351 if (!user_mode(regs
))
362 * This routine handles page faults. It determines the address,
363 * and the problem, and then passes it off to one of the appropriate
366 * interruption code (int_code):
367 * 04 Protection -> Write-Protection (suprression)
368 * 10 Segment translation -> Not present (nullification)
369 * 11 Page translation -> Not present (nullification)
370 * 3b Region third trans. -> Not present (nullification)
372 static inline int do_exception(struct pt_regs
*regs
, int access
)
377 struct task_struct
*tsk
;
378 struct mm_struct
*mm
;
379 struct vm_area_struct
*vma
;
380 unsigned long trans_exc_code
;
381 unsigned long address
;
387 * The instruction that caused the program check has
388 * been nullified. Don't signal single step via SIGTRAP.
390 clear_pt_regs_flag(regs
, PIF_PER_TRAP
);
392 if (notify_page_fault(regs
))
396 trans_exc_code
= regs
->int_parm_long
;
399 * Verify that the fault happened in user space, that
400 * we are not in an interrupt and that there is a
403 fault
= VM_FAULT_BADCONTEXT
;
404 if (unlikely(!user_space_fault(regs
) || faulthandler_disabled() || !mm
))
407 address
= trans_exc_code
& __FAIL_ADDR_MASK
;
408 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
409 flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
411 flags
|= FAULT_FLAG_USER
;
412 if (access
== VM_WRITE
|| (trans_exc_code
& store_indication
) == 0x400)
413 flags
|= FAULT_FLAG_WRITE
;
414 down_read(&mm
->mmap_sem
);
417 gmap
= (current
->flags
& PF_VCPU
) ?
418 (struct gmap
*) S390_lowcore
.gmap
: NULL
;
420 current
->thread
.gmap_addr
= address
;
421 current
->thread
.gmap_write_flag
= !!(flags
& FAULT_FLAG_WRITE
);
422 current
->thread
.gmap_int_code
= regs
->int_code
& 0xffff;
423 address
= __gmap_translate(gmap
, address
);
424 if (address
== -EFAULT
) {
425 fault
= VM_FAULT_BADMAP
;
428 if (gmap
->pfault_enabled
)
429 flags
|= FAULT_FLAG_RETRY_NOWAIT
;
434 fault
= VM_FAULT_BADMAP
;
435 vma
= find_vma(mm
, address
);
439 if (unlikely(vma
->vm_start
> address
)) {
440 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
442 if (expand_stack(vma
, address
))
447 * Ok, we have a good vm_area for this memory access, so
450 fault
= VM_FAULT_BADACCESS
;
451 if (unlikely(!(vma
->vm_flags
& access
)))
454 if (is_vm_hugetlb_page(vma
))
455 address
&= HPAGE_MASK
;
457 * If for any reason at all we couldn't handle the fault,
458 * make sure we exit gracefully rather than endlessly redo
461 fault
= handle_mm_fault(vma
, address
, flags
);
462 /* No reason to continue if interrupted by SIGKILL. */
463 if ((fault
& VM_FAULT_RETRY
) && fatal_signal_pending(current
)) {
464 fault
= VM_FAULT_SIGNAL
;
467 if (unlikely(fault
& VM_FAULT_ERROR
))
471 * Major/minor page fault accounting is only done on the
472 * initial attempt. If we go through a retry, it is extremely
473 * likely that the page will be found in page cache at that point.
