Linux 4.8-rc8
[linux/fpc-iii.git] / arch / sparc / kernel / process_64.c
blobfa14402b33f95f34d7c9f84f26ef23ea7c05aff1
1 /* arch/sparc64/kernel/process.c
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34 #include <linux/context_tracking.h>
36 #include <asm/uaccess.h>
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/pstate.h>
42 #include <asm/elf.h>
43 #include <asm/fpumacro.h>
44 #include <asm/head.h>
45 #include <asm/cpudata.h>
46 #include <asm/mmu_context.h>
47 #include <asm/unistd.h>
48 #include <asm/hypervisor.h>
49 #include <asm/syscalls.h>
50 #include <asm/irq_regs.h>
51 #include <asm/smp.h>
52 #include <asm/pcr.h>
54 #include "kstack.h"
56 /* Idle loop support on sparc64. */
57 void arch_cpu_idle(void)
59 if (tlb_type != hypervisor) {
60 touch_nmi_watchdog();
61 local_irq_enable();
62 } else {
63 unsigned long pstate;
65 local_irq_enable();
67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
68 * the cpu sleep hypervisor call.
70 __asm__ __volatile__(
71 "rdpr %%pstate, %0\n\t"
72 "andn %0, %1, %0\n\t"
73 "wrpr %0, %%g0, %%pstate"
74 : "=&r" (pstate)
75 : "i" (PSTATE_IE));
77 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
78 sun4v_cpu_yield();
80 /* Re-enable interrupts. */
81 __asm__ __volatile__(
82 "rdpr %%pstate, %0\n\t"
83 "or %0, %1, %0\n\t"
84 "wrpr %0, %%g0, %%pstate"
85 : "=&r" (pstate)
86 : "i" (PSTATE_IE));
90 #ifdef CONFIG_HOTPLUG_CPU
91 void arch_cpu_idle_dead(void)
93 sched_preempt_enable_no_resched();
94 cpu_play_dead();
96 #endif
98 #ifdef CONFIG_COMPAT
99 static void show_regwindow32(struct pt_regs *regs)
101 struct reg_window32 __user *rw;
102 struct reg_window32 r_w;
103 mm_segment_t old_fs;
105 __asm__ __volatile__ ("flushw");
106 rw = compat_ptr((unsigned int)regs->u_regs[14]);
107 old_fs = get_fs();
108 set_fs (USER_DS);
109 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
110 set_fs (old_fs);
111 return;
114 set_fs (old_fs);
115 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
116 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
117 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
118 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
119 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
120 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
121 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
122 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
124 #else
125 #define show_regwindow32(regs) do { } while (0)
126 #endif
128 static void show_regwindow(struct pt_regs *regs)
130 struct reg_window __user *rw;
131 struct reg_window *rwk;
132 struct reg_window r_w;
133 mm_segment_t old_fs;
135 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
136 __asm__ __volatile__ ("flushw");
137 rw = (struct reg_window __user *)
138 (regs->u_regs[14] + STACK_BIAS);
139 rwk = (struct reg_window *)
140 (regs->u_regs[14] + STACK_BIAS);
141 if (!(regs->tstate & TSTATE_PRIV)) {
142 old_fs = get_fs();
143 set_fs (USER_DS);
144 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
145 set_fs (old_fs);
146 return;
148 rwk = &r_w;
149 set_fs (old_fs);
151 } else {
152 show_regwindow32(regs);
153 return;
155 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
156 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
157 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
158 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
159 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
160 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
161 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
162 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
163 if (regs->tstate & TSTATE_PRIV)
164 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
167 void show_regs(struct pt_regs *regs)
169 show_regs_print_info(KERN_DEFAULT);