475 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
476 if (fault
& VM_FAULT_MAJOR
) {
478 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1,
482 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1,
485 if (fault
& VM_FAULT_RETRY
) {
487 if (gmap
&& (flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
488 /* FAULT_FLAG_RETRY_NOWAIT has been set,
489 * mmap_sem has not been released */
490 current
->thread
.gmap_pfault
= 1;
491 fault
= VM_FAULT_PFAULT
;
495 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
497 flags
&= ~(FAULT_FLAG_ALLOW_RETRY
|
498 FAULT_FLAG_RETRY_NOWAIT
);
499 flags
|= FAULT_FLAG_TRIED
;
500 down_read(&mm
->mmap_sem
);
506 address
= __gmap_link(gmap
, current
->thread
.gmap_addr
,
508 if (address
== -EFAULT
) {
509 fault
= VM_FAULT_BADMAP
;
512 if (address
== -ENOMEM
) {
513 fault
= VM_FAULT_OOM
;
520 up_read(&mm
->mmap_sem
);
525 void do_protection_exception(struct pt_regs
*regs
)
527 unsigned long trans_exc_code
;
530 trans_exc_code
= regs
->int_parm_long
;
532 * Protection exceptions are suppressing, decrement psw address.
533 * The exception to this rule are aborted transactions, for these
534 * the PSW already points to the correct location.
536 if (!(regs
->int_code
& 0x200))
537 regs
->psw
.addr
= __rewind_psw(regs
->psw
, regs
->int_code
>> 16);
539 * Check for low-address protection. This needs to be treated
540 * as a special case because the translation exception code
541 * field is not guaranteed to contain valid data in this case.
543 if (unlikely(!(trans_exc_code
& 4))) {
544 do_low_address(regs
);
547 fault
= do_exception(regs
, VM_WRITE
);
549 do_fault_error(regs
, fault
);
551 NOKPROBE_SYMBOL(do_protection_exception
);
553 void do_dat_exception(struct pt_regs
*regs
)
557 access
= VM_READ
| VM_EXEC
| VM_WRITE
;
558 fault
= do_exception(regs
, access
);
560 do_fault_error(regs
, fault
);
562 NOKPROBE_SYMBOL(do_dat_exception
);
566 * 'pfault' pseudo page faults routines.
568 static int pfault_disable
;
570 static int __init
nopfault(char *str
)
576 __setup("nopfault", nopfault
);
578 struct pfault_refbk
{
587 } __attribute__ ((packed
, aligned(8)));
589 int pfault_init(void)
591 struct pfault_refbk refbk
= {
596 .refgaddr
= __LC_LPP
,
597 .refselmk
= 1ULL << 48,
598 .refcmpmk
= 1ULL << 48,
599 .reserved
= __PF_RES_FIELD
};
604 diag_stat_inc(DIAG_STAT_X258
);
606 " diag %1,%0,0x258\n"
611 : "=d" (rc
) : "a" (&refbk
), "m" (refbk
) : "cc");
615 void pfault_fini(void)
617 struct pfault_refbk refbk
= {
626 diag_stat_inc(DIAG_STAT_X258
);
631 : : "a" (&refbk
), "m" (refbk
) : "cc");
634 static DEFINE_SPINLOCK(pfault_lock
);
635 static LIST_HEAD(pfault_list
);
637 #define PF_COMPLETE 0x0080
640 * The mechanism of our pfault code: if Linux is running as guest, runs a user
641 * space process and the user space process accesses a page that the host has
642 * paged out we get a pfault interrupt.
644 * This allows us, within the guest, to schedule a different process. Without
645 * this mechanism the host would have to suspend the whole virtual cpu until
646 * the page has been paged in.
648 * So when we get such an interrupt then we set the state of the current task
649 * to uninterruptible and also set the need_resched flag. Both happens within
650 * interrupt context(!). If we later on want to return to user space we
651 * recognize the need_resched flag and then call schedule(). It's not very
652 * obvious how this works...
654 * Of course we have a lot of additional fun with the completion interrupt (->
655 * host signals that a page of a process has been paged in and the process can
656 * continue to run). This interrupt can arrive on any cpu and, since we have
657 * virtual cpus, actually appear before the interrupt that signals that a page
660 static void pfault_interrupt(struct ext_code ext_code
,
661 unsigned int param32
, unsigned long param64
)
663 struct task_struct
*tsk
;
668 * Get the external interruption subcode & pfault initial/completion
669 * signal bit. VM stores this in the 'cpu address' field associated
670 * with the external interrupt.