171 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
172 regs->tpc, regs->tnpc, regs->y, print_tainted());
173 printk("TPC: <%pS>\n", (void *) regs->tpc);
174 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
175 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
176 regs->u_regs[3]);
177 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
178 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
179 regs->u_regs[7]);
180 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
181 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
182 regs->u_regs[11]);
183 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
184 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
185 regs->u_regs[15]);
186 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
187 show_regwindow(regs);
188 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
191 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
192 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
194 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
195 int this_cpu)
197 struct global_reg_snapshot *rp;
199 flushw_all();
201 rp = &global_cpu_snapshot[this_cpu].reg;
203 rp->tstate = regs->tstate;
204 rp->tpc = regs->tpc;
205 rp->tnpc = regs->tnpc;
206 rp->o7 = regs->u_regs[UREG_I7];
208 if (regs->tstate & TSTATE_PRIV) {
209 struct reg_window *rw;
211 rw = (struct reg_window *)
212 (regs->u_regs[UREG_FP] + STACK_BIAS);
213 if (kstack_valid(tp, (unsigned long) rw)) {
214 rp->i7 = rw->ins[7];
215 rw = (struct reg_window *)
216 (rw->ins[6] + STACK_BIAS);
217 if (kstack_valid(tp, (unsigned long) rw))
218 rp->rpc = rw->ins[7];
220 } else {
221 rp->i7 = 0;
222 rp->rpc = 0;
224 rp->thread = tp;
227 /* In order to avoid hangs we do not try to synchronize with the
228 * global register dump client cpus. The last store they make is to
229 * the thread pointer, so do a short poll waiting for that to become
230 * non-NULL.
232 static void __global_reg_poll(struct global_reg_snapshot *gp)
234 int limit = 0;
236 while (!gp->thread && ++limit < 100) {
237 barrier();
238 udelay(1);
242 void arch_trigger_all_cpu_backtrace(bool include_self)
244 struct thread_info *tp = current_thread_info();
245 struct pt_regs *regs = get_irq_regs();
246 unsigned long flags;
247 int this_cpu, cpu;
249 if (!regs)
250 regs = tp->kregs;
252 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
254 this_cpu = raw_smp_processor_id();
256 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
258 if (include_self)
259 __global_reg_self(tp, regs, this_cpu);
261 smp_fetch_global_regs();
263 for_each_online_cpu(cpu) {
264 struct global_reg_snapshot *gp;
266 if (!include_self && cpu == this_cpu)
267 continue;
269 gp = &global_cpu_snapshot[cpu].reg;
271 __global_reg_poll(gp);
273 tp = gp->thread;
274 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
275 (cpu == this_cpu ? '*' : ' '), cpu,
276 gp->tstate, gp->tpc, gp->tnpc,
277 ((tp && tp->task) ? tp->task->comm : "NULL"),
278 ((tp && tp->task) ? tp->task->pid : -1));
280 if (gp->tstate & TSTATE_PRIV) {
281 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
282 (void *) gp->tpc,
283 (void *) gp->o7,
284 (void *) gp->i7,
285 (void *) gp->rpc);
286 } else {
287 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
288 gp->tpc, gp->o7, gp->i7, gp->rpc);
291 touch_nmi_watchdog();
294 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
296 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
299 #ifdef CONFIG_MAGIC_SYSRQ
301 static void sysrq_handle_globreg(int key)
303 arch_trigger_all_cpu_backtrace(true);
306 static struct sysrq_key_op sparc_globalreg_op = {
307 .handler = sysrq_handle_globreg,
308 .help_msg = "global-regs(y)",
309 .action_msg = "Show Global CPU Regs",
312 static void __global_pmu_self(int this_cpu)
314 struct global_pmu_snapshot *pp;
315 int i, num;
317 if (!pcr_ops)
318 return;
320 pp = &global_cpu_snapshot[this_cpu].pmu;
322 num = 1;
323 if (tlb_type == hypervisor &&
324 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
325 num = 4;
327 for (i = 0; i < num; i++) {
328 pp->pcr[i] = pcr_ops->read_pcr(i);
329 pp->pic[i] = pcr_ops->read_pic(i);
333 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
335 int limit = 0;
337 while (!pp->pcr[0] && ++limit < 100) {
338 barrier();
339 udelay(1);
343 static void pmu_snapshot_all_cpus(void)
345 unsigned long flags;
346 int this_cpu, cpu;
348 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
350 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
352 this_cpu = raw_smp_processor_id();
354 __global_pmu_self(this_cpu);
356 smp_fetch_global_pmu();
358 for_each_online_cpu(cpu) {
359 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
361 __global_pmu_poll(pp);
363 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
364 (cpu == this_cpu ? '*' : ' '), cpu,
365 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
366 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
368 touch_nmi_watchdog();
371 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
373 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
376 static void sysrq_handle_globpmu(int key)
378 pmu_snapshot_all_cpus();
381 static struct sysrq_key_op sparc_globalpmu_op = {
382 .handler = sysrq_handle_globpmu,
383 .help_msg = "global-pmu(x)",
384 .action_msg = "Show Global PMU Regs",
387 static int __init sparc_sysrq_init(void)
389 int ret = register_sysrq_key('y', &sparc_globalreg_op);
391 if (!ret)
392 ret = register_sysrq_key('x', &sparc_globalpmu_op);
393 return ret;
396 core_initcall(sparc_sysrq_init);
398 #endif
400 unsigned long thread_saved_pc(struct task_struct *tsk)
402 struct thread_info *ti = task_thread_info(tsk);
403 unsigned long ret = 0xdeadbeefUL;
405 if (ti && ti->ksp) {
406 unsigned long *sp;
407 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
408 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
409 sp[14]) {
410 unsigned long *fp;
411 fp = (unsigned long *)(sp[14] + STACK_BIAS);
412 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
413 ret = fp[15];
416 return ret;
419 /* Free current thread data structures etc.. */
420 void exit_thread(struct task_struct *tsk)
422 struct thread_info *t = task_thread_info(tsk);
424 if (t->utraps) {
425 if (t->utraps[0] < 2)
426 kfree (t->utraps);
427 else
428 t->utraps[0]--;
432 void flush_thread(void)
434 struct thread_info *t = current_thread_info();
435 struct mm_struct *mm;
437 mm = t->task->mm;
438 if (mm)
439 tsb_context_switch(mm);
441 set_thread_wsaved(0);
443 /* Clear FPU register state. */
444 t->fpsaved[0] = 0;
447 /* It's a bit more tricky when 64-bit tasks are involved... */
448 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
450 bool stack_64bit = test_thread_64bit_stack(psp);
451 unsigned long fp, distance, rval;
453 if (stack_64bit) {
454 csp += STACK_BIAS;
455 psp += STACK_BIAS;
456 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
457 fp += STACK_BIAS;
458 if (test_thread_flag(TIF_32BIT))
459 fp &= 0xffffffff;
460 } else
461 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
463 /* Now align the stack as this is mandatory in the Sparc ABI
464 * due to how register windows work. This hides the
465 * restriction from thread libraries etc.
467 csp &= ~15UL;
469 distance = fp - psp;
470 rval = (csp - distance);
471 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
472 rval = 0;
473 else if (!stack_64bit) {
474 if (put_user(((u32)csp),
475 &(((struct reg_window32 __user *)rval)->ins[6])))
476 rval = 0;
477 } else {
478 if (put_user(((u64)csp - STACK_BIAS),
479 &(((struct reg_window __user *)rval)->ins[6])))
480 rval = 0;
481 else
482 rval = rval - STACK_BIAS;