672 subcode
= ext_code
.subcode
;
673 if ((subcode
& 0xff00) != __SUBCODE_MASK
)
675 inc_irq_stat(IRQEXT_PFL
);
676 /* Get the token (= pid of the affected task). */
677 pid
= param64
& LPP_PFAULT_PID_MASK
;
679 tsk
= find_task_by_pid_ns(pid
, &init_pid_ns
);
681 get_task_struct(tsk
);
685 spin_lock(&pfault_lock
);
686 if (subcode
& PF_COMPLETE
) {
687 /* signal bit is set -> a page has been swapped in by VM */
688 if (tsk
->thread
.pfault_wait
== 1) {
689 /* Initial interrupt was faster than the completion
690 * interrupt. pfault_wait is valid. Set pfault_wait
691 * back to zero and wake up the process. This can
692 * safely be done because the task is still sleeping
693 * and can't produce new pfaults. */
694 tsk
->thread
.pfault_wait
= 0;
695 list_del(&tsk
->thread
.list
);
696 wake_up_process(tsk
);
697 put_task_struct(tsk
);
699 /* Completion interrupt was faster than initial
700 * interrupt. Set pfault_wait to -1 so the initial
701 * interrupt doesn't put the task to sleep.
702 * If the task is not running, ignore the completion
703 * interrupt since it must be a leftover of a PFAULT
704 * CANCEL operation which didn't remove all pending
705 * completion interrupts. */
706 if (tsk
->state
== TASK_RUNNING
)
707 tsk
->thread
.pfault_wait
= -1;
710 /* signal bit not set -> a real page is missing. */
711 if (WARN_ON_ONCE(tsk
!= current
))
713 if (tsk
->thread
.pfault_wait
== 1) {
714 /* Already on the list with a reference: put to sleep */
716 } else if (tsk
->thread
.pfault_wait
== -1) {
717 /* Completion interrupt was faster than the initial
718 * interrupt (pfault_wait == -1). Set pfault_wait
719 * back to zero and exit. */
720 tsk
->thread
.pfault_wait
= 0;
722 /* Initial interrupt arrived before completion
723 * interrupt. Let the task sleep.
724 * An extra task reference is needed since a different
725 * cpu may set the task state to TASK_RUNNING again
726 * before the scheduler is reached. */
727 get_task_struct(tsk
);
728 tsk
->thread
.pfault_wait
= 1;
729 list_add(&tsk
->thread
.list
, &pfault_list
);
731 /* Since this must be a userspace fault, there
732 * is no kernel task state to trample. Rely on the
733 * return to userspace schedule() to block. */
734 __set_current_state(TASK_UNINTERRUPTIBLE
);
735 set_tsk_need_resched(tsk
);
739 spin_unlock(&pfault_lock
);
740 put_task_struct(tsk
);
743 static int pfault_cpu_notify(struct notifier_block
*self
, unsigned long action
,
746 struct thread_struct
*thread
, *next
;
747 struct task_struct
*tsk
;
749 switch (action
& ~CPU_TASKS_FROZEN
) {
751 spin_lock_irq(&pfault_lock
);
752 list_for_each_entry_safe(thread
, next
, &pfault_list
, list
) {
753 thread
->pfault_wait
= 0;
754 list_del(&thread
->list
);
755 tsk
= container_of(thread
, struct task_struct
, thread
);
756 wake_up_process(tsk
);
757 put_task_struct(tsk
);
759 spin_unlock_irq(&pfault_lock
);
767 static int __init
pfault_irq_init(void)
771 rc
= register_external_irq(EXT_IRQ_CP_SERVICE
, pfault_interrupt
);
774 rc
= pfault_init() == 0 ? 0 : -EOPNOTSUPP
;
777 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL
);
778 hotcpu_notifier(pfault_cpu_notify
, 0);
782 unregister_external_irq(EXT_IRQ_CP_SERVICE
, pfault_interrupt
);
787 early_initcall(pfault_irq_init
);
789 #endif /* CONFIG_PFAULT */