485 return rval;
488 /* Standard stuff. */
489 static inline void shift_window_buffer(int first_win, int last_win,
490 struct thread_info *t)
492 int i;
494 for (i = first_win; i < last_win; i++) {
495 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
496 memcpy(&t->reg_window[i], &t->reg_window[i+1],
497 sizeof(struct reg_window));
501 void synchronize_user_stack(void)
503 struct thread_info *t = current_thread_info();
504 unsigned long window;
506 flush_user_windows();
507 if ((window = get_thread_wsaved()) != 0) {
508 window -= 1;
509 do {
510 struct reg_window *rwin = &t->reg_window[window];
511 int winsize = sizeof(struct reg_window);
512 unsigned long sp;
514 sp = t->rwbuf_stkptrs[window];
516 if (test_thread_64bit_stack(sp))
517 sp += STACK_BIAS;
518 else
519 winsize = sizeof(struct reg_window32);
521 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
522 shift_window_buffer(window, get_thread_wsaved() - 1, t);
523 set_thread_wsaved(get_thread_wsaved() - 1);
525 } while (window--);
529 static void stack_unaligned(unsigned long sp)
531 siginfo_t info;
533 info.si_signo = SIGBUS;
534 info.si_errno = 0;
535 info.si_code = BUS_ADRALN;
536 info.si_addr = (void __user *) sp;
537 info.si_trapno = 0;
538 force_sig_info(SIGBUS, &info, current);
541 void fault_in_user_windows(void)
543 struct thread_info *t = current_thread_info();
544 unsigned long window;
546 flush_user_windows();
547 window = get_thread_wsaved();
549 if (likely(window != 0)) {
550 window -= 1;
551 do {
552 struct reg_window *rwin = &t->reg_window[window];
553 int winsize = sizeof(struct reg_window);
554 unsigned long sp;
556 sp = t->rwbuf_stkptrs[window];
558 if (test_thread_64bit_stack(sp))
559 sp += STACK_BIAS;
560 else
561 winsize = sizeof(struct reg_window32);
563 if (unlikely(sp & 0x7UL))
564 stack_unaligned(sp);
566 if (unlikely(copy_to_user((char __user *)sp,
567 rwin, winsize)))
568 goto barf;
569 } while (window--);
571 set_thread_wsaved(0);
572 return;
574 barf:
575 set_thread_wsaved(window + 1);
576 user_exit();
577 do_exit(SIGILL);
580 asmlinkage long sparc_do_fork(unsigned long clone_flags,
581 unsigned long stack_start,
582 struct pt_regs *regs,
583 unsigned long stack_size)
585 int __user *parent_tid_ptr, *child_tid_ptr;
586 unsigned long orig_i1 = regs->u_regs[UREG_I1];
587 long ret;
589 #ifdef CONFIG_COMPAT
590 if (test_thread_flag(TIF_32BIT)) {
591 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
592 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
593 } else
594 #endif
596 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
597 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
600 ret = do_fork(clone_flags, stack_start, stack_size,
601 parent_tid_ptr, child_tid_ptr);
603 /* If we get an error and potentially restart the system
604 * call, we're screwed because copy_thread() clobbered
605 * the parent's %o1. So detect that case and restore it
606 * here.
608 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
609 regs->u_regs[UREG_I1] = orig_i1;
611 return ret;
614 /* Copy a Sparc thread. The fork() return value conventions
615 * under SunOS are nothing short of bletcherous:
616 * Parent --> %o0 == childs pid, %o1 == 0
617 * Child --> %o0 == parents pid, %o1 == 1
619 int copy_thread(unsigned long clone_flags, unsigned long sp,
620 unsigned long arg, struct task_struct *p)
622 struct thread_info *t = task_thread_info(p);
623 struct pt_regs *regs = current_pt_regs();
624 struct sparc_stackf *parent_sf;
625 unsigned long child_stack_sz;
626 char *child_trap_frame;
628 /* Calculate offset to stack_frame & pt_regs */
629 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
630 child_trap_frame = (task_stack_page(p) +
631 (THREAD_SIZE - child_stack_sz));
633 t->new_child = 1;
634 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
635 t->kregs = (struct pt_regs *) (child_trap_frame +
636 sizeof(struct sparc_stackf));
637 t->fpsaved[0] = 0;
639 if (unlikely(p->flags & PF_KTHREAD)) {
640 memset(child_trap_frame, 0, child_stack_sz);
641 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
642 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
643 t->current_ds = ASI_P;
644 t->kregs->u_regs[UREG_G1] = sp; /* function */
645 t->kregs->u_regs[UREG_G2] = arg;
646 return 0;
649 parent_sf = ((struct sparc_stackf *) regs) - 1;
650 memcpy(child_trap_frame, parent_sf, child_stack_sz);
651 if (t->flags & _TIF_32BIT) {
652 sp &= 0x00000000ffffffffUL;
653 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
655 t->kregs->u_regs[UREG_FP] = sp;
656 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
657 (regs->tstate + 1) & TSTATE_CWP;
658 t->current_ds = ASI_AIUS;
659 if (sp != regs->u_regs[UREG_FP]) {
660 unsigned long csp;
662 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
663 if (!csp)
664 return -EFAULT;
665 t->kregs->u_regs[UREG_FP] = csp;
667 if (t->utraps)
668 t->utraps[0]++;
670 /* Set the return value for the child. */
671 t->kregs->u_regs[UREG_I0] = current->pid;
672 t->kregs->u_regs[UREG_I1] = 1;
674 /* Set the second return value for the parent. */
675 regs->u_regs[UREG_I1] = 0;
677 if (clone_flags & CLONE_SETTLS)
678 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
680 return 0;
683 typedef struct {
684 union {
685 unsigned int pr_regs[32];
686 unsigned long pr_dregs[16];
687 } pr_fr;
688 unsigned int __unused;
689 unsigned int pr_fsr;
690 unsigned char pr_qcnt;
691 unsigned char pr_q_entrysize;
692 unsigned char pr_en;
693 unsigned int pr_q[64];
694 } elf_fpregset_t32;
697 * fill in the fpu structure for a core dump.
699 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
701 unsigned long *kfpregs = current_thread_info()->fpregs;
702 unsigned long fprs = current_thread_info()->fpsaved[0];
704 if (test_thread_flag(TIF_32BIT)) {
705 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
707 if (fprs & FPRS_DL)
708 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
709 sizeof(unsigned int) * 32);
710 else
711 memset(&fpregs32->pr_fr.pr_regs[0], 0,
712 sizeof(unsigned int) * 32);
713 fpregs32->pr_qcnt = 0;
714 fpregs32->pr_q_entrysize = 8;
715 memset(&fpregs32->pr_q[0], 0,
716 (sizeof(unsigned int) * 64));
717 if (fprs & FPRS_FEF) {
718 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
719 fpregs32->pr_en = 1;
720 } else {
721 fpregs32->pr_fsr = 0;
722 fpregs32->pr_en = 0;
724 } else {
725 if(fprs & FPRS_DL)
726 memcpy(&fpregs->pr_regs[0], kfpregs,
727 sizeof(unsigned int) * 32);
728 else
729 memset(&fpregs->pr_regs[0], 0,
730 sizeof(unsigned int) * 32);
731 if(fprs & FPRS_DU)
732 memcpy(&fpregs->pr_regs[16], kfpregs+16,
733 sizeof(unsigned int) * 32);
734 else
735 memset(&fpregs->pr_regs[16], 0,
736 sizeof(unsigned int) * 32);
737 if(fprs & FPRS_FEF) {
738 fpregs->pr_fsr = current_thread_info()->xfsr[0];
739 fpregs->pr_gsr = current_thread_info()->gsr[0];
740 } else {
741 fpregs->pr_fsr = fpregs->pr_gsr = 0;
743 fpregs->pr_fprs = fprs;
745 return 1;
747 EXPORT_SYMBOL(dump_fpu);
749 unsigned long get_wchan(struct task_struct *task)
751 unsigned long pc, fp, bias = 0;
752 struct thread_info *tp;
753 struct reg_window *rw;
754 unsigned long ret = 0;
755 int count = 0;
757 if (!task || task == current ||
758 task->state == TASK_RUNNING)
759 goto out;
761 tp = task_thread_info(task);
762 bias = STACK_BIAS;
763 fp = task_thread_info(task)->ksp + bias;
765 do {
766 if (!kstack_valid(tp, fp))
767 break;
768 rw = (struct reg_window *) fp;
769 pc = rw->ins[7];
770 if (!in_sched_functions(pc)) {
771 ret = pc;
772 goto out;
774 fp = rw->ins[6] + bias;
775 } while (++count < 16);
777 out:
778 return ret;